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Abstract
Thematter of approximating the solutions of a differential problemdriven by a roughmeasure
by solutions of similar problems driven by “smoother” measures is considered under very
general assumptions on the multifunction on the right-hand side. The key tool in our inves-
tigation is the notion of uniformly bounded ε-variations, which mixes the supremum norm
with the uniformly bounded variation condition. Several examples to motivate the generality
of our outcomes are included.
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1 Introduction

When studying the evolution of a large number of processes in real life, one notices that the
measured quantities often have discontinuities. For instance, one finds such feature whenever
in the continuous progress of the phenomenon discrete perturbations occur.

Properties of the solutions for dynamical systems of this kind are difficult to be obtained,
especially in the case where there are infinitely many discrete perturbations (i.e. impulses)
and the impulsemoments accumulate in the interval of time under observation. Such situation
is described in the theory of hybrid systems as Zeno behaviour (see [22,29]), and it is usually
avoided by works concerning classical impulsive differential equations [10,29].

A convenient tool for treating this matter is offered by the theory of measure differential
equations, also known as differential equations driven by measures [6,13]. For particular
measures (absolutely continuous, discrete, respectively, a sum of an absolutely continuous
measurewith a discrete one), this theory throws a new light on the theories of usual differential
equations, difference equations, respectively, impulsive equations. Dynamic equations on
time scales can also be seen as measure differential equations [13].

We will be interested in the set-valued version (for which motivations can be found in
[1]), namely in studying measure differential inclusions of the form

dx(t) ∈ F(t, x(t))dμ(t) (1)

x(0) = x0,

where μ is the Stieltjes measure associated with a left-continuous non-decreasing function,
F : [0, 1]×R

d → Pkc(R
d) is a multifunction (i.e. a function having values compact convex

subsets of the d-dimensional Euclidean space) and x0 ∈ R
d .

The existence of solutions of bounded variation was obtained under Carathéodory-type
hypothesis (e.g. in [8,12]), but in order to get more properties of the solution set some
additional conditions are necessary. For instance, the possibility to approximate the solution
set by the solution set of a similar problem driven by a “smoother” measure, in other words,
a continuous dependence on the measure driving the problem, is not available unless more
hypotheses are imposed. Even the single-valued case is not simple (see [13] in the nonlinear
setting and [16,23] in the linear setting).

In order to achieve this property, in [30] an alternative notion of solution was considered.
In [9], a type of convergence for measures adequate to the set-valued case was used instead.
Finally, in [25] there are two such continuous dependence results: one assuming a uniformly
bounded variation condition on the multifunction w.r.t. the Hausdorff distance and the other
one imposing an equiregularity condition (in the sense given in [14]). Obviously, in all these
papers the matter of existence of solutions is first treated.

We propose in the present work an approach based on the notion of uniformly bounded
ε-variation, introduced in [14] and used there to get a very general Helly-type selection
principle for regulated functions.

This is a very “ingenious” concept mixing the supremum normwith the bounded variation
property, a very natural combination if we have inmind that the closure of the subspace of BV
functions in the sup-norm topology is the whole space of regulated functions. It has recently
found interesting applications in the study of hysteresis phenomenon (see [19,20] or [5]).

Thus, by imposing a uniformly bounded ε-variation condition on the multifunction on
the right-hand side of the inclusion (1), we are able to prove the existence of solutions with
bounded variation. What’s more, for this set of solutions we get the continuous dependence
on the measure driving the inclusion, i.e. the solution set of the original problem (driven by
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a possibly very rough measure) can be approached by the solutions set of approximating
differential inclusions driven by “smoother” measures. A first result of this kind imposes the
two-norm convergence (which again mixes the supremum norm with the bounded variation
assumption) of the distribution functions associated with the approximating measures and
uses an appropriate convergence result for Kurzweil–Stieltjes integrals, borrowed from [5].
Another result of continuous dependence imposes the strong convergence of the sequence of
measures driving the approximating problems.

Along the way, we give examples to motivate our assumptions and, at the same time, to
point out the generality of our outcomes.

2 Notions and preliminary facts

When u : [0, 1] → R
d is a function with values in the d-dimensional Euclidean space, the

total variation in u will be denoted by var(u), and if it is finite, then u will be said to have
bounded variation (or to be a BV function). For a real-valued BV function u, by du we denote
the corresponding Stieltjes measure. It is defined for half-open subintervals of [0, 1] by

du([a, b)) = u(b) − u(a),

and it is then extended to all Borel subsets of the unit interval in the standard way. We shall
consider only positive Borel measures; therefore, Stieltjes measures with left-continuous
non-decreasing distribution function u.

Let us also recall that a function u : [0, 1] → R
d is said to be regulated if there exist the

limits u(t+) and u(s−) for every points t ∈ [0, 1) and s ∈ (0, 1]. The set of discontinuity
points of a regulated function is known to be atmost countable [17], and the bounded variation
or continuous functions are obviously regulated. Such functions are also bounded, and the
space G([0, 1],Rd) of regulated functions u : [0, 1] → R

d is a Banach space when endowed
with the norm ‖u‖C = supt∈[0,1]‖u(t)‖.

Notice that these notions are also available for functions with values in a general Banach
space.

A useful characterization of regulated functions was given in [14]:

Proposition 1 ([14, Theorem 2.14]) A function x : [0, 1] → R
d is regulated if and only if

there is an increasing continuous function η : [0,∞) → [0,∞), η(0) = 0 and an increasing
function v : [0, 1] → [0, 1], v(0) = 0, v(1) = 1 such that for every 0 ≤ t1 < t2 ≤ 1,

‖x(t2) − x(t1)‖ ≤ η(v(t2) − v(t1)).

The proof of [14, Theorem 2.14] can be repeated in the case of a Banach space, and so, this
characterization is also available for Banach space-valued regulated functions.

Our existence and continuous dependence results rely mainly on the following notion,
introduced in [14] in order to get a Helly-type selection principle for regulated functions.

Definition 1 (i) For a function x : [0, 1] → R
d and an arbitrary ε > 0, denote by

ε − var x = inf{var(z); z : [0, 1] → R
d is BV, ‖x − z‖C ≤ ε}

and call it “the ε-variation of x”. We understand that inf ∅ = ∞.
(ii) A family A ⊂ G([0, 1],Rd) is said to have uniformly bounded ε-variations if for every

ε > 0 there exists Lε > 0 such that

ε − var x ≤ Lε, for every x ∈ A.
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It is stated in [14, Proposition 3.4] that a function x : [0, 1] → R
d is regulated if and only if

ε − var x < ∞ for every ε > 0.
The analogue of Helly selection principle (originally proved for BV functions) for regu-

lated functions is [14, Theorem 3.8]:

Theorem 1 Let (xn)n ⊂ G([0, 1],Rd) be a sequence with uniformly bounded ε-variations
such that (xn(0))n is bounded. Then, it has a subsequence pointwisely convergent on [0, 1]
to a regulated function.

Remark 1 Obviously, any sequence of BV functions with uniformly bounded variation has
uniformly bounded ε-variations. However, this notion is a significant generalization of the
notion of “uniformly bounded variation”, e.g. any sequence of regulated functions uniformly
convergent has uniformly bounded ε-variations, by Krejci and Laurencot [20, Proposi-
tion 5.6].

In order to see even better that this notion is a very general one, we recall the following:

Proposition 2 ([5, Theorem 2.2]) Let A ⊂ G([0, 1],Rd) be given. Then, the following con-
ditions are equivalent:

(i) A has uniformly bounded ε-variations.
(ii) There exists a non-decreasing function φ : R+ → R

+ such that φ(+∞) = +∞, and
A has uniformly bounded φ-variations.

Remind ([5, Definition 2.1]) that a set of functions A is said to have uniformly bounded
φ-variations if for every partition 0 = t0 < · · · < tm = 1 we have:

m∑

j=1

φ(‖x(t j ) − x(t j−1)‖) ≤ 1, for every x ∈ A.

In particular, when φ(t) = c · t2 (c being a positive constant), we get the functions of two
bounded variation.

Example 1 Let us consider the space BV2([0, 1],Rd) of functions of two bounded variation.
It is known that BV([0, 1],Rd) ⊂ BV2([0, 1],Rd) and that the inclusion is strict [15].

Let us choose a sequence (xn)n ∈ BV2([0, 1],Rd)\BV([0, 1],Rd) such that:

(1) (xn)n has uniformly bounded 2-variation;
(2) (xn)n is not uniformly convergent.

Therefore, according to Proposition 2, the sequence (xn)n has uniformly bounded ε-
variations, but it is not uniformly convergent and it has not uniform bounded variation.

The following auxiliary result will be used in the proof of the main results.

Proposition 3 Let A ⊂ G([0, 1],Rd) be a family of functions with uniform bounded ε-
variations such that A(0) is bounded, and let h : [0, 1] → R be a regulated function.
Then,

h · A = {h · y; y ∈ A}
is also a family of functions with uniform bounded ε-variations.
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Proof Denote by M > 0 such that ‖h‖C ≤ M and ‖y(0)‖ ≤ M for all y ∈ A. Let ε > 0.
There exists Kε such that ε − var(y) ≤ Kε for all y ∈ A, i.e. for each y ∈ A, there is a BV
function yε with var(yε) ≤ Kε and ‖y − yε‖C < ε.

By [14, Proposition 3.4], one can find a BV function hε such that

‖h − hε‖C ≤ ε

Kε + M + ε
.

Then, for each y ∈ A there exists the BV function hε · yε satisfying

‖h · y − hε · yε‖C ≤ ‖(h − hε) · yε‖C + ‖h · (y − yε)‖C

≤ ‖h − hε‖C · (var(yε) + ‖yε(0)‖) + ‖h‖C · ‖y − yε‖C

≤ ‖h − hε‖C · (var(yε) + ‖y(0)‖ + ‖y − yε‖C ) + ‖h‖C · ‖y − yε‖C

≤ ε

Kε + M + ε
(Kε + M + ε) + Mε = (1 + M)ε

and this shows that h · A is indeed a family of functions with uniform bounded ε-variations
since

var(hε · yε) ≤ ‖hε‖C · var(yε) + ‖yε‖C · var(hε)

≤ ‖hε‖C · Kε + (var(yε) + ‖yε(0)‖) · var(hε)

≤ ‖hε‖C · Kε + (var(yε) + ‖y(0)‖ + ‖y − yε‖C ) · var(hε)

≤ ‖hε‖C · Kε + (Kε + M + ε) · var(hε).

	

Now, several words concerning the integrals will appear in our computations. Since in

generalwedonot assume continuity, theRiemann–Stieltjes integralmight not bewell defined.
On the other hand, the space of regulated functions is tightly connected to the space of
BV functions via the Kurzweil–Stieltjes integration (we refer the reader to [21,26,27,31]);
therefore, this kind of integral seems to be the most natural choice in our framework. In what
follows, we focus on the basic properties of Kurzweil–Stieltjes integrals.

Definition 2 A function g : [0, 1] → R
d is said to be Kurzweil–Stieltjes integrable

with respect to u : [0, 1] → R on [0, 1] (shortly, KS-integrable) if there exists
(KS)

∫ 1
0 g(s)du(s) ∈ R

d such that, for every ε > 0, there is a gauge δε (a positive function)
on [0, 1] with ∥∥∥∥∥

p∑

i=1

g(ξi )(u(ti ) − u(ti−1)) − (KS)

∫ 1

0
g(s)du(s)

∥∥∥∥∥ < ε

for every δε-fine partition {([ti−1, ti ], ξi ) : ξi ∈ [ti−1, ti ], i = 1, . . . , p} of [0, 1].
We recall that a partition {([ti−1, ti ], ξi ) : i = 1, . . . , p} is δ-fine if [ti−1, ti ] ⊂

]ξi − δ(ξi ), ξi + δ(ξi )[, ∀i = 1, . . . , p.
The KS-integrability is preserved on all subintervals of [0, 1]. The function t �→

(KS)
∫ t
0 g(s)du(s) is called the KS-primitive of g w.r.t. u on [0, 1].

We mostly deal with the Kurzweil–Stieltjes integral; this is why the notation
∫ t
0 g(s)du(s)

will be preferred instead of (KS)
∫ t
0 g(s)du(s). Note though that in the framework of a

bounded variation function u, as a consequence of [24, Theorem 6.11.3], the Lebesgue–
Stieltjes integrability implies the KS- integrability, but the two integrals do not always have
the same value. More precisely,
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∫ b

a
g(t)du(t) = (LS)

∫

[a,b]
g(t)du(t) − g(b)[u(b+) − u(b)] − g(a)[u(a) − u(a−)].

In particular, regulated functions are KS-integrable with respect to bounded variation
functions and also bounded variation functions are KS-integrable with respect to regulated
functions (see [31]). The following property of the primitive implies that the solutions that
will be obtained are functions of bounded variation.

Proposition 4 ([31, Proposition 2.3.16]) Let u : [0, 1] → R and g : [0, 1] → R
d be such that

the Kurzweil–Stieltjes integral
∫ 1
0 g(s)du(s) exists. If u is regulated, then so is the primitive

h : [0, 1] → R
d , h(t) = ∫ t

0 g(s)du(s) and for every t ∈ [0, 1],
h(t+) − h(t) = g(t)

[
u(t+) − u(t)

]
and h(t) − h(t−) = g(t)

[
u(t) − u(t−)

]
.

It follows that h is left continuous, respectively, right continuous at the points where u has
the specified property.

Moreover, when u is of bounded variation and g is bounded, h is also of bounded variation.

The following estimations hold.

Proposition 5 (i) ([27, Lemma I.4.16])Let g : [0, 1] → R
d be regulated and u : [0, 1] → R

a BV function. Then, ∥∥∥∥
∫ 1

0
g(t)du(t)

∥∥∥∥ ≤ ‖g‖C · var(u).

(ii) ([31, Theorem 2.3.8]) Let g : [0, 1] → R
d be a BV function and u ∈ G([0, 1],R). Then,

∥∥∥∥
∫ 1

0
g(t)du(t)

∥∥∥∥ ≤ [‖g(0)‖ + ‖g(1)‖ + var(g)] ‖u‖C .

Weend this section related toKurzweil–Stieltjes integration by a convergence result which
in a different setting can be found in [5, Theorem 2.5]. We preferred to give here the entire
proof (even if it follows the same line as in the mentioned work) since in [5] the framework
is that of Young integral (which might, in general, have different properties than the K S-
integral) in Hilbert spaces and, besides, a generalized notion of bounded variation is taken
into account.

Lemma 1 Let w : [0, 1] → R be a step function and fn : [0, 1] → R
d be pointwise

convergent to the null function. Then,

lim
n→∞

∫ 1

0
fn(t)dw(t) = 0.

Proof Let w be defined as w := ∑m
k=0 ĉkχ{tk } + ∑m

k=1 ckχ(tk−1,tk ). Then, by [27, Theorems
I.4.21, I.4.22], ∫ 1

0
fn(t)dw(t) =

m∑

k=0

fn(tk)(ck+1 − ck)

where c0 := ĉ0 and cm+1 := ˆcm ; therefore, it suffices to pass to the limit when n → ∞ to
get the assertion. 	
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Theorem 2 Let f , fn ∈ G([0, 1],Rd), g, gn ∈ BV([0, 1],R) for n ∈ N be such that the
sequence ( fn)n has uniformly bounded ε-variation, fn → f pointwise, limn→∞ ‖g−gn‖C =
0 and supn∈N var(gn) = M < ∞. Then,

lim
n→∞

∫ 1

0
fn(t)dgn(t) =

∫ 1

0
f (t)dg(t). (2)

Proof By the hypothesis of uniformly bounded ε-variation, for each ε > 0 there exists Lε > 0
such that

ε − var fn ≤ Lε, for every n ∈ N.

Thus, one can find zε and zε
n in BV([0, 1],Rd) such that ‖ fn −zε

n‖C ≤ ε and ‖ f −zε‖C ≤
ε, var(zε

n) ≤ Lε + 1.
Denote by L̂ε = max{var(zε), Lε + 1}.
The sequence ( fn)n is bounded in G([0, 1],Rd) inasmuch as ( fn(0))n is bounded (being

convergent) and for every n and t ∈ [0, 1],
‖ fn(t)‖ ≤ ‖ fn(t) − zε

n(t)‖ + ‖zε
n(t) − zε

n(0)‖ + ‖ fn(0) − zε
n(0)‖ + ‖ fn(0)‖

≤ 2ε + L̂ε + ‖ fn(0)‖.
If we take ε = 1, we obtain independently of n that there is M1 such that ‖ fn‖C ≤ M1.
Let now ε > 0 be fixed. Then, there is a step function w : [0, 1] → R such that

‖g − w‖C ≤ ε

L̂ε
, and var(w) ≤ M + δ with δ > 0. Using Lemma 1 and the uniform

convergence of (gn)n , there exists n0 such that for n ≥ n0 we have
∥∥∥∥
∫ 1

0
( f (t) − fn(t))dw(t)

∥∥∥∥ ≤ ε and ‖g − gn‖C ≤ ε

L̂ε
. (3)

Then,

∥∥∥∥
∫ 1

0
f (t)dg(t) −

∫ 1

0
fn(t)dgn(t)

∥∥∥∥ ≤
∥∥∥∥
∫ 1

0
( f (t) − zε(t) − fn(t) + zε

n(t))d(g − w)(t)

∥∥∥∥

+
∥∥∥∥
∫ 1

0
( f (t) − fn(t))dw(t)

∥∥∥∥ +
∥∥∥∥
∫ 1

0
(zε(t) − zε

n(t))d(g − w)(t)

∥∥∥∥

+
∥∥∥∥
∫ 1

0
( fn(t) − zε

n(t))d(g − gn)(t)

∥∥∥∥ +
∥∥∥∥
∫ 1

0
zε

n(t)d(g − gn)(t)

∥∥∥∥

We are going to majorize each term separately. Thus, by Proposition 5

∥∥∥∥
∫ 1

0
( f (t) − zε(t) − fn(t) + zε

n(t))d(g − w)(t)

∥∥∥∥ (4)

≤
∥∥∥∥
∫ 1

0
( f (t) − zε(t) − fn(t) + zε

n(t))dg(t)

∥∥∥∥

+
∥∥∥∥
∫ 1

0
( f (t) − zε(t) − fn(t) + zε

n(t))dw(t)

∥∥∥∥

≤ ∥∥ f − zε − fn + zε
n

∥∥
C [var(g) + var(w)]

≤ (2M + δ)
∥∥ f − zε − fn + zε

n

∥∥
C

≤ (2M + δ)
(∥∥( f − zε

∥∥
C + ∥∥ fn − zε

n)
∥∥

C

) ≤ (2M + δ)2ε.
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Applying again Proposition 5, we get
∥∥∥∥
∫ 1

0
(zε(t) − zε

n(t))d(g − w)(t)

∥∥∥∥ (5)

≤ (||zε(0) − zε
n(0)|| + ||zε(1) − zε

n(1)|| + var(zε) + var(zε
n)

) ‖g − w‖C

≤ (||zε(0) − f (0)|| + || f (0)|| + ||zε
n(0) − fn(0)|| + || fn(0)||

+ ||zε(1) − f (1)|| + || f (1)|| + ||zε
n(1) − fn(1)|| + || fn(1)|| + var(zε) + var(zε

n)
) ‖g − w‖C

≤ 2
(
2(M1 + ε) + L̂ε

)
‖g − w‖C

and
∥∥∥∥
∫ 1

0
zε

n(t)d(g − gn)(t)

∥∥∥∥ ≤ (||zε
n(0)|| + ||zε

n(1)|| + var(zε
n)

) ‖g − gn‖C (6)

≤ (||zε
n(0) − fn(0)|| + || fn(0)|| + ||zε

n(1) − fn(1)||
+ || fn(1)|| + var(zε

n)
) ‖g − gn‖C

≤
(
2(M1 + ε) + L̂ε

)
‖g − gn‖C

Finally,
∥∥∥∥
∫ 1

0
( fn(t) − zε

n(t))d(g − gn)(t)

∥∥∥∥ ≤
∥∥∥∥
∫ 1

0
( fn(t) − zε

n(t)dg(t))

∥∥∥∥ (7)

+
∥∥∥∥
∫ 1

0
( fn(t) − zε

n(t))dgn(t)

∥∥∥∥ ≤ 2M || fn − zε
n ||C

Therefore, by (4), (3), (5), (6) and (7) for n ≥ n0, there is a constant K independent of n
and ε such that

∥∥∥∥
∫ 1

0
f (t)dg(t) −

∫ 1

0
fn(t)dgn(t)

∥∥∥∥ ≤ K ε,

and so, (2) is satisfied. 	


In a usual way in measure theory (e.g. [4]), a sequence of measures (μn)n is said to
converge strongly (resp. weakly*) to the measure μ if for every bounded measurable (resp.
continuous) function f : [0, 1] → R,

(LS)

∫

[0,1]
f (t)dμn(t) → (LS)

∫

[0,1]
f (t)dμ(t).

Finally, for unmentioned necessary notions of set-valued analysis, we refer the reader to
[1,7,18]. The space Pkc(R

d) of all nonempty compact convex subsets of Rd will be con-
sidered endowed with the Hausdorff distance D (also called Pompeiu–Hausdorff distance);
it is well known that it becomes a complete metric space. For A ∈ Pkc(R

d), denote by
|A| = D(A, {0}).

The classical Radström embedding theorem ([7, Theorem II.19]) yields that Pkc(R
d) can

be embedded in a Banach space (X , ‖ · ‖) such that if x1, x2 ∈ X correspond to the sets
A1, A2 ∈ Pkc(R

d), then
‖x1 − x2‖ = D(A1, A2).
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A multifunction Γ : Rd → Pkc(R
d) is upper semi-continuous at a point x0 if for every

ε > 0 there exists δε > 0 such that the excess of Γ (x) over Γ (x0) (in the sense of Hausdorff)
is less than ε whenever ‖x − x0‖ < δε: Γ (x) ⊂ Γ (x0) + εBd , where Bd is the unit ball of
R

d .
We say that a function g : [0, 1] → R

d is a selection of Γ : [0, 1] → Pkc(R
d) if

g(t) ∈ Γ (t) a.e. Recall that [25, Lemma 3.10] yields that regulated multifunctions possess
regulated selections (see also [11] for the infinite-dimensional setting or [3] for a BV selection
result).

3 Main results

We shall first of all study the measure differential multivalued problem (1) from the point of
view of existence of solutions. We clearly write down the definition that will be taken into
account for solution of such a problem.

Definition 3 A solution of the problem (1) is a function x : [0, 1] → R
d for which there

exists a KS-integrable function g : [0, 1] → R
d such that g(t) ∈ F(t, x(t)) μ-a.e. and

x(t) = x0 +
∫ t

0
g(s) dμ(s), ∀ t ∈ [0, 1].

Note that here μ is a Stieltjes measure associated with a left-continuous BV function so, by
Proposition 4, x is also left continuous and so, in the preceding definition, we have in fact
g(t) ∈ F(t, x(t−)) μ-a.e. (as in [8]).

For existence results for measure differential inclusions considering this notion of solu-
tion, we refer the reader to [8,9] or [25]. Notice that alternative concepts of solutions were
considered in [22,30] or [29].

We get the existence of solutions with special features, namely defined through regulated
selections of the multifunction on the right-hand side, under assumptions of regulatedness
with respect to theHausdorff distance on themultifunction.What is more, this set of solutions
will be shown to satisfy two continuous dependence results, i.e. the solution set can be
approached by the solutions set of approximating inclusions. In Theorem 4, the distribution
functions associated with the measures driving the approximating inclusions converge in the
two-norm sense to the distribution function associated with the measure driving the limit
problem. In Theorem 5, the measures driving the approximating inclusions tend strongly to
the measure driving the initial problem.

Let us start by proving a key auxiliary lemma concerning the existence of regulated selec-
tions for regulated multifunctions (w.r.t. Hausdorff distance). Such selections are obtained
considering the classical “Steiner point map” sd(K ) associated with a convex compact subset
K ∈ Pkc(R

d) and defined using spherical integration (e.g. [1], page 366 and [18] page 98).
It is known that the map sd(·) is Lipschitz with the constant d:

||sd(K ) − sd(L)|| ≤ d D(K , L), ∀K , L ∈ Pkc(R
d) (8)

Lemma 2 Let F : [0, 1] → Pkc(R
d) be regulated w.r.t. Hausdorff distance. Then:

(i) For every ε > 0, there exists Fε : [0, 1] → Pkc(R
d) which is BV w.r.t. the Hausdorff

distance and satisfies the inequality

sup
t∈[0,1]

D
(
F(t), Fε(t)

)
< ε.
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(ii) There exists a regulated selection f : [0, 1] → R
d of F such that for every ε > 0 one

can find a selection gε : [0, 1] → R
d of Fε with var gε ≤ d var(Fε) satisfying

sup
t∈[0,1]

∥∥ f (t) − gε(t)
∥∥ < dε.

Proof (i) ThroughRadströmembeddingprocedure,we are able to consider themultifunction
F as a regulated function with values in an appropriate Banach space. By the density of
the subset of BVmappings in the space of regulated mappings with values in this Banach
space, we get the first assertion.

(ii) Let now f (t) and gε(t) be the Steiner selection, respectively, of F(t) and Fε(t) (obtained
by means the Steiner point map). Then, by the inequality (8),

sup
t∈[0,1]

‖ f (t) − gε(t)‖ ≤ sup
t∈[0,1]

d D
(
F(t), Fε(t)

)
< dε.

On the other hand, since F is regulated, its Steiner pointwise selection f is also regulated.
Indeed, by Proposition 1 (in fact by the remark following Proposition 1 applied in the Banach
space where Pkc(R

d) can be embedded through the Radström embedding), there are an
increasing continuous function η : [0,∞) → [0,∞), η(0) = 0 and an increasing function
v : [0, 1] → [0, 1], v(0) = 0, v(1) = 1 such that

D(F(t2), F(t1)) ≤ η(v(t2) − v(t1)),

for every 0 ≤ t1 < t2 ≤ 1.
It follows that

‖ f (t2) − f (t1)‖ ≤ dη(v(t2) − v(t1)), for every 0 ≤ t1 < t2 ≤ 1,

and so, the regulatedness of f is again a consequence of Proposition 1.
Besides, gε has the variation majorized by the variation of Fε multiplied by d since for

every 0 ≤ t1 < t2 ≤ 1,

‖gε(t1) − gε(t2)‖ ≤ d D(Fε(t1), Fε(t2)).

	

The followinghypotheseswill be imposed to themultifunction F : [0, 1]×R

d → Pkc(R
d)

in order to obtain our existence result.

(H1) For every BV function x : [0, 1] → R
d , the map F(·, x(·)) is regulated with respect

to the Hausdorff distance;
(H2) For every R > 0 and every ε > 0, there exists Lε,R > 0 such that for every BV function

x whose variation var(x) ≤ R one can find a BVmultifunction Fε
x : [0, 1] → Pkc(R

d)

such that
var(Fε

x ) ≤ Lε,R and sup
t∈[0,1]

D
(
F(t, x(t)), Fε

x (t)
)

< ε;

(H3) F(t, ·) is upper semi-continuous for every t ∈ [0, 1].
Lemma 3 Let F : [0, 1] × R

d → Pkc(R
d) satisfy the assumptions (H1), (H2). Then, for

every R > 0 there exists MR > 0 such that for every x : [0, 1] → R
d with x(0) = x0 and

var(x) ≤ R,
sup

t∈[0,1]
|F(t, x(t))| ≤ MR .
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Proof Let us first remark that the proof of [14, Proposition 3.7] works not only in R
d , but

also in an infinite-dimensional vector space. By applying it in the Banach space in which we
embed Pkc(R

d) (by Radström embedding theorem), for the family
{

F(·, x(·)); x : [0, 1] → R
d , x(0) = x0 and var(x) ≤ R

}

having uniformly bounded ε-variations and the additional property that
{

F(0, x(0)); x : [0, 1] → R
d , x(0) = x0 and var(x) ≤ R

}
= F(0, x0)

is bounded, one obtains that there exists a constant MR such that

sup
t∈[0,1]

|F(t, x(t))| ≤ MR .

	

Theorem 3 Let μ be the Stieltjes measure associated with a left-continuous non-decreasing
function and let F : [0, 1]×R

d→Pkc(R
d) satisfy hypotheses (H1), (H2) and (H3).

Suppose that one can find R0 > 0 satisfying the inequality

μ([0, 1])MR0 ≤ R0.

Then, there exists at least one BV solution x : [0, 1] → R
d for the measure differential

problem (1) such that

x(t) = x0 +
∫ t

0
g(s) dμ(s), ∀ t ∈ [0, 1]

with var(x) ≤ R0, g(·) ∈ F(·, x(·)) is regulated and satisfies

ε − var g ≤ d Lε,R0 .

Proof We shall construct a sequence of BV functions having the variations majorized by R0

and, using Theorem 1, we shall prove that it has a convergent subsequence. Its limit will be
our solution.

Start by choosing x0(t) = x0 for t ∈ [0, 1]. Suppose then that we have already constructed
a BV function xn on [0, 1] with var(xn) ≤ R0 and choose xn+1 as described below.

By hypothesis (H1), F(·, xn(·)) is regulated with respect to the Hausdorff distance; there-
fore, applying Lemma 2, one can find a regulated selection gn(·) of F(·, xn(·)) satisfying
Lemma 2, namely that for every ε > 0 there exists a selection gε

xn
: [0, 1] → R

d of Fε
xn

with
var(gε

xn
) ≤ d var(Fε

xn
) satisfying

sup
t∈[0,1]

∥∥gn(t) − gε
xn

(t)
∥∥ < dε.

This means that the sequence (gn)n has uniformly bounded ε-variations. Define now

xn+1(t) = x0 +
∫ t

0
gn(s) dμ(s), ∀t ∈ [0, 1].

Lemma 3 implies that ‖gn‖C ≤ MR0 , whence

var(xn+1) ≤ ‖gn‖C μ([0, 1]) ≤ MR0μ([0, 1]) ≤ R0,

and so, the sequence (xn)n has indeed the variations majorized by R0.
Since (gn)n has uniformly bounded ε-variations and observing that

‖gn(0)‖ ≤ |F(0, x0)| , for every n ∈ N
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it implies, by Helly–Frankova’s selection principle (see Theorem 1), that one can extract a
subsequence (gnk )k pointwisely convergent to a regulated function g satisfying

ε − var g ≤ lim inf
k

ε − var gnk ≤ d Lε,R0 .

We are now able to apply the bounded convergence result [27, Theorem I.4.24] for regu-
lated functions, to get

∫ t

0
gnk (s)dμ(s) →

∫ t

0
g(s)dμ(s) for every t ∈ [0, 1],

and so, if we note by

x(t) = x0 +
∫ t

0
g(s)dμ(s),

it follows that xnk → x pointwisely.
We finally prove that x is a solution of (1) for our measure driven differential inclusion

(i.e, g(t) ∈ F(t, x(t))) inasmuch as by hypothesis (H3): for each t ∈ [0, 1] and ε > 0,

F(t, xnk (t)) ⊂ F(t, x(t)) + εBd ,

for all k greater than some kε,t , whence g(t) ∈ F(t, x(t)) as pointwise limit of (gnk )k . 	

Remark 2 Our hypotheses (H1), (H2), (H3) are less restrictive than the assumptions
imposed in [25, Theorem 3.5] to get BV solutions and continuous dependence results (in
particular, they are satisfied by any Lipschitz continuous multifunction).

Moreover, the result is more general than [25, Theorem 3.11] (as it can be seen from the
characterization of uniform bounded ε-variation given in [14, Theorem 3.11.(ii)]).

Let us now give an example to motivate the generality of Theorem 3.

Example 2 Let μ be the Stieltjes measure associated with a left-continuous non-decreasing
function u : [0, 1] → R with a possibly very rough behaviour, such as

u(t) = t +
∞∑

i=1

1

2i
H

(
t −

(
1

2
− 1

3 + i

))

where H is the Heaviside function

H(t) = 0 if t ≤ 0 and H(t) = 1 if t > 0.

By its expression, u has countably many discontinuity points accumulating at the middle of
the unit interval (thus, the studied hybrid system will have a Zeno behaviour, which cannot
be studied using classical impulsive differential equations).

Let F : [0, 1]×R
d→Pkc(R

d) be defined for each t ∈ [0, 1] and x ∈ R
d by

F(t, x) = F̃(t, x) + f (t),

where F̃ : [0, 1]×R
d→Pkc(R

d) is a Lipschitz continuous multifunction, i.e. there exists
K > 0 such that Kμ([0, 1]) < 1 and for every t1, t2 ∈ [0, 1] and x1, x2 ∈ R

d ,

D(F̃(t1, x1), F̃(t2, x2)) ≤ K (|t1 − t2| + ‖x1 − x2‖)
and f : [0, 1] → R

d is a function with BV2-variation but not BV.
In this case, F̃ satisfies, by [25, Remark 3.6], the property that for each R > 0 the

family {F̃(·, x(·)), var(x) ≤ R} has uniform bounded variation w.r.t. the Hausdorff distance.
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Moreover, the function f is regulated (but not BV); thus, it has finite ε-variation. Therefore,
F satisfies our assumption (H2) (and, obviously, the other two as well).

It can be checked that for each R > 0 one can choose

MR = K + K · R + ‖ f ‖C

whence any R0 such that

R0 ≥ (K + ‖ f ‖C )μ([0, 1])
1 − Kμ([0, 1])

satisfies the inequality MR0μ([0, 1]) ≤ R0. It follows that the multifunction F satisfies the
hypotheses of Theorem 3, but does not satisfy the assumptions of other existence results
known for the same problem (1), such as [25, Theorem 3.5].

Remark 3 Moreover, if the multifunction F̃ has the property that for each R > 0, the family
{F̃(·, x(·)); var(x) ≤ R} has uniformly bounded variation and f is as in the preceding
example, then the multifunction

F(t, x) = F̃(t, x) + f (t),

satisfies the hypotheses of Theorem 3, but does not satisfy the assumptions of [25, Theo-
rem 3.11].

We can obtain, under the assumptions of previous theorem, the continuous dependence
on the measure of the set of solutions with described properties.

Denote bySn andS the set of solutions for the problem (1) drivenbyμn andμ, respectively,
where xn(t) = x0+

∫ t
0 gn(s) dμn(s) and x(t) = x0+

∫ t
0 g(s) dμ(s), ∀t ∈ [0, 1], are obtained

by integrating regulated selections gn and g, respectively, with

ε − var gn ≤ d Lε,R0 and ε − var g ≤ d Lε,R0 .

Theorem 4 Let F satisfy the assumptions (H1), (H2), (H3) of Theorem 3, and let μ, (μn)n

be Stieltjes measures associated with left-continuous non-decreasing functions u, un, respec-
tively, such that

‖un − u‖C → 0 and sup
n∈N

var(un) < ∞.

Suppose that there exists R0 > 0 such that

μn([0, 1]) ≤ R0

MR0

,∀n ∈ N.

Then for every sequence (xn)n, xn ∈ Sn, there exists x ∈ S towards which a subsequence
(xnk )k converges pointwisely and such that the sequence of Stieltjes measures (dxnk )k con-
verges weakly* to the measure dx.

Proof The hypothesis of the existence theorem is verified for μ and μn for all n ∈ N;
therefore, the sets Sn and S are nonempty.

Let (xn)n be a sequence of solutions for our problem driven by the measures μn , respec-
tively. Then, there exists gn(t) ∈ F(t, xn(t)) such that xn(t) = x0 + ∫ t

0 gn(s) dμn(s), ∀ t ∈
[0, 1] and gn is regulated with

ε − var gn ≤ d Lε,R0 .
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Obviously, the sequence (gn)n satisfies the hypotheses of Helly–Frankova’s selection prin-
ciple and so one can find a subsequence (gnk )k pointwise convergent to a regulated function
g with

ε − var g ≤ d Lε,R0 .

Let us show that

x(t) = x0 +
∫ t

0
g(s)dμ(s)

has the property that (xnk )k converges pointwisely to x .
Indeed,

‖xnk (t) − x(t)‖ =
∥∥∥∥
∫ t

0
gnk (s)dμnk (s) −

∫ t

0
g(s)dμ(s)

∥∥∥∥

which tends to 0 as k → ∞ by Theorem 2.
Concerning the second part of the assertion, namely that dxnk converges weakly* to dx ,

take an arbitrary continuous (therefore, in particular regulated) function h : [0, 1] → R. The
function h is bounded and h is KS-integrable with respect to xnk (regulated functions are
KS-integrable w.r.t. BV functions), so the substitution [31, Theorem 2.3.19] can be applied
to get:

∥∥∥∥
∫ 1

0
h(s)dxnk (s) −

∫ 1

0
h(s)dx(s)

∥∥∥∥ =
∥∥∥∥
∫ 1

0
h(s)gnk (s)dμnk (s) −

∫ 1

0
h(s)g(s)dμ(s)

∥∥∥∥ .

(9)
By Proposition 3, also the sequence (hgnk )k has uniform bounded ε-variations, so again

by Theorem 2, (9) converges to 0 as k → ∞.
Besides, [24, Theorem 6.11.3] implies that in this case

∫ 1

0
h(s)dxnk (s) = (LS)

∫

[0,1]
h(s)dxnk (s)

and also ∫ 1

0
h(s)dx(s) = (LS)

∫

[0,1]
h(s)dx(s),

and so, ∥∥∥∥(LS)

∫

[0,1]
h(s)dxnk (s) − (LS)

∫

[0,1]
h(s)dx(s)

∥∥∥∥ → 0.

Finally, let us see that x ∈ S as a consequence of the semi-continuity property of multi-
function F since it implies that for each t ∈ [0, 1] and ε > 0,

F(t, xnk (t)) ⊂ F(t, x(t)) + εBd ,

for all k greater than some kε,t . �

Remark 4 Let us note that in someworks (such as [2]), this type of convergence of a sequence
of BV functions, i.e.

lim
n→∞ ‖u − un‖C = 0 and sup

n∈N
var(un) < ∞,

is called two-norm convergence.

123



Approximating the solutions of differential inclusions… 2137

Under the assumptions of the previous theorem, namely that (un)n two-norm converges
to u, the associated Stieltjes measures have the property that

dun → du weakly∗
since for any continuous function f : [0, 1] → R,

(LS)

∫

[0,1]
f (t)dun(t) → (LS)

∫

[0,1]
f (t)du(t)

by Theorem 2 combined with [24, Theorem 6.11.3].

The continuous dependence result allows us, as stated before, to approximate solutions
of the studied problem in the case of a measure having a distribution function with a bad
behaviour by the solutions of approximating problems driven by simpler measures, as it can
be seen in the following example.

Example 3 Let the sequence un : [0, 1] → R be defined for each n ∈ N by

un(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
k if t ∈

(
1

k+1 ,
1
k

]
, k = 1, 2, . . . , n;

0 if t ∈
[
0, 1

n+1

]
.

Then, (un)n is a sequence of uniform bounded variation since var(un) = 1 for each n ∈ N.
Consider now the function u : [0, 1] → R defined as follows:

u(t) =

⎧
⎪⎨

⎪⎩

1
n if t ∈

(
1

n+1 ,
1
n

]
, n = 1, 2, . . . ;

0 if t = 0.

Also var(u) = 1. The sequence (un)n converges to u uniformly, since

lim
n→∞ ‖u − un‖C = lim

n→∞
1

n + 1
= 0.

Hence, (un)n is a sequence of uniform bounded variation converging uniformly to the BV
function u and so our Theorem 4 is applicable. It yields that for any multifunction satisfying
hypotheses (H1)–(H3), the solutions described in Theorem 3 of problem (1) driven by the
measure du can be approximated by the solutions of measure differential problems driven by
the measures dun which have much better behaviour (in particular, du possesses countably
many impulses accumulating on the unit interval, while each dun has only a finite number
of impulses).

Remark 5 If in Theorem 4we strengthen the two-norm convergence hypothesis by imposing,
instead, that

|un(0) − u(0)| → 0 and var(un − u) → 0,

then

‖xn − x‖C = sup
t∈[0,1]

∥∥∥∥
∫ t

0
gndμn −

∫ t

0
gdμ

∥∥∥∥

≤ sup
t∈[0,1]

∥∥∥∥
∫ t

0
(gn − g)dμ

∥∥∥∥ + sup
t∈[0,1]

∥∥∥∥
∫ t

0
gn(dμn − dμ)

∥∥∥∥

≤ ‖gn − g‖C var(u) + ‖gn‖C var(un − u),
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whence it can be seen that the rate convergence of (xn)n towards x depends on the rate
convergence of (gn)n towards g and also on the rate convergence of (un)n towards u.

Another result allowing one to approximate the solutions to the problem (1) is to use the
convergence [28, Theorem 2.8].

Theorem 5 Let F satisfy the assumptions (H1), (H2), (H3) of Theorem 3, and let μ, (μn)n

be Stieltjes measures associated with left-continuous non-decreasing functions u, un, resp.,
such that

dun → du strongly as n → ∞.

Suppose that there exists R0 > 0 such that μn([0, 1]) ≤ R0
MR0

,∀n ∈ N.

Then, for every sequence (xn)n, xn ∈ Sn there exists x ∈ S towards which a subsequence
(xnk )k converges pointwisely and such that the sequence of Stieltjes measures (dxnk )k con-
verges strongly to the measure dx.

Proof The existence of a selection g of F(·, x(·)) towards which gnk tends pointwise
follows as in the previous continuous dependence theorem, using Helly–Frankova’s selec-
tion principle. Let us show that (xnk )k converges pointwise to the function x defined by
x(t) = x0 + ∫ t

0 g(s)dμ(s).
Fix t ∈ [0, 1]. We have

‖xnk (t) − x(t)‖ =
∥∥∥∥
∫ t

0
gnk (s)dμnk (s) −

∫ t

0
g(s)dμ(s)

∥∥∥∥ .

Wecan apply [28,Theorem2.8] since the uniform integrability is ensuredby the hypothesis
μn([0, 1]) ≤ R0

MR0
,∀n ∈ N and by the fact that the sequence (gnk )k is bounded in the

supremum norm by MR0 and obtain

(LS)

∫

[0,t]
gnk (s)dμnk (s) → (LS)

∫

[0,t]
g(s)dμ(s) as n → ∞.

By [24, Theorem 6.11.3],
∫ t

0
gnk (s)dμnk (s) = (LS)

∫

[0,t]
gnk (s)dμnk (s) − gnk (t)[unk (t+) − unk (t)]

while ∫ t

0
g(s)dμ(s) = (LS)

∫

[0,t]
g(s)dμ(s) − g(t)[u(t+) − u(t)].

Besides, gnk (t) → g(t) and unk (t+) − unk (t) → u(t+) − u(t) (since we can take
f (t) = χ{t} in the definition of strong convergence of the measures (dun)n towards the
measure du). It follows that

xnk (t) =
∫ t

0
gnk (s)dμnk (s) →

∫ t

0
g(s)dμ(s) = x(t).

In order to get the strong convergence of (dxnk )k towards dx , take an arbitrary bounded
and measurable function h : [0, 1] → R. The function h is bounded, and h is L S-integrable
with respect to xnk (therefore, KS-integrable), so the substitution [31, Theorem 2.3.19] can
be applied to get

∥∥∥∥
∫ 1

0
h(s)dxnk (s) −

∫ 1

0
h(s)dx(s)

∥∥∥∥ =
∥∥∥∥
∫ 1

0
h(s)gnk (s)dμnk (s) −

∫ 1

0
h(s)g(s)dμ(s)

∥∥∥∥ .
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This converges to 0 as k → ∞ again by [28, Theorem 2.8] combined with [24, Theorem
6.11.3], as before. 	


It is worthwhile to observe that all our results are obtained in the interval [0, 1], but the
interval [0, 1]maybe replacedbyageneral interval [a, b]. If the conditionμ([0, 1])MR0 ≤ R0

is not satisfied on [0, 1], but for some subinterval [0, α] ⊂ [0, 1] one hasμ([0, α])MR0 ≤ R0,
then solutions exist on [0, α] and the approximation results hold on this interval.
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