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Abstract

Ceramic coatings were grown by plasma electrolytic oxidation on 7075 Al alloy using unipolar and
bipolar pulsed current waveforms with 20 and 40% cathodic duty cycles, from a silicate-based bath
without and with the addition of Na,WO,. Pancake-like morphology was dominant on the coatings
grown by unipolar waveform, while the bipolar waveforms promoted volcano-like morphology,
increased the roughness of the coating surface and the formation of more compact layers. The coatings
produced using the bipolar waveforms provided higher resistances toward both tribocorrosion and
dry sliding conditions, while further improvement was achieved by the presence of tungsten. The
coatings produced in tungstate containing bath using the bipolar waveform with 40% cathodic duty
cycle provided the best performance in both sliding conditions, showing ~90% reduction in volume
loss comparing to the coating produced in additive-free electrolyte using unipolar waveform.

1. Introduction

Aluminum and its alloys are widely used due to a combination of properties, such as high strength-to-weight
ratio, high thermal and electrical conductivity, and easy machinability. These features make aluminum alloys
election materials for automotive industries in order to increase fuel consumption efficiency through weight
reduction of the components [1]. Moreover, 7075 Al alloy has been widely used in thick-section airframe
components due to superior combination of strength and fracture toughness [2], even if low wear and corrosion
resistance of this alloy represents a significant drawback for its applications [3].

Among the surface treatments proposed to overcome this problem, Plasma Electrolytic Oxidation (PEO) is
one of the most promising allowing for the growth of oxide ceramic coatings on light alloys such as Ti, Al, and
Mg [4]. PEO is an eco-friendly process based on conventional anodic oxidation in aqueous electrolytes. This
treatment is operated above the breakdown voltage and produces thicker and more adherent oxide layers than
the conventional and hard anodizing [5, 6]. Moreover, PEO can also change the color of the alloy surface
necessary for aerospace applications [7].

Plasma electrolytic oxidation is a versatile process that allows for tailoring the morphology, structure and
composition of the coatings by tuning the electric regime (i.e. current type, current density, duty cycle) as well as
the electrolytic bath composition (i.e. pH, additives presence and concentration, etc) [8, 9]. PEO treatments are
commonly carried out applying direct current (DC), alternating current (AC), and pulsed current (PC) [10]. It
has been proved that the coatings obtained using DC are highly porous and can be easily detached from the
substrate. Applying AC, despite providing more adhesive and less porous oxide coatings, is not of industrial
interest due to low growth rate and low energy efficiency during coating production [11]. Conversely, PC
produces more compact and adherent layers with improved tribocorrosion and wear resistance by changing the
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nature of plasma discharges [12, 13]. According to literature [14, 15], the initial pulse delay and the cathodic
cycle are two important factors for PC usage superiority. The presence of cathodic duty cycle randomizes the
discharges on metal surface and when increased to obtain a soft-sparking condition, the formed coatings
become more uniform in thickness and roughness [16]. This uniformity is the result of the controlled discharges
and the sealing effect of cathodic polarization, during which the remained cracks and channels from anodic
breakdown are sealed [17]. Notably, in [ 18] it has been shown that the wear resistance of 6061 Al alloys can be
improved by PEO coating produced using bipolar pulsed current mode with high negative peak current.

On the other hand, a crucial role is played by the electrolyte, since foreign species derived from the bath can
be incorporated into the coating during PEO process with consequent changes in the structure, composition,
and porosity of the layers [19]. Metal salts additives such as KMnO, [20], NH,VO; [21], and K, TiF¢ [22] are
usually employed as oxidizing and colouring agents, sodium tungstate (Na,WO,) enhances the hardness of the
coating according to [23]. Additionally, tungsten-containing coatings formed by constant current density on
8011 and 6061 Al alloys revealed enhanced corrosion resistance [24, 25].

In a previous work [26], we have studied the W incorporation mechanism during plasma electrolytic
oxidation of 7075 Al alloys employing different electric regimes. The experimental findings reported in this
paper proved that incorporation of W in PEO coatings grown under a soft sparking regime has a beneficial effect
on the corrosion resistance of the alloy in highly aggressive environments. Starting from these experimental
findings, this work is aimed to assess the influence of pulsed current waveforms alongside the incorporation of
sodium tungstate as an additive on wear resistance of 7075 Al alloy. Unipolar and bipolar current modes with
two different cathodic/anodic pulse ratios were used in aqueous solutions without and with tungstate addition.
Tribocorrosion and dry sliding tests were executed to study and compare the wear behavior of coatings.

2. Experimental procedure

7075 Al alloys from a T6-heat treated rod with the chemical composition (wt%) of 5.1 Zn, 2.2 Mg, 1.2 Cu, 0.3 Fe,
0.2 51, 0.2 Cr, 0.2 Mn, and balance Al were used as substrates in cylindrical shape with 2 cm diameter and 1 cm
height. The samples were then ground using SiC papers from 600 to 2400 grit and polished until a surface
roughness of Ra < 0.1 pum was achieved. After been degreased in acetone, the specimens were rinsed in distilled
water and dried by warm air blowing. Finally, the samples were connected to copper wires and covered on the
sides in order to prevent oxide growth on these areas.

Plasma electrolytic oxidation was carried out in two silicate baths (10 g1~" sodium silicateand 2 g1~
potassium hydroxide) without (B1) and with 3 g1~ sodium tungstate (B2) [26, 27], using three waveforms:
unipolar (W1) and bipolar regimes with 20 (W2) and 40% (W3) cathodic duty cycles according to our previous
studies [26, 27]. A schematic representing the coating system is illustrated in figure 1. The cell is equipped with a
centrifugal pump for stirring, thermostat controller and a reciprocating compressor chiller to keep the operation
temperature at 25 + 1 °C. Two stainless steel sheets (30 cm x 30 cm) on the bath sides were used as the counter
electrodes. The selection of electrical parameters were according to our previous studies [26, 27].

Surface morphology of the coatings, as well as their cross-sections, were investigated by scanning electron
microscope (SEM, Philips XL30). The surface roughness of the coatings was measured using a profilometer
(model Mitutoyo SJ 210), which was also used to determine the worn area depth after the tests. Tribocorrosion
tests were carried out in a reciprocating ball-on-flat tribometer in presence of 3.5 wt% NaCl solution at pH 4
adjusted by hydrogen chloride. 10 N ofloading was used on a SiC ball with 3 mm diameter as the counterpart
material oscillatinga 7 mm amplitude at 1 Hz frequency. Before running the process, each specimen was
immersed in the solution for 1 h in order to achieve a stable open circuit potential (OCP). The variations in
potential were recorded 15 min before sliding, during sliding (45 min) and 15 min after sliding using saturated
Ag/AgCl as reference electrode, Pt plate as counter electrode and specimen as working electrode connected to an
EG&G potentiostat/galvanostat (model 263A). The samples were ultrasonically cleaned and dried by warm
blowing prior to observing the wear tracks using SEM and measuring the volume loss by profilometer. The same
tribometer was used to conduct wear test in the air at ambient temperature (20% humidity). In this case, 2 N of
loading was used on the mentioned ball reciprocating in the same manner for 45 min. Coefficient of friction
(COF) was recorded using a dynamometer connected to the computer during dry wear tests.

3. Results and discussion

3.1. Coating characterization

According to our previous works [26, 27], the coatings were mainly composed of y-alumina for both sets of
tungsten-free and tungsten-containing coatings. Metallic tungsten was also present in the coatings treated in
tungstate-containing electrolyte. The main elements of the coatings produced in additive-free bath were Al, O,
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Figure 1. Schematic illustration of PEO coating set up used in this study.

Table 1. Coatings thickness and average value of surface
roughness (Ra) and the value between the highest peak and
the deepest valley (Rz) ..

Sample Thickness (um) Ra (um) Rz (um)

BIW1 24.14 £+ 4.1 2.66 22.86
B1wW2 28.05 + 10.7 3.11 28.12
BIW3 35.11 + 10.8 4.00 36.52
B2W1 20.02 &+ 5.7 2.94 23.75
B2W2 26.40 + 5.1 3.80 25.13
B3W3 24.03 £ 7.9 4.54 31.01

and Si, while W was also present in the coatings grown in tungstate-containing bath. By applying the bipolar
current regimes, both W and Si contents of the coatings reduced significantly. In this case, the W contents were
2.6 and 0.8 at% for the coatings grown by unipolar and bipolar waveforms, respectively [26].

According to SEM observations (figure 2), the unipolar waveform results in the formation of pancake-like
surface morphology, whereas applying the bipolar waveforms promotes the volcano-like morphology. A high
level of porosity was created in the coatings produced by the unipolar waveform, and a pore-band was detected
at the coating/substrate interface even in presence of tungstate (figure 2(d’)). However, application of the
bipolar waveforms resulted in the formation of more compact coatings restating its advantage over unipolar
waveform [21, 22]. Table 1 shows the thickness and roughness of the coatings. BIW1, BIW2, and BIW3 are the
coatings produced in the tungstate-free bath using unipolar (W1) and bipolar waveforms (W2 and W3) [27],
where, B2W1, B2W2 and B2W3 coatings are grown accordingly in the tungsten-containing bath [26]. The data
reported in table 1 reveals that using the bipolar waveforms induces an increase of the coating thickness and
roughness for both sets of coatings. Moreover, the average roughness values tend to be close to each other in the
coatings obtained by the same waveform from both tungstate-containing and tungstate-free baths.

3.2. Wear and tribocorrosion tests

The dependence of the coefficient of friction (COF) as a function of the sliding distance during dry wear process
of the coatings is illustrated in figure 3. COFs are almost constant without transition points indicating that the
ball does not touch the metallic substrate. COFs of the coatings grown by the bipolar waveforms are higher than
those measured for coating grown by unipolar mode, due to the higher roughness originated from the volcano-
like morphology. In some cases (e.g. BIW3 and B2W1 coatings), gradual increase in COF is observed. This could
be ascribed to the particles spalling from the surface and debris accumulation at scar edge, which intensify the
wear damage and lead to the increase of COF. Overall, slightly higher COFs are obtained for the tungsten-
containing coatings.
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Figure 2. SEM images from surface and cross-section of tungsten-free and tungsten-containing coatings using unipolar and bipolar
waveforms, respectively: (a,a’) BIW1, (b, b') BIW2, (¢, ¢) BIW3, (d, d’) B2W1, (e, ¢’) B2ZW2 and (f, {') B2W3.
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Figure 3. Variations of COF during ball-on-flat dry sliding; (a) tungsten-free coatings, (b) tungsten-containing coatings.

For the tribocorrosion test, the OCPs of the coatings were recorded continuously versus immersion time in
3.5% NaCl solution (figure 4). Each graph reveals three regions including pre-sliding (15 min), during-sliding
(45 min) and post-sliding (15 min) as shown in the diagram. It is evident that the coatings produced by the
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Figure 4. OCP variations before, during, and after sliding in 3.5% NaCl solution.

unipolar waveform cannot resist against 10 N loading as their OCP values drop after about 30 min of sliding.
The deterioration of PEO layer exposes Al substrate to the aggressive solution, and thus, reveals a potential drop.
After sliding, the potential starts rising to less negative values illustrating that the galvanic couple has been shut
down by Al repassivation [28]. Earlier OCP drop of B2W1 could be related to the presence of pore-band in its
oxide/substrate interface. In this case, the OCP decreased continuously after its sudden drop until the end of
sliding. This indicates that the area of the active region (i.e. bare Al alloy substrate) is increasing gradually in the
worn track during the sliding. However, the OCP remained constant after its sudden drop for BIW1 sample.
This situation is more likely raised by the pore-band structure in B2W1 sample, but does not exist in tungsten-
free (B1W1) one. It seems that the pore-band prevents SiC ball to uniformly contact the Al substrate surface for
B2W1 coating. Moreover, the ball rubbing the surface of BIW1 causes strong fluctuations before the potential
drop, which are raised by intensive delamination of tribo-layers [24, 25], more likely due to the presence of a
high level of pores.

The coatings formed using the bipolar waveforms experienced no potential drop during sliding. The
asperities on these coatings provide stable tribo-layers by mechanical interlocking that are able to protect the
coating from detachment, while tribo-layers lack adherence in the coatings grown by unipolar waveform [29].
Similar results have been obtained for the PEO coatings grown in the presence of potassium titanyl oxalate using
the similar waveforms [12]. In the presence of titanyl oxalate, the coatings produced by the bipolar waveforms
also showed no potential drop during sliding, while the coating grown by the unipolar waveform revealed a
potential drop indicating the coating removal inside the wear scar [12]. Comparison of the OCP variations
indicates the advantage of bipolar waveforms over the unipolar one on obtaining the coatings withstand
degradation during sliding in aggressive media.

The wear scars were scanned using SEM in order to determine the width and the surface morphology of the
worn areas. By using the line profiles from wear scars after tribocorrosion and dry sliding, the shape of the scars,
and thus, volume loss of the scars was calculated. The volume loss of worn areas was calculated by integrating the
line profiles and the results along with the coating hardness values are presented in table 2. According to that,
B1W1 demonstrates the highest volume loss (520 x 10~ mm?®) with maximum scar depth of 55 zm in the
tribocorrosion test. In spite of the presence of pore-band, B2W1 revealed lower damage during rubbing by SiC
ball (299 x 10> mm?), probably due to its higher hardness resulted by the presence of tungsten in its structure.
However, in both sets, we can see a restorative trend in lost material by changing to bipolar waveforms. As
previously stated, using the bipolar waveforms prevents the formation of pores especially at coating/substrate
interface which surely enhances hardness and adhesion of the coatings.

As seen in table 2, the bipolar waveforms have guaranteed higher hardness, and hence, better wear resistance
in agreement with previous studies [12, 30]. Moreover, introducing tungsten has effectively raised the coating
hardness. For these two reasons, the tungsten-containing coating grown using the bipolar waveform with the
widest negative cycle (i.e. B2ZW3) reveals the lowest volume loss (8 x 10~> mm?) in the tribocorrosion test.

A similar trend is observed in dry wear analysis (table 2). However, for the coatings grown by the bipolar
waveforms, the volume loss in dry sliding at 2 N loading is almost close to that in the tribocorrosion test (10 N
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Figure 5. SEM images of wear tracks after dry sliding in BSE mode: (a) BIW1; (b) BIW2; (c) BIW3; (d) B2W1; (e) B2W2; (f) B2W3.

Table 2. Hardness of the coatings and wear track analysis results.

Wetsliding Dry sliding
Volume loss Max. Volume loss Max.
Sample code  Hardness (Hv) (x107* mm>) depth (um) (x107> mm?) depth(um)  Average COF
B1W1 912 520 55 170 33 0.27
B1w2 1521 81 19 83 20 0.33
B1W3 1924 16 13 15 10 0.52
B2W1 1152 299 42 135 26 0.34
B2w2 1795 64 17 54 15 0.55
B2W3 2297 8 7 5 4 0.64

loading). This suggests that the aggressive solution present in surface pores has delayed the wear process. It is
reported in the literature [29] that the solution film redistributes the stresses over the surface and reduces the
wear when removed sequentially by sliding. In this way, instead of severe wear of the coating expected at 10 N
loading, it is the solution film being removed and provides a low-shear layer against rubbing as described in [29].
On the contrary, a significant difference in volume loss can be distinguished for the coatings produced by the
unipolar waveform (i.e. BIW1 and B2W1) when compared in dry and wet sliding conditions. This difference
indicates that the contribution of corrosion is probably high in these two coatings more likely because of their
higher porosity as described before.

SEM micrographs of worn surfaces after both dry and wet sliding conditions are shown in figures 5 and 6,
respectively. The wear tracks of the coatings formed by unipolar waveform can easily be detected due to intense
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Figure 6. SEM images of wear tracks after tribocorrosion in BSE and higher magnification in SE modes, respectively: (a,a’) BIW1;
(b, b") BIW2; (¢, ') BIW3; (d, d’) B2W1; (e, ') B2W2; (£, ') B2W3.

damage, while they become less distinctive in coatings formed by the bipolar waveforms. The worn areas are
specified by dotted lines confirming the reduction of the wear track width by altering the applied waveform and
adding tungsten. Deformed areas are created outside the wear tracks very close to the edges. It seems that the
coating fracture and delamination have occurred due to low load-carrying of coatings as it is subjected to shear
stresses exceeded than the yield strength [31]. According to [32, 33], during PEO treatment, internal stresses
could be generated by rapid solidification of ejected material from discharge channels or uneven thermal
expansion of the coating and substrate. These stresses which found to be compressive in nature, effectively
reduce the shear stresses on the surface and avoid microcracking during the wear process.

During the dry wear (figure 5), porous part of the coatings is detached and damages the surface in a third-
body abrasion manner. Thus, the prevailing wear mechanism in dry condition seems to be three-body abrasive
and micropolishing [29, 34, 35], while the formation of tribo-layer is predominant in tribocorrosion (figure 6)
[30, 36]. As seen, using the wider negative cycle (W3) along with the tungstate additive in PEO treatment of 7075
Al alloy provides it a higher wear and wear-corrosion resistance.
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4. Conclusions

7075 Al alloy specimens were coated by plasma electrolytic oxidation process using unipolar and bipolar pulsed
currents in absence and presence of sodium tungstate. Waveforms varied from 0 to 20 and 40% cathodic duty
cycle impacting the surface morphologies greatly beside mechanical properties.

Using the unipolar waveform, the high porosity level created in the coatings were detrimental for
tribocorrosion resistance as OCP drop was observed during sliding. However, adding sodium tungstate resulted
in enhanced wear resistance by decreasing the lost volume from 170 to 135 (x 10> mm?) in dry condition and
from 520 t0 229 (x 10> mm?) in 3.5% NaCl solution due to increased hardness of the coating from 912 to
1152 Hv. It was found that the PEO treating using the bipolar waveform with the wider cathodic width besides
adding sodium tungsten to the electrolyte results in the formation of the most proper coating showing the least
volume losses in tribocorrosion (8 x 10~ mm?)and drysliding (5 x 107> mm®).
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