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Abstract Clustering is one of the most well known

activities in scientific investigation and the object of

research in many disciplines, ranging from Statistics to

Computer Science. In this beautiful area, one of the most

difficult challenges is a particular instance of the model

selection problem, i.e., the identification of the correct

number of clusters in a dataset. In what follows, for ease of

reference, we refer to that instance still as model selection.

It is an important part of any statistical analysis. The

techniques used for solving it are mainly either Bayesian or

data-driven, and are both based on internal knowledge.

That is, they use information obtained by processing the

input data. Although both techniques have been evaluated

in the realm of microarray data analysis, their merits (rel-

ative to each other) has not been assessed. Here we will fill

this gap in the literature by comparing three Bayesians

versus several state of the art data-driven model selection

methods. Our results show that, although in some cases

Bayesian methods guarantee good results, they are not able

to compete in terms of ability to predict the correct number

of clusters in a dataset with the data-driven methods.

Keywords Clustering � Model selection � Bayesian

information criterion � Akaike information criterion �
Minimum message length � Bioinformatics

1 Introduction

The advent of high throughput technologies, in particular

microarrays, for biological research has revived interest in

clustering, resulting in a plethora of new clustering algo-

rithms. Indeed, experiments based on them are common

practice in biological and medical research to address a

wide range of problems, including the classification of

tumors (Alizadeh et al. 2000; Alon et al. 1999; Dudoit and

Fridlyand 2002; Golub et al. 1999; Perou et al. 1999;

Pollack et al. 1999; Ross et al. 2000), where a reliable and

precise classification is essential for successful diagnosis

and treatment.

In the classic statistics and data analysis literature, there

are two essential aspects of clustering: finding a ‘‘good’’

partition of the datasets and estimating the number of

clusters, if any, in a dataset. The former problem is usually

solved by the use of a clustering algorithm. For recent

reviews on clustering algorithms, in particular for bio-

medical research, the reader is referred to Andreopoulos

et al. (2009) and D’haeseleer (2006). However, the most

fundamental issue is the latter problem, here referred to as

model selection.

In general, it is usually solved with the use of internal/

relative measures (defined in Sect. 2). The excellent survey

by Handl et al. (2005) makes the study of those techniques
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a central part of both research and practice in bioinfor-

matics. It is also worth mentioning that a recent systematic

presentation of statistical measures for clustering, with

particular attention to microarray data, is given in Gianc-

arlo et al. (2009). The two most prominent categories in

which measures for model selection fall are as follows:

– Bayesian: Methods belonging to this category use

Bayes rule and perform model selection by suitably

choosing among a finite set of a priori fixed models.

The Bayesian information criterion (BIC) (Schwarz

1978), the Akaike information criterion (AIC) (Akaike

1978) and the minimum message length (MML) (Wal-

lace and Boulton 1968) are three Bayesian methods that

have been used to efficiently estimate the number of

clusters in a dataset (Wallace and Boulton 1968; Pelleg

and Moore 2000; Wallace and Dowe 2000; Figuereido

and Jain 2002; Bouguila and Ziou 2007). It is worthy of

mention that the well known minimum description

length (MDL) (Rissanen 1978) also falls in this category

but, being equivalent to the BIC (Rissanen 1978), is

implicitly accounted for here.

– Data-driven: Nothing is assumed about the structure of

the dataset, which is inferred directly from it. We recall

that, in the data analysis literature and for the special

case of microarray data, Giancarlo et al. (2008a) and

Giancarlo and Utro (2011) have recently proposed an

extensive comparative analysis of data-driven valida-

tion measures taken from the most relevant paradigms

in the area: (a) compactness e.g., Tibshirani et al.

(2001) and Krzanowski and Lai (1985); (b) hypothesis

testing in statistics, e.g., Tibshirani et al. (2001); (c) sta-

bility-based techniques, e.g., Dudoit and Fridlyand

(2002), Ben-Hur et al. (2002), and Monti et al. (2003);

and (d) jackknife techniques, e.g., Yeung et al. (2001).

These benchmarks consider both the ability of a

measure to predict the correct number of clusters in a

dataset and, departing from the current state of the art

in that area, the computer time it takes for a measure to

complete its task.

Here, we compare the ability of AIC, BIC and MML to

predict the correct number of clusters against the best data-

driven methods identified by the study in Giancarlo et al.

(2008a) and Giancarlo and Utro (2011), and for the specific

research field of microarray data analysis.

The reminder of this paper is organized as follows: Sect.

2 presents a formal statement of the problems we are

interested in. Section 3 describes the details about all the

methods for model selection that have been used here.

Section 4 is devoted to the description of the datasets and

clustering algorithms used for the experiments, while Sect.

5 reports the results of the experiments. Finally, the last

section offers some conclusions.

2 Basic notions and definitions

The aim of cluster analysis is to determine a partition of n

items according to a similarity/distance function. Intuitively,

the partition should be such that items in the same cluster are

‘‘similar’’, while items in different clusters are ‘‘dissimilar’’.

Following Handl et al. (2005), cluster analysis here is seen as a

three step process: (1) pre-processing, (2) clustering and (3)

cluster validation. For the first step, the state of the art is given

in Quackenbush (2002) for normalization, in Liu and Motoda

(1998) for feature selection and in Giancarlo et al. (2010,

2011, 2013), and Priness et al. (2007) for the choice of simi-

larity/distance functions. Regarding the other two steps, in

what follows, we highlight the essential aspects of them, with

some emphasis on cluster validation since it is central for this

paper. To this end, we need to introduce some notation.

Consider a set of n items X ¼ fx1; . . .; xng, where

xi 2 R
m; 1� i� n, and m is referred to as the number of fea-

tures or conditions. The set X is represented in one of two

different ways: (1) a data matrix D, of size n� m, in which the

rows represent the items and the columns represent the con-

dition values; (2) a similarity/dissimilarity matrix S, of size

n� n, in which each entry Si;j; 1� i 6¼ j� n, quantifies the

similarity/dissimilarity of the pair of items ði; jÞ. Specifically,

the value of Si;j can be computed using rows i and j of D.

In what follows, let Ck ¼ fc1; c2; . . .; ckg be a partition

of X. Each subset ci � X; 1� i� k, is referred to as a

cluster, and Ck is referred to as a clustering solution. Let Cj

be a reference classification for X consisting of j classes.

That is, Cj may either be a partition of X into j groups or a

division of the universe generating X into j categories,

usually referred to as class labels. Such a reference clas-

sification is referred to as gold solution. Intuitively, the

partition of the dataset in classes is based on external

knowledge that leaves no ambiguity on the actual number

of classes and on the membership of elements to classes.

It is worth pointing out that although there exist real

microarray datasets for which such an a priori division is

known, in a few previous studies of relevance here, a more

relaxed criterion has been adopted. Indeed, datasets with high

quality partitions that have been inferred by the use of internal

knowledge via data analysis tools such as clustering algo-

rithms. In strict technical terms, there is a difference between

the two types of gold solutions. For their datasets, Dudoit and

Fridlyand (2002) elegantly make clear that difference in a

related study and we closely follow their approach here.

2.1 Clustering algorithms

Usually, the partition of the items in X is accomplished by

means of a clustering algorithm A. The literature on

clustering algorithms is very rich and a recent survey of
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classic as well as more innovative methods, specifically

designed for microarray data, is given in Andreopoulos

et al. (2009), Shamir and Sharan (2003) and a more in

depth treatment can be found for instance in Handl et al.

(2005), Everitt (1993), Hartigan (1975), Jain and Dubes

(1988), and Kaufman and Rousseeuw (1990). For the

convenience of the reader, we recall that clustering algo-

rithms are classified into: partitional and hierarchical.

The first type of clustering algorithms takes as input X

and most of them also an integer k that in some cases can

be estimated automatically. The final output is a partition

Ck. It is worth pointing out that a partitional clustering

algorithm can take as input a partition of the data and use it

as an initial clustering solution that the algorithm refines. In

this paper, we refer to this input option as external ini-

tialization. The second type of clustering algorithm pro-

duces a nested sequence of partitions, i.e. a tree. However,

it can be easily adapted to generate a partition of a dataset

into k clusters. The details are left to the reader.

2.2 Cluster validation

2.2.1 External validation measures

An external measure E is a function that takes as input two

partitions Cj and Ck and returns a value assessing how

close Ck is to Cj. It is external because the quality

assessment of the partition is established via criteria

external to the data. The three most prominent external

measures known in the literature are: the Adjusted Rand

Index (Hubert and Arabie 1985), the F-index (Rijsbergen

1979) and the Fowlkes and Mallows Index (FM-Index for

short) (Fowlkes and Mallows 1983). For definitions and

examples of their uses, the interested reader is referred to

Jain and Dubes (1988) for a general presentation and to

Giancarlo et al. (2008b) for one specific to microarray data.

2.2.2 Internal validation measures

An internal measure I is a function defined on the set of all

possible partitions of X and with values in R. It should

measure the quality of a partition according to some suit-

able criteria, based on information contained in the dataset

without resorting to external knowledge, i.e. a partition of

the data known a priori (e.g. a gold solution).

It is worth pointing out that, in the specialistic literature,

it is usual to refer to the internal measures also with the

term relative when they are used to establish the optimal

number of clusters k�. For the state of the art on internal

measures, the reader is referred to Handl et al. (2005),

Giancarlo et al. (2008a, b), and Giancarlo and Utro

(2012a).

3 Model selection methods

Some of the most prominent internal measures are based

on: (a) compactness (b) hypothesis testing in statistics;

(c) stability-based techniques; (d) jackknife techniques and

(e) Bayesian scores. In particular, for each of the men-

tioned classes we consider the following:

(a) within clusters sum of square (WCSS for short)

(Hastie et al. 2003) and Krzanowski and Lai Index

(KL for short) (Krzanowski and Lai 1985).

(b) Gap statistics (Gap for short) (Tibshirani et al.

2001).

(c) CLEST (Dudoit and Fridlyand 2002), model

explorer (ME for short) (Ben-Hur et al. 2002),

consensus clustering (Consensus for short) (Monti

et al. 2003) and fast consensus (FC for short)

(Giancarlo and Utro 2011).

(d) Figure of merit (FOM for short) (Yeung et al. 2001).

(e) Schwarz’s BIC (Schwarz 1978), AIC (Akaike

1978), MML (Wallace and Boulton (1968)).

Those measures have been selected among the many

that have been proposed in the relevant literature for

their prominence and based on an accurate and robust

comparative experimental analysis Giancarlo et al.

(2008a) that indicates them as the most reliable in this

class. We highlight here a few key facts about them,

relevant for our experiments. We refer the interested

reader to Schwarz (1978), Giancarlo et al. (2008a), and

Giancarlo and Utro (2011) for a more in-depth presen-

tation of each of them, as well as additional references

to textbooks and papers covering additional aspects of

them.

WCSS (Hastie et al. 2003) measures the ‘‘goodness’’ of a

cluster via its compactness, one of the most fundamental

indicators of cluster quality. Indeed, for each k in ½2; kmax�,
the method consists of computing the sum of the square

distance between each element in a cluster and the centroid

of that cluster. The ‘‘correct’’ number of clusters k� is

predicted according to the following rule of thumb. For

values of k\k�, the value of WCSS should be substantially

decreasing, as a function of the number of clusters k. On

the other hand, for values of k� � k, the compactness of the

clusters will not increase as much, causing the value of

WCSS not to decrease as much. The following heuristic

approach comes out Tibshirani et al. (2001): plot the values

of WCSS, computed on the given clustering solutions, in the

range ½1; kmax�; choose as k� the abscissa closest to the

‘‘knee’’ in the WCSS curve.

KL (Klie et al. 2010) is an internal measure based on

WCSS, but it is automatic, i.e., a numeric value for k� is

returned. Let

Bayesian versus data driven model selection for microarray data



DIFFðkÞ ¼ ðk � 1Þ
2
mWCSSðk � 1Þ � k

2
mWCSSðkÞ ð1Þ

whose expected behavior is:

(i) for k\k�, both DIFFðkÞ and DIFFðk þ 1Þ
should be large positive values.

(ii) for k [ k�, both DIFFðkÞ and DIFFðk þ 1Þ
should be small values, and one or both might

be negative.

(iii) for k ¼ k�;DIFFðkÞ should be large positive, but

DIFFðk þ 1Þ should be relatively small (might

be negative).

Based on these considerations, Krzanowski and Lai pro-

posed to choose, as prediction of k�, the k maximizing:

KLðkÞ ¼ DIFFðkÞ
DIFFðk þ 1Þ

�
�
�
�

�
�
�
�

ð2Þ

That is,

k� ¼ arg max
2� k� kmax

KLðkÞ ð3Þ

Gap (Tibshirani et al. 2001) as KL, is an automatic internal

measure based on WCSS. The method computes the gap

between the WCSS curve computed on datasets produced

by a null model and the one computed on a real dataset.

Since WCSS is expected to decrease sharply up to k�, on the

real dataset, while it is expected to have a nearly constant

slope on the null model datasets, the size of the gap is

expected to increase up to k� and then to decrease. More-

over, the WCSS curves are normalized via logs and a

simulation error is also considered. Finally, it is worth

pointing out that a more accurate prediction of k� is based

on a Monte Carlo simulation, i.e., the method is executed

several times and the most frequent outcome is taken as the

prediction.

G-Gap (Giancarlo et al. 2008a) is a geometric approx-

imation of the Gap Statistics (Tibshirani et al. 2001). It

allows for the identification of the ‘‘knee’’ in the WCSS

curve via a geometric approach, rather than a Monte Carlo

simulation as in the Gap Statistics.

CLEST (Dudoit and Fridlyand 2002) generalizes in many

aspects an approach proposed by Breckenridge (1989) and can

be regarded as a clever combination of hypothesis testing and

stability-based techniques. It estimates the number of clusters

in a dataset by iterating the following: for each k 2 ½kmin; kmax�
randomly partition, H times, the original dataset in a learning

set and a training set. The learning set is used to build a

classifier [e.g. diagonal linear discriminant analysis, see Du-

doit and Fridlyand (2002) for details] for the data. That is, the

classifier is assumed to be a reliable model for the data.

Therefore, the classifier is used to derive a ‘‘gold solution’’

partition of the training set, which is then used to assess the

quality of the partitions of the training set obtained by a given

clustering algorithm. Then, method computea a p value for

each k. Finally, it estimates k� as the maximum value of k that

satisfies a given threshold criteria on the computed p values.

FOM (Yeung et al. 2001) is a family of internal validation

measures specifically designed for microarray data. It is based

on the jackknife approach and has been designed for use as a

relative measure assessing the predictive power of a clustering

algorithm, i.e., its ability to predict the correct number of

clusters in a dataset. We use the adjusted aggregateFOM for our

experiments and, for brevity, we refer to it simply as FOM. The

FOM computation is based on a root mean square deviation over

all conditions. Formally, for each k, it is computed as:

FOMk ¼
Xm

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xk

i¼1

X

x2ci

ðDðx; eÞ � miðeÞÞ2
v
u
u
t

where Dðx; eÞ is the be the feature level of x without the

column e and miðeÞ is the average feature level of condition

e for items in cluster ci (note that the clustering is also

computed to the matrix D without the feature e). FOM uses

the same heuristic methodology outlined for WCSS, i.e.,

one tries to identify the ‘‘knee’’ in the FOM plot as a

function of the number of clusters.

Diff-FOM (Giancarlo et al. 2008a) is an extension of KL

(Krzanowski and Lai 1985) to FOM. It is based on the

computation of the following formula:

DFOMðkÞ ¼ ðk � 1Þ2=m
FOMðk � 1Þ � k2=mFOMðkÞ:

The ‘‘rule of thumb’’ that one uses to predict k�, via Diff-

FOM, is the same as for KL, being based on the same

intuition. Therefore, as k increases towards k�;DFOMðkÞ
increases to decrease sharply and then assumes nearly

constant values as it moves away from k�. So, one can take

as k� the abscissa corresponding to the maximum of

DFOMðkÞ in the interval ½3; kmax�.
Consensus (Monti et al. 2003) is a stability-based

technique (Giancarlo and Utro 2012a, b). Therefore, a large

number of clustering solutions, each obtained via a sample

of the original dataset, are used in order to identify the

correct number of clusters. Intuitively, it computes a con-

sensus matrix that indicates the level of agreement of

clustering solutions that have been obtained via indepen-

dent sampling of the dataset. Based on experimental

observations and sound arguments, Monti et al. (2003)

derive a ‘‘rule of thumb’’ in order to estimate the real

number k� of clusters present in D. For brevity, in what

follows, only the key points are presented. The interested

reader can find a full discussion in Monti et al. (2003),

Giancarlo and Utro (2012a, b). The empirical cumulative

distribution of the entries of the consensus matrix is com-

puted. In an ideal situation in which there are k clusters and

the clustering algorithm is so good to provide a perfect

R. Giancarlo et al.



classification, such a curve is bimodal, with peaks at zero

and one. Monti et al. observe and validate experimentally

that the area under the CDF curve is an increasing function

of k. That result has also been confirmed by the experi-

ments in Giancarlo et al. (2008a). In particular, for values

of k ¼ k�, that area has a significant increase, while its

growth flattens out for k [ k�. However, Monti et al. pro-

pose a closely associated method, described next. For a

given k, the area of the corresponding CDF curve is esti-

mated and an increasing function D is computed for suc-

cessive values of k. Again, Monti et al. observe

experimentally that: (i) For each k� k�, there is a pro-

nounced decrease of the D curve. That is, the incremental

growth of the area under the CDF decreases sharply. (ii)

For k [ k�, there is a stable plot of the D curve. That is, for

k [ k�, the growth of the area flattens out. From this

behaviour, the ‘‘rule of thumb’’ to identify k� with the use

of the D curve is: take as k� the abscissa corresponding to

the smallest non-negative value where the curve starts to

stabilize; that is, no big variation in the curve takes place

from that point on.

FC (Giancarlo and Utro 2011) is a fast approximation of

Consensus, based on the observation that costly com-

putational duplications can be avoided when the clustering

algorithm is hierarchical.

BIC, AIC MML (Schwarz 1978; Akaike 1978; Wallace

and Boulton 1968) They are useful in model selection since

the evidence that a dataset could be generated by a par-

ticular model can be quantified by particular scores, defined

as follows:

BICðMrÞ ¼ �ln pðXjH;MrÞ þ
r

2
ln n; ð4Þ

AICðMrÞ ¼ �ln pðXjH;MrÞ þ r; ð5Þ

MMLðMrÞ ¼ �ln pðXjH;MrÞ þ
1

2
ln jIðHÞj

� r

2
ð1� ln 12Þ;

ð6Þ

where X is the dataset, Mr indicates a model with r

parameters H ¼ fh1; ::; hrg; pðXjH;MrÞ is the likelihood, n

is the number of observations in X; IðhÞ denotes the Fisher

information matrix, i.e. the expectation of the Hessian of

pðXjH;MrÞ with respect to H, and j:j indicates the deter-

minant of a matrix.

Once the model Mr is assumed, all the three above

mentioned scores are computed by performing a maximum

likelihood estimation on pðXjH;MrÞ.
The general idea for selecting the best model over a

finite set Mr for r ¼ 1; . . .; rmax, is to compute the score for

each r, and finally choose as best model the one which

minimizes such a score.

The justification behind this criterion is that all the

scores have in common the log likelihood, that is always

minimized due to the maximum likelihood estimation

phase. Since this term decreases while the number of

parameter increases, each score formulation introduces a

different penalty term for the number of parameters r in

order to avoid overfitting.

In particular, BIC introduces a penalty that results only

from Bayes factors, AIC and MML take into account the

entropy of the model also in terms of compressibility of a

message containing the data.

One of the possible uses of the three mentioned scores is

the estimation of the correct number of clusters in a dataset.

The idea is to use a clustering algorithm compatible to a

particular model Mrk
, where k denotes the number of

clusters, and use that clustering algorithm to compute kmax

partitions, each for k ¼ 1; . . .; kmax. Finally, the number of

clusters k� can be estimated as:

k� ¼ arg min
k¼1;...;kmax

SðMrk
Þ:

where S can indicate BIC, AIC or MML.

In the case of Gaussian model assumption, the log

likelihood of each each element xi 2 cj assumes the form

ln pðxijlj;RjÞ ¼ ln nj � ln n

� 1

2
ðxi � ljÞR�1

j ðxi � ljÞ
T

� m

2
ðln2pþ lnðj:jRjÞÞ

ð7Þ

and can be estimated by computing the estimation of the

centroids blj and covariance matrices cRj on the cluster cj

that contains nj elements.

Finally, the three score values can be computed by

imposing the number of parameters rk ¼ 2 � k � mþ k � 1,

where 2 � k � m represents the number of centroids and

covariances to estimate, and k � 1 is the number of class

probabilities.

4 Experimental setup

We now detail the experimental methodology used to

obtain the results presented in this manuscript. As it will be

evident, it is a de facto standard in this area.

4.1 Clustering algorithms

In our experiments, we have chosen K-means among the

Partitional Methods, and Average Link (Hier-A), Com-

plete Link (Hier-C) and Single Link (Hier-S) among the

Bayesian versus data driven model selection for microarray data



Hierarchical Methods. Of course, each of the above men-

tioned algorithms has already been used for data analysis of

microarray data, e.g. Giancarlo et al. (2008b); Giancarlo

and Utro (2012a); Gesú et al. (2005). The interested reader

is referred to Fig. S1 to see the performance of these

algorithms, on microarray data, evaluated via with the

Adjusted Rand Index. We use K-means both in the version

that starts the clustering from a random partition of the data

and in the version where it takes as part of the input an

initial partition produced by one of the chosen hierarchical

methods. The acronyms of those versions are K-means-R,

K-means-A, K-means-C and K-means-S, respectively.

4.2 Datasets

The eleven datasets, together with the acronyms used in

this paper, are reported next. For conciseness, we mention

only some relevant facts about them. The interested reader

can find additional information in Dudoit and Fridlyand

(2002) for the Lymphoma and NCI60 datasets, Di Gesú

et al. (2005) for the CNS Rat, Leukemia and Yeast datasets

and in Monti et al. (2003), for the remaining ones.

It is worth pointing out that, although microarray tech-

nology is capable of producing very large datasets, i.e.,

elements and features in the millions each, those datasets

go through substantial size reduction steps for two main

reasons. The first is to identify, and therefore focus, on part

of the dataset giving the ‘‘most informative’’ variations, the

second is computational. Indeed, as clearly pointed out by

many studies, e.g., Giancarlo and Utro (2011), clustering

algorithms and internal validation measures have serious

limitations for large datasets, being able to process reliably

and efficiently those with a number of elements and fea-

tures in the hundreds. The choice of our datasets reflects

such a state of the art. However, for each of them, we point

out, or give reference to, the process that has been followed

to obtain them from the original microarray experiment.

CNS Rat It is a 112� 17 data matrix, obtained from the

expression levels of 112 genes during a rat’s central ner-

vous system development. The dataset is studied by Wen

et al. (1998), where they suggest a partition of the genes

into six classes, four of which are composed of biologi-

cally, functionally-related genes. This partition is taken as

the gold solution, which is the same one used for the val-

idation of FOM (Yeung et al. 2001).

Leukemia It is a 38� 100 data matrix, where each row

corresponds to a patient with acute leukemia and each col-

umn to a gene. The original microarray experiment consists

of a 72� 6817 matrix, due to Golub et al. (1999). In order to

obtain the current dataset, Handl et al. (2005) extracted from

it a 38� 6817 matrix, corresponding to the learning set in the

study of Golub et al. and, via preprocessing steps, they

reduced it to the current dimension by excluding genes that

exhibited no significant variation across samples. The

interested reader can find details of the extraction process in

Handl et al.. For this dataset, there is a partition into three

classes and that is taken as gold solution.

NCI60 It is a 57� 200 data matrix, where each row

corresponds to a cell line and each column to a gene. This

dataset originates from a microarray study in gene

expression variation among the sixty cell lines of the

National Cancer Institute anti-cancer drug screen (NCI

2008), which consists of a 61� 5244 data matrix. There is

a partition of the dataset into eight classes, for a total of 57

cell lines, and it is taken as the gold solution. The dataset

has been obtained from the original microarray experi-

ments as described by Dudoit and Fridlyand (2002).

Lymphoma It is a 80� 100 data matrix, where each row

corresponds to a tissue sample and each column to a gene.

The dataset comes from the study of Alizadeh et al. (2000)

on the three most common adult lymphoma tumors. There

is a partition into three classes and it is taken as the gold

solution. The dataset has been obtained from the original

microarray experiments, consisting of an 80� 4682 data

matrix, following the same preprocessing steps detailed in

Dudoit and Fridlyand (2002).

Yeast It is a 698� 72 data matrix, studied by Spellman

et al. (1998) whose analysis suggests a partition of the

genes into five functionally-related classes, which is taken

as the gold solution and which has been used by Shamir

and Sharan for a case study on the performance of clus-

tering algorithms (Shamir and Sharan 2003).

St. Jude It is a 248� 985 data matrix, where each row

corresponds to a tissue sample and each column to a gene.

The dataset comes from the study of Yeoh et al. (2002) on

diagnostic bone marrow samples from pediatric acute

leukemia patients corresponding to 6 prognostically

important leukemia sub-types. There is a partition into 6

classes and we take that as the gold solution.

Novartis It is a 103� 1000 data matrix, where each row

corresponds to a tissue sample and each column to a gene.

The dataset comes from the study of Su et al. (2002) on

four distinct cancer types. There is a partition into four

classes and we take that as the gold solution.

Normal tissue It is a 90� 1277 data matrix, where each

row corresponds to a tissue sample and each column to a

gene. The dataset comes from the study of Su et al. (2002)

on the four distinct cancer types. There is a partition into

four classes and we take that as the gold solution.

Gaussian3 It is a 60� 600 data matrix. It is generated

by having 200 distinctive features out of the 600 assigned

to each cluster. There is a partition into three classes and

that is taken as the gold solution. The data simulates a

pattern whereby a distinct set of 200 genes is up-regulated

in one of the three clusters, and down-regulated in the

remaining two.
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Gaussian5 It is a 500� 2 data matrix. It represents the

union of observations from 5 bivariate Gaussians, 4 of

which are centered at the corners of the square of side

length k, with the 5th Gaussian centered at (k=2; k=2). A

total of 250 samples, 50 per class, were generated, where

two values of k are used, namely, k ¼ 2 and k ¼ 3, to

investigate different levels of overlapping between clusters.

There is a partition into five classes and that is taken as the

gold solution.

Simulated6 It is a 60� 600 data matrix. It consists of a

600-gene by 60-sample dataset. It can be partitioned into 6

classes with 8, 12, 10, 15, 5, and 10 samples respectively,

each marked by 50 distinct genes uniquely up-regulated for

that class. In addition, a list of 300 noise genes (i.e., genes

having the same distribution within all clusters) are inclu-

ded. In particular, such genes are generated with decreasing

differential expression and increasing variation, following

the same distribution. Finally, the first block of 50 genes of

the list is assigned to cluster 1, the second block to cluster 2

and so on. This partition into 6 classes is taken as the gold

solution.

5 Results and discussion

The plots of the Adjusted Rand Index values, shown in Fig.

S1, indicate the K-means algorithm with its different ini-

tializations as one of the best performers on all the con-

sidered datasets, since it exhibits a maximum for a k very

close to the gold solution. Since K-means works very well

when the structure of the clusters is spherical, we have

taken the outcome of the mentioned experiment as an

indication that a spherical Gaussian model would be

appropriate for our datasets. Therefore, we have used it for

all the Bayesian model selection methods considered here.

This means that the likelihood is computed as in formula 7.

However, in order to have robustness in our findings, we

have also evaluated the Bayesians methods in conjunction

with all clustering algorithms considered in this study.

We report here the comparison between the predictive

power of the three Bayesian methods BIC, AIC and MML

and that of the data-driven methods. To this end, we have

computed the ‘‘optimal’’ number k� of clusters in the case

of the Bayesian methods, and used the benchmarking

results reported in Giancarlo et al. (2008a) and Giancarlo

and Utro (2011) in regard to the data-driven methods.

Moreover, we also discuss the assessment of the Bayesian

methods in absolute terms, i.e, by themselves. As discussed

in Sect. 3, for most measures, the prediction of k� is based

on the visual inspection of curves and histograms. Here we

limit ourselves to produce summary tables, based on our

analysis of the relevant curves and experiments.

5.1 The performance of Bayesian methods

Each of the Bayesian methods has been computed for each

dataset and each clustering algorithm. Each such a com-

putation involves the estimation of a covariance matrix,

which suffers from the dimensionality of the dataset.

Indeed, in cases where a dataset has a number of features m

much greater than the number of items n, the following

problem comes up. Since the rank of the dataset matrix X is

r�minðm; nÞ, there exist at least m� n columns that are

linear combination of at most n columns of X. The pre-

sence of linearly dependent columns in X implies the

presence of linearly dependent rows in the m� m covari-

ance matrix of X, making impossible the computation of its

inverse and thus making impossible the computation of the

multivariate normal distribution. In this case, the reduction

of the data dimension by principal component ana-

lysis (Jain et al. 1999) can help because, if we consider the

list of principal components ordered in decreasing order

with respect to their corresponding variances, and we select

the first ones of them which explain the 100 % of the total

variance, the eigenvectors associated to these selected

principal components will define a projection Y of X into

an (at least) n-dimensional space where the computed

covariance will be invertible. Since most of the datasets

used here have the mentioned dimensionality problem, we

have used the data reduction technique just outlined in

order to circumvent it.

Tables 1, 2, and 3 summarize the results obtained by the

Bayesian methods. Columns indicate the datasets, rows

indicate the used measure in conjunction with a specific

clustering algorithm. Each cell in a table displays a preci-

sion result, a number in a circle with a black background

indicates a prediction in agreement with the number of

classes in the dataset, while a number in a circle or a square

with a white background indicates a prediction that differs,

in absolute value, by 1 or 2 from the number of classes in

the dataset respectively; a number not in a circle indicates

the remaining predictions. Based on these results, Bayesian

methods are able to provide the correct number of clusters

only on very few datasets. In particular, AIC seems to be

the best between the three Bayesian methods considered in

this paper. BIC (see Table 1) is able to correctly estimate

k� for 7=8 of the clustering algorithms on Gaussian5 and a

close estimation is obtained for Normal Tissue. However,

only in conjunction with Hier-A, it is able to estimate k� for

Gaussian3 and with K-means-R on NCI60. It is worth

pointing out that Hier-A, K-means-A and K-means-C

provide the ‘‘best’’ performance across the several datasets.

Table 2 shows the results for AIC, the perfomance for

Gaussian3 are the same as BIC, while in conjunction with

K-means-R AIC is able to correctly estimate for CNS Rat.

Based on the results on Table 2, it is worth pointing out
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that Hier-A, Hier-C and K-means-R provide the ‘‘best’’

performance across several datasets. Finally, Table 2

shows the results for MML, which is able to estimate cor-

rectly Gaussian3 and CNS Rat only in conjunction with

Kmeans-S.

5.2 Bayesian versus data-driven methods

In order to compare Bayesian with the data-driven meth-

ods, we take as reference the benchmarking results reported

in Giancarlo et al. (2008a) and Giancarlo and Utro (2011)

in regard to the data-driven methods. The results are

summarized in Table 4. Due to its lack of precision, we do

not consider MML in this comparison. It is evident that even

the remaining Bayesian methods (i.e. BIC and AIC) are

not able to compete in terms of precision with the data-

driven ones.

6 Conclusion

We have presented a study about model selection meth-

odologies in the specific contest of microarray data clus-

tering. In particular, our intention was to compare several

new state of the art data-driven model selection method-

ologies with respect to the Bayesian inspired ones, since

the latter represent a general and classical way of per-

forming model selection. Among the Bayesian methods,

we have used BIC, AIC and MML because of their wide

usage in the field of clustering. Experiments have been

Table 1 A summary of the results for BIC on all algorithms and on all datasets

CNS Rat Leukemia NCI60 Lymphoma Yeast Novartis St.Jude Normal Gaussian3 Gaussian5 Simulated6
Hier-A 4 6 3 2 2 5
Hier-C 2 11 14 20 6 11 10
Hier-S 1 1 1 1 1 1 3 1 1
K-means-R 2 7 12 20 6 10 11 6
K-means-A 3 7 14 20 11 11 5
K-means-C 4 9 14 20 11 11
K-means-S 4 7 14 20 11 11 5
Gold solution 6 3 8 3 5 4 6 13 3 5 6

Each cell in a table displays a precision result,a number in a circle with a black background indicates a prediction in agreement with the number

of classes in the dataset,while a number in a circle or a square with a white background indicates a prediction that differs, in absolute value, by 1

or 2 from the number of classes in the dataset respectively; a number not in a circle indicates the remaining predictions

Table 2 A summary of the results for AIC on all algorithms and on all datasets

CNS Rat Leukemia NCI60 Lymphoma Yeast Novartis St.Jude Normal Gaussian3 Gaussian5 Simulated6
Hier-A 4 6 2 2 5
Hier-C 11 14 20 6 11 10
Hier-S 1 1 1 1 1 1 3 1 1
K-means-R 7 10 14 20 6 10 11 6
K-means-A 7 14 20 11 11 5
K-means-C 8 9 14 20 11 11
K-means-S 7 14 20 11 11 5
Gold solution 6 3 8 3 5 4 6 13 3 5 6

Each cell in a table displays a precision result,a number in a circle with a black background indicates a prediction in agreement with the number

of classes in the dataset,while a number in a circle or a square with a white background indicates a prediction that differs, in absolute value, by 1

or 2 from the number of classes in the dataset respectively; a number not in a circle indicates the remaining predictions

Table 3 A summary of the results for MML on all algorithms and on all datasets

CNS Rat Leukemia NCI60 Lymphoma Yeast Novartis St.Jude Normal Gaussian3 Gaussian5 Simulated6
Hier-A 10 17 15 8 15 17 11 13 15 17
Hier-C 3 11 13 14 14 15 16 13 3 14
Hier-S 8 14 17 8 12 14 14 14 2 15
K-means-R 12 10 14 2 14 7 8 4
K-means-A 16 16 15 16 6 6 10 3
K-means-C 5 16 15 16 6 6 1
K-means-S 17 16 15 16 6 6 3
Gold solution 6 3 8 3 5 4 6 13 3 5 6

Each cell in a table displays a precision result,a number in a circle with a black background indicates a prediction in agreement with the number

of classes in the dataset,while a number in a circle or a square with a white background indicates a prediction that differs, in absolute value, by 1

or 2 from the number of classes in the dataset respectively; a number not in a circle indicates the remaining predictions
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carried out on 11 benchmark microarray datasets, and the

Bayesian methods have been compared with 9 state of the

art data-driven model selection methods. Results show the

merit of Bayesian methods only in some cases, suggesting

that they do not seem to be able to compete in terms of

precision with the data-driven methods.
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2012-ATE-0298 Metodi Formali e Algoritmici per la Bioinformatica

su Scala Genomica.

References

Akaike H (1978) A new look at the statistical model identification.

IEEE Trans Autom Control 9(6):716–723

Alizadeh A, Eisen M, Davis R, Ma C, Lossos I, Rosenwald A,

Boldrick J, Sabet H, Tran T, Yu X, Powell J, Yang L, Marti G,

Moore T, Hudson JJ, Lu L, Lewis D, Tibshirani R, Sherlock G,

Chan W, Greiner T, Weisenburger D, Armitage J, Warnke R,

Levy R, Wilson W, Grever M, Byrd J, Botstein D, Brown P,

Staudt L (2000) Distinct types of diffuse large b-cell lymphoma

identified by gene expression profiling. Nature 403:503–511

Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A

(1999) Broad patterns of gene expression revealed by clustering

analysis of tumor and normal colon tissues probed by oligonu-

cleotide arrays. Proc Natl Acad Sci USA 96:6745–6750

Andreopoulos B, An A, Wang X, Schroeder M (2009) A roadmap of

clustering algorithms: finding a match for a biomedical appli-

cation. Brief Bioinform 10(3):297–314

Ben-Hur A, Elisseeff A, Guyon I (2002) A stability based method for

discovering structure in clustering data. In: Seventh pacific

symposium on biocomputing, ISCB, pp 6–17

Bouguila N, Ziou D (2007) High-dimensional unsupervised selection

and estimation of a finite generalized Dirichlet mixture model

based on minimum message length. IEEE Trans Pattern Anal

Mach Intell 29(10):1716–1731

Breckenridge J (1989) Replicating cluster analysis: method, consis-

tency, and validity. Multivar Behav Res 24(2):147–161

D’haeseleer P (2006) How does gene expression cluster work? Nat

Biotechnol 23:1499–1501
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