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Abstract: We study a conjecture, due to Voisin, on 0-cycles on varieties with pg = 1. Using Kimura’s finite
dimensional motives and recent results of Vial’s on the refined (Chow–)Künneth decomposition, we provide
a general criterion for Calabi–Yau manifolds of dimension at most 5 to verify Voisin’s conjecture. We then
check, using in most cases some cohomological computations on the mirror partners, that the criterion can
be successfully applied to various examples in each dimension up to 5.
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1 Introduction
For a smooth projective variety X overℂ, let Aj(X) denote the Chow groups of codimension j algebraic cycles
on X modulo rational equivalence. Chow groups of cycles of codimension larger than 1 are still mysterious.
As an example, we recall the famous Bloch Conjecture, namely:

Conjecture 1.1 (Bloch, [8]). Let X be a smooth projective complex variety of dimension n. The following are
equivalent:

(i) An(X) ≅ ℚ;
(ii) the Hodge numbers hj,0(X) are 0 for all j > 0.

The implication from (i) to (ii) is actually a theorem, see [11]. The conjectural part is the implication from (ii)
to (i), which has been verified for surfaces not of general type in [9], but it is wide open for surfaces of general
type despite several significant cases that have been dealt with over the years; see e.g. [2; 67; 3; 71; 53].

A natural next step is to consider varieties X with geometric genus pg = 1. Here, the kernel AnAJ(X) of
the Albanese map is huge; in a sense that can be made precise: it is “infinite-dimensional”, see [50] and [70].
Yet, this huge group should have controlled behaviour on the self-product X × X, according to a conjecture
due to Voisin, which is motivated by the Bloch–Beilinson conjectures (see [72, Section 4.3.5.2] for a detailed
discussion).

Conjecture 1.2 ([68], see [72] Conjecture 4.37 for this precise form). Let X be a smooth projective complex va-
riety of dimension n with hj,0(X) = 0 for 0 < j < n. The following are equivalent:

(i) For any zero-cycles a, a󸀠 ∈ An(X) of degree zero, we have a × a󸀠 = (−1)na󸀠 × a in A2n(X ×X); here a × a󸀠
is shorthand for the cycle class p∗1(a) ⋅ p∗2(a󸀠) ∈ A2n(X × X), where p1, p2 denote the projections on the
first, respectively second factor.

(ii) the geometric genus pg(X) is at most 1.
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Again, the implication from (i) to (ii) is actually a theorem (this can be proven à la Bloch–Srinivas [11], see
Lemma 2.1 below). The conjectural part is the implication from (ii) to (i), which is still wide open for a general
K3 surface; cf. [68], [41], [40], [43], [44] for some cases where this conjecture is verified.

In the present article we present a general criterion to check Voisin’s conjecture (or a weak variant of it,
cf. Theorem 4.12) for specific varieties (see Section 1 for all the relevant definitions and explanations).

Theorem (=Theorem 4.1). Let X be a smooth projective variety of dimension n ≤ 5with hi,0(X) = 0 for 0 < i < n
and pg(X) = 1. Assume moreover that

(i) X is rationally dominated by a variety X󸀠 of dimension n, that X󸀠 has finite-dimensional motive and that
B(X󸀠) is true;

(ii) X is Ñ1-maximal;
(iii) Ñ1H i(X) = H i(X) for 0 < i < n;
(iv) X is rationally dominated by a variety X󸀠󸀠 of dimension n and the Hodge conjecture is true for X󸀠󸀠 × X󸀠󸀠.

Then conjecture 1.2 is true for X, i.e. any a, a󸀠 ∈ Anhom(X) satisfy a × a󸀠 = (−1)na󸀠 × a in A2n(X × X).
The proof of Theorem 4.1 relies, among other things, on results by Vial [63] on the refined Chow–Künneth

decomposition, from which the hypotheses on X󸀠 are thus inherited.
The hypotheses of Theorem 4.1 may seem very stringent. Yet, there are some examples satisfying all the

hypotheses.Most of these examples are givenbyhypersurfaces of Fermat type in a (weighted) projective space
(see Section 5 for all the examples). The first and third hypotheses of our criterion hold for any Fermat hyper-
surface, while the fourth holds for low degree Fermat hypersurfaces, see [57]. As for the second, it seems the
most delicate to verify in practice. In certain cases it is possible to check the second hypothesis by direct com-
putation, e.g. for the Fermat sextic X in ℙ5, using results by Beauville, Movasati and the classical inductive
structure of Fermat hypersurfaces (Proposition 5.11). Hence, we obtain the following explicit example:

Corollary (=Proposition 5.11). Let X ⊂ ℙ5(ℂ) be the sextic fourfold defined as x60 + ⋅ ⋅ ⋅ + x65 = 0. Then conjec-
ture 1.2 is true for X, i.e. any a, a󸀠 ∈ A4hom(X) satisfy a × a󸀠 = a󸀠 × a in A8(X × X).

In other cases (for instance for the Fermat quintic 3-fold), despite the fact that the dimension of Hn(X) is
quite large, it is possible to control the dimension of Hntr(X) by passing to the mirror partner of X, which can
be explicitly described in the Fermat case. Among other examples, we obtain in this way the Ñ1-maximality
and therefore Voisin’s conjecture in the following case:

Corollary (=Proposition 5.9). Let X ⊂ ℙ(14, 2) be the Calabi–Yau threefold defined as x60+x61+x62+x63+x34 = 0.
Then conjecture 1.2 is true for X, i.e. any a, a󸀠 ∈ A3hom(X) satisfy a × a󸀠 = −a󸀠 × a in A6(X × X).
Conventions. In this paper, the word variety refers to a reduced irreducible scheme of finite type over ℂ.
All Chow groups will be with rational coefficients: For a variety X, we write Aj(X) for the Chow group of j-
dimensional cycles on X withℚ-coefficients. If X is smooth of dimension n, the notations Aj(X) and An−j(X)
are used interchangeably. The notations Ajhom(X) and AjAJ(X) are used to indicate the subgroups of homolog-
ically, respectively Abel–Jacobi trivial cycles. The (contravariant) category of Chowmotives (i.e. pure motives
with respect to rational equivalence as in [56], [51]) is denotedMrat.

We write H j(X) for the singular cohomology H j(X,ℚ).
2 Preliminaries
2.1 Warm-up. We begin with the following result for which we could not find a reference in the literature,
although it may be well-known to experts.

Lemma 2.1. Let X be a smooth projective complex variety of dimension n with hj,0(X) = 0 for 0 < j < n. Consider
the following two conditions:
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(i) For any zero-cycles a, a󸀠 ∈ An(X) of degree zero, we have a × a󸀠 = (−1)na󸀠 × a in A2n(X ×X); here a × a󸀠
is shorthand for the cycle class (p1)∗(a) ⋅ (p2)∗(a󸀠) ∈ A2n(X × X), where p1, p2 denote the projections
on the first, respectively second factor.

(ii) the geometric genus pg(X) is at most 1.
Then (i) implies (ii).

Proof. This is a “decomposition of the diagonal” argument à la Bloch–Srinivas: we define a correspondence

π := ∆X − x × X − X × x ∈ An(X × X),
where ∆X denotes the diagonal and x ∈ X. Then we consider the correspondence

p := (∆X − (−1)nΓι) ∘ (π × π) ∈ A2n((X × X) × (X × X)),
where ι is the involution on X × X switching the two factors. Hypothesis (i) implies that p acts trivially on
0-cycles of X × X, i.e. p∗A2n(X × X) = 0. The Bloch–Srinivas argument [11] then implies that there exists a
rational equivalence p = γ in A2n((X×X)×(X×X)), where γ is a cycle supported on X×X×D, for some divisor
D ⊂ X × X. It follows that ∧2Hn(X) = p∗(Hn(X) ⊗ Hn(X)) ⊂ H2n(X × X)
is supported on the divisor D. In particular, we see that ∧2Hn,0(X,ℂ) ⊂ H2n,0(X × X,ℂ) is (supported on a
divisor and hence) zero. This proves (ii). 2

Remark 2.2. We have actually proven more than the implication from (i) to (ii). We have proven a special
instance of the generalized Hodge conjecture: for any variety X satisfying the assumptions of Lemma 2.1, the
sub Hodge structure ∧2Hn(X) ⊂ H2n(X × X) is supported on a divisor. This implication was already observed
by Voisin [72, Corollary 3.5.1].

2.2 Finite-dimensional motives. We refer to [37], [1], [30], [33], [51] for the definition of finite-dimensional
motive. An essential property of varieties with finite-dimensional motives is given by the nilpotence theorem.

Theorem 2.3 (Kimura [37] Proposition 7.2 (ii)). Let X be a smooth projective variety of dimension n with finite-
dimensional motive. Let Γ ∈ An(X × X)ℚ be a correspondence which is numerically trivial. Then there exists
N ∈ ℕ such that Γ ∘N = 0 ∈ An(X × X)ℚ.

Actually, the nilpotency (for all powers of X) could serve as an alternative definition of finite-dimensional
motives, as shown by a result of Jannsen [33, Corollary 3.9]. Conjecturally, any variety has finite-dimensional
motive, see [37]. We are still far from knowing this, but at least there are quite a few non-trivial examples.

Remark 2.4. The following varieties have finite-dimensional motives: varieties dominated by products of
curves (which is the case for Fermat hypersurfaces) and abelian varieties, see [37]; K3 surfaces with Picard
number 19 or 20, see [52]; surfaces not of general typewith vanishing geometric genus, see [27, Theorem 2.11];
Godeaux surfaces, see [27]; certain surfaces of general type with pg = 0, see [71], [4], [53]; Hilbert schemes
of surfaces known to have finite-dimensional motives, see [17]; generalized Kummer varieties, see [73, Re-
mark 2.9(ii)]; 3-folds with nef tangent bundle, see [32] (an alternative proof is given in [66, Example 3.16]);
4-folds with nef tangent bundle, see [31]; log-homogeneous varieties in the sense of [13] (this follows from
[31, Theorem 4.4]); certain 3-folds of general type, see [65, Section 8]; varieties of dimension ≤ 3 rationally
dominated by products of curves, see [66, Example 3.15]; varieties X with AiAJ(X) = 0 for all i, see [64, Theo-
rem 4]; and products of varieties with finite-dimensional motives, see [37].

Remark 2.5. It is a (somewhat embarrassing) fact that all examples known so far of finite-dimensional mo-
tives happen to be in the tensor subcategory generated by Chow motives of curves (i.e. they are “motives of
abelian type” in the sense of [66]). That is, the finite-dimensionality conjecture is still open for any motive
not generated by curves; on the other hand, there exist many motives not generated by curves, cf. [19, 7.6].
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2.3 The Lefschetz standard conjecture and (co-)niveau filtrations. Let X be a smooth projective variety of
dimension n and h ∈ H2(X,ℚ) the class of an ample line bundle. By the hard Lefschetz theorem the map

Ln−i : H i(X,ℚ) → H2n−i(X,ℚ)
obtained by cupping with hn−i is an isomorphism, for any i < n. One of the standard conjectures, also known
as the Lefschetz standard conjecture B(X), asserts that the inverse isomorphism is algebraic:

Conjecture 2.6. Given a smooth projective variety X, the class h ∈ H2(X,ℚ) of an ample line bundle, and an
integer 0 ≤ i < n, the isomorphism (Ln−i)−1 : H2n−i(X,ℚ) ≅󳨀→ H i(X,ℚ)
is induced by a correspondence.

We recall the following filtration which, via Proposition 3.3, will play a central role in our criterion (The-
orem 4.1) to check Conjecture 1.2.

Definition 2.7 (Coniveau filtration [10]). Let X be a quasi-projective variety. The coniveau filtration on coho-
mology and on homology is defined by

NcH i(X,ℚ) = ∑ Im(H iY (X,ℚ) → H i(X,ℚ)),
NcHi(X,ℚ) = ∑ Im(Hi(Z,ℚ) → Hi(X,ℚ)),

where Y (respectively Z) runs over all subvarieties of X of codimension ≥ c (respectively of dimension ≤ i−c),
and H iY (X,ℚ) denotes the cohomology with support along Y.

Remark 2.8. It is known that B(X) holds for the following varieties: for curves, surfaces, abelian varieties
by [38], [39], for threefolds not of general type by [60], for hyperkähler varieties of K3[n]-type by [15], for n-
dimensional varieties X which have Ai(X) supported on a subvariety of dimension i + 2 for all i ≤ n−32 by [62,
Theorem 7.1], for n-dimensional varieties X which have Hi(X) = N⌊i/2⌋Hi(X) for all i > n by [64, Theorem 4.2],
and for products and hyperplane sections of any of these by [38], [39] (in particular it holds for projective
hypersurfaces, a fact that we will use).

For smooth projective varieties X over ℂ, the standard conjecture B(X) implies the standard conjecture
D(X), i.e. homological and numerical equivalence coincide on X and X × X; see [38], [39].

Friedlander, and independently Vial, introduced the following variant of the coniveau filtration:

Definition 2.9 (Niveau filtration, see [22], [23] [63]). Let X be a smooth projective variety. The niveau filtration
on homology is defined as

Ñ jHi(X) = ∑
Γ∈Ai−j(Z×X)

Im(Hi−2j(Z) Γ⋆󳨀→ Hi(X)),
where the union runs over all smooth projective varieties Z of dimension i − 2j, and all correspondences
Γ ∈ Ai−j(Z × X). The niveau filtration on cohomology is defined as

ÑcH iX := Ñc−i+nH2n−iX.

Remark 2.10. In [22], [23], the niveau filtration Ñ∗ is called the “correspondence filtration”.

The relation between the standard conjecture B(X) and the niveau and coniveau filtrations is made clear
in the following.

Remark 2.11. The niveau filtration is included in the coniveau filtration Ñ jH i(X) ⊂ N jH i(X). These two fil-
trations are expected to coincide; indeed, one can show that the two filtrations coincide if and only if the
Lefschetz standard conjecture is true for all varieties; see [22, Proposition 4.2], [63, Proposition 1.1].

Using the truth of the Lefschetz standard conjecture in degree ≤ 1, it can be checked that the two filtra-
tions coincide in a certain range: one has Ñ jH i(X) = N jH iX for all j ≥ (i − 1)/2, see [63, page 415 "Properties"].
In particular Ñ1H3(X) = N1H3(X) and Ñ2H4(X) = N2H4(X).
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The following “refined Künneth decomposition” and “refined Chow–Künneth decomposition” are very
useful:

Theorem 2.12 (Vial [63]). Let X be a smooth projective variety of dimension n ≤ 5. Assume that B(X) holds.
Then there exist algebraic cycles πi,j on X × X and a decomposition of the diagonal

∆X = ∑
i,j
πi,j in H2n(X × X),

where the πi,j’s are mutually orthogonal idempotents. The correspondence πi,j acts on H∗(X) as a projector on
Grj

Ñ
H i(X). Moreover, πi,j can be chosen to factor over a variety of dimension i −2j, i.e. for each πi,j there exist a

smooth projective variety Zi,j of dimension i − 2j and correspondences Γi,j ∈ An−j(Zi,j × X), Ψi,j ∈ Ai−j(X × Zi,j)
such that πi,j = Γi,j ∘ Ψi,j in H2n(X × X).
Proof. This is a special case of [63, Theorem 1]. Indeed, as mentioned in loc. cit., varieties X of dimension≤ 5 such that B(X) holds satisfy condition (*) of loc. cit. 2

Under the extra hypothesis of finite-dimensionality of the motive the conclusion can be proved at the
level of Chow groups.

Theorem 2.13 (Vial [63]). Let X be a smooth projective variety of dimension n ≤ 5. Assume that X has finite-
dimensional motive and that B(X) holds. Then there exists a decomposition of the diagonal

∆X = ∑
i,j
Πi,j in An(X × X),

where the Πi,j’s are mutually orthogonal idempotents lifting the πi,j of Theorem 2.12. Moreover, Πi,j can be
chosen to factor over a variety of dimension i − 2j, i.e. for each Πi,j there exist a smooth projective variety Zi,j
of dimension i − 2j and correspondences Γi,j ∈ An−j(Zi,j × X), Ψi,j ∈ Ai−j(X × Zi,j) such that Πi,j = Γi,j ∘ Ψi,j in
An(X × X).
Proof. This is a special case of [63, Theorem 2]. Indeed, X as in Theorem 2.13 satisfies conditions (*) and (**)
of loc. cit. 2

Remark 2.14. Let X be as in Theorem 2.12. Note that Conjecture B(X) implies in particular that the πi,j are
algebraic, cf. [39, Theorem 4.1, item (3)].

Remark 2.15. Let X be as in Theorem 2.13. Then, as in [40], one can define the “most transcendental part” of
the motive of X by setting tn(X) := (X, Πn,0, 0) ∈ Mrat. The fact that tn(X) is well-defined up to isomorphism
follows from [35, Theorem 7.7.3] and [63, Proposition 1.8]. For n = 2, tn(X) coincides with the “transcendental
part” t2(X) constructed for any surface in [35].
3 Ñ1-maximal varieties
Let X be a smooth projective n-dimensional variety. ThenHn(X) is a polarizedHodge structure, and the niveau
N1 := N1Hn(X) is a Hodge substructure. It follows from the semisimplicity of the category of polarizable pure
Hodge structures, see [18, 4.2.3] and also [72, Theorem 2.22], that the Hodge substructure N1 of the polarized
Hodge structure Hn(X,ℚ) induces a splitting with respect to the Lefschetz intersection pairing related to a
choice of a polarization, namely

Hn(X,ℚ) = N1 ⊕ (N1)⊥.
Definition 3.1. The “transcendental cohomology” is the orthogonal complement

Hntr(X) := (N1)⊥ ⊂ Hn(X,ℚ).
Remark 3.2. Note that Hntr(X) is isomorphic to the graded piece Gr0N∙ Hn(X) (which is a priori only a quotient
of Hn(X)).
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Provided that the generalized Hodge conjecture is true, Hntr(X) is the smallest Hodge substructure V ⊂
Hn(X,ℚ) for which Vℂ contains Hn,0.
Proposition 3.3. Let X be a smooth projective n-fold. The following are equivalent:

(i) dimHntr(X) = 2pg(X);
(ii) the subspace Hn,0 ⊕ H0,n ⊂ Hn(X,ℂ) is defined overℚ, and Hn(X) ∩ F1 = N1Hn(X);
(iii) dimN1Hn(X) = ∑i,j>0, i+j=n hi,j(X);
(iv) the subspace⨁i,j>0, i+j=n H i,j ⊂ Hn(X,ℂ) is defined overℚ, and Hn(X) ∩ F1 = N1Hn(X).

Proof. Obviously, (i)⇔(iii). The equivalence (ii)⇔(iv) is obtained using the polarization on Hn(X,ℚ). Indeed,
suppose V ⊂ Hn(X,ℚ) is a subspace such that Vℂ = Hn,0 ⊕H0,n. Then V ⊂ Hn(X,ℚ) is a Hodge substructure.
As mentioned above, a Hodge substructure V of the polarizable Hodge structure Hn(X,ℚ) induces a splitting

Hn(X,ℚ) = V ⊕ V⊥,
where both V and V⊥ are Hodge substructures. The subspace V⊥ has (V⊥)ℂ = ⨁i,j>0, i+j=n H i,j. The rest is
clear: (i)⇒(ii) because (i) forces (Hntr(X))ℂ (which always contains Hn,0 ⊕H0,n) to be equal to Hn,0 ⊕H0,n, and
hence also (N1Hn(X))ℂ = ∑i,j>0, i+j=n H i,j(X). Similarly, (ii)⇒(i): if V ⊂ Hn(X,ℚ) is such that Vℂ = Hn,0⊕H0,n,
then both V and Hntr(X) are the smallest Hodge substructure of Hn(X,ℚ) containing Hn,0; as such, they are
equal. 2

Definition 3.4. A smooth projective n-dimensional variety satisfying the equivalent conditions of Proposi-
tion 3.3 is called N1-maximal.

Definition 3.5. A smooth projective n-dimensional variety X is called Ñ1-maximal if it is N1-maximal and
there is equality N1Hn(X) = Ñ1Hn(X).
Remark 3.6. Proposition 3.3 is inspired by [6, Proposition 1], where a similar result is proven for surfaces.
A surface with dimH2

tr(S) = 2pg(S) is called a ρ-maximal surface.
In dimension n ≤ 3, the notions of N1-maximality and Ñ1-maximality coincide, in view of Remark 2.11.

Remark 3.7. While looking for examples of N1-maximal Calabi–Yau 3-folds we realised that the notion of
N1-maximality was already considered (under a different name) in [47, Remarks, p. 48, item 3], via the char-
acterization (ii) of Proposition 3.3.

Remark 3.8. Let X be an N1-maximal n-fold. The equalityHn(X,ℚ)∩ F1 = N1Hn(X,ℚ)means that X satisfies
a strong (i.e. non-amended) version of the generalized Hodge conjecture.

4 A general result
The following result gives sufficient conditions ensuring that a Calabi–Yau n-fold verifies Voisin’s conjec-
ture 1.2:

Theorem 4.1. Let X be a smooth projective variety of dimension n ≤ 5 with hi,0(X) = 0 for 0 < i < n and
pg(X) = 1. Assume moreover that

(i) X is rationally dominated by a variety X󸀠 of dimension n, that X󸀠 has finite-dimensional motive and that
B(X󸀠) is true;

(ii) X is Ñ1-maximal;
(iii) Ñ1H i(X) = H i(X) for 0 < i < n;
(iv) X is rationally dominated by a variety X󸀠󸀠 of dimension n and the Hodge conjecture is true for X󸀠󸀠 × X󸀠󸀠.

Then any a, a󸀠 ∈ Anhom(X) satisfy a × a󸀠 = (−1)na󸀠 × a in A2n(X × X).
Remark 4.2. Note that all hypotheses are satisfied in dimension 1.
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Remark 4.3. Note that we need only a special instance of the Hodge conjecture for X󸀠󸀠 × X󸀠󸀠, namely the
algebraicity of the Hodge substructure ∧2Hntr(X󸀠󸀠). Also (as pointed out to us by the referee), we actually only
need assumption (iv) in case the dimension n is even. Indeed, for odd n the ℚ-vector space ∧2Hntr(X󸀠󸀠) is
generated by the class of the refined Chow–Künneth projector Πn,0.

Let ι : X × X → X × X denote the involution exchanging the two factors. We consider the correspondence

Λ := 12 (∆X×X + (−1)n+1Γι) ∈ A2n(X4),
where ∆X×X ⊂ X4 denotes the diagonal of (X × X) × (X × X) and Γι denotes the graph of the involution ι. Note
that Λ is idempotent. To prove Theorem 4.1 we must check that

Λ∗ Im(Anhom(X) ⊗ Anhom(X) → A2n(X × X)) = 0.
We need tomodify Λ a bit, as follows. Let Ψ ∈ An(X󸀠 ×X) denote the closure of the graph of the dominant

rational map ψ from X󸀠 to X. We know that

Ψ∗Ψ∗ = d ⋅ id : An(X) → An(X), (1)

where d is the degree of Ψ . Set Πn,0 := 1
dΨ ∘ ΠX󸀠

n,0 ∘ tΨ where Ψ is as above and ΠX󸀠

n,0 is given by Vial’s result
Theorem 2.12, thanks to the finite-dimensionality of the motive of X󸀠 plus B(X󸀠). By (1) combined with the
idempotence of ΠX󸀠

n,0 we have (Πn,0)∗ ∘ (Πn,0)∗ = (Πn,0)∗ : An(X) → An(X). (2)

Hence, up to dividing by a constant, we may assume that (Πn,0) acts as an idempotent on 0-cycles on X. We
finally introduce the correspondence

Λtr := Λ ∘ (Πn,0 × Πn,0) ∈ A2n(X4),
where the Πn,0 are as above; see [72, Section 4.3.5.2] for a similar construction. Note that Λtr depends on the
choice of Πn,0. The key point is the following:

Claim 4.4. Λtr acts as an idempotent on 0-cycles, i.e.(Λtr∘Λtr)∗ = (Λtr)∗ : A0(X × X) → A0(X × X).
Proof of Claim 4.4. Note that Λ is an idempotent. Moreover, by Equation (2) also Πn,0 acts as an idempotent
on 0-cycles. Write(Λtr∘Λtr)∗ := 14 [(∆X×X + (−1)n+1Γι) ∘ (Πn,0 × Πn,0) ∘ (∆X×X + (−1)n+1Γι) ∘ (Πn,0 × Πn,0)]∗= [(Λ ∘ Λ) ∘ (Πn,0 × Πn,0) ∘ (Πn,0 × Πn,0)]∗ = Λ∗(Πn,0 × Πn,0)∗ = (Λtr)∗
where the second equality follows from the fact that Λ andΠn,0 commute (a fact that can either be checked by
hand, or deduced from the commutativity between Γι and Πn,0, which in turn follows from [37, Lemma 3.4]),
while the third equality follows from Equation (2). 2

We prove some intermediate results.

Lemma 4.5. In the situation of Theorem 4.1, the correspondence Λtr acts on the cohomology as a projector on
the subspace ∧2Hntr(X) ⊂ H2n(X × X).
Proof. First we observe that Πn,0 × Πn,0 acts as projector onto Hntr(X) ⊗ Hntr(X). For β, β󸀠 ∈ Hntr(X) we have(∆X×X + Γι)∗(β ⊗ β󸀠) = β ⊗ β󸀠 + (−1)n+1β󸀠 ⊗ β ∈ H2n(X × X).
This shows that an element in (Λtr)∗H∗(X × X) can be written as a sum of tensors of type

β ⊗ β󸀠 + (−1)n+1β󸀠 ⊗ β
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with β, β󸀠 ∈ Hntr(X). Since the cup-product map Hn(X) ⊗ Hn(X) → H2n(X) is (−1)n2 -commutative, tensors of
this type correspond exactly to elements of{b ∈ Im(Hntr(X) ⊗ Hntr(X) → H2n(X × X)) | ι∗(b) = −b}.
Thus (Λtr)∗H∗(X × X) ≅ ∧2Hntr(X) ⊂ H2n(X × X). 2

Remark 4.6. Just to fix ideas, let us suppose for a moment that X and X󸀠 coincide, so that Πn,0 (and hence
Λtr) is idempotent. In this case, Λtr defines the Chow motive Sym2 tn(X) ∈ Mrat in the language of [37, Defi-
nition 3.5], where tn(X) is the “transcendental motive” (X, Πn,0, 0) as in Remark 2.15.

The next lemma ensures that Λ and Λtr have the same action on the 0-cycles that we are interested in.
This is the only place in the proof where we need the full force of hypothesis (iii).

Lemma 4.7. In the situation of Theorem 4.1, let

A(n,n) := Im(An(X) ⊗ An(X) ×󳨀→ A2n(X × X)) ⊂ A2n(X × X)
and let

A(2,2) := Im(A2AJ(X) ⊗ A2AJ(X) ×󳨀→ A4(X × X)) ⊂ A4(X × X)
(where × denotes the map sending a ⊗ a󸀠 to a × a󸀠). Then for any choice of Πn,0 as in Theorem 2.12 we have(Λtr)∗|A(n,n) = Λ∗|A(n,n) and (Λtr)∗|A(2,2) = Λ∗|A(2,2) .

Proof. The point is that according to Theorem 2.12 there is a decomposition

∆X = Πn,0 + ∑
(i,j) ̸=(n,0)

Πi,j in An(X × X).
We claim that the components Πi,j with (i, j) ̸= (n, 0) do not act on An(X):(Πi,j)∗An(X) = 0 for all (i, j) ̸= (n, 0).
Indeed, Πi,j may be chosen to factor over a variety Z of dimension i − 2j (by Theorem 2.12). Hence the action
of Πi,j on An(X) factors as follows: (Πi,j)∗ : An(X) → Ai−j(Z) → Aj(X).
Our hypotheses imply that any Πi,j different from Πn,0 has j > 0. Thus, the group in the middle is 0 (for
dimension reasons), and the claim is proven.

We now consider the diagonal ∆X×X of the self-product X × X. There is a decomposition

∆X×X = ∑
i,j,i󸀠 ,j󸀠

Πi,j × Πi󸀠 ,j󸀠 in A2n(X4).
Let a, a󸀠 ∈ An(X). Using the claim, we find that(Πi,j × Πi󸀠 ,j󸀠 )∗(a × a󸀠) = (Πi,j)∗(a) × (Πi󸀠 ,j󸀠 )∗(a󸀠) = 0 for (i, j, i󸀠, j󸀠) ̸= (n, 0, n, 0).
It follows that

a × a󸀠 = (∆X×X)∗(a × a󸀠) = (Πn,0 × Πn,0)∗(a × a󸀠) in A2n(X × X),
which proves the A(n,n) statement.

The second statement of Lemma 4.7 is proven similarly: we claim that the components Πi,j with (i, j) ̸=(n, 0) do not act on A2AJ(X). This claim follows from the factorization(Πi,j)∗ : A2AJ(X) → A2+i−j−nAJ (Z) → A22(X),
where dim Z = i − 2j (one readily checks that for j > 0 the middle group vanishes in all cases). 2
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We now have all the ingredients for the

Proof of Theorem 4.1. (For a related conjecture, the argument that follows was hinted at in [40, Remark 35].)
Consider the correspondence Λtr ∈ A2n(X4). By Lemma 4.5 it acts on H∗(X × X) by projecting onto the

1-dimensional subspace ∧2Hntr(X) ⊂ H2n(X × X). This implies that there is a containment

Λtr ∈ (∧2Hntr(X)) ⊗ (∧2Hntr(X)) ⊂ H4n(X4).
The 1-dimensional subspace ∧2Hntr(X) is contained in (Hntr(X) ⊗ Hntr(X)) ∩ Fn. The dominant map X󸀠󸀠 X
induces a surjection Hntr(X󸀠󸀠) → Hntr(X), thus classes in ∧2H2

tr(X) come from Hodge classes in Hntr(X󸀠󸀠) →
Hntr(X). Using the truth of the Hodge conjecture for X󸀠󸀠 × X󸀠󸀠, these classes are algebraic.

By hypothesis (iv), this subspace is algebraic, i.e. there is a codimension n subvariety P ⊂ X×X such that∧2Hntr(X) is supported on P. This implies that Λtr = γ in H4n(X4), where γ is a cycle supported on P × P ⊂ X4.
In other words, we have Λtr − γ ∈ A2nhom(X4).

Recall that Ψ ∈ An(X󸀠 × X) denotes the closure of the graph of the dominant rational map ψ from X󸀠 to X.
The correspondence

Γ := (tΨ × tΨ) ∘ (Λtr − γ) ∘ (Ψ × Ψ) ∈ A2n((X󸀠)4)
is homologically trivial (because the factor in themiddle is homologically trivial). Using finite-dimensionality
and Theorem 2.3, we know there exists N ∈ ℕ such that Γ∘N = 0 in A2n((X󸀠)4). In particular, this implies that(Ψ × Ψ) ∘ Γ∘N ∘ (tΨ × tΨ) = 0 in A2n(X4).
Developing this expression, and applying the result to 0-cycles, and repeatedly using relation (1), we obtain((Λtr)∘N)∗ = (Q1 + Q2 + ⋅ ⋅ ⋅ + QN)∗ : A2n(X × X) → A2n(X × X),
where each Qj is a composition of Λtr and γ in which γ occurs at least once. Since Λtr is an idempotent, this
simplifies to (Λtr)∗ = (Q1 + Q2 + ⋅ ⋅ ⋅ + QN)∗ : A2n(X × X) → A2n(X × X).
The correspondence γ acts trivially on A2n(X × X) for dimension reasons, and so the Qj likewise act trivially
on A2n(X × X). It follows that(Λtr)∗ = (Q1 + ⋅ ⋅ ⋅ + QN)∗ = 0: A2n(X × X) → A2n(X × X).
By Lemma 4.7 this ends the proof of Theorem 4.1. 2

Remark 4.8. The above proof is somehow indirect asweprove the statement for the auxiliary correspondence
Λtr and then check that its action on Anhom(X) ⊗ Anhom(X) coincides with that of Λ.
Remark 4.9. Hypothesis (i) of Theorem 4.1 may be weakened as follows: it suffices that there exists X󸀠 of di-
mension ≤ 5 such that X󸀠 has finite-dimensional motive and B(X󸀠) is true, and there exists a correspondence
from X󸀠 to X inducing a surjection Ai(X󸀠) 󴀀󴀤 A0(X). The argument is similar.

Remark 4.10. We have seen (Remark 3.6) that n-dimensional manifolds with dimHntr(X) = 2 are higher-
dimensional analogues of ρ-maximal surfaces. In [41, Proposition 5] it is shown that surfaces S with finite-
dimensionalmotive anddimH2

tr(S) = 2 (i.e. pg = 1and S is ρ-maximal) verifyVoisin’s conjecture. Theorem4.1
is a higher-dimensional analogue of this result.

Remark 4.11. Following Voisin’s approach [68] one can extend the analysis above to 0-cycles on higher prod-
ucts of X with itself. In this direction we get the following.

Theorem 4.12. Let X be a smooth projective variety of dimension n less than or equal to 5. Assume further that
hi,0(X) = 0 for 0 < i < n and that pg(X) ≤ 2. Suppose moreover that
(1) X is rationally dominated by a variety X󸀠, that X󸀠 has finite dimensional motive and that B(X󸀠) is true;
(2) the dimension of Hntr(X) is at most 4;
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(3) Ñ1H i(X) = H i(X) for 0 < i < n;
(4) the Hodge conjecture is true for X4.

Then any a1, a2, a3, a4 ∈ Anhom(X) satisfy∑
σ∈S4

ε(σ)σ∗(a1 × a2 × a3 × a4) = 0 in A4n(X × X × X × X).
Proof. The proof closely follows that of Theorem 4.1. In that situation, we took into account Λ2(Hntr(X)) and
then described a generator of it via an explicit cycle that is induced by a correspondence. In this situation, it
is possible to give a generator of the 1-dimensional space Λ4(Hntr(X)). The rest of the proof is similar to that
of Theorem 4.1. 2

Note that Theorem 4.12 is not optimal in all cases, since for pg = 2 one expects relations in X × X × X and
not in X × X × X × X.

Conjecturally, any variety X with h2,0(X) = 0 should have A2AJ(X) = 0 (this would follow from the Bloch–
Beilinson conjectures, or from a strong form of Murre’s conjectures). We cannot prove this for all varieties
with pg(X) > 0 (such as the Fermat sextic fourfold). However, the above argument at least gives a weaker
statement concerning A2AJ(X):
Proposition 4.13. Let X be as in Theorem 4.1. Then for any a, a󸀠 ∈ A2AJ(X)we have a×a󸀠 = −a󸀠×a in A4(X×X).
Proof. This is really the sameargument as for Theorem4.1.Wehave proven that there is a rational equivalence

Λtr = (Λtr)∘N = Q1 + Q2 + ⋅ ⋅ ⋅ + QN in A6(X4),
where each Qj is a composition of Λtr and γ in which γ occurs at least once. The correspondence γ does not
act on A4(X × X) for dimension reasons (it factors over A4(P) where dim P = 3), and so the Qj do not act on
A4(X × X). It follows that (Λtr)∗ = (Q1 + ⋅ ⋅ ⋅ + QN)∗ = 0: A4(X × X) → A4(X × X).
On the other hand, we know from Lemma 4.7 that

Λ∗ = (Λtr)∗ = 0: Im(A2AJ(X) ⊗ A2AJ(X) → A4(X × X)) → A4(X × X).
This means that for any a, a󸀠 ∈ A2AJ(X) we have Λ∗(a × a󸀠) = a × a󸀠 + a󸀠 × a = 0 in A4(X × X). 2

5 Applications
In this section we apply our general result to some Calabi–Yau varieties X with dimensions between 2 and 5.
First, we give new examples of ρ-maximal surfaces. Then we focus on dimension 3, where we give examples
of different types. In some cases we prove Voisin’s Conjecture as stated in (1.2); in other ones we get the
generalization of it on X × X × X × X that appears in Theorem 4.12. Remarkably, one can often study the
dimensions of the Hntr(F) for a Fermat-type hypersurface F in certain weighted projective spaces by looking
at the (topological) mirror of F. Finally, the conjecture is proved in dimension 4 for the Fermat sextic fourfold
and in dimension 5 for some Calabi–Yau varieties studied in [16].

5.1 Examples of dimension 2 ?.

Remark 5.1. Many examples of surfaces satisfying the conditions (i), (ii, (iii) of Theorem 4.1 can be found
in [5]. Indeed (as explained to us by Roberto Pignatelli), the “duals” (cf. [5, Section 9]) of the 14 families
in [5, Table 2] are ρ-maximal surfaces with pg = 1 and q = 0. Being rationally dominated by a product
of curves, these surfaces have finite-dimensional motives. We do not know whether condition (iv) holds for
these surfaces, so we are not sure whether Theorem 4.1 applies to these surfaces.
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5.2 Examples of dimension 3 of Fermat type: weak version. Let us consider some examples of Calabi–Yau
3-folds. Recall that in dimension 3 the notions of N1-maximality and Ñ1-maximality coincide by Remark 3.6.
One of the examples is the Fermat quintic F5 in 4-dimensional projective space, which we work out in full
detail. We also consider other Fermat type 3-folds in weighted projective spaces (for the basics on weighted
projective spaces see e.g. [21]).

A different example is taken in [61] and is a small resolution Y󸀠 of a complete intersection Y of type(2, 2, 2, 2) in 7-dimensional projective space. For the Fermat type examples, we show that dimH3
tr = 4; in

the latter example we do not knowwhether the dimension of H3
tr(Y󸀠) is 2 or 4. If it were 2, we could apply our

main result and get another example for which Voisin’s conjecture holds. If it is 4, as in the case of F5, we can
still deduce something interesting, namely a weak version of Voisin’s conjecture thanks to Theorem 4.12.

We start by collecting some useful facts.

Lemma 5.2. Every Fermat hypersurface {∑ xdi = 0} ⊂ ℙn has finite-dimensional motive.
Proof. A Fermat hypersurface is rationally dominated by curves by the Katsura–Shioda inductive structure,
see [57], [59, Section 1]. The analysis of the indeterminacy locus shows, cf. [27], that this implies that itsmotive
is finite-dimensional. 2

Theorem 5.3 (Shioda [57] Theorem IV). Let X be a Fermat hypersurface of degree d ≤ 20. Then the Hodge con-
jecture is true for Xr for all r ∈ ℕ.
Theorem 5.4 (Shioda [58]). Let X be a Fermat threefold of degree d ≤ 10. Then the generalized Hodge conjec-
ture is true for X.

Proof. This is [58, §3 point (13)]. (This has recently been generalized to Fermat 3-folds of arbitrary degree d,
see [36], but we do not need this generalization here.) 2

Consider now the Fermat quintic hypersurface

X := {x50 + ⋅ ⋅ ⋅ + x54 = 0} ⊂ ℙ4.
(Later in the paper we also denote the Fermat quintic hypersurface by F5.) Its Hodge numbers are

h2,1(X) = 101, h1,1(X) = 1 = h3,0(X).
Its “mirror” X̂ has been constructed explicitly in [26; 14] as follows. Inside the quotient (ℤ/5ℤ)5/diag of(ℤ/5ℤ)5 under the natural diagonal action, consider the subgroup

G := {(a0, . . . , a4) | ∑i ai = 0}.
This subgroup G, which is abstractly isomorphic to (ℤ/5ℤ)3, acts on X; by [45, Proposition 4] and [54, Propo-
sition 2] the quotient X/G possesses a Calabi–Yau resolution X̂, in other words we have the following diagram

X↓ p
X̂

f󳨀→ X󸀠 := X/G.
Notice that the automorphisms σ ∈ G satisfy

σ∗ = id : H3,0(X) → H3,0(X).
The variety X̂ turns out to be the mirror of X, see e.g. [48; 69] for more explanations and details (the

analogous construction and the same result hold for any smooth member of the Dwork pencil). In particular
its Hodge numbers are

h1,1(X) = 101, h2,1(X) = 1 = h3,0(X).
First of all, as observed in Remark 2.8, X verifies B(X) (because it is a projective hypersurface) and has

finite-dimensional motive by Lemma 5.2.
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We note that X󸀠 is a quotient variety X/G for a finite group G. As such, there is a well-defined theory of
correspondences with rational coefficients for X󸀠 (this is because X󸀠 has A∗(X󸀠) ≅ A3−∗(X󸀠)where A∗ denotes
Chow groups and A∗ denotes operational Chow cohomology; see [24, Example 17.4.10], [24, Example 16.1.13]).

We denote by Γ := tΓf ∘ Γp ∈ A3(X × X̂) the natural correspondence from X to X̂.
Zero-cycles on X and X̂ can be related as follows:

Proposition 5.5. There is an isomorphism of Chowmotives Γ : t3(X) ≅ t3(X̂) inMrat, with inverse given by 1
d
tΓ,

where d is the order of G. In particular, the homomorphisms

f∗p∗ : A3(X) 󳨀→ A3(X̂) and p∗f∗ : A3(X̂) 󳨀→ A3(X)
are isomorphisms.

Proof. Aswe have seen, X satisfies B(X) and has finite-dimensional motive. Moreover, the generalized Hodge
conjecture holds for X by [58]. The proposition now follows from the proof of [40, Corollary 29(i)]. 2

Thanks to Proposition 5.5,much information can be transported from X to X̂, and vice versa. For example,
if B(X) holds then B(X̂) holds, because

h(X̂) = t3(X̂) ⊕ h(C) ⊕⨁
j
𝕃(mj) inMrat,

where C is a (not necessarily connected) curve. Likewise, if X has finite-dimensional motive then X̂ has finite-
dimensional motive. Alternatively, B(X̂) can be proven by invoking the main result of [60], and the finite-
dimensionality of the motive of X̂ can also be derived from [66, Example 3.15] and the fact that X̂ is rationally
dominated by a product of curves (as X is).

Lemma 5.6. Let X be the Fermat quintic in ℙ4. Then the dimension of H3
tr(X) is 4.

Proof. Take the order 5 automorphism that permutes the coordinates ofℙ4. This descends to X and commutes
with the elements of the group G of order 125. Therefore, there exists an order 5 automorphism of the mirror
X̂ acting on the 4-dimensional space of degree 3 rational cohomology. This space splits into four eigenspaces
of such an automorphism, namely

H3(X̂,ℚ) = V(η) ⊕ V(η2) ⊕ V(η3) ⊕ V(η4),
where η is a primitive fifth root of unity. Up to renaming the primitive root of unity, we can assume that
H3,0(X̂) ⊕ H0,3(X̂) ≃ V(η) ⊕ V(η4), which is not defined over the field of rational numbers. Therefore, by
Proposition 3.3 we have that dimH3

tr(X̂) = 4. As the isomorphism of Hodge structures induced by Γ yields an
isomorphism between H3

tr(X̂) and H3
tr(X), the lemma is proved. 2

Proposition 5.7. The hypotheses of Theorem 4.12 hold for the following Calabi–Yau 3-folds:

(1) the Fermat quintic F5 and its mirror;
(2) the Fermat hypersurface x80+x81+x82+x83+x24 = 0 in the weighted projective spaceℙ(14, 4) and its mirror;
(3) the Fermat hypersurface x100 + x101 + x102 + x53 + x24 = 0 in the weighted projective spaceℙ(13, 2, 5) and its

mirror;
(4) the Fermat hypersurface x80 + x81 + x42 + x43 + x44 = 0 in the weighted projective space ℙ(12, 23) and its

mirror.

Proof. The claim follows for the Fermat quintic due to Lemma 5.6 and the fact that Fermat hypersurfaces
have finite-dimensional motives by Lemma 5.2. For Examples (2), (3), (4), note that they are dominated by
Fermat hypersurfaces; the hypotheses (i) and (iv) thus follow from Lemma 5.2 and Theorem 5.3. The fact that
dimH3

tr(X) ≤ 4 is established in [34, Examples 5.3, (c), (d) and Table 4]. As for the mirror partners, one can
directly check that the hypotheses of Theorem 4.12 are satisfied. 2

Remark 5.8. Note that the N1-maximality is also connected to modularity conditions. For instance, Hulek
and Verrill in [29] investigate Calabi–Yau threefolds over the field of rational numbers that contain birational
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ruled elliptic surfaces Sj for j = 1, . . . , b, where b is the dimension ofH1,2(X). As they show, this is equivalent
to the N1-maximality. Under these assumptions, the L-function of X factorizes as a product of the L-functions
of the base elliptic curves of the birational ruled surfaces and the L-function of the weight 4 modular form
associated with the 2-dimensional Galois representation given by the kernel U of the exact sequence

0→ U → H3
et(X,ℚl) →⨁H3

et(Sj ,ℚl) → 0.

In [29], Section 3, examples of this type of Calabi–Yau varieties are given; however, we do not know whether
they have finite dimensional motive.

5.3 Example of dimension 3 of Fermat type: strong version. The main result of this subsection is the follow-
ing.

Proposition 5.9. Let X be the hypersurface {[x0 : x1 : x2 : x3 : x4] | x60 + x61 + x62 + x63 + x34 = 0} in the weighted
projective space ℙ4(1, 1, 1, 1, 2). Then Conjecture 1.2 holds for X.
Proof. It is easy to check that X is a smooth Calabi–Yau variety. Moreover, it can be realized as a degree 3 finite
covering ofℙ3 branched over the Fermat sextic surface. As such, X has an order 3 automorphism, say τ. This
also shows that is rationally dominated by a product of curves; hence it has finite-dimensional motive. It
remains to prove the N1-maximality stated in Theorem 4.1. This is proven in [47, Section 8.3.1, Example 1],
and also follows readily from [34, Example 5.3, (b)]; we propose a more direct proof:

Note that X can be thought of as the quotient of the degree 6 Fermat threefold {Y61 +Y62 +Y63 +Y64 +Y65 = 0}
in 4-dimensional projective space by the action of the group generated by the automorphism [Y1 : Y2 : Y3 :
Y4 : Y5] 󳨃→ [Y1 : Y2 : Y3 : Y4 : −Y5].

The Hodge numbers of X are given by (h1,1(X), h1,2(X)) = (1, 103). As explained in [34], the (topological)
mirror of X can be described as follows. Take the group

Ĝ := {(εi06 , εi16 , εi26 , εi36 , εi43 ) : i0 + i1 + i2 + i3 + 2i4 ≡ 0 mod 6}/H,
where H is a diagonal copy of ℤ/6ℤ that acts trivially on the weighted projective space ℙ(1, 1, 1, 1, 2). We
consider the polynomials ∑

I=(i0 ,i1 ,i2 ,i3 ,i4)
CIxi00 x

i1
1 x

i2
2 x

i3
3 x

i4
4 + λx0x1x2x3x4 (3)

where λ varies in𝔸1, the sum ranges over all solutions of the equation i0 + i1 + i2 + i3 + 2i4 ≡ 0 mod 6 and
the CI are generic complex numbers. The vanishing of these polynomials defines a pencil of varieties X󸀠λ inℙ(1, 1, 1, 1, 2) that is Ĝ-invariant. Note that the members of it are smooth for a generic choice of λ because
they do not contain the singular point of the weighted projective space. A mirror family of X can be found
analogously to that of the mirror Fermat quintic by taking the quotient of the pencil (3) by the group Ĝ and
then taking a crepant resolution. We denote by X̂ a crepant resolution of X󸀠0.

Now we consider the order four automorphism τ of ℙ(1, 1, 1, 1, 2) given by [x0, x1, x2, x3, x4] 󳨃→[x1, x2, x3, x4, x0]. An easy computation shows that τ belongs to the normalizer of Ĝ in the group of au-
tomorphisms of ℙ(1, 1, 1, 1, 2). Moreover, there exist complex numbers CI such that X󸀠0 is invariant with
respect to τ. Finally, for such a choice the fixed locus of Ĝ is invariant with respect to the τ-action because τ
normalizes Ĝ. Since τ permutes the homogeneous coordinates of ℙ(1, 1, 1, 1, 2), it extends to all the mem-
bers of themirror family, which by definitionmeans that τ is maximal. Moreover, a direct computation shows
that any λ is mapped to itself. The space of invariants of H1,2(X) with respect to the Ĝ-action is thus one-
dimensional; hence τ induces the identity on H1,2(X̂) ⊕H2,1(X̂). It remains to understand the action induced
by τ on H3,0(X̂) ⊕ H0,3(X̂). For this purpose, we recall that a generator of H3,0(X̂) is a 3-form on X that is
invariant with respect to Ĝ; recall that X̂ is a crepant resolution of X󸀠0 = X/Ĝ. More precisely, this 3-form can
be described as a ratio in which the denominator is Ĝ-invariant by definition and the numerator is given as
follows:

x0dx1 ∧ dx2 ∧ dx3 ∧ dx4 − x1dx0 ∧ dx2 ∧ dx3 ∧ dx4 + x2dx0 ∧ dx1 ∧ dx3 ∧ dx4−x3dx0 ∧ dx1 ∧ dx2 ∧ dx4 + 2x4dx0 ∧ dx1 ∧ dx2 ∧ dx3.
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It is easy to check that this polynomial is mapped to its opposite by the induced action of τ. Therefore, the
action on the group H3,0(X̂) ⊕ H0,3(X̂) is the opposite of the identity.

To recap, the action of τ̂ on the space H3(X̂,ℚ) induces a splitting into two eigenspaces of dimension
two, one with eigenvalue +1 and one with eigenvalue −1. The second eigenspace has strictly positive Hodge
level, and so (using the truth of the generalized Hodge conjecture for X̂, which follows from Theorem 5.4 as X̂
is rationally dominated by a degree 6 Fermat hypersurface inℙ4) the second eigenspace lies inN1. This shows
the N1-maximality for the Calabi–Yau threefold X̂ and accordingly, for X because their H3

tr’s are isomorphic
via an isomorphism of Hodge structures. 2

Remark 5.10. This example is not new; yet the proof of the N1-maximality is more geometric than those in
[34] and [47]. In the former reference, the authors prove the maximality by describing two Fermat motives.

5.4 Examples of dimension 3 of Borcea–Voisin type: strong version. Let E be the elliptic curve given by the
equation y2 = x3−1. This curve admits an order three automorphism h(x, y) = (ωx, y), where ω is a primitive
third root of unit. Now take S to be a K3 surface with an order three automorphism g such that the second
cohomology group with rational coefficients splits as the transcendental part TS and the Neron Severi group
such that H2,0(S) ⊆ TS and the rank of NS(S) is 20. Moreover, the Neron Severi group coincides with the
subspace of invariant classes of H2(S,ℚ) with respect to the action of g. In particular g is antisymplectic.
Such a K3 surface exists as shown in [7, p. 280].

The product S × E admits the order three automorphism g × h. We may assume that the action of g on the
period of S is given by multiplication by ω2 (if not, just take the inverse of g). Note that the fixed point locus
of g consists of isolated points and (smooth) rational curves.

Denote by X a resolution of the (singular) quotient S × E by the group generated by the automorphism
g × h. By the description of the fixed locus of g × h, the third cohomology group of X with rational coefficients
is the invariant part of H3(S×E,ℚ), which is isomorphic to H2(S,ℚ)⊗H1(E,ℚ). To prove the N1-maximality,
we check the equivalent condition that H3,0(S × E) ⊕H0,3(S × E) is defined over the field of rational numbers.
By the Künneth formula we have

H3,0(S × E) ⊕ H0,3(S × E) ≃ H2,0(S) ⊗ H1,0(E) ⊕ H0,2(S) ⊗ H0,1(E),
H2,1(S × E) ⊕ H1,2(S × E) ≃ H1,1(S) ⊗ H1,0(E) ⊕ H1,1(S) ⊗ H0,1(E) ⊕ H0,2(S) ⊗ H1,0(E) ⊕ H2,0(S) ⊕ H0,1(E).

The space H3,0(S × E) ⊕ H0,3(S × E) is defined over the rational field because it can be defined as the
subspace of invariants with respect to the action of the isomorphism (g × h)∗ on H3(S × E,ℚ). Indeed, the
action of this isomorphism is trivial on H2,0(S) ⊗H1,0(E) ⊕H0,2(S) ⊗H0,1(E). As for H2,1(S × E) ⊕H1,2(S × E),
the action is by multiplication by ω, ω2, ω2, ω on H1,1(S) ⊗ H1,0(E), H1,1(S) ⊗ H0,1(E), H0,2(S) ⊗ H1,0(E),
H2,0(S) ⊕ H0,1(E) respectively, because the action of g on H1,1(S) is trivial.

As for hypothesis (iv) of the criterion, we observe that any K3 surface with Picard number 20 is either
a Kummer surface, or rationally dominated by a Kummer surface. Then, we just need to know the Hodge
conjecture for A × A × E × E, where A is an abelian surface and E an elliptic curve; this is known e.g. by [46,
Theorem 0.1, item (iv)].

5.5 The Fermat 4-fold: strong version. We already know that every Fermat hypersurface {∑ xdi = 0} ⊂ ℙn has
finite-dimensional motive. As the Lefschetz standard conjecture holds for hypersurfaces and the hypothesis
Ñ1H3(X) = H3(X) also holds for a 4-dimensional hypersurface, in order to prove Theorem 4.1 we are left with
the Ñ1-maximality.

Proposition 5.11. The Fermat sextic fourfold is Ñ1-maximal.

Proof. We will use that

(a) the Fermat sextic surface S ⊂ ℙ3 is ρ-maximal, see [6, Corollary 1], and
(b) the Fermat sextic 4-fold X ⊂ ℙ5 is Ñ2-maximal, i.e. Ñ2H4(X) ⊗ ℂ = H2,2(X), see [49, Corollary 15.11.1].

Consider the dominant rational morphism φ : S× S X. It yields a surjective morphism of Hodge structures

φ∗ : H4
tr(S × S) 󴀀󴀤 H4

tr(X). (4)
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Now H4
tr(S × S) ⊂ H2

tr(S) × H2
tr(S). By item (a) above H2

tr(S) ⊗ ℂ = H2,0(S) ⊕ H0,2(S). This together with (4),
implies that (H4

tr(X) ⊗ ℂ) ⊂ H4,0(X) ⊕ H2,2(X) ⊕ H0,4(X).
By item (b) we see that there exists a non-empty Zariski open τ : U ⊂ X (defined as the complement of the
span of the codimension 2 cycle classes in H4(X,ℚ)) such that H2,2(X)maps to 0 under the restriction map

τ∗ : H4(X,ℂ) → H4(U,ℂ).
This implies that

τ∗(H4
tr(X) ⊗ ℂ) ⊂ τ∗(H4,0(X) ⊕ H0,4(X)),

and so the restriction τ∗(H4
tr(X) ⊗ ℂ) has dimension at most 2. On the other hand, by definition of H4

tr( )
the map τ∗ : H4

tr(X) → H4(U) is an injection. Therefore, we conclude that dim(H4
tr(X) ⊗ ℂ) = 2, i.e. X is

N1-maximal.
To establish the Ñ1-maximality, it remains to show that the inclusion Ñ1H4(X) ⊂ N1H4(X) is an equality.

Here, we again use the dominant rational map φ. The indeterminacy of the map φ is resolved by the blow-up
S̃ × S with center C × C (where C ⊂ S is a curve). It thus suffices to prove the equality

Ñ1H4(S̃ × S) = N1H4(S̃ × S).
The blow-up formula gives an isomorphism

H4(S̃ × S) = H4(S × S) ⊕ H2(C × C),
and the second summand is entirely contained in Ñ1. It thus suffices to prove the equality

Ñ1H4(S × S) ??= N1H4(S × S). (5)

This readily follows from the N1-maximality of S: indeed, there is a decomposition H2(S) = T ⊕ N, where
T := H2

tr(S) is such that T ⊗ ℂ = H2,0 ⊕ H0,2. This induces a decomposition

H4(S × S) = T ⊗ T ⊕ N ⊗ T ⊕ T ⊗ N ⊕ N ⊗ N ⊕ H0(S) ⊗ H4(S) ⊕ H4(S) ⊗ H0(S).
All summands except the first one are obviously contained in Ñ1 (because D × S satisfies the standard con-
jecture B, for any divisor D ⊂ S). As for the first summand, we note that(T ⊗ T)ℂ ⊂ H4,0 ⊕ H2,2 ⊕ H0,4,

and so
N1(T ⊗ T) = (T ⊗ T) ∩ F2 = N2(T ⊗ T) = Ñ2(T ⊗ T),

since the Hodge conjecture is true for S × S by [57, Theorem IV]. This proves the equality (5), and hence the
Ñ1-maximality of X is established. 2

Tofinishweobserve that all the hypotheses of Theorem4.1 are satisfied for a Fermat sextic fourfold, hence
Conjecture 1.2 holds for it.

5.6 Examples of dimension 5.

Proposition 5.12 (Cynk–Hulek [16]). Let E be an elliptic curve with an order 3 automorphism, and let n be a
positive integer. There exists a Calabi–Yau variety X of dimension n which is rationally dominated by En, and
which has dimHn(X) = 2 if n is even, and dimHntr(X) = 2 if n is odd.
Proof. This is [16, Theorem 3.3]. The construction is also explained in [28, Section 5.3]. 2

Proposition 5.13. Let X be a Calabi–Yau variety as in Proposition 5.12, of dimension n ≤ 5. Then conjecture 1.2
is true for X.

Proof. We check that the conditions of Theorem 4.1 are satisfied. Point (i) is obvious, as X is rationally dom-
inated by a product of curves. Point (ii) is taken care of by Proposition 5.12. Point (iii) is proven (in a more
general set-up) in [42, Proof of Corollary 4.1]. Point (iv) holds since the Hodge conjecture is known for self-
products of elliptic curves Er; see [58]. 2
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6 Questions
Question 6.1. Let Fd denote the Calabi–Yau Fermat hypersurface of degree d in ℙd−1, i.e. the hypersurface
defined by xd0 + xd1 + ⋅ ⋅ ⋅ + xdd−1 = 0. The variety Fd is Ñ1-maximal for d = 4 and for d = 6. Are these the only
two values of d for which Fd is Ñ1-maximal?

We suspect that this might be the case (by analogy with the ρ-maximality of Fermat surfaces in ℙ3: as
remarked in [6], the only ρ-maximal Fermat surfaces are in degree 4 and 6), but we have no proof.

Question 6.2. Let {Xλ} denote the Dwork pencil of Calabi–Yau quintic threefolds given by
x50 + x51 + ⋅ ⋅ ⋅ + x54 + λx0x1x2x3x4 = 0.

As we have seen, the central fibre X0 has dimH3
tr(X0) = 4. Are there values of λ where dimH3

tr(Xλ) drops to
2? Are these values dense in ℙ1?

Also, can one somehow prove finite-dimensionality of the motive for non-zero values of λ? (This seems
to be difficult: as noted in [34, Remark 4.3], the varieties Xλ are not dominated by a product of curves outside
of λ = 0.)
Acknowledgements: We wish to thank Giuseppe Ancona, Lie Fu, Bert van Geemen, Hossein Movasati,
Roberto Pignatelli and Charles Vial for useful and stimulating exchanges related to this paper. We warmly
thank Claire Voisin for pointing out a mistake in a previous version of the paper, and the referee for several
helpful and highly pertinent remarks.
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