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Abstract 

One of the most important problem of autonomous flight for UAS is the wind identification, especially for small scale 

vehicles. This research focusses on an identification methodology based on the Extended Kalman Filter (EKF). In 

particular authors focus their attention on the filter tuning problem. The proposed procedure requires low computational 

power, so it is very useful for UAS. Besides it allows a robust wind component identification even when, as it is usually, 

the measurement data set is affected by noticeable noises. 
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Acronyms 

  = Angle of attack 

  = Elevation angle 

u, w = velocity components in body reference frame (m/s) 

  ,    = acceleration of aircraft mass center along the body-fixed x-axis, z-axis (m/s
2
) 

q = pitch rate (rad/s) 

m = aircraft mass (kg) 

Iy = aircraft moment of inertia (kg m
2
) 

V = air speed (m/s) 

CL, CD, Cm, CT = lift, drag, pitch moment and thrust coefficients 

   
,    

,    
,    

,     
,     

,    
,    ,    ,    

 = Stability derivatives 

           
,     

,      
= Control derivatives 

T = thrust  

     =control input 

     =measurement noise 

     = process noise 

   
  = a priori estimate vector at the time step k 

    = a posteriori estimate vector at the time step k 

   = a priori output 

Z = measurement vector 

   = elevator deflection 

    = throttle displacement 

Item = k =0.033 sec 

t = time 

 

1. INTRODUCTION 

The flight of UAS is widely affected by atmospheric disturbances because of their small dimensions and their low 

airspeed. 

Therefore it is important to determine wind components in order to improve safety of flight operations and to obtain 

good flight performances. 

Different methodologies have been used to estimate wind vector. In the “wind triangle method” [1] the wind velocity 

and direction are determined from the difference between ground speed and airspeed. Unfortunately pitot probe for 
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UAS are affected by relevant measurement noise [2]. Besides also GPS measurements are noisy signals [3]. So it is 

necessary to filter these data [4-9]. 

Another way to determine wind is the use of dynamic model of the UAS. In this approach wind components are inserted 

into the equations of motion. The state is compared with a measurements set gathered by sensors [10-14]. 

In [11] a linear observer is employed to construct a Disturbance Observer Based Control (DOBC). 

In [12-13] wind components are determined by means of non-linear estimators. In particular [12] employs a constant 

matrix to insert wind into equations of motion. Then tunes gains and determines disturbances by integrating. Instead 

[13] employs a disturbance input matrix directly obtained by equations of motion. Like [12], it tunes the gains and 

determines disturbances by integrating them. 

In [14] wind estimation is performed by scheduled EKF. To determine Kalman gains, a Jacobian scheduling law is used. 

Good results are restricted to slow dynamics. 

Finally [15] employs three EKF working simultaneously to determine wind model starting from three known wind 

models (one for each filter). Then makes a weighted average of the obtained statistics. 

All previous papers based on observers have to solve the problem of a proper tuning of the estimator. 

The tuning is a very challenging problem. In several applications it is obtained using numerical optimization techniques 

[16]. Unfortunately the proposed tuning methods employ complex algorithms. So noticeable computational power is 

required and this is not at disposal of small UAS. 

In the present paper, to reduce computational power, authors use an EKF as observer and propose a simple optimization 

procedure based on a metric related to prediction errors to perform the tuning. Constrains are imposed to airspeed, pitch 

rate and elevation. 

The optimization procedure affords to determine automatically both the Process Noise Covariance matrix Q and the 

Measurement Noise Covariance matrix R. 

The fundamental innovation of the tuned up procedure consists in the fact that the covariance matrices of both process 

and measurement noise are not treated as filter design parameters. In this way it is possible to determine the optimal 

values of the aforementioned matrices, without resorting to long and tedious tuning operations through trial and error 

procedures. 

Furthermore, by using the proposed procedure, it is eliminated one of the typical EKF problems. As it is well known, in 

fact, if the filter is tuned in a specific condition, it determines optimal estimates in the afore mentioned condition, but 

the quality of the estimates worsen if it is used in different conditions. 

Because of the proposed algorithm determines, during the estimation process, the optimal values of Q and R depending 

on the dynamic evolution of the system and it always give raise to optimal estimates. 

Present paper is organized as follow: 

 Section 2 explains the proposed procedure describing both the aircraft model in turbulent air (2.1) and the 

tuning procedure (2.3); 

 Section 3 shows obtained simulation results and compares these ones with those obtained with classical tuning 

procedure; 

 Section 4 concludes the paper. 

 

2. PROPOSED PROCEDURE 

As it is well known, the structure of the EKF includes a predictor and a corrector. These ones work as shown in Figure 

1. 



 
Figure 1: Operations of the Extended Kalman Filter 

In the present paper, the corrector of such a filter employs a set of measurements gathered in turbulent air. 

The selected measured variables are: 

 

                

 

where V is the airspeed, q is the pitch rate,   is the angle of elevation, xE is the spatial coordinate of the center of mass 

and h is the altitude of the aircraft. 

Obviously: 

 

         
 
       

 
 

      
    

    

 

       

(1) 

 

with - (ug, wg, qg) unknown wind components in body axes. 

 

2.1 Aircraft model in turbulent air (Predictor) 

An accurate non-linear mathematical model of the aircraft flying in turbulent air constitutes the predictor. The classical 

rigid body equations of motion in body axes have been used [18]. 
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where: 

 

   
 

 
           

   
 

 
           

  
 

 
            

  
 

 
           

(2.1) 

 

Into (2.1) 

  



 

                      

                     
(2.2) 

 

Into (2.2), aerodynamic coefficients are expressed by: 

 

      
      

  
 

   

    
 

 

   

    
   

      
            

            
              

      
    

      
  

 

   

    
 

 

   

    
   

      
 
    

  

    
    

   
       

    

  
  

  
  

  
 

 
 

(2.3) 

 

Equations (2) have been modified by inserting the wind components into the aerodynamic forces and moments using 

Equations (1). 

The state of the system is constituted by both the six aircraft state variables in body axes and the wind components to be 

determined: 

 

                         
 

 (3) 

 

To estimate the disturbance, the following equations are inserted into the predictor: 

 

      

      

      

(4) 

 

In this way, no hypothesis has been made about wind dynamics and the filter is forced to estimate disturbances by using 

measurements. 

The mathematical model has been applied on an UAS that is a 1:5 scale model of the ultra-light aircraft N3-PUP. Such 

a model is the same used in previous researches. 

In Table 1 and Table 2 are reported UAS model geometrical characteristics and fundamental performances 

 
Table 1: UAS model geometrical characteristics 

 Value 

Mean chord c 0.24 m 
Wing span b 1.86m 

Wing area S 0.4464 m2 

Mass W/g 2.5 kg 

Inertia moment Iy 0.1080 kg m2 

Maximum Power 27.56 kg m/sec 

 
Table 2: UAS fundamental performances 

 Value 

Vms 7.08 m/sec 
Vmax,OF 27 m/ses 

Vcruise 23.6305 m/sec 

 

2.2 Extended Kalman Filter  

As it is well known, the Extended Kalman Filter is an optimal estimator for stochastic systems in presence of process 

noise (w(t)) and measurement noise (v(t)). In the derivation of EKF, both noises are white noise processes. 

The general state equation of a time varying dynamical system is: 
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The initial value    in Equation (5) has known mean value and known covariance matrix   
   . 

If the process is governed by the non-linear difference equations: 
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In this case the non-linear function f in the difference equation (Eq. (7)) relates the state at the previous time step to the 

state at the current time step . It includes as parameters any driving function and the zero-mean process noise   . The 

non-linear function h in the measurement equation (Eq. (8)) relates the state to the measurement 

By using numerical partial differentiation to linearize the problems, it is possible to write: 
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In Equations (9) and (10)    and   are the actual state and measurement vectors,    
  and   are a priori state and 

measurement vectors,     is an a posteriori estimate of the state at step k. Besides [17]: 

   
  

  
               

   
  

  
               

   
  

  
    

     

   
  

  
    

     

The state estimation error is 

        

By using Equations (9) and (10), it is obtained: 

 

                       (11) 

 

where K is the Kalman gain matrix. 

The error covariance of Equation (11) is: 

 

                       (12) 

 

By differentiating Equation (12) and using Equation (11) it is obtained: 

 

                         
 

Because of the process and measurement noises are zero-mean processes, the steady state value of       is zero. It 

follows that the estimates    approach the     . 
In the same way it is possible to determine stochastic characteristics of the prediction error     

To minimize the state estimation error, it needs to minimize the error covariance       by solving the Algebraic Riccati 

Equation (ARE) at every k. 

 

2.3 Filter tuning  

As previous stated, to tune the EKF, an optimization procedure has been implemented. The optimization process is 

based on the control of prediction errors. Since wind components modifies both flight path and attitude, constrains have 

been imposed on errors of angle of elevation, horizontal displacement and height. 

As previous stated, the a priori estimate covariance matrix is: 

 

   
      

    
    

 

To minimize the prediction error, it is necessary to determine, for each time step k, the a priori estimate covariance 

matrix. 



A metric for the goodness of the obtained value of    
  is the following quantity: 

 

   
     

     
  

 

where    
  is the a priori estimate vector at the time step k. 

The imposed constrains are: 
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Values of a, b, and c are selected depending on UAS performances and desired flight path precision. In particular, in the 

present paper, values of imposed constrains are: 

 

           (16) 

      (17) 

      (18) 

 

Selected constrains have been chosen with the aim of using wind data in the design of a flight control system. 

Therefore, to perform a precise path tracking, it is necessary high precision in attitude determination. During cruise 

flight, because of the horizontal component of airspeed is much more than vertical one, errors on height are more 

important than distance ones. Selected values of b and c are strictly related to the considered cruise speed. 

When one or more of previous constrains are not verified, the algorithm modifies any    and    matrix elements. 

In particular: 

 if Eq. (13) is not verified, the algorithm decreases the    elements corresponding to   and   ,   and   ,    

besides it increases    elements corresponding to   and  ; 

 if Eq. (14) is not verified, the algorithm decreases the    elements corresponding to   and   , and    besides 

it increases    elements corresponding to  ; 

 if Eq. (15) is not verified, the algorithm decreases the    elements corresponding to   and   , and  ;. 

In this way, when imposed constrains are verified, we obtain a precise wind component estimation.  

In all cases,    values are reduced of 10% every time the constrain is not verified. Regarding to    values: 

 if Eq. (5) is not verified,    increases of 20% and     is multiplied by 10.    increases much more than    

because the attitude values estimation, as it is well known, is a very difficult problem. Besides, R variations are 

heavier than Q ones because of R-matrix affects the estimates more than Q-matrix; 

 if Eq. (6) is not verified,    is multiplied by 10. 

It is important to note that to apply the proposed procedure to estimate both state and wind components simply the 

initial value of the covariance matrices of initial condition (  
   ), process noise (  

   ) and measurement noise (  
   ) have to 

be selected. 

As previous stated, the algorithm modifies the values of    and    and determines the optimal values of such a matrices. 

So these matrices vary, at any item, depending on prediction error.  

Obtained values of    and    are optimal values because they are obtained by the minimization of the covariance matrix 

of the state estimation error (   ). 

It is noticeable that, according to the imposed constrains, optimal values of the covariance matrices are linked to: 

aircraft parameters, wind characteristics and aircraft flight path.  

Finally the tuning is fully autonomous and the procedure requires low computational power. 

 

3. Results and discussion 

In simulation environment authors have studied many cases of different flight conditions and wind components. In 

particular infinite and finite step, harmonic and random wind components have been investigated. To simulate a real set 

of measurement data, various kind of noises have been added to measurement set. 

 

Noticeable errors have been postulated for the initial condition x0: 

  
                                



Besides the initial values of the measurement noise covariance matrix,   
    has been selected according to the 

characteristics of the sensors today employed for UAS: 

  
                          

In order to speed up the process of determining optimal values of the elements of process noise covariance matrix    

reasonable values have been selected for the initial covariance (  
     of the state variables. Such a values have been 

determined by imposing the maximum admissible errors of  ,  ,  , x, z. 

In particular: 

     
      

         

     
             

     
      

       

In this way the filter is forced to reduce the prediction errors until the imposed constrains are verified, therefore the 

unknown wind components are estimated with the outmost precision. 

Because of no hypothesis have been made about the disturbance dynamics, the covariance of the augmented state has 

been chosen higher than these of the state variables. 

Moreover, the covariance of the wind component have been imposed higher than the measurement noise covariance. 

According to the above mentioned hypothesis, the   
    value is: 

  
                                                   

In this way the filter is forced to estimate wind components from the measurement set that is affected by wind 

disturbances. 

Simulation results have verified the feasibility of the proposed tuning procedure.  

In particular results show the wind identification of an infinite wind step with following characteristics: 

         

           

              

Noisy measurements have been processed. In particular low and high frequency noises have been created to test the 

procedure. The low one (Figure 2) has been created by the following equation: 

                         
 

 
  

The high one (Figure 3) has been created by using a random signal with maximum amplitude equal to 1. 

In all figures in x-axes are reported items (k) instead of time. Each item is 0.033 sec. 

In order to have noise and measurement of the same order, noise added to measurements have been opportunely scaled. 

 

Figure 2: Low frequency noise 



 

Figure 3: High frequency noise 

In Figure 4-6 are reported the estimated wind components in case of horizontal flight and noisy measurements. 

 

Figure 4: Estimated    

 

Figure 5: Estimated    



 

Figure 6: Estimated    

Results show how the automatic tuning procedure bring the wind estimation to the real value of the wind. 

In case of low frequency noise measurements, the oscillation of the estimation is less than high frequency noise ones. 

The estimation time is almost equal for the two cases of noises. 

The high frequency noise has more influence on the    component estimation; this is due to the high value of the noise 

respect to the wind to estimate.  

As previous stated the proposed procedure affords to reduce the computational power needed to perform state 

estimation. Besides it give optimal estimates in every condition. 

A comparison in terms of computational time between proposed procedure and classical one is not possible because of 

the length of trial and error tuning is not predictable. A comparison, always in terms of computational time, with tuning 

procedures employing numerical optimization techniques is not useful because of  present procedure is designed for 

UAS with low computational power. So for this kind of aircraft it is not possible to employ procedures that use complex 

algorithms and require high computational power. 

To evaluate the filter performances, in Figures 7-9 a comparison has been made between the obtained wind components 

estimates and those ones determined by using a classical trial and error procedure to tune the EKF. In particular, Figures 

7a, 8a and 9a show the estimates of ug, wg, qg obtained by using the present algorithm and Figures 7b, 8b and 9b show 

the wind component estimated by authors with a classical EKF (   and    are constant matrices and their values have 

been determined by using trial and error procedure). 

 
a) 

 
b) 

Figure 7: Comparison between estimated    with proposed procedure (a)) and trial and error tuning (b)) 



 
a) 

 
b) 

Figure 8: Comparison between estimated    with proposed procedure (a)) and trial and error tuning (b)) 

 
a) 

 
b) 

Figure 9: Comparison between estimated    with proposed procedure (a)) and trial and error tuning (b)) 

As it is possible to see by comparing obtained results, final values of the identified wind components are quite similar. 

The fundamental difference between the proposed procedure and the traditional one is that in the second case (Figures 

b) the identification is made in very few items, instead in the first case wind correct identification is performed after 

more time. This is due to the tuning procedure that, even if it is so quick, needs of any item to reach the steady state 

covariance values.  

Because of the procedure has been designed for small UAS with low flight speed, the time to reach steady state 

covariance values is compatible with dynamic characteristics of the UAS. 

 

4. Conclusions 

Present procedure could improve the flight safety of UAS operations because of it allows to determine with the outmost 

precision the wind components. 

Instead of using complex algorithms to tune the state observer, a simple optimization technique is developed. It 

determine automatically the filter parameters. 

The obtained results show the effectiveness of the procedure in presence of either low frequency disturbances or high 

frequency ones. In addition, the performed comparison with results obtained by using an EKF tuned by a trial and error 

procedure demonstrates the effectiveness of the algorithm. 

The proposed procedure requires low computational power, so it is very useful for UAS. Besides it allows a robust wind 

component identification even when, as it is usually, the measurement data set is affected by noticeable noises.  

It is noticeable that the carried out procedure is adaptive. In fact the optimal values of the covariance matrices are linked 

to: aircraft parameters, wind characteristics and aircraft flight path. 

In addition to reducing the computation time and/or the computational power needed to make the estimates, the 

proposed procedure removes one of the classical weaknesses of the state estimation by using EKF (optimal estimates in 

the tuning condition and sub-optimal ones in all the other ones: i.e. poor robustness). 



In fact, since the tuning is not carried out before the estimates, but it is automatically done during the estimation process 

itself, the estimated state is always the optimal one. 

At present time, authors are working to the on-board implementation of the carried out procedure. 
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