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The degenerate Landau-Zener-Majorana-Stückelberg model consists of two degenerate

energy levels whose energies vary with time and in the presence of an interaction which

couples the states of the two levels. In the adiabatic limit, it allows for the populations
transfer from states of one level to states of the other level. The presence of an interaction

with the environment influences the efficiency of the process. Nevertheless, identification
of possible decoherence-free subspaces permits to engineer coupling schemes for which

the effects of quantum noise can be made negligible.
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1. Introduction

A two-state quantum system with time-dependent energies and subjected to an in-

teraction which induces transitions between the two states undergoes an evolution

which can essentially consist in the adiabatic following of the eigenstates or involve

diabatic transitions between them, depending on the chirping rate of the energies.

The amount of such passage of population through diabatic processes can be eval-

uated through the very famous formula independently found by Landau, Zener,

Majorana and Stückelberg (LZMS) in the same year.1–4 In the original problem,

the diabatic energies were assumed to be changing linearly with time, the coupling

strength between the two states was supposed to be constant and the time was

hypothesized to span a very large interval, virtually ranging from −∞ to +∞.

From there on, several assumptions have been relaxed, leading to many different

generalization of the original LZMS model.

Nonlinear time-dependence of the diabatic energies have been considered5 as

well as finiteness of the time interval associated to the experiment.6,7 Models where

the system undergoing an energy crossing is governed by nonlinear equations have

been analyzed.8,9 Non-Hermitian Hamiltonian models have been considered too.10

The LZMS model describes an avoided crossing, since on the one hand the diabatic

(bare) energies cross while the adiabatic (dressed) energies do not. Variants have
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analyzed, consisting in the hidden crossing model, where neither the diabatic nor

the adiabatic energies cross,11,12 and in the total crossing model, where both the

diabatic and the adiabatic energies cross.13 The latter model requires that the

coupling strength (the off-diagonal term of the 2×2 Hamiltonian) is time-dependent

and vanishes at the same time with the diagonal terms. Extended models where

more than two quantum states are assumed to be involved in the evolution have

been introduced. Majorana studied the dynamics of a spin-j immersed in a magnetic

field in such a situation where a multi-state avoided crossing occurs.3 Multi-state

systems undergoing a series of pairwise crossings, hence allowing for the so called

independent crossing approximation, have been considered.14,15 Moreover, proper

multi-state avoided crossings have been studied in details, under special hypotheses

about the coupling scheme. In particular, the N -state bow-tie model, where one

state is coupled to the remaining N −1 (or two states are coupled to the remaining

N − 2) which do not couple to each other, have been extensively investigated.16–18

Several other specific schemes involving many levels have been proposed and studied

in details,19–22 as well as effective LZMS models able to describe the dynamics of

spin-boson systems governed by the time-dependent Rabi Hamiltonian23 or Tavis-

Cummings model.24,25 The interest in the LZMS model is witnessed by several

experiments that have been developed with systems which are adiabatically or

quasi-adiabatically driven in the proximity of avoided crossings.26–28

Over the decades, several papers have investigated the role of quantum noise

on adiabatic evolutions in general29–34 and in the specific case of the two-state

LZMS processes.35–41 Recently, some contributions have appeared on the effects of

the interaction with the environment for multi-state LZMS processes, in different

configurations42,43 and exploiting non-Hermitian Hamiltonian models.44,45

A different and intriguing scenario is that addressed as the degenerate Landau-

Zener model.46,47 It is realized when two degenerate levels cross, provided some

interaction is present which couples states of one level to states of the other, but

does not couple states belonging to the same level. This model allows for mapping

linear combinations of the states of one level to linear combinations of the other.

Though less popular than other generalizations of the LZMS model, it has been

successfully used to provide a theoretical explanation48 of some important aspects

of an experiment where the suppression of dephasing in quantum dots has been

demonstrated, under suitable conditions.49 Other theoretical studies have been de-

veloped.50,51

In this paper we study the degenerate Landau-Zener model in the presence of

quantum noise. Depending on the structure of the system-environment interaction

we are able to identify special states which are not subjected (or are marginally

subjected) to the noise. In practice, we single out the presence of decoherence-

free subspaces. Suitable coupling schemes realized through coherent fields allow

for exploiting such protected zones of the relevant Hilbert space to obtain efficient

population transfer. In sec. 2 we introduce the dissipative degenerate Landau-Zener

model. In section 3 we discuss a specific case, focusing on the configuration where a
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twofold degenerate level is coupled to another twofold degenerate one. We provide

the explicit transformations that diagonalize the Hamiltonian of the system and the

system-environment interaction term, and then identify possible decoherence-free

subspaces. The relevant dynamics are evaluated numerically in order to compare

them with the theoretical predictions. Finally, in sec. 4 we discuss the results and

the possibility to explot them in order to obtain information about the system-

environment couplig.

2. The Model

Idela case — The general M : (N −M) model refer to a N -state system, with two

degenerate subspaces of degeneracies M and N −M , subjected to external fields

which produce couplings between the states of the two subspaces. The external

fields never couple two states belonging to the same subspace, and therefore the

relevant Hamiltonian has the form:

Ĥ =

(
ε IM G

G† 0N−M

)
, (1)

where G is a M × (N −M) matrix and where the two bare energies of the two

levels are assumed to be ε and 0. The operators IM and 0N−M are the identity of an

M -dimensional space and the (N −M)-dimensional null operator, respectively. In

Fig. 2 is represented an example of coupling scheme. This sort of interaction pattern

has been studied in the past. Morris and Shore52 have developed an analytical

treatment based on a suitable transformation that diagonalizes the matrix G. A

generalization to the multi-level state has also been presented53 . On this basis,

Vasilev et al47 have used this scheme assuming a time-dependent ε = κt, leading

to the degenerate Landau-Zener model, which is essentially equivalent to a series

of independent two-state Landau-Zener models between states of the two levels.

Indeed, following the Morris and Shore theory, once the matrices G†G and GG†

are diagonalized, we can find out the transformation that can put G in a diagonal

form. At this point, it is easy to see that when t spans a large time interval [−t0, t0]

(κt0/Ω � 1) with a sufficiently small chirping rate (κ/Ω2 � 1) to guarantee the

adiabatic approximation,54,55 then states of the upper level are mapped into states

of the lower level and vice versa.

Quantum Noise — We will assume that the system is interacting with its

environment in a way similar to that of the coherent fields, i.e., connecting only

states of one level to states of the other level. Therefore, the system-environment

Hamiltonian can be assumed having the form

HI = λX̂ ⊗ B̂ , (2)

with

X̂ =

(
0M W

W† 0N−M

)
, (3)
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where W is a M × (N −M) matrix. The environment is modeled as an infinite set

of bosonic modes, as usual for atomic or pseudo-atomic systems interacting with

the electromagnetic field.

. . .

. . .

0

✏

g1 M+1 g1 M+2

gM M+1

gM M+2

gM N

|1i |Mi

|M + 1i |M + 2i |Ni

Fig. 1. (Color online) Scheme for coherent couplings: the states of a degenerate eigenspace are

coupled to the states of a degenerate eigenspace with lower energy; the relevant coupling constants
are gij . No coupling between states of the same level is considered.

The non-unitary evolution of the system can be straightforwardly evaluated

through the Davies and Spohn theory.56 According to such theory, assuming that

the typical environment correlation time is very much smaller than the time scale of

the Hamiltonian modification, the system can be thought of as frozen with respect

to the bath. The relevant master equation can then be obtained with the standard

approach,57,58 where the jump operators and the decay rates are time-dependent

and related to the instantaneous eigenvalues and eigenstates of the system Hamil-

tonian. This theory has been extensively used in the study of quantum gates,30

Landau-Zener processes41,43 and STIRAP manipulations.31–33 The relevant mas-

ter equation has the following form:

ρ̇ = −i[Ĥ, ρ] +
∑
i 6=j

γijD(X̂ij , ρ) , (4)

where

D(Ô, ρ) = ÔρÔ† − 1

2
{Ô†Ô, ρ} . (5)

X̂ij = Π̂i X̂ Π̂j , (6)

Π̂i Ĥ = Ĥ Π̂i = εiΠ̂i , (7)

and

γij =

∫ ∞
−∞

eiωijstrE [B̂(s)B̂(0)ρE ]ds , (8)
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where T is the bath temperature, ρE is the thermal state of the environment, ωij =

ωj − ωi is a generic transition frequency of the system and B̂(s) is the operator B̂

in the interaction picture at time s. It turns out γij = λ2 |α(ωij)|2D(ωij)N(ωij , T ),

where α(ωij is the coupling strength of the system with the modes of frequency

ωij , D(ωij) is the density of modes at frequency ωij and N(ωij , T ) = signωij/[1−
e−ωij/(kBT )] is the average number of bosons at frequency ωij . To be consistent

with the hypothesis of short correlation time (necessary for the Davies and Spohn

theory), which is related to the hypothesis of flat spectrum, we will assume that

the quantity |α(ωij)|2D(ωij) does not depend on ωij . Therefore, we will be in a

condition to introduce the parameter γ ≡ λ2 |α(ωij)|2D(ωij).

Noise-free subspace — Sometimes, it is possible to identify possible subspaces of

the two-level system not sensitive to the interaction with the environment, then find-

ing out decoherence-free59,60 or system-environment interaction-free subspaces.61

To this purpose, it is convenient to put the matrix W of X̂ in diagonal form, to find

out which states of the system are immune to the noise, if any. Once such possible

decoherence-free states are identified, we can choose the coherent couplings respon-

sible for the interaction terms in Ĥ in such a way to connect the stable states.

This will guarantee a noise-free population transfer. Of course, there are situations

where no decoherence-free subspace is present.

3. The 2 : 2 case

The first case we will focus on corresponds to N = 4 and M = 2 and to the coupling

scheme in Fig. 3. The relevant Hamiltonian and interaction with the environment

are:

Ĥ =


ε 0 g13 g14
0 ε g23 g24
g∗13 g

∗
23 0 0

g∗14 g
∗
24 0 0

 , (9)

and

X̂ =


ε 0 x13 x14
0 ε x23 x24
x13 x23 0 0

x14 x24 0 0

 . (10)

For the sake of simplicity, we will assume that all xij and wij are real. To put this

operator in the form where each of two orthogonal states in the subspace {|1〉 , |2〉}
is coupled to one of two orthogonal states in the subspace {|3〉 , |4〉}, we apply a

unitary transformation of the form

R̂(ξ, χ) =


cos ξ sin ξ 0 0

− sin ξ cos ξ 0 0

0 0 cosχ sinχ

0 0 − sinχ cosχ

 , (11)
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which leads to

X̃ = R̂(ξ, χ)X̂R̂−1(ξ, χ) =


ε 0 x̃13 x̃14
0 ε x̃23 x̃24
x̃∗13 x̃

∗
23 0 0

x̃∗14 x̃
∗
24 0 0

 , (12)

with

x̃13 = cosχ(x13 cos ξ + x23 sin ξ)

+ sinχ(x14 cos ξ + x24 sin ξ) , (13)

x̃14 = cosχ(x14 cos ξ + x24 sin ξ)

− sinχ(x13 cos ξ + x23 sin ξ) , (14)

x̃23 = cosχ(x23 cos ξ − x13 sin ξ)

+ sinχ(x24 cos ξ − x14 sin ξ) , (15)

x̃24 = cosχ(x24 cos ξ − x14 sin ξ)

− sinχ(x23 cos ξ − x13 sin ξ) . (16)

Now, we impose x̃14 = x̃23 = 0, which is obtained when

tan ξ =
A+B −

√
C

2D
, (17)

tanχ =
A−B −

√
C

2E
, (18)

with

A = x224 − x213 , (19)

B = x223 − x214 , (20)

C =
[
(x14 + x23)2 + (x13 − x24)2

]
×
[
(x14 − x23)2 + (x13 + x24)2

]
, (21)

D = x13x23 + x14x24 , (22)

E = x13x14 + x23x24 . (23)

This solution is allowed provided x13x23 +x14x24 6= 0 and x13x14 +x23x24 6= 0 .

If these conditions are not satisfied, a direct solution can be easily found. In fact,

if x13x23 + x14x24 = 0 it means that the states (x13 |3〉+ x14 |4〉)/
√
x213 + x214 and

(x23 |3〉 + x24 |4〉)/
√
x223 + x224 are orthogonal, and such two states are coupled to

|1〉 and |2〉, respectively. On the other hand, if x13x14 + x23x24 = 0 then the states

(x13 |1〉+x23 |2〉)/
√
x213 + x223 and (x14 |1〉+x24 |2〉)/

√
x214 + x224 are orthogonal and

coupled to the orthogonal states |3〉 and |4〉, respectively.

Let us consider the special case where xij = 1/2, ∀i, j, which implies ξ = χ =

−π/4 and then x̃13 = x̃14 = x̃23 = 0, x̃24 = 1. Therefore, in the rotated picture, the

environment does not affect the states |1〉 and |3〉, and an Hamiltonian H̃ character-

ized by g̃13 = g 6= 0 and all the other g̃ij equal to zero is responsible for a noise-free
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Fig. 2. (Color online) Coupling scheme for two levels with twofold degeneration. The green solid

rows represent the coherent couplings, while the red dashed rows represent the environment-
induced interactions. According to the general scheme, no coupling between states of the same

level is considered.

population transfer. This corresponds to Ĥ = R̂(π/4, π/4)H̃R̂−1(π/4, π/4), having

the following coupling constants: g13 = g24 = g/2, and g14 = g23 = −g/2. Such

Hamiltonian carries population from (|1〉−|2〉)/
√

2 to (|3〉−|4〉)/
√

2, and vice versa,

without environmental effects.

It is interesting to study the robustness is the process with respect to imperfec-

tions, i.e., what happens if the coupling constants are not exactly in the required re-

lation to exploit the presence of the decoherence-free subspace. In particular, assume

g13 = 2−1/2g cos(π/4+δ1), g14 = 2−1/2g sin(π/4+δ1), g23 = 2−1/2g cos(3π/4+δ2)

and g24 = 2−1/2g sin(3π/4 + δ2). In Fig. 3 is represented the efficiency of the pop-

ulation transfer as a function of the decay rate γ, for different values of δ1 and δ2,

considering the initial state |ψi〉 = − sinχg |3〉+ cosχg |4〉, where χg is the angle χ

evaluated with respect to coefficients gij ’s in place of xij ’s. Consequently, the target

state is |ψi〉 = − sin ξg |1〉+ cos ξg |2〉, with ξg evaluated with respect to coefficients

gij . For δ1 = δ2 = 0, the efficiency is always essentially 100%, irrespectively of the

parameter γ, while for χ 6= −π/4, i.e., δ1 6= 0 and/or δ2 6= −π/4, the efficiency

reduces as γ increases. In particular, higher values of δ1 or δ2 (implying a more

significant distance from the optimal situation) the population transfer becomes

more and more sensitive to the quantum noise. The behavior is quite similar for

essentially zero temperature (kBT/Ω = 0.001 in Fig. 3a) and for moderately high

temperature (kBT/Ω = 10 in Fig. 3b).

We also consider the complementary situation where the coherent couplings

perfectly satisfy the condition for having a noiseless population transfer under the

assumption of xij = 1 ∀i, j, but the real X̂ operator slightly deviates from such

a scheme. In particular, we assume g13 = g24 = 1/2, g14 = g23 = −1/2 and
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Fig. 3. (Color online) Population of the target state
∣∣ψf

〉
= − sin ξg |1〉 + cos ξg |2〉 when the

system starts in |ψi〉 = − sinχg |3〉+ cosχg |4〉 as a function of γ (in units of Ω and in logarithmic
scale), for the coupling scheme characterized by xij = 1/2, g13 = 2−1/2g cos(π/4 + δ1), g14 =

2−1/2g sin(π/4 + δ1), g23 = 2−1/2g cos(3π/4 + δ2) and g24 = 2−1/2g sin(3π/4 + δ2). Different

values of the parameters δ1 and δ2 are considered: δ1 = δ2 = 0 (solid red line), δ1 = π/36 and
δ2 = 0 (dotted green line), δ1 = π/18 and δ2 = 0 (dashed blue line), and δ1 = π/36 and δ2 = π/18

(long dashed pink line). Different values of temperature have been attributed to the environment:

kBT/Ω = 0.001 (a) and kBT/Ω = 10 (b). The other parameters are κ/Ω2 = 0.1 and κt0/Ω = 50.

x13 = 2−1/2 cos(π/4 + δ1), x14 = 2−1/2 sin(π/4 + δ1), x23 = 2−1/2 cos(π/4 + δ2),

x24 = 2−1/2 cos(π/4 + δ2). It is easy to check that in the general case (i.e., out of

the case δ1 = δ2 = 0) there is no decoherence-free subspace, since it turns out that

both x̃13 and x̃24 are nonzero. In Fig. 3 is plotted the efficiency as a function of γ for

different values of the parameters δ1 and δ2. The initial state is |ψi〉 = (|3〉−|4〉)/
√

2,

while the target is |ψf 〉 = (|1〉 − |2〉)/
√

2. It is well visible also in this case that,

as soon as the conditions to have a noiseless process are not perfectly fulfilled, the

system becomes more and more sensitive to the noise.
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Fig. 4. (Color online) Population of the target state
∣∣ψf

〉
= (|1〉− |2〉)/

√
2 when the system starts

in |ψi〉 = (|3〉−|4〉)/
√

2 as a function of γ (in units of Ω and in logarithmic scale), for the coupling
scheme characterized by g13 = g24 = 1/2, g14 = g23 = −1/2 and x13 = 2−1/2 cos(π/4 + δ1),

x14 = 2−1/2 sin(π/4 + δ1), x23 = 2−1/2 cos(π/4 + δ2), x24 = 2−1/2 cos(π/4 + δ2). Different values

of the parameters δ1 and δ2 are considered: δ1 = δ2 = 0 (solid red line), δ1 = π/36 and δ2 = 0
(dotted green line), δ1 = π/36 and δ2 = π/18 (dashed blue line), and δ1 = 0 and δ2 = π/9 (long

dashed pink line). The other parameters are κ/Ω2 = 0.1, κt0/Ω = 50 and kBT/Ω = 0.001.

4. Discussion

In this paper, we have analyzed the role of quantum noise in the degenerate Landau-

Zener-Majorana-Stückelberg model consisting of two degenerate levels whose dia-

batic energies cross at some instant of time and in the presence of interactions that

couple states of one level to states of the other level, never connecting states belong-

ing to the same level. As expected, the interaction with the environment negatively

affects the population transfer realizable through the adiabatic following of some

eigenstate of the Hamiltonian when the diabatic energy of the upper level changes.

Nevertheless, by knowing the structure of the system-environment interaction, one

can identify possible noise-free regions of the system Hilbert space, which can allow

to realize noiseless population transfer. We then focused on the special case of a

twofold degenerate level interacting with another twofold degenerate one. In this

specific scenario, we have found which coupling is optimal to exploit the presence

of a possible noise-free subspace and how the population transfer is affected by de-

viations from such optimal interaction. Both essentially-zero and moderately-high

temperatures have been considered, singling out quite similar behaviors.

The special case considered for the 2 : 2 model where every state of the upper

level is coupled (through the environment) to every state of the lower level with

the same coupling strength can be easily generalized to the Mε : M0 case. In fact,

in such a situation the operator X̂ can be written as X̂ = g |φε〉 〈φ0| + h.c., with

|φε〉 = M
−1/2
ε

∑Mε

k=1 |k〉 and |φ0〉 = M
−1/2
0

∑M0

k=1 |Mε + k〉. It will then be possible

to adiabatically map every state of the upper level orthogonal to |ψε〉 to every state
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of the lower level orthogonal to |ψ0〉 without noise effects.

It is also worth taking into account another special scenario, which is the 1 :

(N−1) case, i.e., when the upper level is non degenerate while the lower is (N−1)-

degenerate. The peculiarity of this situation is that the upper level (the singlet) is

inevitably coupled to some state of the lower level, both coherently and through the

environment. This leads to the impossibility of identifying a noise-free subspace for

the population transfer from one level to the other. In spite of this, if one considers

a process that starts in the upper level and is supposed to end up in some state of

the lower level, at zero temperature the environment will push the system toward

the states with lower energies and, in some cases, will help the coherent population

transfer. Nevertheless, the opposite coherent process leading from the lower state

to the upper one will be thwarted because of the bath. This is the reason why

in the 2 : 2 case we preferred to consider population transfer from the lower to

the upper level, i.e., to well distinguish the efficient population transfer from the

natural tendency of a zero-temperature environment to push the system toward

lower energy states.

We finally comment on the fact that our analysis can pave the way to a quantum

noise unravelling, since by changing the coherent coupling scheme (i.e., the gij
parameters) and measuring the efficiency of the population transfer, it is possible

to get information about the parameters of the system operator X̂ involved in the

system-environment interaction. In particular, experimentally finding decoherence-

free subspaces gives specific constraints for the quantities xij .
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