Bisoxazoline-Fullerene Hybrid Systems for Asymmetric Catalysis

Valerio CINA', ${ }^{\mathrm{a}, \mathrm{b}}$ Mariano GUAGLIARDO, ${ }^{\mathrm{a}}$ Luca FUSARO, ${ }^{\mathrm{b}}$ Michelangelo GRUTTADAURIA, ${ }^{a}$ Carmela APRILE, ${ }^{\text {b }}$ Francesco GIACALONE ${ }^{a}$

${ }^{\text {a }}$ Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
${ }^{\text {b }}$ Unit of Nanomaterial Chemistry (CNano), University of Namur (UNamur), Belgium

Fullerene is the smaller member in the family of carbon nanoforms (CNFs) and it can be taken as a molecular model for other CNFs-based heterogeneous catalysts. The well-developed chemistry for C_{60} functionalization allows operating multiple additions on its cage, and this can be exploited for sensibly increasing catalyst loading or for adding different functionalities. ${ }^{1}$ In this way, it is possible to explore synergistic or detrimental effects due to the close proximity of catalytic moieties. In addition, the peculiar solubility profile of C_{60}-derivatives may be used for recovering a homogeneous catalyst by simple precipitation.

Herein C_{60} was functionalized with a series of chiral bisoxazoline (BOX) ligands, widely used in asymmetric catalysis, ${ }^{2}$ in order to form both the mono- and the hexa-adducts (Figure 1a). Monoadducts were also post-functionalized with ten 1,2-dimethylimidazolium moieties in order to get hybrid with a different solubility profile. All the C_{60}-BOX systems were employed, along with copper(II) salts as catalysts in asymmetric Henry and Diels-Alder reactions (Figure 1b). Furthermore, their ease separation from the reaction mixture can allow for a facile reuse in multiple cycles.

Figure 1 a) Fullerene and BOX based catalysts. b) Asymmetric Henry and Diels-Alder reactions.

References

1. (a) Campisciano, V.; Gruttadauria, M.; Giacalone, F., ChemCatChem (doi:10.1002/cctc.201801414);
(b) Su, D. S.; Perathoner, S.; Centi, G., Chem. Rev. 2013, 113, 578.
2. (a) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M., JACS 1991, 113 ,726; (b) Lowenthal, R. E.; Abiko, A.; Masamune, S., Tetrahedron Let. 1990, 31, 6005.
