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ON THE RATIONAL COHOMOLOGY OF

MODULI SPACES OF CURVES

WITH LEVEL STRUCTURES

GILBERTO BINI AND CLAUDIO FONTANARI

Abstract. We investigate low degree rational cohomology groups
of smooth compactifications of moduli spaces of curves with level
structures. In particular, we determine Hk(Sg,Q) for g ≥ 2 and

k ≤ 3, where Sg denotes the moduli space of spin curves of genus g.

1. Introduction

Moduli spaces MΓ of curves with level structures are obtained by
taking the quotient of the Teichmüller space by a finite index subgroup
Γ of the mapping class group. As such, they yield natural coverings of
the moduli space Mg,n of smooth genus g curves with n marked points.

The geometry ofMΓ turns out to be better understood when Γ con-
tains the Torelli group, as explained in [8]. For instance, Γ can be a
spin mapping class group, so that MΓ is the moduli space S±

g parame-
terizing pairs (smooth genus g curve C, even/odd theta characteristic
on C). Under this assumption, a recent result by Putnam [12] shows
that H2(MΓ,Q) ∼= Q for g ≥ 5.

Here instead we investigate the rational cohomology of the canoni-

cal compactification M
Γ
of MΓ over the moduli space Mg,n of stable

curves. Indeed, the description of the boundary of M
Γ
provided by [6]

and [5] allows us to adapt the inductive approach introduced for M g,n

in [1] and recently refined in [2]. In particular, we are able to show

that H1(M
Γ
,Q) = 0 (see Theorem 2.3) and to determine a set of free

generators for Pic(M
Γ
)⊗Q (see Theorem 4.1).

In the special case of spin moduli spaces, where a geometrically
meaningful compactification has been constructed in [7], we obtain
even stronger results. Namely, we get the vanishing of the third co-
homology group (see Theorem 3.1) and a complete description of the
second cohomology group (see Corollary 4.2).

Throughout, we work over the field C of complex numbers and all
cohomology groups are intended to be with rational coefficients.

The first named author has been partially supported by ”FIRST”
Università di Milano and by MIUR Cofin 2008 - Varietà algebriche:
geometria, aritmetica, strutture di Hodge. The second named author
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has been partially supported by MIUR Cofin 2008 - Geometria delle
varietà algebriche e dei loro spazi di moduli.

2. The first Betti number of moduli spaces of curves

with level structures

First, we recall some notation and basic facts on level structures: for
more details, the reader is referred, for instance, to [6].

Let Σg,n be a compact genus g surface with n marked points and let
Γg,n be its mapping class group. Denote by Tg,n the Teichmüller space
and byMg,n the moduli space Tg,n/Γg,n. A level Γ is a subgroup of Γg,n.
It is finite if Γ has finite index in Γg,n. It is Galois if Γ is normal in
Γg,n. The functor of curves with Γ-level is represented by the analytic
stack [Tg,n/Γ], which is called a level structure over the moduli space
Mg,n. Clearly, a level structure is a finite connected covering of Mg,n.

In what follows, we will focus on some particular level structures.
Fix g ≥ 2 and a basis of the first homology group of Σg,n so that the
intersection form is given by the 2g × 2g matrix

(

0 I
−I 0

)

.

There exists a surjective homomorphism Γg,n → Sp(2g,Z), where
Sp(2g,Z) is the symplectic group of 2g × 2g matrices with integer
entries. The kernel of this homomorphism is called the Torelli group
Tg,n. In some applications, we will take into account finite levels that
contain the Torelli group. We briefly review some examples which fit
into this picture.

Example A. For any integer m ≥ 2, consider the surjective homo-
morphism Γg,n → Sp(2g,Z/mZ) which maps an element γ ∈ Γg,n to
the homomorphism induced by γ on the homology of Σg,n mod m. The
kernel of this homomorphism is called the Abelian level of order m. For
short, we will denote this level by (m). By definition, it contains the
Torelli group.

Those of Example A are particular examples of geometric levels.
Indeed, if Πλ is a subgroup of the fundamental group Πg,n of Σg,n, then
the geometric level determined by Πλ is the kernel Γλ := kerρλ of the
natural representation:

ρλ : Γg,n → Out(Πg,n/Π
λ)).

A level Γλ is said to be fine if Γλ ⊂ (m). In geometric terms, this
means that Mλ is a connected étale covering of M (m).

Example B. Let V = H1(Σg,n,Z/2Z) and let · denote the Z/2Z-
intersection form on V . A Z/2Z-quadratic form on Σg,n is a function
Q : V → Z/2Z such that

Q(x+ y) = Q(x) +Q(y) + x · y
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for all x, y ∈ V . The isomorphism class of Q is determined by its
Arf invariant. Given Q, let G(Q) denote the subgroup of Γg,n which
preserves Q. Since there are two isomorphism classes of quadratic
forms, there are two such groups, which are called the spin mapping
class groups. It is well known that they contain the Torelli group. The
space Tg,n/G(Q) is the union of two connected components, S+

g,n⊔S
−
g,n,

which are called the moduli spaces of even (respectively, odd) spin
structures.

A canonical compactification M
λ
of Mλ is obtained by taking the

normalization of the Deligne-Mumford compactification M g,n in the
function field of Mλ. As proved in Proposition 1.6.8 in [5], if Γλ is a

finite fine level, then M
λ
is represented by a projective variety.

Finally, we recall the geometry of the boundary as it is described in
[6], Proposition 2.2 and Theorem 2.3, and in [5], Theorem 2.5.1 and
Theorem 2.7.4. Let λ be a fine geometric level structure overMg,n such

that its compactification M
λ
is smooth. An irreducible component of

its Deligne-Mumford boundary, corresponding to reducible curves, is
isomorphic to

M
λ1

g1,n1+1 ×M
λ2

g2,n2+1

for some g1 + g2 = g, n1 + n2 = n and with λi suitably defined geo-
metric levels (see [5], p. 25). Analogously, the closure of each stratum
parameterizing singular irreducible curves is isomorphic to

M
λσ

g−h,n+2h,

where h ≥ 1 and λσ is a suitably defined geometric level (see [5], p.
35).

In the special case of the spin mapping class group, a modular com-
pactification à la Deligne-Mumford has been constructed by Cornalba
in [7], where one can find an explicit description of the boundary as
well (see [7], § 7).

Next, we turn to cohomological computations. Let Γ be a level of
Γg,n. We point out that, analogously to Mg,n, the homology of MΓ

vanishes in high degree. In fact, the following holds.

Proposition 2.1. Let Γ ⊂ Γg,n. Then Hk(M
Γ,Q) = 0 for k > c(g, n),

where

c(g, n) =







n− 3 g = 0;
4g − 5 g > 0, n = 0;

4g − 4 + n g > 0, n > 0.

Proof. As proved in [9], Theorem 1.3, for every n ≥ 1 there exists
a Γg,n-equivariant homeomorphism of Tg,n onto the arc complex. A
fortiori, this is a Γ-equivariant homeomorphism. Thus, the standard
proof of Harer’s vanishing theorem [9] for the high degree homology of
Mg,n (see for instance [2], Lemma 2) shows that the same result holds
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for any such MΓ as well. On the other hand, the case n = 0 is ruled
out by a standard spectral sequence argument (we refer again to [2],
last paragraph of Section 5, which adapts verbatim to our context).

�

As a consequence, we show how the inductive approach of [1] to the
rational cohomology of M g,n applies verbatim also to level structures
and reduces the computation for a fixed degree to a few initial cases. In
particular, for degree 1 the inductive basis is provided by the following
easy fact.

Lemma 2.2. Denote by M
λ
the smooth canonical compactification of

a level structure of M 0,4 or M 1,1. Then M
λ
is isomorphic to P1.

Proof. The degree d covering map can be ramified only over points
parameterizing curves with non-trivial automorphisms, whose number
is 0 for M 0,4 and 2 for M 1,1 (see, for instance, [10], Corollary IV.4.7).

Hence Hurwitz formula for the genus g of M
Γ
yields 2g − 2 = d(−2)

and 2g − 2 ≤ d(−2) + 2(d − 1), respectively; in both cases it follows
that g = 0.

�

¿From Lemma 2.2, Proposition 2.1, Poincaré duality and the long
exact sequence in cohomology with compact support

. . .→ Hk
c (M

λ) → Hk(M
λ
) → Hk(∂M

λ
) → . . .

we obtain the following result (see for instance [2], proof of Corollary
1 to Theorem 6).

Theorem 2.3. Let λ be a fine geometric level structure over Mg,n such

that the canonical compactification M
λ
over M g,n is smooth. Then

H1(M
λ
,Q) = 0.

3. Low degree cohomology of spin moduli spaces

In the previous sections we have already mentioned the moduli space
of spin curves constructed in [7]. More generally, for all integers g, n,
m1, . . . , mn, such that 2g − 2 + n > 0, 0 ≤ mi ≤ 1 for every i, and
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∑n

i=1mi is even, one can consider the moduli spaces

S
(m1,...,mn)

g,n := {[(C, p1, . . . , pn; ζ ;α)] : (C, p1, . . . , pn) is a genus g

quasi-stable projective curve with n marked points;

ζ is a line bundle of degree g − 1 +
1

2

n
∑

i=1

mi on C

having degree 1 on every exceptional component of C,

and α : ζ⊗2 → ωC(

n
∑

i=1

mipi) is a homomorphism which

is not zero at a general point of every non-exceptional

component of C}.

Here we prove the following result on the rational cohomology of

S
(m1,...,mn)

g,n :

Theorem 3.1. For every g, n and (m1, . . . , mn) as above, we have

H1(S
(m1,...,mn)

g,n ,Q) = H3(S
(m1,...,mn)

g,n ,Q) = 0.

We are going to apply the inductive strategy developed by Arbarello
and Cornalba in [1] for the moduli space of curves. Namely, we consider
the long exact sequence of cohomology with compact supports:
(1)

. . .→ Hk
c (S

(m1,...,mn)
g,n ) → Hk(S

(m1,...,mn)

g,n ) → Hk(∂S (m1,...,mn)
g,n ) → . . .

Hence, whenever Hk
c (S

(m1,...,mn)
g,n ) = 0, there is an injectionHk(S

(m1,...,mn)

g,n )

→֒ Hk(∂S
(m1,...,mn)
g,n ). Moreover, from [7], § 3, it follows that each ir-

reducible component of the boundary of S
(m1,...,mn)

g,n is the image of a
morphism:

µi : Xi → S
(m1,...,mn)

g,n

where either

Xi = S
(u1,...,us+1)

a,s+1 × S
(v1,...,vt+1)

b,t+1

with a+ b = g, s+ t = n, and
∑s

i=1 ui +
∑t

i=1 vi =
∑n

i=1mi; or

Xi = S
(m1,...,mn,mn+1,mn+2)

g−1,n+2 .

Finally, exactly as in [1], Lemma 2.6, a bit of Hodge theory implies
that the map

(2) Hk(S
(m1,...,mn)

g,n ) → ⊕iH
k(Xi)

is injective whenever Hk(S
(m1,...,mn)

g,n ) → Hk(∂S
(m1,...,mn)
g,n ) is. So we

obtain the claim of Theorem 3.1 by induction, provided we show that

H1
c (S

(m1,...,mn)
g,n ) = H3

c (S
(m1,...,mn)
g,n ) = 0 for almost all the values of g,
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n, and we check that H1(S
(m1,...,mn)

g,n ) = H3(S
(m1,...,mn)

g,n ) = 0 for all the
remaining values of g, n.

¿From Proposition 2.1 and Poincaré duality we deduce that

H1
c (S

(m1,...,mn)
g,n ) = 0

for any g ≥ 2, for g = 1, n ≥ 2, and for g = 0, n ≥ 5; and

H3
c (S

(m1,...,mn)
g,n ) = 0

for any g ≥ 3, for g = 2, n ≥ 2, for g = 1, n ≥ 4, and for g = 0, n ≥ 7.
Hence we have only to verify that

H1(S
(m1,...,mn)

0,n ) = 0, n ≤ 4(3)

H3(S
(m1,...,mn)

0,n ) = 0, n ≤ 6(4)

H1(S
(m)

1,1 ) = 0(5)

H3(S2) = 0(6)

H3(S
(m)

2,1 ) = 0(7)

H3(S
(m1,...,mn)

1,n ) = 0, n ≤ 3.(8)

The first two checks are straightforward: since any two divisors of
the same degree on P1 are linearly equivalent, there are natural iso-
morphisms

(9) S
(m1,...,mn)

0,n
∼=M 0,n.

Since Hk(M 0,n) = 0 for every odd k by Keel’s results (see [11]), (3)
and (4) easily follow.

As for (5), first of all notice that S
(1)

1,1 = ∅ by degree reasons. Next,

recall that S
(0)

1,1 is the union of two connected components S
(0),+

1,1 and

S
(0),−

1,1 , corresponding respectively to even and odd spin structures. If
(E; q1) is a smooth 1-pointed elliptic curve, the linear series |2q1| real-
izes E as a two-sheeted covering of P1 branched at q1 and at other three
points q2, q3, and q4. The curve E carries one odd theta-characteristic
(L = OE), and three even ones (namely, OE(q1 − q2), OE(q1 − q3),
and OE(q1− q4)). The uniqueness of the odd theta-characteristic on E
implies the existence of a natural isomorphism

S
(0),−

1,1
∼=M 1,1

∼= P1,

hence H1(S
(0),−

1,1 ) = H1(P1) = 0. Finally we turn to S
(0),+

1,1 . We claim
that there is a surjective morphism

f :M0,4 −→ S
(0),+

1,1 .

Indeed, let (C; p1, p2, p3, p4) be a 4-pointed stable genus zero curve. The
morphism f associates to it the admissible covering E of C branched at
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the pi’s, pointed at q1 and equipped with the line bundle OE(q1 − q2),
where qi denotes the point of E lying above pi. It follows that

H1(S
(0),+

1,1 ) →֒ H1(M 0,4) = H1(P1) = 0

and (5) is completely proved.

The proofs of (6) and (7) are similar. Again, S
(1)

2,1 = ∅ by degree

reasons and S
(0,...,0)

2,n is the disjoint union of S
(0,...,0),+

2,n and S
(0,...,0),−

2,n

Moreover, if C is a smooth hyperelliptic curve and qi (i = 1, . . . , 6) are
the ramification points of the hyperelliptic involution, then C carries
six odd theta-characteristics (namely, OC(qi), i = 1, . . . , 6) and ten
even ones (namely, OC(qi+qj−qk), with i, j and k distinct). We claim
that there are surjective morphisms:

f+ :M 0,6 −→ S
+

2

f− :M 0,6 −→ S
−

2

g+ :M 0,7 −→ S
(0,0),+

2,1

g− :M 0,7 −→ S
(0,0),−

2,1

In order to define f+ and f−, let (C; p1, . . . p6) be a 6-pointed, stable,
genus zero curve. The morphism f+ (respectively, f−) associates to
it the admissible covering Y of C branched at the pi’s and equipped
with the line bundle OY (q1 + q2 − q3) (respectively, OY (q1)), where
qi denotes the point of E lying above pi. As for g+ and g−, let
(C; p1, . . . p7) be a 7-pointed stable genus zero curve. The morphism
g+ (respectively, g−) associates to it the admissible covering Y of C
branched at the pi’s, pointed at one of the two points lying above p7
(of course different choices produce isomorphic curves) and equipped
with the line bundle OY (q1 + q2 − q3) (respectively, OY (q1)), where
qi denotes the point of E lying above pi. Hence we obtain injective

maps in cohomology Hk(S
+

2 ) →֒ Hk(M0,6), H
k(S

−

2 ) →֒ Hk(M0,6),

Hk(S
(0,0),+

2,1 ) →֒ Hk(M 0,7), and Hk(S
(0,0),−

2,1 ) →֒ Hk(M 0,7), which re-
duce (6) and (7) to Keel’s results mentioned above.

The proof of (8) turns out to be more involved. The case m1 =
m2 = m3 = 0 has already been addressed in [4], Lemma 4, so here we

directly turn to S
(1,1,0)

1,3 . However, our inductive approach requires to

handle S
(1,1)

1,2 too.

The boundary components of S
(1,1)

1,2 are the following:

• Airr, whose general member is obtained from a smooth 4-pointed
rational curve C carrying the line bundle OC(P ) by collapsing
two marked points in an ordinary node;
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• Birr, whose general member is obtained from a smooth 4-pointed
rational curve carrying the line bundleOC by joining two marked
points with an exceptional component;

• A1,∅, whose general member is obtained by joining with an ex-
ceptional component a smooth 1-pointed elliptic curve (E, p)
carrying an even root of OE and a smooth 3-pointed rational
curve (C, q, p1, p2) carrying the line bundle OC ;

• B1,∅, whose general member is obtained by joining with an ex-
ceptional component a smooth 1-pointed elliptic curve (E, p)
carrying the line bundle OE and a smooth 3-pointed rational
curve (C, q, p1, p2) carrying the line bundle OC .

Next, we list the boundary components of S
(1,1,0)

1,3 :

• Airr, whose general member is obtained from a smooth 5-pointed
rational curve C carrying the line bundle OC(P ) by collapsing
two marked points in an ordinary node;

• Birr, whose general member is obtained from a smooth 5-pointed
rational curve carrying the line bundleOC by joining two marked
points with an exceptional component;

• A1,∅, whose general member is obtained by joining with an ex-
ceptional component a smooth 1-pointed elliptic curve (E, p)
carrying an even root of OE and a smooth 4-pointed rational
curve (C, q, p1, p2, p3) carrying the line bundle OC ;

• B1,∅, whose general member is obtained by joining with an ex-
ceptional component a smooth 1-pointed elliptic curve (E, p)
carrying the line bundle OE and a smooth 4-pointed rational
curve (C, q, p1, p2, p3) carrying the line bundle OC ;

• ∆1,{1}, whose general member is obtained by joining with an or-
dinary node a smooth 2-pointed elliptic curve (E, p, p1) carrying
a square root of OE(p + p1) and a smooth 3-pointed rational
curve (C, q, p2, p3) carrying the line bundle OC ;

• ∆1,{2}, whose general member is obtained by joining with an or-
dinary node a smooth 2-pointed elliptic curve (E, p, p2) carrying
a square root of OE(p + p2) and a smooth 3-pointed rational
curve (C, q, p1, p3) carrying the line bundle OC ;

• A1,{3}, whose general member is obtained by joining with an ex-
ceptional component a smooth 2-pointed elliptic curve (E, p, p3)
carrying an even root of OE and a smooth 3-pointed rational
curve (C, q, p1, p2) carrying the line bundle OC ;

• B1,{3}, whose general member is obtained by joining with an ex-
ceptional component a smooth 2-pointed elliptic curve (E, p, p3)
carrying the line bundle OE and a smooth 3-pointed rational
curve (C, q, p1, p2) carrying the line bundle OC .

Lemma 3.2. The vector space H2(S
(1,1)

1,2 ) is generated by boundary

classes.
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Proof. We claim that the four boundary classes αirr, βirr, α1,∅, and β1,∅
are linearly independent. Indeed, suppose that there is a relation:

(10) a0αirr + b0βirr + a1α1,∅ + b1β1,∅ = 0.

By restricting (10) to Birr, Airr, B1,∅ and A1,∅, we obtain a1 = 0, b1 = 0,
a0 = 0 and b0 = 0, respectively. Since we already know that the first
Betti number vanishes, it will be sufficient to prove that

χ(S
(1,1)

1,2 ) = 6.

We first compute χ(S
(1,1)
1,2 ). A point of S

(1,1)
1,2 corresponds to a smooth

2-pointed elliptic curve (E; p1, p2) together with a square root of the
line bundle OE(p1 + p2), that is, a ramification point of the 2-sheeted
covering of P1 defined by the linear series |p1 + p2|. Hence the natural

projection S
(1,1)
1,2 → M1,2 is generically four-to-one, but there are a few

special fibers with less than four points. Indeed, consider the two-
sheeted covering of P1 defined by the linear series |2p1| and ramified
over ∞, 0, 1, and λ, with p1 lying above ∞. If p2 lies above 0, then
the corresponding involution exchanges cyclically the square roots of
OE(p1+p2). If moreover λ = −1, then the projectivity of P1 defined by
z 7→ −z induces another automorphism of (E; p1, p2) and in this case
all square roots of OE(p1 + p2) are identified. Finally, if λ = −ω (with
ω3 = 1) and p2 is one point lying above ω

ω−1
then the projectivity of P1

defined by z 7→ z+ω
ω

induces automorphisms of (E, p1, p2) exchanging
ciclically three square roots of OE(p1+p2). As in [1], p. 124, we denote
by X the locus of all curves (E; p1, p2) such that p2 is a 2-torsion point
with respect to the group law with origin in p1. Therefore, since X
is isomorphic to the quotient M ′

0,4 of M0,4 modulo the operation of
interchanging the labelling of two of the marked points, we have:

χ(S
(1,1)
1,2 ) = 4χ(M1,2 \X ∪ {point}) + 2χ(X \ {point}) + χ(point) +

+2χ(point) = 4χ(M1,2)− 2χ(M ′
0,4)− 3 = 1

(recall that χ(M ′
0,4) = 0 and χ(M1,2) = 1 by [1], (5.3) and (5.4)).

Next, from the stratification ofM 1,2 by graph type (see [1], Figure 1),
it follows that

χ(S
(1,1)

1,2 ) = χ(S
(1,1)
1,2 ) + 2χ(M ′

0,4) + χ(S
(0),+
1,1 ) + χ(S

(0),−
1,1 ) + 3 + 1.

Since χ(S
(0),+
1,1 ) = 0 by [4], (5), and χ(S

(0),−
1,1 ) = χ(M1,1) = 1, we obtain

χ(S
(1,1)

1,2 ) = 6, as claimed.
�

The following result is a partial analogue of [4], Lemma 3.

Lemma 3.3. Let x and y be distinct and not belonging to {1, 2, 3}. Let
S2 be the symmetric group permuting x and y. Define

ξ :M 0,{1,2,3,x,y}/S2 −→ Birr →֒ S
(1,1,0)

1,3
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by joining the points labelled x and y with an exceptional component.

Then the kernel of

ξ∗ : H2(S
(1,1,0)

1,3 ) −→ H2(M0,{1,2,3,x,y}/S2)

is four-dimensional and generated by αirr, βirr, β1,∅, and β1,{3}.

Proof. It is clear that ξ∗(αirr) = ξ∗(β1,∅) = ξ∗(β1,{3}) = 0 because all
the corresponding boundary divisors are disjoint from Birr. Next, from
ξ∗(αirr) = 0 and [1], Lemma 3.16, it follows that also ξ∗(βirr) = 0.
Conversely, if ξ∗(α) = 0 then we claim that for a suitable choice of
rational coefficients x, y, z, w the class γ = α − xαirr − yβirr − zβ1,∅ −

wβ1,{3} vanishes on S
(1,1,0)

1,3 , hence the class α is a linear combination
of αirr, βirr, β1,∅, and β1,{3}. In order to show that γ = 0 we first check
that its restriction to all boundary components vanishes and then we
observe that the restriction map is injective in our case. More precisely,
we define

ζ :M 0,{1,2,3,x,y}/S2 −→ Airr →֒ S
(1,1,0)

1,3

by joining the points labelled x and y with an ordinary node.

Since h2(M 0,{1,2,3,x,y}/S2) = 4, for any class α ∈ H2(S
(1,1,0)

1,3 ) we have

ζ∗(α) = hζ∗(β1,∅) + kζ∗(β1,{3}) + sζ∗(δ1,{1}) + tζ∗(δ1,{2})

for some h, k, s, t ∈ Q.
Suppose now ξ∗(α) = 0. Then the class β := α − hβ1,∅ − kβ1,{3}

satisfies ζ∗(β) = sζ∗(δ1,{1}) + tζ∗(δ1,{2}) and ξ
∗(β) = 0. If

ρ : H2(S
(1,1,0)

1,3 ) −→ H2(Airr)⊕H2(Birr)⊕H2(A1,∅)⊕H2(B1,∅)⊕

H2(∆1,{1})⊕H2(∆1,{2})⊕H2(A1,{3})⊕H2(B1,{3})

is the restriction to the boundary components, we have:

ρ(β) = (ζ∗(β), 0, (aδirr, 0), β.B1,∅, c1αirr + c2βirr + c3α1,∅ + c4β1,∅,

d1αirr + d2βirr + d3α1,∅ + d4β1,∅, eδirr, β.B1,{3}),

where cohomology classes are expressed in standard bases for the sec-
ond cohomology groups of the moduli spaces dominating the vari-

ous boundary components. In particular, we have aδirr ∈ H2(S
(0),+

1,1 ),

c1αirr + c2βirr + c3α1,∅ + c4β1,∅ ∈ H2(S
(1,1)

1,2 ), d1αirr + d2βirr + d3α1,∅ +

d4β1,∅ ∈ H2(S
(1,1)

1,2 ), eδirr ∈ H2(S
(0,0),+

1,2 ). The vanishing of several co-
efficients is due to the fact that all the above classes restrict to zero
on Birr since ξ

∗(α) = 0. For instance, from Lemma 3.2 it follows that

H2(S
(1,1)

1,2 ) is generated by αirr, βirr, α1,∅, and β1,∅. Under the corre-
sponding morphism

ξ′ :M0,{1,2,x,y}/S2 −→ Birr →֒ S
(1,1)

1,2

the class α1,∅ pulls back to δ0,{x,y}, which is not zero, so the kernel of
ξ′∗ is generated by αirr, βirr, and β1,∅, and we have c3 = d3 = 0.
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Moreover, the various restrictions have to coincide also on all the
other overlaps between boundary components. In particular, a careful
case-by-case direct inspection shows the following implications:

• Airr ∩∆1,{1} 6= ∅ ⇒ s = c4 = c3 = 0;
• Airr ∩∆1,{2} 6= ∅ ⇒ t = d4 = d3 = 0;
• B1,∅ ∩ Airr 6= ∅ ⇒ β.B1,∅ = (bδirr, 0);
• B1,{3} ∩Airr 6= ∅ ⇒ β.B1,{3} = fδirr;
• A1,{3} ∩A1,∅ 6= ∅ ⇒ e = a;
• B1,{3} ∩B1,∅ 6= ∅ ⇒ f = b;
• ∆1,{1} ∩A1,∅ 6= ∅ ⇒ c1 + c2 = a;
• ∆1,{1} ∩B1,∅ 6= ∅ ⇒ c1 = b;
• ∆1,{2} ∩A1,∅ 6= ∅ ⇒ d1 + d2 = a;
• ∆1,{2} ∩B1,∅ 6= ∅ ⇒ d1 = b.

As a consequence, if

γ := β − bαirr − (a− b)βirr = α− bαirr − (a− b)βirr − hβ1,∅ − kβ1,{3}

then

ρ(γ) = (0, 0, (0, 0), (0, 0), 0, 0, 0, 0).

On the other hand, Proposition 2.1 with k = 4, g = 1, n = 3, and the
inductive argument following (1) imply that ρ is injective, hence γ = 0
and our claim is proved.

�

Lemma 3.4. The vector space H2(S
(1,1,0)

1,3 ) is generated by boundary

classes.

Proof. Let V the subspace of H2(S
(1,1,0)

1,3 ) generated by the pull-backs
δ1,∅, δ1,{1}, δ1,{2}, and δ1,{3} of the corresponding boundary divisors on

M 1,3. In view of Lemma 3.3, it will be sufficient to show that the
morphism ξ∗ vanishes modulo V . In order to do so, we adapt the

argument in [1], pp. 114–118. If α is any class in H2(S
(1,1,0)

1,3 ), then

ξ∗(α) = a{x,y}δ0,{x,y}+a{1,3}δ0,{1,3}+a{2,3}δ0,{2,3}+a{3}(δ0,{x,3}+δ0,{y,3}).

The idea is simply to modify α with elements of V in such a way that
ξ∗(α) = 0. The first move consists in adding to α a suitable multiple of
δ1,∅ so as to make a{x,y} = 0. Next, by Lemma 3.2 there exists a suitable
multiple of δ1,{3} which added to α makes a{3} = 0 (for details, see [1],
p. 116). Finally, the third move consists in adding to α a suitable linear
combination of δ1,{1} and δ1,{2} so as to make a{1,3} = a{2,3} = 0. Hence
we obtain ξ∗(α) = 0, as desired.

�

Finally, we conclude the proof of (8).

Lemma 3.5. We have H3(S
(1,1,0)

1,3 ) = 0.
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Proof. By Lemma 3.4, H2(S
(1,1,0)

1,3 ) is generated by the eight bound-
ary classes αirr, βirr, α1,∅, β1,∅, δ1,{1}, δ1,{2}, α1,{3}, and β1,{3}. Hence

h2(S
(1,1,0)

1,3 ) ≤ 8; next, we claim that

χ(S
(1,1,0)

1,3 ) = 18,

hence h3(S
(1,1,0)

1,3 ) = 0.

First of all, we compute χ(S
(1,1,0)
1,3 ). The natural projection S

(1,1,0)
1,3 →

M1,3 is generically four-to-one, but there are a few special fibers with
less than four points. Indeed, denote by Y the locus of all curves
(E; p1, p2, p3) such that both p2 and p3 are 2-torsion points with respect
to the group law with origin in p1. Then it is clear that the fiber of p
over Y consists of two points; moreover, if (E; p1, p2, p3) is the 2-sheeted
covering of P1 ramified over ∞, 0, 1, and −ω (with ω3 = 1), with p1
lying above ∞ and p2, p3 lying above ω

ω−1
, then the projectivity of P1

defined by z 7→ z+ω
ω

induces automorphisms of (E; p1, p2, p3) exchanging
cyclically three square roots ofOE(p2+p3). Next, we claim that χ(Y ) =
0. Indeed, it is clear that M0,4 \ {point} is a 2-sheeted covering of
Y \ {point}. Hence

χ(Y ) =
χ(M0,4 \ {point})

2
+ 1 = 0,

as claimed. It follows that

χ(S
(1,1,0)
1,3 ) = 4χ(M1,3 \ Y ∪ {point}) + 2χ(Y ) + 2χ(point) = −2

(recall that χ(M1,3) = 0 by [1], (5.4)).
Next, from the stratification ofM 1,3 by graph type (see [1], Figure 2)

we obtain

χ(S
(1,1,0)

1,3 ) = χ(S
(1,1,0)
1,3 ) + 2χ(M ′

0,5) + χ(S
(0),+
1,1 )χ(M0,4) +

+χ(S
(0),−
1,1 )χ(M0,4) + 2χ(S

(1,1)
1,2 ) + χ(S

(0,0),+
1,2 ) +

+χ(S
(0,0),−
1,2 ) + 3χ(M0,4) + 12χ(M ′

0,4) + 3χ(S
(0),+
1,1 ) +

+3χ(S
(0),−
1,1 ) + 9 + 5 + 2.

Here M ′
0,4 and M ′

0,5 denote the quotient of M0,4 and M0,5, respec-
tively, modulo the operation of interchanging the labelling of two of
the marked points; by [1], (5.3), we have χ(M ′

0,4) = 0 and χ(M ′
0,5) = 1.

Moreover, we have χ(S
(0),+
1,1 ) = 0, χ(S

(0),−
1,1 ) = 1, χ(S

(1,1)
1,2 ) = 1 (see

above, proof of Lemma 3.2), χ(S
(0,0),+
1,2 ) = 0 by [4], (6), χ(S

(0,0),−
1,2 ) =

χ(M1,2) = 1 by [1], (5.4), χ(M0,4) = −1, hence χ(S
(1,1,0)

1,3 ) = 18, as
desired.

�
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4. The Picard group and the second cohomology group

Let Γ be a finite index subgroup of the mapping class group Γg,n that
contains the Torelli group. For instance, Γ can be any of the levels in
Example A or Example B in Section 2.

We recall that the Hodge class is defined to be the first Chern class
λ := c1(π∗ωπ), where ωπ is the relative dualizing sheaf of the universal

curve π. For any level Γ denote by pΓ : M
Γ
→ Mg,n the map induced

by the definition of M
Γ
. Define on M

Γ
the Hodge class to be the

pull-back p∗Γ(λ), which we still denote by λ by abuse of notation.
The universal cotangent classes of M g,n are the first Chern classes

of the line bundles Li for i = 1, . . . , n, where the fiber of Li over a
pointed stable curve [C; x1, . . . , xn] is the cotangent space T ∗

xi
(C) - we

recall that the marked points of any stable curve are smooth. Naturally,
the pull-backs under p∗Γ of the classes ψi’s define universal cotangent
classes on any level structure MΓ.

Finally, the irreducible components of the Deligne-Mumford bound-
ary of a level structure yield degree two cohomology classes via (ratio-
nal) Poincaré duality. We refer to them as boundary classes.

This said, we can prove the following theorem.

Theorem 4.1. Let Γ be a finite-index subgroup of the mapping class

group that contains the Torelli group. Let M
Γ
be the corresponding

covering over Mg,n. If g ≥ 5, then Pic(M
Γ
)⊗Q is freely generated by

the Hodge class, the set of ψ classes, and the set of boundary classes.

Proof. From [12], Theorem 2.1, it follows that H2(MΓ) is freely gener-
ated by the Hodge class and the set of ψ classes. On the other hand,
by [8], Theorem 5.4, we have H2(MΓ,Q) ∼= Pic(MΓ) ⊗ Q, hence we
need only to check that the boundary classes are linearly independent.

Indeed, by the proof of Theorem 10 in [2] H1(M
Γ
) = 0 implies that

H1(MΓ) is the kernel of the Gysin map H0(∂M
Γ
) → H2(M

Γ
). Since

by [8], Proposition 5.2, we have H1(MΓ) = 0, it follows that there are

no linear relations among boundary classes in H2(M
Γ
), hence the claim

holds. In the special case of spin moduli spaces, the linear indepen-
dence of boundary classes can be also checked directly by intersecting
them with suitable test families, see [7], Proposition (7.2).

�

Now we focus on the special case of S
(m1,...,mn)

g,n . As pointed out
in [3], the injection (2) is compatible with the Hodge decomposition.
As a consequence, Proposition 2.1 and Poincaré duality imply that

h2,0(S
(m1,...,mn)

g,n ) = 0 for every g, n if h2,0(S
(m1,...,mn)

0,n ) = 0, n ≤ 5, and

h2,0(S
(m1,...,mn)

1,n ) = 0, n ≤ 2. On the other hand, H2(S
(m1,...,mn)

0,n ) is

algebraic by (9) and [11]. Moreover, H2(S
(0,...,0)

1,n ) is also algebraic by



14 GILBERTO BINI AND CLAUDIO FONTANARI

[4], Proposition 2, and the same is true for H2(S
(1,1)

1,2 ) by Lemma 3.2.

Hence h2,0(S
(m1,...,mn)

g,n ) vanishes and from the exponential sequence

0 → Z → O → O∗ → 0

we deduce that

H2(S
(m1,...,mn)

g,n ) ∼= H1(S
(m1,...,mn)

g,n ,O∗) = Pic(S
(m1,...,mn)

g,n ).

In particular, the following holds.

Corollary 4.2. If g ≥ 5 then H2(S
(m1,...,mn)

g,n ) is freely generated by the

Hodge class, the set of ψ classes, and the set of boundary classes.

References

[1] E. Arbarello, M. Cornalba: Calculating cohomology groups of moduli spaces of

curves via algebraic geometry. Inst. Hautes Études Sci. Publ. Math. 88 (1998),
97–127.

[2] E. Arbarello, M. Cornalba: Divisors in the moduli space of curves. Pre-print
arXiv:0810.5373, to appear in Surveys in Differential Geometry.

[3] G. Bini, C. Fontanari: Moduli of curves and spin structures via algebraic
geometry. Trans. Amer. Math. Soc. 358 (2006), 3207–3217.

[4] G. Bini, C. Fontanari: A remark on the rational cohomology of S̄1,n. Col-
lectanea Mathematica 60 (2009), 241–247.

[5] M. Boggi: Compactifications of moduli spaces of curves, Ph.D. Dissertation,
University of Utrecht, 1998.

[6] M. Boggi, M. Pikaart: Galois covers on moduli of curves. Comp. Math. 120
(2000), 171–191.

[7] M. Cornalba: Moduli of curves and theta characteristics. Lectures on Riemann
surfaces (Trieste, 1987), 560–589, Teaneck, NJ: World Sci. Publishing, 1989.

[8] R. M. Hain: Torelli groups and geometry of moduli spaces of curves. Current
topics in complex algebraic geometry, 97–143, Cambridge University Press,
1995.

[9] J. Harer: The virtual cohomological dimension of the mapping class group of
an orientable surface. Inv. Math. 84 (1986), 157–176.

[10] R. Hartshorne: Algebraic geometry. Springer, 1977.
[11] S. Keel: Intersection theory of moduli space of stable n-pointed curves of genus

zero. Trans. Amer. Math. Soc. 330 (1992), 545–574.
[12] A. Putman: The second rational homology group of the moduli space of curves

with level structures. Pre-print arXiv:0809.4477.

E-mail address : gilberto.bini@unimi.it
Current address : Dipartimento di Matematica, Università degli Studi
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