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This paper presents the criteria for the shear design of high strength concrete (HSC)

beams in moment resisting frames (MRFs). The formulation of an analytical model is

provided for the case of beams with longitudinal reinforcement in the presence of

transverse stirrups. Themodel is of additive type, in the meaning that the shear resistance

of the beam is evaluated as the sum of several contributions. In particular, the contribution

of concrete, longitudinal rebars, and transversal reinforcement are taken into account.

Furthermore, for assessing the concrete contribution, a classical approach is followed,

according to which two effects arise in the shear mechanism: the arc and the beam

effect. The features of these two resisting mechanisms are particularized to the case of

HSC in steel reinforced beams and the maximum concrete contribution is limited to the

maximum compressive strength of the concrete strut in biaxial state of stress. Moreover,

for the evaluation of the resistance contribution of the longitudinal steel rebars in tension,

the model takes into account the residual bond adherence between HSC and steel

reinforcement and the spacing between subsequent cracks. The results are compared

with the prescriptions currently provided in the main building codes and with different

analytical models existing in the literature. For the comparison, the analytical expressions

are applied to a set of experimental data available in the literature and design observations

are made on the geometrical percentage of steel bars, the resistance of materials, the

residual bond stress and the depth-to-shear span ratio.

Keywords: high strength concrete, shear resistance, flexural resistance, shear-moment domain, moment resisting

frames

INTRODUCTION

High Strength Concrete (HSC) is increasingly used in the construction industry thanks to its
advantages. This type of concrete is usually manufactured with a low water-to-cement ratio
and has high compressive strength in the range of 50 to 100 MPa. In comparison with normal
strength concrete (NSC), HSC has increased modulus of elasticity, chemical resistance, freeze thaw
resistance, lower creep, lower drying shrinkage, and lower permeability.

HSC is also used in moment resisting frames (MRFs) subjected to both monotonic and cyclic
loads. It is well–known that in MRFs the presence of shear may cause a significant reduction of
the beam flexural strength with respect to the pure flexure case and, therefore, beams may undergo
to brittle failure without any warning signs Ahmad and Lue (1987). Such a complex phenomenon
has been investigated in a great number of researches with particular regard to the case of beams
reinforced only through longitudinal rebars. Among others, in Hong and Ha (2012), Kunthia
et al. (1999), Kunthia and Stajadinovic (2001), Mphonde and Frantz (1986) the so called “concrete
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mechanisms” are investigated. For beams made up of HSC,
the analytical expressions currently given in the main
building codes for the shear strength prediction can give
non-conservative values of the shear strength, as shown
in some recent studies available in the literature (Zararis,
2003; Arslan, 2008; Russo et al., 2013). Therefore, some
authors have recently proposed reliable expressions for the
calculation of the shear resistance of HSC beams, even
though limiting the study to the case of beam without
stirrups (Mphonde and Frantz, 1986; Kunthia et al., 1999).

In this paper, the research is addressed toward the evaluation
of the resisting contribution provided not only by concrete and
longitudinal rebars in the “concrete mechanism” but also by the
transversal reinforcement generally made in form of transversal
stirrups spaced along the beam axis. The strength provided
by the transversal reinforcement can be taken into account by
adding the contribution of the so called “truss mechanism” to
the analytical model. Therefore, an analytical formula for the
shear strength prediction of HSC beams in MRFs is presented.
The analytical model has the advantage of being based on
simplified mechanical schemes rather than on complex empirical
equations (Ahmad and Lue, 1987). Many equations have been
proposed in the literature for the assessment of the ultimate
shear strength of RC beams. Among others, Zsutty’s (1968)
equation derives from multiple regression analyses; Bazant’s
equation (derived by Bazant and Kim) is based on non-linear
fracture mechanics and accounts for the size effect in the resisting
mechanism; the CEB-FIP model code equation makes use of
coefficients empirically obtained. In this paper, the nominal shear
strength of RC beams with stirrups is assumed as the sum of
two distinct contributions: the resistance of stirrups resulting
from the truss action and the concrete resistance. The latter
is a contribution of paramount importance in the design of
RC beams where the shear force is close to the value required
for inducing diagonal tension cracking. In a study previously
conducted by Arslan (2008), the equations for the prediction of
the cracking shear strength performed almost as well as the ACI
Committee 318 (2008) simplified equation in terms of coefficient
of variation; conversely, in terms of mean value, ACI 318
provided a shear strength prediction generally more conservative
than the calculation obtained with Arslan’s equations. In the
present study, Arslan’s cracking shear strength equations are
used to take into account the concrete contribution while the
contribution of stirrups is added to the concrete contribution to
obtain the shear strength of HSC reinforced beams. The shear
strength values predicted through the analytical model are finally
compared with the results of shear tests on RC beams with
stirrups available in the literature (Elzanaty et al., 1986; Mphonde
and Frantz, 1986; Ahmad and Lue, 1987; Yoon et al., 1996;
Pendyala and Mendis, 2000; Zararis, 2003; Hong and Ha, 2012).

ANALYTICAL MODEL

The classical approach for the calculation of the shear capacity
of RC beams was proposed by Bazant and Kim (1984). Their
analytical approach is based on a mechanical model in which the

concrete contribution is given by the sum of two effects: arch
and beam action, respectively. Such resisting mechanisms are
depicted in Figure 1.

In particular, for the equilibrium of a portion of the beam
within the shear span a, the following equation must be satisfied
for every cross-section:

M = V · x = T · jd (1)

where the shear force V is related to the bending moment M
through the following relationship:

V =
dM

dx
= jod ·

dT

dx
+ T ·

d(jd)

dx
(2)

In Equation (2) the two contributions of arch and beam effect are
individuated. In particular, the beam effect is herein denoted as:

V1 = j0d ·
dT(x)

dx
(3)

where the term j0d is constant, while the tensile force T is variable.
Therefore, for the calculation of V1 it is necessary to evaluate the
variation of the tensile force, as shown in Figure 2.

The variation of the tensile force can be calculated assuming
the condition of bond splitting failure, i.e., considering
the residual splitting bond stresses qres transmitted by the
longitudinal bar:

dT

dx
= π ·

n
∑

i=1

qresi · Di (4)

where Di is the diameter of the i-th bar belonging to the main
reinforcements of the area As. Therefore, using Equation (3) and
Equation (4) the following expression is obtained for the beam
effect resisting contribution:

 

V

x

j(x)d j0d

C

T

a

V

FIGURE 1 | Arch and beam effects.
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FIGURE 2 | Beam effect contributions.

V1 = jo · d ·
dT

dx
= jo · d · π ·

n
∑

i=1

qresi · Di (5)

v1 =
(

j0π
∑n

i=1
qresDi

)

/b (6)

For evaluating the contribution of v1 it is necessary to assess
the residual bond stresses qres. In the well-known study by
Eligehausen et al. (1983) for ordinary concrete, it is shown that
the splitting bond stresses are proportional to the square root of
the cylindrical compressive resistance f′c while other studies and
codes such as (Eurocode 2, 2004) assume qres to be proportional
to the power 1/3. For HSC Harajli (2004) demonstrated that the
splitting stresses are equal to:

qresi
∼= 0.33 ·

√

fc′ ·

(

δ

Di

)0.66

(in MPa) (7)

δ being the cover of the longitudinal bars and Di the
equivalent diameter of the longitudinal bars. Therefore, if
δ
Di

= 1 is assumed, then the bond stresses can be

calculated as qresi
∼= 0.33 ·

√

fc′. Such a value can be
comparable with the value of the tensile strength of the
material (ACI Committee 318, 2008) adopting a proper reduction
coefficient (in this case 0.33) and such evidence is additionally
motivated with the mechanical model that rules the bond
splitting failure.

Other authors suggest similar expressions for taking into
account the bond splitting failure in the calculation of the
shear strength. Chunmin and Leping (2011) suggest the
following expression:

vc = 2 · ρ0.33
· ft (8)

where ft is the tensile strength of the concrete that can be assumed
as in the ACI Committee 318 (2008) code in the form ft =

0.3 ·
√

fc′ ′. Therefore, the shear strength is equal to:

vc = 0.6 · ρ0.33
·
√

fc′ (9)

A similar expression is obtained by Hong and Ha (2012),
assuming a splitting bond failure when the circumferential tensile
stresses reach the tensile strength of the concrete:

vc = 0.2 ·
√

fc′ (10)

Finally, in ACI Committee 318 (2008) the same expression as
Equation (10) is used assuming the coefficient 1/7 instead of 0.2.

In Figure 3 the different models are compared showing the
shear strength with the variation of the geometrical ratio of steel
rebar according to Equations (6), (9), (10) and ACI Committee
318 (2008) prescriptions: the comparison shows that for low
percentages of steel the shear strength is overestimated while for
ρ > 0.025 the limit 0.2 ·

√

fc′ appears appropriate.
If the effect of corrosion has to be considered, the residual

splitting stresses can be assessed as in Coronelli (2002)
considering the deterioration due to corrosion as shown in
Figure 4 where qres is indicated as τ resmax. In this case, the
expression originally proposed by Rodriguez et al. (1994) can
be used:

τ resmax = τconcrete + τtie = 0.6

(

0.5+
δ

D

)

fct
(

1− βXµ
)

+ kAswfyw/(sDi) (11)

The residual bond stress τ resmax is evaluated as the sum of two
contributions: the concrete contribution on one hand and the
contribution to bond given by the transverse stirrups. The
splitting stresses also depend on the X factor which is the
corrosion attack penetration. Finally in Equation (11) fct is the
concrete tensile strength, Asw and fyw are the reduced area and
yielding stress of stirrups (ACI Committee 318, 2008) placed at a
spacing s and β, µ, k are empirical constants.

For the evaluation of the total shear resistance according
to Equation (2) it is now necessary to evaluate the second
contribution V2 named arch effect:

V2 = T · d ·
dj

dx
(12)
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FIGURE 3 | Variation in shear strength due to bond splitting vs. geometrical ratio of steel bars.

FIGURE 4 | Bond deterioration due to corrosion.

With reference to Equation (12), an analytical variation law for
the internal lever arm j should be derived. Using the formulation
by Bazant and Kim (1984), the variation of j can be assumed as:

dj (x)

dx
= j0 ·

α

a
·

(x

a

)α-1
(13)

with α = 1 in case of linear variation, as assumed
by Swamy et al. (1993).

Moreover, the assessment of the traction force can be
made considering the steel contribution as Ts = σs · ρ ·

b · d where σs is the stress in the longitudinal bar. The
latter is difficult to be evaluated because it depends on the
residual bond stresses within the crack spacing srm. The crack
spacing can be determined as suggested in Eurocode 2 (2004)

and, therefore, the stress in the longitudinal bars can be
calculated as:

σs =
4 · srm · qresi

∑n
i ·Di

(14)

with srm =

(

50+ 0.1 · D
ρeff

)

and ρeff =
3.14·

∑

Di
2

4 ·
1

b·(h−xc)
.

The equilibrium of internal forces in the crack spacing can be
written as:

srm · π ·

∑

qresi · Di = σs ·
π

4
·

∑

Di
2 (15)

Therefore, substituting Equations (13)–(15) into Equation
(12) the following expression can be derived for the arch
effect contribution:

v2 =
jo

b · d
·
d

a
· σs · ρ · b · d (16)

Finally, the shear resistance vc can be obtained by the sum of
Equations (6) and (16).

In this model, an upper limit for the shear strength
can be imposed considering the concrete crushing. In
particular, the ultimate axial force in the concrete strut is
calculated as:

Nu = υ · fc
′
· b · xc · cosα (17)

where υ is a softening coefficient, which can be set equal to 0.5

according to Eurocode 2 (2004) and α = arctan
(

j·d
a

)

.
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For the equilibrium of the forcesVu = Nu ·sinα and therefore
the ultimate shear stress related to the arch crushing is:

vuc =
υ · fc

′

2
·
xc

d
· sin (2α) (18)

MODEL VALIDATION

In the following sections, the most adopted expressions
for the prediction of the flexural and shear strength
of HSC beams are presented and compared with
those of the current model. Successively, the results
of experimental tests on RC beams with transversal
stirrups are described and used for the validation of the
analytical models.

Analytical Benchmarks
For the analytical evaluation of the flexural strength, the
most common building codes distinguish the case of over-
reinforced and under-reinforced cross-sections. When beams
designed in practice are under-reinforced, the yield force
in the tensile steel controls their flexural strength. In these
cases, most of the current codes make use of the stress-block
approach for determining the ultimate flexural capacity of the
beam, neglect the limited contribution of the compressed bars
(see Figure 5).

With reference to the symbols used in Figure 5, the
equilibrium of the cross-section is given by:

Mu = As · fy ·
(

d − 0.50 · β · xc
)

(19)

with xc =
As · fy

α · fc′ · β · b
(20)

In Equations (19, 20), Mu is the ultimate bending moment and
xc is the neutral axis depth while the other symbols are: As

the area of longitudinal tensile bars, b the width of the beam,
d the effective depth α and β the stress block coefficients. In
Table 1, the most common values of α, β, and εcu ultimate
compressive strain of concrete) are given for several codes
and authors.

Equations (19, 20) can be also written as function of the

mechanical ratio of the main steel ωl =
As
b·d

·
fy
fc ′

and therefore

the following expressions can be derived:

xc

d
=

As

b · d
·
fy

fc
′
·

1

α · β
= ρl ·

fy

fc
′
·

1

α · β
=

ωl

α · β
(21)

with ρl =
As
b·d

Mu

b · d2
1

fc′
= ωl ·

(

1− 0.5 ·
ωl

α

)

(22)

Moreover, the following condition should be satisfied:

FIGURE 5 | Stress-block approach for the calculation of the flexural strength.

TABLE 1 | Stress-block parameters.

Code α β ε cu

ACI Committee 318, 2008 0.85 1.09− 0.008 · fc
′ 0.0030

Canadian Standards Association, 2004 0.85− 0.0015 · fc
′ 0.97− 0.0025 · fc

′ 0.0035

Eurocode 2, 2004 0.85 0.9−
fc
′

500 0.0035

Bae and Bayrak, 2003 0.85− 0.004 ·
(

fc
′ − 70

)

0.85− 0.004 ·
(

fc
′ − 30

)

0.0025
(

fc
′ > 55MPa

)

0.0030
(

fc
′ < 55MPa

)
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FIGURE 6 | Variation of the ratio between experimental and analytical moment with: (A) concrete compressive strength; (B) steel reinforcement percentage.

TABLE 2 | Flexural strength prediction.

ACI

Committee

318

(2008)

Canadian

Standards

Association

(2004)

Eurocode 2

(2004)

Bae and Bayrak

(2003)

Mexp/Mtheo 1.17 1.34 1.38 1.34

CoV. 41.8% 21.6% 21.0% 21.6%

xc

d
≤

xc lim

d
=

εu

εy + εu
(23)

Equation (23) is verified when the steel bars are considered to
have yielded and the concrete to be crushed.

Using Equations (21) and (23) the limit geometrical ratio of
the longitudinal steel can be obtained:

ρlim = α · β ·
fc

′

fy
·

εu

εy + εu
(24)

As regards the shear strength, for the concrete contribution ACI
Committee 318 (2008) suggests:

vuc =

(

0.157 ·

√

fc
′

+ 17.2 · ρ ·
d

a

)

< 0.30 ·
√

fc′ (25)

while for the stirrup contribution it is assumed:

vus =
Asw

b · s
· fyw = ρsw · fyw (26)

Therefore, in ACI Committee 318 (2008) the shear strength is
expressed as the sum of concrete and stirrup contributions:

νu = νuc + vus (27)

Similarly, Canadian Standards Association (2004) are based on
the shear resisting mechanism consisting in a free body diagram

of the end portion of a beam. This portion cuts the flexural
compression region and the longitudinal reinforcement and
stirrups following the diagonal shear crack. If the dowel action
is neglected, the shear strength equation is:

vu = 8cβ
√

fc′ + 8sρswfywcotθ ≤ 0.258cfc
′ (28)

where ϕc,ϕs are material reduction factors for concrete
and steel stirrups, β represents the ability of the member
to resist aggregate interlock stresses and θ is the angle
of principal compressive stresses. For the calculation of β

and θ, the formulation by Bentz and Collins (2006) can
be assumed.

In Eurocode 2 (2004) the variable strut inclination method
is assumed. According to this method the shear strength is
calculated as the minimum value between:

vuc = min

{(

0.9 ·

[

0.6 ·

(

1−
f ′c
250

)]

·
fc
′

γc
·

1

cot θ + tan θ

)

;

0.90 · ρsw ·
fyw

γs
· cot gθ

}

(29)

with ρsw ·
fyw

γs
· ≤ 0.5 ·

[

0.6 ·

(

1−
fc
′

250

)]

·
fc
′

γc
(30)

and 0.4 ≤ cotθ ≤ 2.5 (31)

Some other expressions are those in Zararis (2003), Arslan
(2008), and Russo et al. (2013). In particular, Zararis (2003)
shows that the nominal shear stress at diagonal tension
cracking is the product of the ratio of the neutral axis
depth to the effective depth of the beam and the splitting
tensile strength of the concrete. The contribution of stirrups
which are assumed to have yielded is considered in the
splitting region and the expression of the shear strength
proves to be:

vuc = ξ ·
(

fc
′
)0.66

·
xc

d
+

(

0.5+ 0.25 ·
a

d

)

· ρsw · fyw (32)

where ξ = 0.3 ·
(

1.2− 0.2 · a
d
· d

)

is a term used for taking into
account the size effect.
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FIGURE 7 | Variation of the ratio between experimental and analytical shear stress according to: (A) (ACI Committee 318, 2008) (B) (Canadian Standards Association,

2004) (C) Eurocode 2 (2004), (D) Russo et al. (2013); (E) Arslan (2008); (F) proposed model.

TABLE 3 | Shear strength prediction.

ACI Committee

318 (2008)

Canadian

Standards

Association

(2004)

Eurocode 2

(2004)

Arslan (2008) Russo et al.

(2013)

Current

model

Vexp/Vtheo 1.27 1.43 2.42 1.32 1.12 1.24

CoV. 16.5% 25.2% 40.9% 28.8% 18.8% 15.6%

Arslan (2008) calculates the shear strength of slender
beams and considers the stirrups yielded and the main crack
inclined at an angle of 45◦. Therefore, the following expression
is obtained:

vuc = 0.12 ·
√

fc′ + 0.02 ·
(

fc
′
)0.65

+ ρsw · fyw (33)

Finally, according to Russo et al. (2013) the shear strength can
be calculated through a quite complex formula depending on

empirical coefficient:

vuc =
1+

√

5.08
da

√

1+ d
25·da

·

[

ρ0.4
· f c

′0.39
+ 0.5 · ρ0.83

·fy
0.89

·

(a

d

)−1.2−0.45· a
d

]

+ 0.36 · ρ0.2
·
√

fc′ ·
(

ρsw · fyw
)0.6

(34)

in which da represents the maximum aggregate size and a is the
shear span.
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FIGURE 8 | Variation of the ultimate shear stress against ρ swfsw.

Comparison With Experimental Data
Experimental data available in the literature are used for
validating the expressions of the flexural and shear capacity
prediction. In particular, for the flexural strength, the
experimental results provided by Sarkar and Adwan (1997),
Pam et al. (2001), Ashour (2000), and Bernardo and Lopes
(2004) from are considered. All tests are conducted on under-
reinforced beams with concrete compressive strength between
36 and 107 MPa, effective depth between 215 and 26mm, steel
percentage ρ between 0.76 and 3.61% and yielding stress fy
between 300 and 579 MPa. The results obtained are plotted in
the graphs of Figure 6 where the ratio between experimental
and analytical moment is shown with the variation of the
compressive strength (Figure 6A) and the steel percentage
(Figure 6B). In particular, from Figure 6A it can be observed
a progressive increase in the underestimation of the moment
capacity as the concrete strength increases (see the best fitting
line). Conversely, from Figure 6B it can be observed that
the limit of 0.025 [i.e., the upper limit indicated by ACI
Committee 318 (2008)] is too much conservative to ensure
that steel bars yield before the crushing of concrete and
therefore higher values could be adopted even though, for the
design of members in seismic area, this limitation should be
adequately checked.

Finally, Table 2 reports the mean values and the coefficients
of variation for all examined cases. In general, it can be
observed that all models underestimate the effective flexural
capacity of beams and, in most cases, conservative results
are obtained.

For the validation of the shear models, the experimental
results used by Zararis (2003) and those available in Mphonde
and Frantz (1986), Elzanaty et al. (1986), Ahmad and Lue (1987),
Yoon et al. (1996), Pendyala and Mendis (2000), and Hong and
Ha (2012) were considered. The data used by Zararis (2003)
refer to specimens with concrete compressive strength between
12.8 and 103 MPa, effective depth between 95 and 1200mm, a/d
between 2.4 and 5.05, ρ between 0.5 and 4.54%, ρv between 0.06
and 0.84, fy between 242 and 844MPa. Conversely, the other data

refer to specimens with concrete compressive strength between
40 and 94 MPa, effective depth between 160 and a/d between
2 and 6, ρ between 0.6 and 6.64 %, ρv between 0.08 and 1, fy
between 370 and 430 MPa.

Figure 7 shows the variation of the ultimate experimental
shear strength vs. the analytical prediction calculated with all
models. Table 3 reports the mean values and the coefficients of
variations for all examined cases. From the results it emerges that
most of the expressions proposed are able to predict the shear
strength of beams quite accurately.

Finally, Figure 8 shows the variation of the ultimate shear
stress dimensionless with respect to 0.2

√

fc vs. the mechanical
ratio of the stirrups ρswfsw. In the same graph, the prediction
with the current model and with Russo et al. (2013) and Zararis
(2003) models are given. The best fitting line is also represented.
It has to be stressed that all experimental data are in the range
expected with Zararis (2003) model, while in several cases Russo
et al. (2013) model overestimates the experimental shear strength
of the beams. Conversely, the proposed model gives the most
conservative results.

In this paper an analytical model is provided for the
calculation of the flexural and shear capacity of HSC beams in
the presence of transversal reinforcement. The model is given
in additive form, assuming two different contributions in the
shear resistance, i.e., the shear capacity provided by the concrete
and the contribution due to the transversal stirrups. The shear
strength of concrete is calculated following the classical approach
originally proposed by Bazant and Kim (1984), determining
two resisting mechanisms named “arch” and “beam” action.
The model also takes into account the crushing of concrete by
introducing an upper limit to the contribution of the material in
compression. For the validation of the model, several analytical
formulations available in the literature are reviewed and the
models are applied for interpreting the results of a set of
experimental data in the literature. The comparison shows that
there is an increasing underestimation of the flexural capacity
of the beam for increasing values of the concrete compressive
strength; the results also show that the limit of 2.5% for the steel
ratio is excessively conservative to ensure the yielding of the steel
reinforcement before the crushing of concrete, even though in
seismic areas this limit should be carefully checked. Finally, all
models for the prediction of the shear strength are able to provide
quite accurate results. In particular the model proposed by Russo
et al. (2013) gives the most accurate mean value of the ratio
between experimental and theoretical shear resistance, equal to
1.12, while the current model gives a quite accurate mean value
(equal to 1.24) and proves to be the most reliable model with the
lowest value of coefficient of variation which is equal to 15.6%.
Finally the current model is able to provide the most conservative
result in terms of non-dimensional ultimate shear stress with the
variation of the mechanical ratio of transversal reinforcement.
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