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Abstract We generalize, by a progressive procedure,

the notions of conjunction and disjunction of two con-

ditional events to the case of n conditional events. In

our coherence-based approach, conjunctions and dis-

junctions are suitable conditional random quantities.

We define the notion of negation, by verifying De Mor-

gan’s Laws. We also show that conjunction and dis-

junction satisfy the associative and commutative prop-

erties, and a monotonicity property. Then, we give

some results on coherence of prevision assessments for

some families of compounded conditionals; in partic-

ular we examine the Fréchet-Hoeffding bounds. More-

over, we study the reverse probabilistic inference from

the conjunction Cn`1 of n ` 1 conditional events to

the family tCn, En`1|Hn`1u. We consider the relation

with the notion of quasi-conjunction and we examine

in detail the coherence of the prevision assessments re-

lated with the conjunction of three conditional events.

Based on conjunction, we also give a characterization

of p-consistency and of p-entailment, with applications

to several inference rules in probabilistic nonmonotonic

reasoning. Finally, we examine some non p-valid infer-

ence rules; then, we illustrate by an example two meth-

ods which allow to suitably modify non p-valid inference

rules in order to get inferences which are p-valid.
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1 Introduction

The research on combining logic and probability has

a long history (see, e.g., [2,8,13,17,33]). In this pa-

per we use a coherence-based approach to probabil-

ity, which allows to introduce probability assessments

on arbitrary families of conditional events, by properly

managing conditioning events of zero probability (see,

e.g., [4,5,13,18,19,21,28,29,42]). In probability theory
and in probability logic a relevant problem, largely dis-

cussed by many authors (see, e.g., [3,14,15,32]), is that

of suitably defining logical operations among condi-

tional events. In a pioneering paper, written in 1935

by de Finetti ([17]), it was proposed a three-valued

logic for conditional events coinciding with that one

of Lukasiewicz. A survey of the many contributions by

different authors (such as Adams, Belnap, Calabrese,

de Finetti, Dubois, van Fraassen, McGee, Goodmann,

Lewis, Nguyen, Prade, Schay) to research on three-

valued logics and compounds of conditionals has been

given in [39]; conditionals have also been extensively

studied in [16,38]. In the literature, the conjunction

and disjunction have been usually defined as suitable

conditionals; see e.g. [2,9,11,32]. A theory for the com-

pounds of conditionals has been proposed in [38,34].

A related theory has been developed in the setting of

coherence in [25,26,29]; in these papers, conjunction

and disjunction of two conditional events are not de-

fined as conditional events, but as suitable conditional
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random quantities, with values in the interval r0, 1s. In

the present paper we generalize the notions of conjunc-

tion and disjunction of two conditional events to the

case of n conditional events; we also give the notion

of negation. Then, we examine a monotonicity prop-

erty for conjunction and disjunction. Moreover, we give

some results on coherence of prevision assessments for

some families of compounded conditionals; in particu-

lar we examine the Fréchet-Hoeffding bounds. Finally,

we examine in detail the coherence of prevision assess-

ments related with the conjunction of three conditional

events. The paper is organized as described below. In

Section 2 we recall some preliminary notions and re-

sults which concern coherence, quasi conjunction, con-

junction, disjunction, and Fréchet-Hoeffding bounds. In

Section 3 we introduce, in a progressive way, the no-

tions of conjunction and disjunction for n conditional

events; then, we define the notion of negation and we

show that De Morgan’s Laws are satisfied. We define

the notion of conjunction (resp., disjunction) for the

conjunctions (resp., disjunctions) associated with two

families of conditional events, by showing then the va-

lidity of commutative and associative properties. In Sec-

tion 4, after a preliminary result concerning the inequal-

ity X|H ď Y |K between two conditional random quan-

tities, we show that the conjunction Cn`1 of n` 1 con-

ditional events is a conditional random quantity less

than or equal to any conjunction Cn of a subfamily of n

conditional events. Likewise, we show that the disjunc-

tion Dn`1 of n` 1 conditional events is greater than or

equal to any disjunction Dn of a subfamily of n condi-

tional events. We also show that Cn and Dn belong to

the interval r0, 1s. Moreover, we derive some inequali-

ties from the monotony property. In Section 5, based on

a geometrical approach, we characterize by an iterative

procedure the set of coherent assessments on the fam-

ily tCn, En`1|Hn`1, Cn`1u. In Section 6 we study the

(reverse) inference from Cn`1 to tCn, En`1|Hn`1u, by

determining the set of coherent extensions pµn, xn`1q

of any coherent assessment µn`1, where µn “ PpCnq,
xn`1 “ P pEn`1|Hn`1q, and µn`1 “ PpCn`1q. In Sec-

tion 7 we show that the prevision of the conjunction

Cn satisfies the Fréchet-Hoeffding bounds. Then, by

exploiting De Morgan’s Laws, we give the dual re-

sult for the disjunction Dn. In Section 8 we examine

in detail the conjunction for a family of three condi-

tional events E1|H1, E2|H2, E3|H3. We also consider

the relation with the notion of quasi-conjunction stud-

ied in [2]; see also [27,28]. We also determine the set

of coherent prevision assessments on the whole fam-

ily tE1|H1, E2|H2, E3|H3, pE1|H1q^pE2|H2q, pE1|H1q^

pE3|H3q, pE2|H2q ^ pE3|H3q, pE1|H1q ^ pE2|H2q ^

pE3|H3qu. Moreover, we consider the particular case

where H1 “ H2 “ H3 “ H. In Section 9, by apply-

ing our notion of conjunction, we give a characteriza-

tion of p-consistency and p-entailment and we examine

some p-valid inference rules in probabilistic nonmono-

tonic reasoning. Moreover, based on a suitable notion of

iterated conditioning, we briefly describe a characteri-

zation of p-entailment in the case of two premises. In

Section 10, after examining some non p-valid inference

rules, we illustrate two methods which allow to con-

struct p-valid inferences. Finally, in Section 11 we give

a summary of results. Notice that for almost all (new)

results of this paper the proofs are given in Appendix

A.

2 Some Preliminaries

In this section we recall some basic notions and results

on coherence (see, e.g., [5,7,10,13,40]). In our approach

an event A represents an uncertain fact described by a

(non ambiguous) logical proposition; hence A is a two-

valued logical entity which can be true, or false. The

indicator of A, denoted by the same symbol, is 1, or

0, according to whether A is true, or false. The sure

event is denoted by Ω and the impossible event is de-

noted by H. Moreover, we denote by A^B, or simply

AB, (resp., A_B) the logical conjunction (resp., logi-

cal disjunction). The negation of A is denoted A. Given

any events A and B, we simply write A Ď B to denote

that A logically implies B, that is AB is the impossible

event H. We recall that n events are logically indepen-

dent when the number m of constituents, or possible

worlds, generated by them is 2n (in general m ď 2n).

2.1 Conditional events and coherent probability

assessments

Given two events E,H, with H ‰ H, the conditional

event E|H is defined as a three-valued logical entity

which is true, or false, or void, according to whether

EH is true, or EH is true, or H is true, respectively.

We recall that, agreeing to the betting metaphor, if

you assess P pE|Hq “ p, then, for every real number

s, you are willing to pay an amount ps and to receive

s, or 0, or ps, according to whether EH is true, or

EH is true, or H is true (bet called off), respectively.

Then, the random gain associated with the assessment

P pE|Hq “ p is G “ sHE ` psH ´ ps “ sHpE ´ pq.

Given a real function P : K Ñ R, where K is an

arbitrary family of conditional events, let us consider

a subfamily F “ tE1|H1, . . . , En|Hnu of K and the

vector P “ pp1, . . . , pnq, where pi “ P pEi|Hiq , i P

Jn “ t1, . . . , nu. We denote by Hn the disjunction
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H1 _ ¨ ¨ ¨ _Hn. As EiHi _EiHi _Hi “ Ω , i P Jn, by

expanding the expression
Ź

iPJn
pEiHi_EiHi_Hiq we

can represent Ω as the disjunction of 3n logical conjunc-

tions, some of which may be impossible. The remaining

ones are the constituents generated by F and, of course,

are a partition of Ω. We denote by C1, . . . , Cm the con-

stituents which logically imply Hn and (if Hn ‰ Ω) by

C0 the remaining constituent Hn “ H1 ¨ ¨ ¨Hn, so that

Hn “ C1 _ ¨ ¨ ¨ _ Cm , Ω “ Hn _Hn “

“ C0 _ C1 _ ¨ ¨ ¨ _ Cm , m` 1 ď 3n .

In the context of betting scheme, with the pair pF ,P)

we associate the random gain G “
ř

iPJn
siHipEi´piq,

where s1, . . . , sn are n arbitrary real numbers. We ob-

serve that G is the difference between the amount that

you receive,
ř

iPJn
sipEiHi ` piHiq, and the amount

that you pay,
ř

iPJn
sipi, and represents the net gain

from engaging each transaction HipEi ´ piq, the scal-

ing and meaning (buy or sell) of the transaction being

specified by the magnitude and the sign of si, respec-

tively. Let gh be the value of G when Ch is true; then

G P tg0, g1, . . . , gmu. Of course, g0 “ 0. We denote by

GHn
the set of values of G restricted to Hn, that is

GHn “ tg1, . . . , gmu. Then, based on the betting scheme

of de Finetti, we have

Definition 1 The function P defined on K is said to

be coherent if and only if, for every integer n, for ev-

ery finite subfamily F of K and for every real numbers

s1, . . . , sn, one has: minGHn ď 0 ď maxGHn .

Notice that the condition minGHn
ď 0 ď maxGHn

can

be written in two equivalent ways: minGHn ď 0, or

maxGHn
ě 0. As shown by Definition 1, a probabil-

ity assessment is coherent if and only if, in any finite

combination of n bets, it does not happen that the val-

ues g1, . . . , gm are all positive, or all negative (no Dutch

Book).

2.2 Coherent conditional prevision assessments

Given a prevision function P defined on an arbitrary

family K of finite conditional random quantities, con-

sider a finite subfamily F “ tX1|H1, . . . , Xn|Hnu Ď K
and the vector M “ pµ1, . . . , µnq, where µi “ PpXi|Hiq

is the assessed prevision for the conditional random

quantity Xi|Hi, i P Jn. With the pair pF ,Mq we asso-

ciate the random gain G “
ř

iPJn
siHipXi ´ µiq; more-

over, we denote by GHn
the set of values of G restricted

to Hn “ H1 _ ¨ ¨ ¨ _Hn. Then, by the betting scheme,

we have

Definition 2 The function P defined on K is coherent

if and only if, @n ě 1, @F Ď K, @ s1, . . . , sn P R, it

holds that: min GHn
ď 0 ď max GHn

.

Given a family F “ tX1|H1, . . . , Xn|Hnu, for each i P

Jn we denote by txi1, . . . , xiriu the set of possible val-

ues for the restriction of Xi to Hi; then, for each i P Jn
and j “ 1, . . . , ri, we set Aij “ pXi “ xijq. Of course,

for each i P Jn, the family tHi, AijHi , j “ 1, . . . , riu

is a partition of the sure event Ω, with AijHi “ Aij ,
Žri
j“1Aij “ Hi. Then, the constituents generated by

the family F are (the elements of the partition of Ω)

obtained by expanding the expression
Ź

iPJn
pAi1_¨ ¨ ¨_

Airi_Hiq. We set C0 “ H1 ¨ ¨ ¨Hn (it may be C0 “ H);

moreover, we denote by C1, . . . , Cm the constituents

contained in Hn. Hence
Ź

iPJn
pAi1_¨ ¨ ¨_Airi _Hiq “

Žm
h“0 Ch. With each Ch, h P Jm, we associate a vector

Qh “ pqh1, . . . , qhnq, where qhi “ xij if Ch Ď Aij , j “

1, . . . , ri, while qhi “ µi if Ch Ď Hi; with C0 it is

associated Q0 “ M “ pµ1, . . . , µnq. Denoting by I
the convex hull of Q1, . . . , Qm, the condition M P I
amounts to the existence of a vector pλ1, . . . , λmq such

that:
ř

hPJm
λhQh “M ,

ř

hPJm
λh “ 1 , λh ě 0 , @h;

in other words, M P I is equivalent to the solvability

of the system pΣq, associated with pF ,Mq,

pΣq

$

&

%

ř

hPJm
λhqhi “ µi , i P Jn ,

ř

hPJm
λh “ 1 ,

λh ě 0 , h P Jm .

(1)

Given the assessment M “ pµ1, . . . , µnq on F “

tX1|H1, . . . , Xn|Hnu, let S be the set of solutions Λ “

pλ1, . . . , λmq of system pΣq defined in (1). Then, the

following characterization theorem for coherent assess-

ments on finite families of conditional events can be

proved ([6])

Theorem 1 [Characterization of coherence]. Given a

family of n conditional random quantities F “

tX1|H1, . . . , Xn|Hnu, with finite sets of possible values,

and a vector M “ pµ1, . . . , µnq, the conditional previ-

sion assessment PpX1|H1q “ µ1 , . . . , PpXn|Hnq “ µn
is coherent if and only if, for every subset J Ď Jn, defin-

ing FJ “ tXi|Hi , i P Ju, MJ “ pµi , i P Jq, the system

pΣJq associated with the pair pFJ ,MJq is solvable.

We point out that the solvability of system pΣq (i.e.,

the condition M P I) is a necessary (but not sufficient)

condition for coherence of M on F . Moreover, assuming

the system pΣq solvable, that is S ‰ H, we define:

I0 “ ti : maxΛPS
ř

h:ChĎHi
λh “ 0u,

F0 “ tXi|Hi , i P I0u, M0 “ pµi, i P I0q .

(2)

Then, the following theorem can be proved ([6, Theo-

rem 3])

Theorem 2 [Operative characterization of coherence]

A conditional prevision assessment M “ pµ1, . . . , µnq
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on the family F “ tX1|H1, . . . , Xn|Hnu is coherent if

and only if the following conditions are satisfied:

(i) the system pΣq defined in (1) is solvable;

(ii) if I0 ‰ H, then M0 is coherent.

By Theorem 2, the following algorithm checks in a finite

number of steps the coherence of the prevision assess-

ment M on F .

Algorithm 1 Let be given the pair pF ,Mq.

1. Construct the system pΣq defined in (1) and check

its solvability;

2. If the system pΣq is not solvable then M is not co-

herent and the procedure stops, otherwise compute

the set I0;

3. If I0 “ H then M is coherent and the procedure

stops, otherwise set pF ,Mq “ pF0,M0q and repeat

steps 1-3.

By following the approach given in [12,20,25,26,29,35]

a conditional random quantity X|H can be seen as

the random quantity XH ` µH, where µ “ PpX|Hq.
In particular, in numerical terms, A|H is the random

quantity AH ` xH, where x “ P pA|Hq. Then, when

H Ď A, coherence requires that P pA|Hq “ 1 and hence

A|H “ H ` H “ 1. Notice that, as H|H “ 0 and

XH|H “ X|H, it holds that: pXH`µHq|H “ XH|H`

µH|H “ X|H, where µ “ PpX|Hq. Moreover, the nega-

tion of A|H is defined as A|H “ 1 ´ A|H “ A|H. Co-

herence can be characterized in terms of proper scoring

rules ([7,24]), which can be related to the notion of en-

tropy in information theory ([36,37]).

We recall a result (see [29, Theorem 4]) which shows

that, given two conditional random quantities X|H,

Y |K, if X|H “ Y |K when H _K is true, then X|H “

Y |K also when H _K is false, so that X|H “ Y |K.

Theorem 3 Given any events H ‰ H, K ‰ H, and

any r.q.’s X, Y , let Π be the set of the coherent previ-

sion assessments PpX|Hq “ µ,PpY |Kq “ ν.

(i) Assume that, for every pµ, νq P Π, X|H “ Y |K

when H _K is true; then µ “ ν for every pµ, νq P Π.

(ii) For every pµ, νq P Π, X|H “ Y |K when H _K is

true if and only if X|H “ Y |K.

2.3 Quasi conjunction, conjunction, and disjunction of

two conditional events.

The notion of quasi conjunction plays an important

role in nonmonotonic reasoning. In particular for two

conditional events A|H,B|K the quasi conjunction

QCpA|H,B|Kq is the conditional event pH_Aq^pK_

Bq | pH _Kq. Note that: QCpA|H,B|Kq is true, when

a conditional event is true and the other one is not

false; QCpA|H,B|Kq is false, when a conditional event

is false; QCpA|H,B|Kq is void, when H_K is false. In

other words, the quasi conjunction is the conjunction

of the two material conditionals H _ A,K _ B given

the disjunction of the conditioning events H,K. In nu-

merical terms one has

QCpA|H,B|Kq “ min tH _A,K _Bu | pH _Kq (3)

and, if we replace the material conditionalsH_A,K_B

by the conditional events A|H,B|K, from formula (3)

we obtain the definition below ([26]).

Definition 3 Given any pair of conditional events

A|H and B|K, with P pA|Hq “ x, P pB|Kq “ y,

we define their conjunction as the conditional ran-

dom quantity pA|Hq ^ pB|Kq “ Z | pH _ Kq, where

Z “ min tA|H,B|Ku.

Then, defining z “ PrpA|Hq ^ pB|Kqs, we have

pA|Hq ^ pB|Kq “

$

’

’

’

’

&

’

’

’

’

%

1, if AHBK is true,

0, if AH _BK is true,

x, if HBK is true,

y, if AHK is true,

z, if HK is true.

(4)

Remark 1 We recall that A|H “ AH ` xH, where x “

P pA|Hq. Then, by Definition 3, it holds that

pA|Hq ^ pA|Hq “ pA|Hq|H “ pAH ` xHq|H

“ AH|H “ A|H.

From (4), the conjunction pA|Hq^pB|Kq is the follow-

ing random quantity

pA|Hq^pB|Kq “ 1¨AHBK`x¨HBK`y¨AHK`z¨HK .

(5)

For the quasi conjunction it holds that

QCpA|H,B|Kq “ AHBK`HBK`AHK`ν ¨HK, (6)

where ν “ P pQCpA|H,B|Kqq. We recall that, if

P pA|Hq “ P pB|Kq “ 1, then ν “ 1 (see, e.g., [28,

Section 3]). We also recall a result which shows that

Fréchet-Hoeffding bounds still hold for the conjunction

of conditional events ([29, Theorem 7]).

Theorem 4 Given any coherent assessment px, yq on

tA|H,B|Ku, with A,H,B, K logically independent,

H ‰ H,K ‰ H, the extension z “ PrpA|Hq^pB|Kqs is

coherent if and only if the following Fréchet-Hoeffding

bounds are satisfied: maxtx ` y ´ 1, 0u “ z1 ď z ď

z2 “ mintx, yu.
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Remark 2 We observe that, if x “ y “ 1, then coher-

ence requires that z “ ν “ 1 and then by (5) and (6) it

follows that pA|Hq ^ pB|Kq “ QCpA|H,B|Kq.

We recall now the notion of disjunction of two condi-

tional events.

Definition 4 Given any pair of conditional events

A|H and B|K, with P pA|Hq “ x, P pB|Kq “ y, we de-

fine their disjunction as pA|Hq_pB|Kq “W | pH_Kq,

where W “ max tA|H,B|Ku.

Then, defining w “ PrpA|Hq _ pB|Kqs, we have

pA|Hq _ pB|Kq “

$

’

’

’

’

&

’

’

’

’

%

1, if AH _BK is true,

0, if AHBK is true,

x, if HBK is true,

y, if AHK is true,

w, if HK is true.

(7)

Remark 3 We recall that A|H “ AH ` xH, where x “

P pA|Hq. Then, by Definition 4, it holds that

pA|Hq_pA|Hq “ pA|Hq|H “ pAH`xHq|H “ AH|H “ A|H.

From (7), the disjunction pA|Hq_pB|Kq is the following

random quantity

pA|Hq_pB|Kq “ 1¨AH_BK`x¨HBK`y¨AHK`w¨HK.

(8)

3 Conjunction, Disjunction, and Negation

We now define the conjunction and the disjunction of

n conditional events in a progressive way by speci-

fying the possible values of the corresponding condi-

tional random quantities. Given a family of n condi-

tional events F “ tE1|H1, . . . , En|Hnu, we denote by

C0, C1, . . . , Cm, with m`1 ď 3n, the constituents asso-

ciated with F , where C0 “ H1H2 ¨ ¨ ¨Hn. With each Ch,

h “ 0, 1, . . . ,m, we associate a tripartition pS1h, S
2
h, S

3
h q

of the set t1, . . . , nu, such that, for each i P t1, . . . , nu

it holds that: i P S1h, or i P S2h, or i P S3h , according

to whether Ch Ď EiHi, or Ch Ď EiHi, or Ch Ď Hi. In

other words, for each h “ 0, 1, . . . ,m, we have

S1h “ ti : Ch Ď EiHiu, S
2
h “ ti : Ch Ď EiHiu,

S3h “ ti : Ch Ď Hiu .
(9)

Definition 5 (Conjunction of n conditionals) Let

be given a family of n conditional events F “

tE1|H1, . . . , En|Hnu. For each non-empty subset S

of t1, . . . , nu, let xS be a prevision assessment on

Ź

iPSpEi|Hiq. Then, the conjunction CpFq “ pE1|H1q^

¨ ¨ ¨ ^ pEn|Hnq is defined as

Zn|pH1 _ ¨ ¨ ¨ _Hnq “
řm
h“0 zhCh,

where zh “

$

&

%

1, if S1h “ t1, . . . , nu,

0, if S2h ‰ H,

xS3h , if S2h “ H and S3h ‰ H .

(10)

Remark 4 As shown by (10), the conjunction pE1|H1q^

¨ ¨ ¨^pEn|Hnq assumes one of the following possible val-

ues: 1, when every conditional event is true; 0, when at

least one conditional event is false; xS , when the condi-

tional event Ei|Hi is void, for every i P S, and is true for

every i R S. In the case S “ tiu, we simply set xS “ xi.

Notice that the notion of conjunction given in (10) has

been already proposed, with positive probabilities for

the conditioning events, in [38]. But, our approach is

developed in the setting of coherence, where conditional

probabilities and conditional previsions are primitive

notions. Moreover, coherence allows to properly manage

zero probabilities for conditioning events.

Remark 5 We observe that to introduce the random

quantity defined by formula (10) we need to specify in

a coherent way the set of prevision assessments txS :

S Ď t1, 2, . . . , nuu. In particular, when the conditioning

eventsH1, . . . ,Hn are all false, i.e. C0 is true, the associ-

ated tripartition is pS10, S
2
0 , S

3
0 q “ pH,H, t1, 2, . . . , nu)

and the value of the conjunction CpFq is its prevision

xS30 “ PrCpFqs. Moreover, we observe that the set of

the constituents tC0, . . . , Cmu associated with F is in-

variant with respect to any permutation of the condi-

tional events in F . Then, the operation of conjunction

introduced by Definition 5 is invariant with respect to

any permutation of the conditional events in F .

Definition 6 Given two finite families of conditional

events F 1 and F2, based on Definition 5, we set CpF 1q^
CpF2q “ CpF 1 Y F2q.

Proposition 1 The operation of conjunction is asso-

ciative and commutative.

Proof Concerning the commutative property, let be

given two finite families of conditional events F 1 and

F2. As F2YF 1 “ F 1YF2, it holds that CpF2q^CpF 1q “
CpF2 Y F 1q “ CpF 1 Y F2q “ CpF 1q ^ CpF2q. Concern-

ing the associative property, let be given three finite

families of conditional events F 1,F2 and F3. We have

rCpF 1q ^ CpF2qs ^ CpF3q “ CpF 1 Y F2q ^ CpF3q “
“ CpF 1 Y F2 Y F3q “ CpF 1q ^ CpF2 Y F3q “
“ CpF 1q ^ rCpF2q ^ CpF3qs “ CpF 1q ^ CpF2q ^ CpF3q.

[\
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Definition 7 (Disjunction of n conditionals) Let

be given a family of n conditional events F “

tE1|H1, . . . , En|Hnu. Morever, for each non-empty sub-

set S of t1, . . . , nu, let yS be a prevision assessment on
Ž

iPSpEi|Hiq.

Then, the disjunction DpFq “ pE1|H1q_ ¨ ¨ ¨_ pEn|Hnq

is defined as the following conditional random quantity

Wn|pH1 _ ¨ ¨ ¨ _Hnq “
řm
h“0 whCh,

where wh “

$

&

%

1, if S1h ‰ H,

0, if S2h “ t1, 2, . . . , nu,

yS3h , if S1h “ H and S3h ‰ H .

(11)

We recall that S30 “ t1, 2, . . . , nu; thus yS30 “

Pr
Žn
i“1pEi|Hiqs “ PrDpFqs. As shown by (11), the dis-

junction DpFq assumes one of the following possible

values: 1, when at least one conditional event is true;

0, when every conditional event is false; yS , when the

conditional event Ei|Hi is void, for every i P S, and is

false for every i R S.

Definition 8 Given two finite families of conditional

events F 1 and F2, based on Definition 7, we set DpF 1q_
DpF2q “ DpF 1 Y F2q.

Proposition 2 The operation of disjunction is asso-

ciative and commutative.

Proof The proof is analogous to that of Proposition 1.

[\

We give below the notion of negation for the con-

junction and the disjunction of a family of conditional

events.

Definition 9 Given a family of conditional events F ,

the negations for the conjunction CpFq and the dis-

junction DpFq are defined as CpFq “ 1 ´ CpFq and

DpFq “ 1´DpFq, respectively.

Given a family of n conditional events F “

tE1|H1, . . . , En|Hnu, we denote by F the family

tE1|H1, . . . , En|Hnu. Of course F “ F . In the next

result we show that De Morgan’s Laws are satisfied.

Theorem 5 Given a family of n conditional events

F “ tE1|H1, . . . , En|Hnu, it holds that:

(i) DpFq “ CpFq, that is DpFq “ CpFq;
(ii) CpFq “ DpFq, that is CpFq “ DpFq.

Proof See Appendix A.

4 Monotonicity property

For any given n conditional events E1|H1, . . . , En|Hn,

we set Cn “
Źn
i“1pEi|Hiq and Dn “

Žn
i“1pEi|Hiq.

Moreover, for every non empty subset S of t1, 2, . . . , nu

we set

CS “
ľ

iPS

pEi|Hiq, DS “
ł

iPS

pEi|Hiq .

In this section, among other results, we will show the

monotonicity property of conjunction and disjunction,

that is Cn`1 ď Cn and Dn`1 ě Dn, for every n ě 1.

We first prove a preliminary result, which in particular

shows that, given two conditional random quantities

X|H, Y |K, if X|H ď Y |K when H _K is true, then

X|H ď Y |K also when H _K is false, so that X|H ď

Y |K. This result generalizes Theorem 3, as the symbol

“ is replaced by ď, and it will be used in Theorem 7.

Theorem 6 Given any events H ‰ H, K ‰ H, and

any r.q.’s X, Y , let Π be the set of the coherent previ-

sion assessments PpX|Hq “ µ,PpY |Kq “ ν.

(i) Assume that, for every pµ, νq P Π, X|H ď Y |K

when H _K is true; then µ ď ν for every pµ, νq P Π.

(ii) For every pµ, νq P Π, X|H ď Y |K when H _K is

true if and only if X|H ď Y |K.

Proof See Appendix A.

The next two results illustrate the monotonicity prop-

erty of conjunction and disjunction.

Theorem 7 Given n ` 1 arbitrary conditional events

E1|H1, . . . , En`1|Hn`1, with n ě 1, for the conjunc-

tions Cn and Cn`1 it holds that Cn`1 ď Cn.

Proof See Appendix A.

Theorem 8 Given n ` 1 arbitrary conditional events

E1|H1, . . . , En`1|Hn`1, with n ě 1, for the disjunctions

Dn and Dn`1 it holds that Dn`1 ě Dn.

Proof Defining Fn “ tE1|H1, . . . , En|Hnu and Fn`1 “

Fn Y tEn`1|Hn`1u, by Theorems 5 and 7 it holds that

Dn`1 “ DpFn`1q “ CpFn`1q “ 1´ CpFn`1q

ě 1´ CpFnq “ CpFnq “ Dn.

[\

The next result shows that the conjunction and the

disjunction are random quantities with values in the

interval r0, 1s.

Theorem 9 Given n arbitrary conditional events

E1|H1, . . . , En|Hn, it holds that: piq Cn P r0, 1s; piiq

Dn P r0, 1s.
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Proof See Appendix A.

Remark 6 From Theorem 7, it holds that Cn ď

Cn´1 ď . . . ď C1; in particular PpCnq ď PpCkq, k “
1, 2, . . . , n ´ 1. More generally, for every non empty

subset S of t1, . . . , nu, it holds that PpCnq ď PpCSq.
In particular, PpCnq ď P pEn|Hnq. Then, PpCkq ď
mintPpCk´1q, P pEk|Hkqu, k “ 2, 3, . . . , n, and by iter-

ating it follows

PpCnq ď mintP pE1|H1q, . . . , P pEn|Hnqu. (12)

Likewise, by Theorem 8,

PpDkq ě maxtPpDk´1q, P pEk|Hkqu, k “ 2, 3, . . . , n,

and by iterating it follows

PpDnq ě maxtP pE1|H1q, . . . , P pEn|Hnqu. (13)

5 Coherent assessments on

tCn, En`1|Hn`1, Cn`1u

Given any n ` 1 arbitrary conditional events

E1|H1, . . . , En`1|Hn`1, let us consider the conjunctions

Cn “ pE1|H1q ^ ¨ ¨ ¨ ^ pEn|Hnq and Cn`1 “ pE1|H1q ^

¨ ¨ ¨^pEn`1|Hn`1q. We set PpCnq “ µn, PpCn`1q “ µn`1

and P pEn`1|Hn`1q “ xn`1.

Remark 7 Let us consider the points

Q1 “ p1, 1, 1q, Q2 “ p1, 0, 0q, Q3 “ p0, 1, 0q, Q4 “ p0, 0, 0q.

We observe that the equations of the three planes

containing the points Q1, Q2, Q3, or Q1, Q2, Q4, or
Q1, Q3, Q4, are z “ x ` y ´ 1, or z “ x, or z “ y,

respectively. It can be shown that a point px, y, zq be-

longs to the convex hull I of Q1, Q2, Q3, Q4 if and only

if

px, yq P r0, 1s2 , maxtx` y ´ 1, 0u ď z ď mintx, yu .

(14)

The convex hull I, which is a tetrahedron with vertices

Q1, Q2, Q3, Q4, is depicted in Figure 1.

We observe that the lower and upper bounds in (14)

are the Fréchet-Hoeffding bounds, which characterize

the next result.

Theorem 10 Assume that the events

E1, . . . , En`1, H1, . . . ,Hn`1 are logically indepen-

dent. Let I be the convex hull of the points Q1 “

p1, 1, 1q, Q2 “ p1, 0, 0q, Q3 “ p0, 1, 0q, Q4 “ p0, 0, 0q.

Then, the assessment M “ pµn, xn`1, µn`1q on the

family tCn, En`1|Hn`1, Cn`1u is coherent if and only if

M P I, that is if and only if

pµn, xn`1q P r0, 1s
2, µ1n`1 ď µn`1 ď µ2n`1,

where µ1n`1 “ maxtµn ` xn`1 ´ 1, 0u and µ2n`1 “

mintµn, xn`1u.

Proof See Appendix A.

Remark 8 We observe that the representation of each

coherent assessment M “ pµn, xn`1, µn`1q as a linear

convex combination λ1Q1`λ2Q2`λ3Q3`λ4Q4 (where
ř4
h“1 λh “ 1, λh ě 0, h “ 1, 2, 3, 4 ) is unique, with

$

’

’

’

’

&

’

’

’

’

%

λ1 “ µn`1 “ PpCn`1q ě 0,

λ2 “ µn ´ µn`1 “ PpCnq ´ PpCn`1q ě 0,

λ3 “ xn`1 ´ µn`1 “ P pEn`1|Hn`1q ´ PpCn`1q ě 0,

λ4 “ 1´ µn ´ xn`1 ` µn`1

“ 1´ PpCnq ´ P pEn`1|Hn`1q ` PpCn`1q ě 0 .

In particular, concerning the extreme cases µn`1 “

µ1n`1, or µn`1 “ µ2n`1, we can examine four cases:

1) µ1n`1 “ µn ` xn`1 ´ 1 ą 0; 2) µ1n`1 “ 0;

3) µ2n`1 “ µn and 4) µ2n`1 “ xn`1.

In the case 1 the point M “ pµn, xn`1, µn`1q is a lin-

ear convex combination λ1Q1 ` λ2Q2 ` λ3Q3 ` λ4Q4,

with λ1 “ µ1n`1 “ µn ` xn`1 ´ 1, λ2 “ 1 ´ xn`1, λ3 “

1´ µn, λ4 “ 0.

In the case 2 it holds that λ1 “ µ1n`1 “ 0, λ2 “ µn, λ3 “

xn`1, λ4 “ 1´ µn ` xn`1.

In the case 3 it holds that λ1 “ µ2n`1 “ µn , λ2 “

0 , λ3 “ xn`1 ´ µn , λ4 “ 1´ xn`1.

In the case 4 it holds that λ1 “ µ2n`1 “ xn`1 , λ2 “

µn ´ xn`1 , λ3 “ 0 , λ4 “ 1´ µn.

6 Probabilistic Inference from Cn`1 to

tCn, En`1|Hn`1u

In this section, given any coherent prevision assessment

µn`1 on Cn`1, we find the set of coherent extensions

pµn, xn`1q on tCn, En`1|Hn`1u. As we will see, it is

enough to illustrate the case n “ 1, by finding the set

of coherent extensions px, yq on tE1|H1, E2|H2u of any

assessment z “ PrpE1|H1q ^ pE2|H2qs P r0, 1s.

Theorem 11 Given any prevision assessment z on

pE1|H1q ^ pE2|H2q, with z P r0, 1s, with E1, H1, E2, H2

logically independent, with H1 ‰ H and H2 ‰ H, the

extension x “ P pE1|H1q, y “ P pE2|H2q is coherent if

and only if px, yq belongs to the set Tz “ tpx, yq : x P

rz, 1s, y P rz, 1` z ´ xsu.
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0
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0
P 00

1
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1 0Q2

Fig. 1 Convex hull of the points Q1, Q2, Q3, Q4. P 1 “ px, y, z1q,P2 “ px, y, z2q, where px, yq P r0, 1s2, z1 “ maxtx ` y ´ 1, 0u,
z2 “ mintx, yu. In the figure the numerical values are: x “ 0.6, y “ 0.5, z1 “ 0.1, and z2 “ 0.5.

Proof We recall that, by logical independence of

E1, H1, E2, H2, the assessment px, yq is coherent for ev-

ery px, yq P r0, 1s2. From Theorem 4, the set Π of all co-

herent assessment px, y, zq on tE1|H1, E2|H2, pE1|H1q^

pE2|H2qu is Π “ tpx, y, zq : px, yq P r0, 1s2,maxtx` y´

1, 0u ď z ď mintx, yuu. We note that

Π “ tpx, y, zq : z P r0, 1s, x P rz, 1s, y P rz, z ` 1´ xsu “

“ tpx, y, zq : z P r0, 1s, px, yq P Tzu.

Then, px, yq is a coherent extension of z if and only if

px, yq P Tz. [\

Remark 9 We observe that, given any z P r0, 1s and

defining Πz “ tpx, y, zq : px, yq P Tzu, it holds that Π “
Ť

zPr0,1sΠz (see Figure 2). The set Π is the tetrahedron

depicted in Figure 1. Hence, contrarily to the general

case, for the family tE1|H1, E2|H2, pE1|H1q^pE2|H2qu

the set of coherent prevision assessments Π is convex.

Indeed, Π is also the (convex) set of coherent prob-

ability assessment px, y, zq on the family of uncondi-

tional events tE1, E2, E1E2u. We recall that, assuming

H1 ^ H2 “ H, the set of coherent prevision assess-

ments px, y, zq on tE1|H1, E2|H2, pE1|H1q ^ pE2|H2qu

is the surface tpx, y, zq : px, yq P r0, 1s2, z “ xyu, which

is a strict non-convex subset of Π (see [26, Section 5]).

Theorem 12 Given any prevision assessment µn`1 “

PpCn`1q P r0, 1s, with µn`1 P r0, 1s, the extension

µn “ PpCnq, xn`1 “ P pEn`1|Hn`1q is coherent if and

only if

pµn, xn`1q P tpµn, xn`1q : µn P rµn`1, 1s,

xn`1 P rµn`1, 1` µn`1 ´ µnsu.

Proof From Theorem 10, the set Π of all coherent as-

sessment pµn, xn`1, µn`1q on tCn, En`1|Hn`1, Cn`1u is

Π “ tpµn, xn`1, µn`1q : pµn, xn`1q P r0, 1s
2,maxtµn `

xn`1 ´ 1, 0u ď µn`1 ď mintµn, xn`1uu. Moreover, as

observed in the proof of Theorem 11, the set Π coin-

cides with the set

tpµn, xn`1, µn`1q : µn`1 P r0, 1s, µn P rµn`1, 1s,

xn`1 P rµn`1, 1` µn`1 ´ µnsu.

Then, pµn, xn`1q is a coherent extension of µn`1 if and

only if pµn, xn`1q belongs to the set tpµn, xn`1q : µn P

rµn`1, 1s, xn`1 P rµn`1, 1` µn`1 ´ µnsu. [\

7 Fréchet-Hoeffding Bounds

In the next result we show that the prevision of the

conjunction Cn “ E1|H1 ^ ¨ ¨ ¨ ^ En|Hn satisfies the

Fréchet-Hoeffding bounds.

Theorem 13 Let be given n conditional events

E1|H1, E2|H2, . . . , En|Hn, with xi “ P pEi|Hiq, i “

1, 2, . . . , n, and with PpCnq “ µn. Then

maxtx1`¨ ¨ ¨`xn´pn´1q, 0u ď µn ď mintx1, . . . , xnu .

(15)
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(0  1  0)

(0  0  0)

&

0

0.1

0.2

0.3

0.4

&z

0.5

0

0.6

0.7

0.8

0.9

z

1

x

0.5
10.8

(1  1  1)

y

0.60.4(1  0  0)
0.21 0

Fig. 2 Set Π of all coherent assessments px, y, zq on tE1|H1, E2|H2, pE1|H1q ^ pE2|H2qu. Notice that Π “
Ť

zPr0,1sΠz, where
for each given z P r0, 1s the set Πz is the triangle tpx, y, zq : px, yq P Tzu, with Tz “ tpx, yq : x P rz, 1s, y P rz, 1` z ´ xsu.

Proof From Theorem 10, it holds that

µn ě µn´1 ` xn ´ 1 ě µn´2 ` xn´1 ` xn ´ 2 ě ¨ ¨ ¨ ě

x1 ` ¨ ¨ ¨ ` xn ´ pn´ 1q.

Then, by inequality (12) and by Theorem 9 it holds

that the inequalities in (15) are satisfied. [\

Likewise, the following result holds for the prevision ηn
of the disjunction Dn “ E1|H1_E2|H2_¨ ¨ ¨_En|Hn.

Theorem 14 Let be given n conditional events

E1|H1, E2|H2, . . . , En|Hn, with xi “ P pEi|Hiq, i “

1, 2, . . . , n, and with PpDnq “ ηn. Then

maxtx1, . . . , xnu ď ηn ď mintx1 ` ¨ ¨ ¨ ` xn, 1u . (16)

Proof By Definition 9, Theorems 5 and 13, defining

Fn “ tE1|H1, E2|H2, . . . , En|Hnu it holds that

PpDnq “ 1´ PpDnq “ 1´ PpCpFnqq

“ 1´ Pp
n

ľ

i“1

pEi|Hiqq

ď 1´ rp1´ x1q ` ¨ ¨ ¨ ` p1´ xnq ´ pn´ 1qs

“ x1 ` ¨ ¨ ¨ ` xn.

Then, by (13) and by Theorem 9, the inequalities in

(16) are satisfied. [\

8 Conjunction of Three Conditional Events

Given a family of three conditional events F “

tE1|H1, E2|H2, E3|H3}, we set P pEi|Hiq “ xi, i “

1, 2, 3, PrpEi|Hiq ^ pEj |Hjqs “ xij “ xji, i ‰ j, and

x123 “ PrpE1|H1q^pE2|H2q^pE3|H3qs. Then, by Defi-

nition 5, the conjunction of E1|H1, E2|H2, E3|H3 is the

conditional random quantity

CpFq “ pE1|H1q ^ pE2|H2q ^ pE3|H3q

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1, if E1H1E2H2E3H3 is true,

0, if E1H1 _ E2H2 _ E3H3 is true,

x1, if H1E2H2E3H3 is true,

x2, if H2E1H1E3H3 is true,

x3, if H3E1H1E2H2 is true,

x12, if H1H2E3H3 is true,

x13, if H1H3E2H2 is true,

x23, if H2H3E1H1 is true,

x123, if H1H2H3 is true.

(17)

Remark 10 Notice that in the betting scheme x123 is

the quantity to be paid in order to receive CpFq.
Assuming that the assessment px1, x2, x3, x12, x13, x23q

on tE1|H1, E2|H2, E3|H3, pE1|H1q^pE2|H2q, pE1|H1q^

pE3|H3q, pE2|H2q ^ pE3|H3qu is coherent, we are in-

terested in finding the values x123 which are a coher-

ent extension of px1, x2, x3, x12, x13, x23q. Of course, as



10 Angelo Gilio, Giuseppe Sanfilippo

xi P r0, 1s, i “ 1, 2, 3, and xij P r0, 1s, i ‰ j, a necessary

condition for coherence is x123 P r0, 1s.

From Remark 5 and Proposition 1 the conjunction

CpFq is invariant with respect to any given permuta-

tion pi1, i2, i3q of p1, 2, 3q; that is CpFq “ pEi1 |Hi1q ^

pEi2 |Hi2qq ^ pEi3 |Hi3q, for any permutation pi1, i2, i3q

of p1, 2, 3q.

8.1 Study of Coherence

Notice that in general, if we assess the values xS “

PpCSq for some S Ă t1, 2 . . . , nu, then the study of

coherence may be very complex. In this section we

study coherence in the case n “ 3 when we assess

the prevision xS “ PpCSq for every S Ď t1, 2, 3u.

In the next result we determine the set of coher-

ent assessments M “ px1, x2, x3, x12, x13, x23, x123q

on the family F “ tE1|H1, E2|H2, E3|H3, pE1|H1q ^

pE2|H2q, pE1|H1q ^ pE3|H3q, pE2|H2q ^ pE3|H3q,

pE1|H1q ^ pE2|H2q ^ pE3|H3qu “ tCS : H ‰ S Ď

t1, 2, 3uu.

Theorem 15 Assume that the events

E1, E2, E3, H1, H2, H3 are logically independent, with

H1 ‰ H, H2 ‰ H, H3 ‰ H. Then, the set Π of all co-

herent assessments M “ px1, x2, x3, x12, x13, x23, x123q

on F “ tE1|H1, E2|H2, E3|H3, pE1|H1q ^ pE2|H2q,

pE1|H1q ^ pE3|H3q, pE2|H2q ^ pE3|H3q,

pE1|H1q ^ pE2|H2q ^ pE3|H3qu is the set of points

px1, x2, x3, x12, x13, x23, x123q which satisfy the follow-

ing conditions

$

’

’

’

’

’

&

’

’

’

’

’

%

px1, x2, x3q P r0, 1s3,
maxtx1 ` x2 ´ 1, x13 ` x23 ´ x3, 0u ď x12 ď mintx1, x2u,
maxtx1 ` x3 ´ 1, x12 ` x23 ´ x2, 0u ď x13 ď mintx1, x3u,
maxtx2 ` x3 ´ 1, x12 ` x13 ´ x1, 0u ď x23 ď mintx2, x3u,
1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23 ě 0,
x123 ě maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,
x123 ď mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

(18)

Proof See Appendix A.

We observe that, from (18) it follows that the coherence

of px1, x2, x3, x12, x13, x23q amounts to the inequality

mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u

ě maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u .

Then, by Theorem 15 it follows

Corollary 1 For any coherent assessment

px1, x2, x3, x12, x13, x23q on

tE1|H1, E2|H2, E3|H3, pE1|H1q ^ pE2|H2q,

pE1|H1q ^ pE3|H3q, pE2|H2q ^ pE3|H3qu

the extension x123 on pE1|H1q ^ pE2|H2q ^ pE3|H3q is

coherent if and only if x123 P rx
1
123, x

2
123s, where

x1123 “ maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,

x2123 “ mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

(19)

Proof As shown in (18), (see also (46) in the Appendix

A), the coherence of px1, x2, x3, x12, x13, x23, x123q

amounts to the condition

maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u ď

ď x123 ď

ď mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

Then, in particular, the extension x123 on pE1|H1q ^

pE2|H2q ^ pE3|H3q is coherent if and only if x123 P

rx1123, x
2
123s, where

x1123 “ maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,

x2123 “ mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

[\

8.2 The Case H1 “ H2 “ H3

We recall that in case of logical dependencies, the set

of all coherent assessments may be smaller than that

one associated with the case of logical independence.

However, in this section we show that the results of

Theorem 15 and Corollary 1 still hold when the condi-

tioning events H1, H2, and H3 coincide.

Theorem 16 Let be given any logically inde-

pendent events E1, E2, E3, H, with H ‰ H.

Then, the set Π of all coherent assess-

ments M “ px1, x2, x3, x12, x13, x23, x123q on

F “ tE1|H,E2|H,E3|H, pE1|Hq ^ pE2|Hq, pE1|Hq ^

pE3|Hq, pE2|Hq^pE3|Hq, pE1|Hq ^ pE2|Hq ^ pE3|Hqu

is the set of points px1, x2, x3, x12, x13, x23, x123q which

satisfy the conditions in formula (18).

Proof See Appendix A.

Corollary 2 For any coherent assessment

px1, x2, x3, x12, x13, x23q on

tE1|H,E2|H,E3|H, pE1E2q|H, pE1E3q|H, pE2E3q|Hu

the extension x123 on pE1E2E3q|H is coherent if and

only if x123 P rx
1
123, x

2
123s, where x1123 and x2123 are de-

fined in (19).

Proof The proof is the same as for Corollary 1. [\

Of course, the results of Theorem 16 and Corollary 2

still hold in the unconditional case where H “ Ω.
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Remark 11 As shown in this section, a consistent man-

agement of conjunctions (and/or disjunctions) defined

on a given family of conditional events F essentially re-

quires an (iterative) coherence checking and propaga-

tion of probability and prevision assessments on com-

pounded conditionals, for each subfamily of F . Then,

an analysis of complexity in our context would be of the

same kind of the exhaustive complexity analysis given

in [5] for probabilistic reasoning under coherence.

9 Characterization of p-consistency and

p-entailment with applications to

nonmonotonic reasoning

In this section we apply our notion of conjunction

to characterize the notions of p-consistency and p-

entailment. Then, we examine some inference rules re-

lated with probabilistic nonmonotonic reasoning. We

also briefly describe a characterization of p-entailment

by a notion of iterated conditioning, in the case of two

premises. We recall below the notions of p-consistency

and p-entailment of Adams ([2]) as formulated for con-

ditional events in the setting of coherence (see, e.g., [5,

23,27]).

Definition 10 Let F “ tEi|Hi , i “ 1, . . . , nu be a

family of n conditional events. Then, F is p-consistent if

and only if the probability assessment pp1, p2, . . . , pnq “

p1, 1, . . . , 1q on F is coherent.

Definition 11 A p-consistent family F “ tEi|Hi , i “

1, . . . , nu p-entails a conditional event En`1|Hn`1 if

and only if for any coherent probability assessment

pp1, . . . , pn, pn`1q on F Y tEn`1|Hn`1u it holds that:

if p1 “ ¨ ¨ ¨ “ pn “ 1, then pn`1 “ 1.

We recall below the notion of logical implication ([31])

between two conditional events.

Definition 12 Given two conditional events A|H and

B|K we say that A|H logically implies B|K, which we

denote by A|H Ď B|K, if and only if AH true implies

BK true and BK true implies AH true; that is: AH Ď

BK and BK Ď AH.

We observe that, by coherence, it holds that (see, e.g.,

[28, Theorem 7]).

A|H Ď B|K ùñ P pA|Hq ď P pB|Kq. (20)

We also recall the notion of quasi conjunction for a

general family of n conditional events.

Definition 13 Given a family F “ tEi|Hi , i “

1, . . . , nu of n conditional events, the quasi conjunction

QCpFq of the conditional events in F is defined as the

following conditional event

QCpFq “
n

ľ

i“1

pHi _ EiHiq|p

n
ł

i“1

Hiq.

Remark 12 We observe that, by Definition 13, based on

(9) the quasi conjunction can be represented as

QCpFq “
řm
h“0 νhCh,

where νh “

$

&

%

1, if S1h ‰ H and S2h “ H,

0, if S2h ‰ H

ν, if S3h “ t1, . . . , nu ,

(21)

where ν “ P pQCpFqq. Therefore, by (10), (21), and

by also recalling Theorem 6, it holds that zh ď νh,

h “ 0, 1, . . . ,m; thus

CpFq ď QCpFq. (22)

In particular, if F is p-consistent and P pEi|Hiq “ 1, i “

1, . . . , n, then from (15) it holds that xS “ PpCpFSqq “
1 for every S Ď t1, 2, . . . , nu, where FS “ tEi|Hi P F :

i P Su; then zh “ νh, h “ 0, 1, . . . ,m, and CpFq “
QCpFq.

9.1 Characterization of p-consistency and p-entailment

We illustrate below a characterization of p-consistency

of a family F in terms of the coherence of the prevision

assessment PrCpFqs “ 1.

Theorem 17 A family of n conditional events F “

tE1|H1, . . . , En|Hnu is p-consistent if and only if the

prevision assessment PrCpFqs “ 1 is coherent.

Proof pñq By Definition 10, as F is p-consistent, the

probability assessment px1, x2, . . . , xnq “ p1, 1, . . . , 1q

on F is coherent. Then, by (15) the extension

PrCpFqs “ 1 is unique and of course coherent.

pðq By (15) it holds that PrCpFqs ď mintx1, . . . , xnu

and hence PrCpFqs “ 1 implies px1, x2, . . . , xnq “

p1, 1, . . . , 1q on F . Moreover, the coherence of

PrCpFqs “ 1 requires that the (unique) extension

p1, 1, . . . , 1q on F be coherent. Thus, F is p-consistent.

We observe that, in the case where H1 “ . . . “ Hn “

H, the assessment P pE1|Hq “ . . . P pEn|Hq “ 1 is

coherent (that is, F is p-consistent) if and only if

P rpE1 ¨ ¨ ¨Enq|Hs “ 1 is coherent.

The next theorem gives a characterization of p-

entailment in terms of a result which involves suitable

conjunctions associated with the premise set and the

conclusion of the given inference rule.
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Theorem 18 Let be given a p-consistent family of n

conditional events F “ tE1|H1, . . . , En|Hnu and a fur-

ther conditional event En`1|Hn`1. Then, the following

assertions are equivalent:

(i) F p-entails En`1|Hn`1;

(ii) the conjunction Cn`1 “ pE1|H1q ^ ¨ ¨ ¨ ^ pEn|Hnq ^

pEn`1|Hn`1q coincides with the conjunction Cn “

pE1|H1q ^ ¨ ¨ ¨ ^ pEn|Hnq;

(iii) the inequality Cn ď pEn`1|Hn`1q is satisfied.

Proof See Appendix A.

As a first simple application of Theorem 18 we observe

that, given two conditional events A|H, with AH ‰ H,

and B|K, the p-entailment of B|K from A|H amounts

to the condition piiq, i.e., A|H ^B|K “ A|H, or equiv-

alently condition piiiq, i.e., A|H ď B|K. In particular,

piiq and piiiq are both satisfied when A|H Ď B|K.

9.2 Applications to some p-valid inference rules

We recall that an inference from a p-consistent family F
to E|H is p-valid if and only if F p-entails E|H. We will

examine some p-valid inference rules by verifying that

conditions piiq and piiiq in Theorem 18 are satisfied. In

particular we consider the following inference rules of

System P: And, Cut, CM, and Or. In what follows, if

not specified otherwise, the basic events are assumed to

be logically independent.

And rule: The family tB|A,C|Au p-entails BC|A. It

holds that pB|Aq ^ pC|Aq “ BC|A “ pB|Aq ^ pC|Aq ^

pBC|Aq and pB|Aq ^ pC|Aq “ BC|A ď BC|A; that is,
conditions piiq and piiiq are satisfied.

Cut rule: The family tC|AB,B|Au p-entails C|A. By

(5), as ABAB “ AABC “ H, it holds that

pC|ABq ^ pB|Aq “ ABC ` zA,

where z “ PrpC|ABq ^ pB|Aqs. Moreover, BC|A “

ABC ` xA, where x “ P pBC|Aq. As pC|ABq ^ pB|Aq

and BC|A coincide conditionally on A being true, by

Theorem 3, it follows that pC|ABq ^ pB|Aq “ BC|A.

Then, condition piiq is satisfied, that is pC|ABq ^

pB|Aq^pC|Aq “ pBC|Aq^pC|Aq “ BC|A “ pC|ABq^

pB|Aq. Moreover, C|AB^B|A “ BC|A ď C|A, that is

condition piiiq is satisfied too.

Remark 13 As shown in the analysis of Cut rule, it

holds that C|AB ^ B|A “ BC|A. Then, the family

tC|AB,B|Au p-entails BC|A. This p-valid rule is called

CCT (Conjunctive Cumulative Transitivity); see, e.g.,

[43].

CM rule: The family tC|A,B|Au p-entails C|AB. It

holds that pC|Aq ^ pB|Aq “ BC|A. Moreover, pC|Aq ^

pB|Aq ^ pC|ABq “ pBC|Aq ^ pC|ABq. By (5), it holds

that

pBC|Aq ^ pC|ABq “ ABC ` zA,

where z “ PrpBC|Aq ^ pC|ABqs. Moreover, BC|A “

ABC`xA, where x “ P pBC|Aq. As pBC|Aq^pC|ABq

and BC|A coincide conditionally on A being true, by

Theorem 3 it follows that pBC|Aq^pC|ABq “ BC|A; so

that pC|Aq^pB|Aq^pC|ABq “ BC|A “ pC|Aq^pB|Aq,

so that condition piiq is satisfied. Moreover, based on

Definition 12, it holds that pC|Aq ^ pB|Aq “ BC|A Ď

C|AB, then pC|Aq ^ pB|Aq ď C|AB, so that condition

piiiq is satisfied too.

Or rule: The family tC|A,C|Bu p-entails C|pA _ Bq.

We set P pC|Aq “ x, P pC|Bq “ y, and PppC|Aq ^
pC|Bqq “ z; then, by observing that the family

tABC,ABC,AB C, pA _ BqC ,ABu is a partition of

the sure event, we obtain

pC|Aq ^ pC|Bq “

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,

0, if pA_BqC is true,

x, if ABC is true,

y, if ABC is true,

z, if AB is true.

(23)

Moreover, by defining PrpC|Aq^pC|Bq^pC|pA_Bqqs “
t, we obtain

pC|Aq^pC|Bq^pC|pA_Bqq “

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,

0, if pA_BqC is true,

x, if ABC is true,

y, if ABC is true,

t, if AB is true.

As we can see, pC|Aq^pC|Bq^pC|pA_Bqq and pC|Aq^

pC|Bq coincide when A_ B is true; then, by Theorem

3 it holds that t “ z, so that

pC|Aq ^ pC|Bq ^ pC|pA_Bqq “ pC|Aq ^ pC|Bq,

that is condition piiq is satisfied. Moreover, defining

P pC|pA_Bqq “ w, we have

C|pA_Bq “

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,

0, if pA_BqC is true,

1, if ABC is true,

1, if ABC is true,

w, if AB is true.

(24)

Based on (23) and (24), it holds that pC|Aq ^ pC|Bq ď

C|pA _ Bq conditionally on A _ B being true. Then,

from Theorem 6 it holds that PppC|Aq ^ pC|Bqq “ t ď

w “ P pC|pA_ Bqq; thus pC|Aq ^ pC|Bq ď C|pA_ Bq,

that is condition piiiq is satisfied.
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An inference rule related to Or rule [1, Rule 5, p. 189].

In this inference rule the premise set is tC|pA_Bq, C|Au

and the conclusion is C|B. We first observe that the

premise set F “ tC|pA _ Bq, C|Au is p-consistent be-

cause the assessment P pC|pA _ Bqq “ P pC|Aq “ 1

is coherent. Indeed, by applying Algorithm 1 to the

pair pF ,Mq “ ptC|pA_Bq, C|Au, p1, 1qq, it holds that

the starting system pΣq is solvable, with F0 “ tC|Au.

Then, by repeating the steps of the algorithm, the as-

sessment P pC|Aq “ 1 is coherent. Thus, the assessment

p1, 1q on F is coherent and hence F is p-consistent. We

also note that, defining P pC|pA_Bqq “ x, P pC|Aq “ y,

and PppC|pA _ Bqq ^ pC|Aqq “ z, the coherence of

px, yq “ p1, 1q from (15) amounts to coherence of z “ 1,

which by Theorem 17 is another characterization for

the p-consistency of F . Concerning p-entailment, we

observe that

pC|A_Bq ^ pC|Aq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

y, if ABC is true,

0, if ABC is true,

z, if AB is true,

“

$

&

%

0, if A_ABC is true,

y, if ABC is true,

z, if AB is true.

(25)

Moreover, by defining PrpC|pA_Bqq^pC|Aq^pC|Bqs “
t, we obtain

pC|pA_Bqq^pC|Aq^pC|Bq “

$

&

%

0, if A_ABC is true,

y, if ABC is true,

t, if AB is true.

(26)

As we can see from (25) and (26), the two quantities

pC|pA_Bqq^ pC|Aq^ pC|Bq and pC|pA_Bqq^ pC|Aq

coincide when A _ B is true; then, by Theorem 3 it

holds that t “ z, so that

pC|pA_Bqq ^ pC|Aq ^ pC|Bq “ pC|pA_Bqq ^ pC|Aq,

that is condition piiq is satisfied. Moreover, defining

P pC|Bq “ w, we have

C|B “

$

&

%

1, if BC is true,

0, if BC is true,

w, if B is true.

“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

w, if ABC is true,

w, if ABC is true,

1, if ABC is true,

0, if ABC is true,

w, if AB is true,

(27)

Based on (25) and (27), it holds that pC|pA _ Bqq ^

pC|Aq ď C|B conditionally on A_B being true. Then,

from Theorem 6 it holds that PppC|pA_Bqq^pC|Aqq “
t ď w “ P pC|Bq; thus pC|pA_Bqq^pC|Aq ď C|B, that

is condition piiiq is satisfied. Thus, this inference rule

is p-valid. Notice that the p-validity of the rule could

be also derived by using the lower and upper bounds

given for Or rule in [18]. Indeed, using Or rule, when

P pC|Aq “ 0 and P pC|Bq “ y it holds that z “ P pC|A_

Bq P r0, ys, so that P pC|pA _ Bqq ď P pC|Bq. Then,

P pC|pA_Bqq “ 1 and P pC|Aq “ 1 implies P pC|Bq “ 1,

that is tC|pA_Bq, C|Au p-entails C|B.

Generalized Or rule: In this p-valid rule, studied in

[19] (see also [28]), the p-consistent premise set is

tC|A1, C|A2, . . . , C|Anu and the conclusion is C|pA1 _

A2 _ ¨ ¨ ¨ _ Anq. For each nonempty subset S Ă

t1, 2, . . . , nu, we define Pr
Ź

iPSpC|Aiqs “ xS ; moreover,

we set Pr
Źn
i“1pC|Aiqs “ z. Then,

pC|A1q ^ ¨ ¨ ¨ ^ pC|Anq

“

$

’

’

&

’

’

%

1, if A1A2 ¨ ¨ ¨AnC is true,

0, if pA1 _A2 _ ¨ ¨ ¨ _AnqC is true,

xS , if
Ź

iPS Ai
Ź

jRS AjC is true,

z, if A1A2 ¨ ¨ ¨An is true.

(28)

Moreover, by defining PrpC|A1q ^ ¨ ¨ ¨ ^ pC|Anq ^

pC|pA1 _A2 _ ¨ ¨ ¨ _Anqqs “ t, we obtain

pC|A1q ^ ¨ ¨ ¨ ^ pC|Anq ^ pC|pA1 _A2 _ ¨ ¨ ¨ _Anqq

“

$

’

’

&

’

’

%

1, if A1A2 ¨ ¨ ¨AnC is true,

0, if pA1 _A2 _ ¨ ¨ ¨ _AnqC is true,

xS , if
Ź

iPS Ai
Ź

jRS AjC is true,

t, if A1A2 ¨ ¨ ¨An is true.

(29)

As we can see from (28) and (29), pC|A1q ^ ¨ ¨ ¨ ^

pC|Anq ^ pC|pA1 _A2 _ ¨ ¨ ¨ _Anqq and pC|A1q ^ ¨ ¨ ¨ ^

pC|Anq coincide when A1 _ ¨ ¨ ¨ _ An is true; then, by

Theorem 3 it holds that t “ z, so that

pC|A1q ^ ¨ ¨ ¨ ^ pC|Anq ^ pC|pA1 _A2 _ ¨ ¨ ¨ _Anqq “

pC|A1q ^ ¨ ¨ ¨ ^ pC|Anq,

that is condition piiq is satisfied. Moreover,

C|pA1 _A2 _ ¨ ¨ ¨ _Anq

“

$

’

’

&

’

’

%

1, if A1A2 ¨ ¨ ¨AnC is true,

0, if pA1 _A2 _ ¨ ¨ ¨ _AnqC is true,

1, if
Ź

iPS Ai
Ź

jRS AjC is true,

w, if A1A2 ¨ ¨ ¨An is true,

(30)

where w “ P pC|pA1 _ A2 _ ¨ ¨ ¨ _ Anqq. Based on

(28) and (30), it holds that pC|A1q ^ ¨ ¨ ¨ ^ pC|Anq ď

C|pA1 _A2 _ ¨ ¨ ¨ _Anq conditionally on A1 _ ¨ ¨ ¨ _An
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being true. Then, from Theorem 6 it holds that t ď w;

thus pC|A1q ^ ¨ ¨ ¨ ^ pC|Anq ď C|pA1 _A2 _ ¨ ¨ ¨ _Anq,

that is condition piiiq is satisfied.

9.3 Iterated conditioning and p-entailment

We now briefly describe a characterization of p-

entailment of a conditional event E3|H3 from a p-

consistent family tE1|H1, E2|H2u, which exploits a suit-

able notion of iterated conditioning.

Definition 14 Let be given n ` 1 conditional events

E1|H1, . . . , En`1|Hn`1, with pE1|H1q^¨ ¨ ¨^pEn|Hnq ‰

0. We denote by pEn`1|Hn`1q|ppE1|H1q ^ ¨ ¨ ¨ ^

pEn|Hnqq “ pEn`1|Hn`1q|Cn the random quantity

pE1|H1q ^ ¨ ¨ ¨ ^ pEn`1|Hn`1q

`µp1´ pE1|H1q ^ ¨ ¨ ¨ ^ pEn|Hnqq “

“ Cn`1 ` µp1´ Cnq,

where µ “ PrpEn`1|Hn`1q|Cns.

We observe that, based on the betting metaphor, the

quantity µ is the amount to be paid in order to receive

the amount Cn`1 ` µp1 ´ Cnq. Definition 14 general-

izes the notion of iterated conditional pE2|H2q|pE1|H1q

given in previous papers (see, e.g., [25,26,29]). We also

observe that, defining PpCnq “ zn and PpCn`1q “

zn`1, by the linearity of prevision it holds that µ “

zn`1 ` µp1´ znq; then, zn`1 “ µzn, that is PpCn`1q “

PrpEn`1|Hn`1q|CnsPpCnq, which is the compound pre-

vision theorem.

By applying Definition 14 with n “ 2, given a p-

consistent family tE1|H1, E2|H2u and a further event

E3|H3, it can be proved that ([22])

tE1|H1, E2|H2u p-entails E3|H3 ðñ

pE3|H3q|ppE1|H1q ^ pE2|H2qq “ 1 ,

that is: tE1|H1, E2|H2u p-entails E3|H3 if and only if

the iterated conditional pE3|H3q|ppE1|H1q ^ pE2|H2qq

is constant and equal to 1.

10 From non p-valid to p-valid inference rules

In this section we first examine some non p-valid in-

ference rules, by showing that conditions piiq and piiiq

of Theorem 18 are not satisfied. Then, we illustrate by

an example two different methods which allow to get

p-valid inference rules starting by non p-valid ones.

10.1 Some non p-valid inference rules

We start by showing that Transitivity is not p-valid.

Transitivity. In this rule the p-consistent premise set is

tC|B,B|Au and the conclusion is C|A. The rule is not

p-valid ([21]), indeed we can show that

pC|Bq ^ pB|Aq ^ pC|Aq ‰ pC|Bq ^ pB|Aq and

pC|Bq ^ pB|Aq ę C|A.

Defining P pB|Aq “ x, P pBC|Aq “ y, P pC|Aq “ t,

PrpC|Bq ^ pB|Aq ^ pC|Aqs “ µ, PrpC|Bq ^ pB|Aqs “ z,

we have

pC|Bq ^ pB|Aq ^ pC|Aq “ pC|Bq ^ pBC|Aq

“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

y, if ABC is true,

0, if ABC is true,

µ, if AB is true,

(31)

and

pC|Bq ^ pB|Aq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

x, if ABC is true,

0, if ABC is true,

z, if AB is true.

(32)

Then, as (in general) x ‰ y, it holds that pC|Bq ^

pB|Aq ^ pC|Aq ‰ pC|Bq ^ pB|Aq, so that condition piiq

is not satisfied. Moreover,

C|A “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

t, if ABC is true,

t, if ABC is true,

t, if AB is true.

(33)

Then, by observing that (in general) x ę t it follows

that pC|Bq ^ pB|Aq ę C|A, so that condition piiiq is

not satisfied. Therefore, Transitivity rule is not p-valid.

Denial of the antecedent. We consider the rule where

the premise set is tA,C|Au and the conclusion is C. The

premise set tA,C|Au is p-consistent because, by apply-

ing the Algorithm 1, the assessment P pAq “ P pC|Aq “

1 is coherent. We verify that A^pC|Aq^C ‰ A^pC|Aq

and that A^ pC|Aq ę C, that is the Denial of the an-

tecedent is not p-valid. We set P pC|Aq “ y, then

A^ pC|Aq ^ C “

$

&

%

0, if A is true,

0, if AC is true,

y, if AC is true,
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and

A^ pC|Aq “

$

&

%

0, if A is true,

y, if AC is true,

y, if AC is true.

Assuming y ą 0, when AC is true it holds that

A^pC|Aq^C “ 0 ă y “ A^pC|Aq, A^pC|Aq “ y ą 0 “ C,

thus: A^ pC|Aq ^C ‰ A^ pC|Aq and A^ pC|Aq ę C,

that is conditions piiq and piiiq are not satisfied.

Affirmation of the consequent. We consider the rule

where the (p-consistent) premise set is tC,C|Au and

the conclusion is A. We verify that C ^ pC|Aq ^ A ‰

C^pC|Aq and C^pC|Aq ę A, that is the Affirmation of

the consequent rule is not p-valid. We set P pC|Aq “ y,

then

C ^ pC|Aq ^A “ AC “

"

1, if AC is true,

0, if AC is true,

and

C ^ pC|Aq “

$

&

%

1, if AC is true,

0, if C is true,

y, if AC is true.

(34)

Assuming y ą 0, when AC is true it holds that

C ^ pC|Aq ^A “ 0 ă y “ C ^ pC|Aq,

C ^ pC|Aq “ y ą 0 “ A,

thus: C ^ pC|Aq ^A ‰ C ^ pC|Aq and C ^ pC|Aq ę A,

that is conditions piiq and piiiq are not satisfied.

Remark 14 We now will make a comparison between

the two objects C ^ pC|Aq and C|pA_Cq, by showing

they do not coincide. Defining P pC|pA _ Cqq “ t, it

holds that

C|pA_ Cq “

$

&

%

1, if AC is true,

0, if C is true,

t, if AC is true.

(35)

It could seem, from (34) and (35), that y and t should

be equal and then C^pC|Aq and C|pA_Cq should co-

incide. However, in this case the conditioning event for

C ^pC|Aq is Ω_A “ Ω, so that the disjunction of the

conditioning events is Ω_pA_Cq “ Ω; the two objects

C^pC|Aq and C|pA_Cq do not coincide conditionally

on Ω; then C ^ pC|Aq and C|pA _ Cq do not coincide

(condition piq of Theorem 3 is not satisfied). We also

observe that, defining PpC^pC|Aqq “ µ, (in general) µ

does not belong to the set t1, 0, yu of possible values of

C ^pC|Aq, because µ is a linear convex combination of

the values t1, 0, yu. As a further aspect, we verify below

that t ď µ ď y. The constituents generated by tA,Cu

are: AC,AC,AC,AC; then, the associated values for

the random vector pC|pA_ Cq, C ^ pC|Aq, C|Aq are

p1, 1, 1q , p0, 0, 0q , pt, y, yq , p0, 0, yq. (36)

Based on Theorem 6, we observe that:

‚ C|pA_Cq ď C|A conditionally on A_C_A “ A_C,

hence P pC|pA_ Cqq “ t ď y “ P pC|Aq;

‚ C ^pC|Aq ď C|A conditionally on Ω_A “ Ω, hence

PpC ^ pC|Aqq “ µ ď y “ P pC|Aq;

‚ C|pA_Cq ď C^pC|Aq conditionally on A_C_Ω “

Ω, hence P pC|pA_ Cqq “ t ď µ “ PpC ^ pC|Aqq.
In other words: t ď µ ď y. We observe that these in-

equalities also follow because coherence requires that

the prevision point pt, µ, yq must be a linear convex

combination of points in (36).

On combining evidence: An example from Boole. We

now examine an example studied in [8, p. 632] (see

also [33, Theorem 5.45]), where p-entailment does not

hold. Indeed, it can be proved that the extension

w “ P pC|ABq of any (coherent) assessment px, yq

on tC|A,C|Bu is coherent for every w P r0, 1s. Us-

ing conditions piiq and piiiq of Theorem 18, we show

that the p-consistent family tC|A,C|Bu does not p-

entail C|AB. We set P pC|Aq “ x, P pC|Bq “ y, and

PppC|Aq ^ pC|Bqq “ z; then,

pC|Aq ^ pC|Bq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

x, if ABC is true,

y, if ABC is true,

z, if AB is true.

“

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,

0, if pA_BqC is true,

x, if ABC is true,

y, if ABC is true,

z, if AB is true.

(37)

Moreover, by defining PrpC|Aq ^ pC|ABqs “ u,

PrpC|Bq ^ pC|ABqs “ v and PrpC|Aq ^ pC|Bq ^

pC|ABqs “ t, we obtain

pC|Aq ^ pC|Bq ^ pC|ABq “

$

’

’

’

’

&

’

’

’

’

%

1, if ABC is true,

0, if pA_BqC is true,

u, if ABC is true,

v, if ABC is true,

t, if AB is true.

As in general x ‰ u and y ‰ v, then pC|Aq ^ pC|Bq ^

pC|ABq and pC|Aq ^ pC|Bq do not coincide, so that
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condition piiq is not satisfied. Moreover,

C|AB “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

w, if ABC is true,

w, if ABC is true,

w, if ABC is true,

w, if ABC is true,

w, if AB is true,

“

$

&

%

1, if ABC is true,

0, if ABC is true,

w, if AB is true.

(38)

Based on (37) and (38), we can see that pC|Aq ^

pC|Bq ę C|pABq, so that condition piiiq is not satis-

fied. Thus, the inference from tC|A,C|Bu to C|AB is

not p-valid.

10.2 Two methods for constructing p-valid inference

rules

We now illustrate by an example two different methods

by means of which, starting by a non p-valid inference

rule, we get p-valid inference rules: a) to add a suitable

premise; b) to add a suitable logical constraint. The

further premise, or logical constraint, (must preserve

p-consistency and) is determined by analyzing the pos-

sible values of conjunctions.

Weak Transitivity. In our example we start by the

(non p-valid) Transitivity rule where the premise set

is tC|B,B|Au and the conclusion is C|A.

Method a). We add the premise A|pA_Bq, so that the

premise set is tC|B,B|A,A|pA_Bqu, while the conclu-

sion is still C|A. The premise set tC|B,B|A,A|pA_Bqu

is p-consistent; indeed as ABC ‰ H, by evaluating

P pABCq “ 1 we get P pC|Bq “ P pB|Aq “ P pA|pA _

Bqq “ 1. We show that pC|Bq ^ pB|Aq ^ pA|pA _

Bqq ^ pC|Aq “ pC|Bq ^ pB|Aq ^ pA|pA _ Bqq and

pC|Bq ^ pB|Aq ^ pA|pA_Bqq ď C|A.

Defining PrpC|Bq^pB|Aq^pA|pA_Bqq^pC|Aqs “
µ, we have

pC|Bq^pB|Aq^pA|pA_Bqq^pC|Aq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

µ, if AB is true.

Moreover, defining PrpC|Bq^pB|Aq^pA|pA_Bqqs “ z,

we have

pC|Bq ^ pB|Aq ^ pA|pA_Bqq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

z, if AB is true.

Conditionally on A_B being true it holds that pC|Bq^

pB|Aq^pA|pA_Bqq^pC|Aq “ pC|Bq^pB|Aq^pA|pA_

Bqq “ ABC|pA _ Bq. Then, by Theorem 3 we have

pC|Bq^pB|Aq^pA|pA_Bqq^pC|Aq “ pC|Bq^pB|Aq^

pA|pA_ Bqq “ ABC|pA_ Bq, so that condition piiq is

satisfied. Finally, as ABC|pA_Bq Ď C|A, it holds that

pC|Bq ^ pB|Aq ^ pA|pA_Bqq “ ABC|pA_Bq ď C|A,

so that condition piiiq is satisfied. Therefore this Weak

Transitivity rule is p-valid. We observe that another p-

valid version of Weak Transitivity would be obtained

by adding the premise A|B instead of A|pA_Bq.

Method b). We add the logical constraint ABC “ H,

that is BC Ď A. The p-consistency of the premise set

tC|B,B|Au is preserved because, as before ABC ‰ H

and by evaluating P pABCq “ 1 we get P pC|Bq “

P pB|Aq “ 1. Based on (31), (32) , (33) it holds that

pC|Bq ^ pB|Aq ^ pC|Aq “ pC|Bq ^ pBC|Aq

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

µ, if AB is true,

and

pC|Bq ^ pB|Aq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

z, if AB is true.

As we can see pC|Bq^pB|Aq^pC|Aq “ pC|Bq^pB|Aq

conditionally on A _ B being true. Then, by Theorem

3 condition piiq is satisfied. Moreover,

C|A “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

t, if ABC is true,

t, if AB is true.
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Then, pC|Bq^pB|Aq ď C|A conditionally on A_B be-

ing true. Thus, by Theorem 6 condition piiiq is satisfied

too. Therefore, under the logical constraint ABC “ H,

the family tC|B,B|Au p-entails C|A, which is another

p-valid version of Weak Transitivity.

We observe that in [21, Theorem 5] it has been shown

that another p-valid version of Weak Transitivity is ob-

tained by adding the probabilistic constraint P pA|pA_

Bqq ą 0, that is

P pC|Bq “ 1, P pB|Aq “ 1, P pA|pA_Bqq ą 0

ùñ P pC|Aq “ 1.

11 Conclusions

We generalized the notions of conjunction and disjunc-

tion of two conditional events to the case of n condi-

tional events. We introduced the notion of negation and

we showed that De Morgans Laws still hold. We also

verified that the associative and commutative proper-

ties are satisfied. We studied the monotonicity prop-

erty, by proving that Cn`1 ď Cn and Dn`1 ě Dn for

every n. We computed the set of all coherent assess-

ments on the family tCn, En`1|Hn`1, Cn`1u, by show-

ing that Fréchet-Hoeffding bounds still hold in this case;

then, we examined the (reverse) probabilistic inference

from Cn`1 to the family tCn, En`1|Hn`1u. Moreover,

given a family F “ tE1|H1, E2|H2, E3|H3u of three

conditional events, with E1, E2, E3, H1, H2, H3 logically

independent, we determined the set Π of all coher-

ent prevision assessments for the set of conjunctions

tCS : H ‰ S Ď t1, 2, 3uu. In particular, we verified that

the set Π is the same in the case where H1 “ H2 “ H3

and we also considered the relation between conjunction

and quasi-conjunction. By using conjunction we also

characterized p-consistency and p-entailment; then, we

examined several examples of p-valid inference rules.

We briefly described a characterization of p-entailment,

in the case of two premises, by using a suitable notion of

iterated conditioning. Then, after examining some non

p-valid inference rules, we illustrated by an example

two methods for constructing p-valid inference rules. In

particular, we applied these methods to Transitivity by

obtaining p-valid versions of the rule (Weak Transitiv-

ity). Future work could concern the extension of the re-

sults of this paper to more complex cases, with possible

applications to the psychology of cognitive reasoning

under uncertainty. This work should lead, for instance,

to further developments of the results given in [41,42].
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A Appendix

Proof of Theorem 5.
We observe that piiq follows by piq, by replacing F by F ;

indeed, by piq it holds that DpFq “ CpFq “ CpFq. Then, it is
enough to proof the assertion piq. We will prove the assertion
by induction.
Step 1: n “ 1,F “ tE1|H1u.
We have DpFq “ E1|H1 “ 1´ E1|H1 “

E1|H1 “ CpFq.
Thus the assertion holds when n “ 1.
Step 2: n “ 2, F “ tE1|H1, E2|H2u.
We set

P pE1|H1q “ x, P pE2|H2q “ y,

PrpE1|H1q _ pE2|H2qs “ w, PrpE1|H1q ^ pE2|H2qs “ t.

We observe that the family tE1H1 _

E2H2, E1HE2H2, H1E2H2, E1H1H2, H1H2u is a parti-
tion of the sure event Ω. Moreover, by Definitions 3 and 4
we have

DpFq “ 1´pE1|H1q_pE2|H2q “

$

’

’

’

’

&

’

’

’

’

%

0, if E1H1 _ E2H2 is true,
1, if E1H1E2H2 is true,
1´ x, if H1E2H2 is true,
1´ y, if E1H1H2 is true,
1´ w, if H1H2 is true.

(39)

and

CpFq “ pE1|H1q^pE2|H2q “

$

’

’

’

’

&

’

’

’

’

%

0, if E1H1 _ E2H2 is true,
1, if E1HE2H2 is true,
1´ x, if H1E2H2 is true,
1´ y, if E1H1H2 is true,
t, if H1H2 is true.

(40)

We observe that DpFq and CpFq coincide when H1_H2 is true.
Thus, by Theorem 3, PpDpFqq “ PpCpFqq and hence 1´w “ t.
Therefore DpFq still coincides with CpFq when H1 _ H2 is
false, so that DpFq “ CpFq.
Step 3: F “ tE1|H1, E2|H2, . . . , En|Hnu.
(Inductive Hypothesis) Let us assume that for any (strict) sub-
set S Ă t1, . . . , nu, by defining FS “ tEi|Hi, i P Su, it holds
that DpFSq “ CpFSq. Now we will prove that DpFSq “ CpFSq
when S “ t1, . . . , nu, in which case FS “ F . By Definition 7
we have

DpFq “
řm
h“0 whCh,

where wh “

$

&

%

0, if S1h ‰ H,
1, if S2h “ t1, 2, . . . , nu,
1´ yS3

h
, if S1h “ H and S3h ‰ H.

(41)

We continue to use the subsets S1h, S
2
h, S3h as defined in

formula (9) also with the family F ; moreover we set tS “

Pr
Ź

iPSpEi|Hiqs “ PrCpFSqs. Based on Definition 5, we have

CpFq “
řm
h“0 zhCh,

where zh “

$

&

%

0, if S1h ‰ H,
1, if S2h “ t1, 2, . . . , nu,
tS3

h
, if S1h “ H and S3h ‰ H.

(42)
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Then, DpFq ´ CpFq “
řm
h“0pwh ´ zhqCh, where

wh ´ zh “

$

&

%

0, if S1h ‰ H,
0, if S2h “ t1, 2, . . . , nu,
1´ yS3

h
´ tS3

h
, if S1h “ H and S3h ‰ H.

(43)

By the inductive hypothesis, it holds that 1 ´ yS3
h

“

PrDpFS3
h
qs “ PrCpFS3

h
qs “ tS3

h
for h “ 1, . . . ,m, because

S3h Ă t1, 2, . . . , nu. Then, DpFq ´ CpFq “
řm
h“0pwh ´ zhqCh,

where

wh ´ zh “

"

0, h “ 1, . . . ,m,
1´ yS30 ´ tS30 , h “ 0.

(44)

By recalling that S30 “ t1, 2, . . . , nu, DpFq and CpFq coin-
cide when H1 _H2 _ ¨ ¨ ¨ _Hn is true. Thus, by Theorem 3,
PrDpFqs “ PrCpFqqs, that is 1 ´ yS30 “ tS30 . Therefore DpFq
still coincides with CpFq when H1 _H2 _ ¨ ¨ ¨ _Hn is false, so
that DpFq “ CpFq. [\

Proof of Theorem 6.

(i) Assume that, for every pµ, νq P Π, the values of X|H and
Y |K associated with the constituent Ch are such that X|H ď

Y |K, for each Ch contained in H _ K; then for each given
coherent assessment pµ, νq, by choosing s1 “ 1, s2 “ ´1 in the
random gain, we have

G “ HpX ´ µq ´KpY ´ νq “ pX|H ´ µq ´ pY |K ´ νq

“ pX|H ´ Y |Kq ` pν ´ µq .

Then, by the hypothesis, GH_K ď pν ´ µq and by coherence
0 “ PpGH_Kq ď ν ´ µ . Then µ ď ν, @pµ, νq P Π.

(ii) By hypothesis, it holds that pXH ` µHqpH _ Kq ď

pY K ` νKqpH _Kq; moreover, from condition (i), µ ď ν for
every pµ, νq P Π; then

X|H “ XH ` µH “ pXH ` µHqpH _Kq

`pXH ` µHqHK “ pXH ` µHqpH _Kq

`µH K ď pY K ` νKqpH _Kq ` νHK

“ pY K ` νKqpH _Kq ` pY K ` νKqHK

“ Y K ` νK “ Y |K .

Vice versa, X|H ď Y |K trivially implies X|H ď Y |K when
H _K is true. [\

Proof of Theorem 7.
We distinguish three cases: paq the value of Cn is 0, with some
Ei|Hi false, i ď n; pbq the value of Cn is 1, with Ei|Hi true,
i “ 1, . . . , n; pcq the value of Cn is Pr

Ź

iPSpEi|Hiqs “ PpCSq “
xS , for some subset S Ď t1, 2, . . . , nu.
Case paq. It holds that Cn`1 “ 0 “ Cn.
Case pbq. The value of Cn`1 is 1, or 0, or xn`1, according to
whether En`1|Hn`1 is true, or false, or void; thus Cn`1 ď Cn.
Case pcq. We distinguish three cases: piq En`1|Hn`1 is true;
piiq En`1|Hn`1 is false; piiiq En`1|Hn`1 is void. In the case
piq the value of Cn`1 is xS , thus Cn`1 “ Cn. In the case
piiq the value of Cn`1 is 0, thus Cn`1 ď Cn. In the case
piiiq the value of Cn`1 is xSYtn`1u “ Pr

Ź

iPSYtn`1upEi|Hiqs;
then, in order to prove that Cn`1 ď Cn, we need to prove
that xSYtn`1u ď xS . We proceed by induction on the cardi-
nality of S, denoted by s. Let be s “ 1, with CS “ Ei|Hi,
for some i P t1, . . . , nu. We note that xS “ PpEi|Hiq “ xi,
xSYtn`1u “ PppEi|Hiq^pEn`1|Hn`1qq “ xti,n`1u and by The-
orem 4 it holds that xSYtn`1u “ xti,n`1u ď xi “ xS . Now,
let be s ě 2 and xSYtn`1u ď xS for every s ă n, so that,

based on Definition 5, Cn`1 ď Cn when S is a strict subset
of t1, 2, . . . , nu. If S “ t1, 2, . . . , nu, as Ei|Hi is void for all
i “ 1, . . . , n ` 1, it holds that Cn “ PpCnq “ xt1,...,nu and
Cn`1 “ xt1,...,n`1u “ PpCn`1q and, in order to prove that
Cn`1 ď Cn, it remains to prove that PpCn`1q ď PpCnq. By ap-
plying Theorem 6, with X|H “ Cn`1 “ Zn`1|pH1_¨ ¨ ¨_Hn`1q

and Y |K “ Cn “ Zn|pH1 _ ¨ ¨ ¨ _ Hnq, as Cn`1 ď Cn when
H1_¨ ¨ ¨_Hn`1 is true (i.e., s ă n ), it follows that PpCn`1q ď

PpCnq; therefore Cn`1 ď Cn. [\

Proof of Theorem 9.

Case piq. We proceed by induction. The property is satis-
fied for n “ 1; indeed, if C1 “ E1|H1 P t1, 0, x1u, where
x1 “ PpE1|H1q P r0, 1s, then C1 P r0, 1s. Let us assume that
the property holds for k ă n, that is Ck P r0, 1s, for every
k ă n. Based on Definition 5 we distinguish three cases: paq
the value of Cn is 0; pbq the value of Cn is 1; pcq the value of Cn
is Pr

Ź

iPSpEi|Hiqs “ xS , for some subset S Ď t1, 2, . . . , nu.
In the cases paq and pbq, Cn P r0, 1s. In the case pcq, if
S “ ti1, . . . , iku Ă t1, 2, . . . , nu, then Cn P r0, 1s, because xS “
Pp

Źk
j“1pEij |Hij qq is a possible value of Ck “

Źk
j“1pEij |Hij q,

with k ă n. Finally, if S “ t1, 2, . . . , nu (that is the con-
ditioning events H1, . . . , Hn are all false), then Cn “ PpCnq
and PpCnq P r0, 1s because the values of Cn restricted to
H1 _ ¨ ¨ ¨ _ Hn all belong to r0, 1s. Therefore Cn P r0, 1s. By
a similar reasoning, based on Definition 7 we can prove that
Dn P r0, 1s. [\

Proof of Theorem 10.
Let C0, . . . , Cm, with m “ 3n ´ 1 be the constituents asso-
ciated with Fn`1 “ tE1|H1, . . . , En`1|Hn`1u, where C0 “

H1 ¨ ¨ ¨Hn`1. With each Ch, h “ 1, . . . ,m, we associate the
point Qh “ pqh1, qh2, qh3q, which represents the value of the
random vector pCn, En`1|Hn`1, Cn`1q when Ch is true, where
qh1 is the value of Cn, qh2 is the value of En`1|Hn`1, and
qh3 is the value of Cn`1. With C0 it is associated the point
Q0 “ pµn, xn`1, µn`1q “M. We observe that the set of points
tQh, h “ 1, . . . ,mu contains in particular the points

Q1 “ p1, 1, 1q , Q2 “ p1, 0, 0q , Q3 “ p0, 1, 0q , Q4 “ p0, 0, 0q ,

which are respectively associated with the following con-
stituents or logical disjunction of constituents

E1H1 ¨ ¨ ¨EnHnEn`1Hn`1 , E1H1 ¨ ¨ ¨EnHnEn`1Hn`1 ,

pE1H1 _ ¨ ¨ ¨ _ EnHnq ^ En`1Hn`1 ,

pE1H1 _ ¨ ¨ ¨ _ EnHnq ^ En`1Hn`1 .

Based on Remark 7, we need to prove that the set of coherent
assessments Π on tCn, En`1|Hn`1, Cn`1u coincides with the
convex hull I of Q1, Q2, Q3, Q4. We recall that coherence of
pµn, xn`1, µn`1q implies coherence of all the sub-assessments
on the associated subfamilies of tCn, En`1|Hn`1, Cn`1u. The
coherence of the single assessments µn on Cn, or xn`1 on
En`1|Hn`1, or µn`1 on Cn`1, simply amounts to conditions

µn P r0, 1s , xn`1 P r0, 1s , µn`1 P r0, 1s ,

respectively. Then, by the hypothesis of logical indepen-
dence, the sub-assessment pµn, xn`1q is coherent, for every
pµn, xn`1q P r0, 1s2. By Remark 6, the coherence of the sub-
assessments pµn, µn`1q and pxn`1, µn`1q amounts to the con-
ditions 0 ď µn`1 ď µn ď 1 and 0 ď µn`1 ď xn`1 ď 1. Finally,
assuming that the above conditions are satisfied, to prove co-
herence of pµn, xn`1, µn`1q, by Theorem 1, it is enough to
show that the point pµn, xn`1, µn`1q belongs to the convex
hull of the points Q1, . . . , Qm. Moreover, in order M belongs
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to the convex hull of Q1, . . . , Qm the following system pΣq
must solvable

M “

m
ÿ

h“1

λhQh,
m
ÿ

h“1

λh “ 1, λh ě 0, @h. (45)

We show that the convex hull of the points Q1, . . . , Qm coin-
cides with the convex hull I of the points Q1, Q2, Q3, Q4, de-
scribed in Remark 7, because all the other points Q5, . . . , Qm,
are linear convex combinations of Q1, Q2, Q3, Q4, that is
Qh P I for each h “ 5, . . . ,m.

We examine the following different cases which depend
on the logical value of En`1|Hn`1: aq En`1|Hn`1 is true; bq
En`1|Hn`1 is false; cq En`1|Hn`1 is void.
aq In this case

Qh “ pqh1, 1, qh1q “ qh1p1, 1, 1q ` p1´ qh1qp0, 1, 0q
“ qh1Q1 ` p1´ qh1qQ3.

bq In this case

Qh “ pqh1, 0, 0q “ qh1p1, 0, 0q ` p1´ qh1qp0, 0, 0q
“ qh1Q2 ` p1´ qh1qQ4.

cq In this case Qh “ pqh1, xn`1, qh3q and we distinguish
the following subcases: piq

Źn
i“1 EiHi true, so that Qh “

p1, xn`1, xn`1q; piiq
Žn
i“1 EiHi true, so that Qh “ p0, xn`1, 0q;

piiiq Ei|Hi void, for every i P S and Ei|Hi true for every
i P t1, 2, . . . , nuzS,. for some H ‰ S Ă t1, 2, . . . , nu, so that
Qh “ pxS , xn`1, xSYtn`1uq. In subcase piq it holds that

Qh “ p1, xn`1, xn`1q “ xn`1p1, 1, 1q ` p1´ xn`1qp1, 0, 0q
“ xn`1Q1 ` p1´ xn`1qQ2.

In subcase piiq it holds that

Qh “ p0, xn`1, 0q “ xn`1p0, 1, 0q ` p1´ xn`1qp0, 0, 0q
“ xn`1Q3 ` p1´ xn`1qQ4.

In subcase piiiq, it can be verified by a finite iterative pro-
cedure that the point Qh “ pxS , xn`1, xSYtn`1uq P I. We
examine the different cases on the cardinality s of S. We re-
call that

Ź

iPSpEi|Hiq is denoted by CS .
Step 1. s “ 1. Without loss of generality we assume S “ t1u, so
that Qh “ pxS , xn`1, xSYtn`1uq “ px1, xn`1, xt1,n`1uq, where
x1 “ P pE1|H1q, xt1,n`1u “ PrpE1|H1q ^ pEn`1|Hn`1qs. By
Theorem 4 it holds that maxtxS `xn`1´ 1, 0u ď xSYtn`1u ď

mintxS , xn`1u, with pxS , xn`1q P r0, 1s2. In other words,
Qh “ pxS , xn`1, xSYtn`1uq P I. The reasoning is the same
for S “ tiu, i “ 2, . . . , n.
Step 2. s “ 2. Without loss of generality we assume S “

t1, 2u, so that xS “ PrpE1|H1q ^ pE2|H2qs, xSYtn`1u “

PrCSYtn`1us “ PrpE1|H1q ^ pE2|H2q ^ pEn`1|Hn`1qs. We de-
note by C˚0 , C

˚
1 , . . . , C

˚

m˚
, the constituents associated with

tEi|Hi, i P S Y tn ` 1uu, where C˚0 “
Ź

iPSYtn`1uHi.

Moreover, with C˚h , h “ 0, 1, . . . ,m˚, we associate the
point Q˚h “ pq˚h1, q

˚
h2, q

˚
h3q which represents the value of

the random vector tCS , En`1|Hn`1, CSYtn`1uu when C˚h is
true. We observe that Q˚0 “ pxS , xn`1, xSYtn`1uq and that
Q1, Q2, Q3, Q4 still belongs to the set of points tQ˚h , h “

1, . . . ,m˚u. In order that the assessment pxS , xn`1, xSYtn`1uq

on tCS , En`1|Hn`1, CSYtn`1uu be coherent, the point Q˚0 “
pxS , xn`1, xSYtn`1uq must belong to the convex hull of points
Q˚1 , Q

˚
2 , . . . , Q

˚
m. We show that for each point Q˚h ‰ Qi,

i “ 1, 2, 3, 4, it holds that Q˚h P I. By repeating the pre-
vious reasoning we only need to analyze the subcase piiiq
of case cq. We have to show that, for every nonempty sub-
set S1 Ă S, the point Q˚h “ pxS1 , xn`1, xS1Ytn`1uq belongs to

the convex hull I of Q1, . . . , Q4. As S “ t1, 2u, it holds that
S1 “ t1u, or S1 “ t2u, so that Q˚h “ pxS1 , xn`1, xS1Ytn`1uq “

px1, xn`1, xt1,n`1uq, or Q˚h “ px2, xn`1, xt2,n`1uq. By Step 1,
in both cases Q˚h P I. Thus Qh “ pxS , xn`1, xSYtn`1uq P

I. In other words, maxtxS ` xn`1 ´ 1, 0u ď xSYtn`1u ď

mintxS , xn`1u, with pxS , xn`1q P r0, 1s2. The reasoning is the
same for every S “ ti, ju Ă t1, 2, . . . , nu.

...............................................................................................................

Step k ` 1. s “ k ` 1, 2 ă k ` 1 ă n. By induc-
tion, assume that pxS1 , xn`1, xS1Ytn`1uq P I for every S1 “

ti1, i2, . . . , iku Ă t1, 2, . . . , nu. Then, by the previous reason-
ing, it follows that Qh “ pxS , xn`1, xSYtn`1uq P I for every
S “ ti1, i2, . . . , ik`1u. In other words, maxtxS`xn`1´1, 0u ď
xSYtn`1u ď mintxS , xn`1u, with pxS , xn`1q P r0, 1s2, for ev-
ery S “ ti1, i2, . . . , ik`1u.

Thus, by this iterative procedure, also in the subcase piiiq
of case cq it holds that Qh P I. Then, Qh P I, h “ 5, . . . ,m.
Finally, the condition (45) is equivalent to M P I, so that the
assessment M is coherent if and only if

pµn, xn`1q P r0, 1s
2, maxtµn`xn`1´1, 0u ď µn`1 ď mintµn, xn`1u.

[\

Proof of Theorem 15.
The computation of the set Π is based on Section 2.2. The
constituents Ch’s and the points Qh’s associated with pF ,Mq

are illustrated in Table 1. We recall that Qh “ pqh1, . . . , qh7q
represents the value associated with Ch of the random
vector pE1|H1, E2|H2, E3|H3, pE1|H1q ^ pE2|H2q, pE1|H1q ^

pE3|H3q, pE2|H2q ^ pE3|H3q, pE1|H1q ^ pE2|H2q ^ pE3|H3qq,
h “ 1, . . . , 26. With C0 “ H1H2H3 it is associated Q0 “ M.
Denoting by I the convex hull generated by Q1, Q2, . . . , Q26,
the coherence of the prevision assessment M on F requires
that the condition M P I be satisfied; this amounts to the
solvability of the following system

pΣq
M “

ř26
h“1 λhQh,

ř26
h“1 λh “ 1,

λh ě 0, h “ 1, . . . , 26 .

We observe that

Q3 “ x3Q1 ` p1´ x3qQ2, Q6 “ x3Q4 ` p1´ x3qQ5,

Q7 “ x2Q1 ` p1´ x2qQ4, Q8 “ x2Q2 ` p1´ x2qQ5,

Q9 “ x23Q1 ` px2 ´ x23qQ2 ` px3 ´ x23qQ4

`px23 ´ x2 ´ x3 ` 1qQ5,

Q12 “ x3Q10 ` p1´ x3qQ11,

Q15 “ x3Q13 ` p1´ x3qQ14,
Q16 “ x2Q10 ` p1´ x2qQ13,

Q17 “ x2Q11 ` p1´ x2qQ14,

Q18 “ x23Q10 ` px2 ´ x23qQ11 ` px3 ´ x23qQ13

`px23 ´ x2 ´ x3 ` 1qQ14,

Q19 “ x1Q1 ` p1´ x1qQ10,
Q20 “ x1Q2 ` p1´ x1qQ11,
Q21 “ x13Q1 ` px1 ´ x13qQ2 ` px3 ´ x13qQ10

`px13 ´ x1 ´ x3 ` 1qQ11,

Q22 “ x1Q4 ` p1´ x1qQ13,
Q23 “ x1Q5 ` p1´ x1qQ14,

Q24 “ x13Q4 ` px1 ´ x13qQ5 ` px3 ´ x13qQ13

`px13 ´ x1 ´ x3 ` 1qQ14,
Q25 “ x12Q1 ` px1 ´ x12qQ4 ` px2 ´ x12qQ10

`px12 ´ x1 ´ x2 ` 1qQ13,

Q26 “ x12Q2 ` px1 ´ x12qQ5 ` px2 ´ x12qQ11

`px12 ´ x1 ´ x2 ` 1qQ14.

Thus, I coincides with the convex hull of the points
Q1, Q2, Q4, Q5, Q10, Q11, Q13, Q14. For the sake of simplic-
ity, we set: Q11 “ Q1, Q12 “ Q2, Q13 “ Q4, Q14 “ Q5,
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Table 1 Constituents Ch’s and corresponding points Qh’s associated with pF ,Mq, where M “ px1, x2, x3, x12, x13, x23, x123q
is a prevision assessment on F “ tE1|H1, E2|H2, E3|H3, pE1|H1q ^ pE2|H2q, pE1|H1q ^ pE3|H3q, pE2|H2q ^ pE3|H3q, pE1|H1q ^

pE2|H2q ^ pE3|H3qu.

Ch Qh
C1 E1H1E2H2E3H3 1 1 1 1 1 1 1 Q1

C2 E1H1E2H2E3H3 1 1 0 1 0 0 0 Q2

C3 E1H1E2H2H3 1 1 x3 1 x3 x3 x3 Q3

C4 E1H1E2H2E3H3 1 0 1 0 1 0 0 Q4

C5 E1H1E2H2E3H3 1 0 0 0 0 0 0 Q5

C6 E1H1E2H2H3 1 0 x3 0 x3 0 0 Q6

C7 E1H1H2E3H3 1 x2 1 x2 1 x2 x2 Q7

C8 E1H1H2E3H3 1 x2 0 x2 0 0 0 Q8

C9 E1H1H2H3 1 x2 x3 x2 x3 x23 x23 Q9

C10 E1H1E2H2E3H3 0 1 1 0 0 1 0 Q10

C11 E1H1E2H2E3H3 0 1 0 0 0 0 0 Q11

C12 E1H1E2H2H3 0 1 x3 0 0 x3 0 Q12

C13 E1H1E2H2E3H3 0 0 1 0 0 0 0 Q13

C14 E1H1E2H2E3H3 0 0 0 0 0 0 0 Q14

C15 E1H1E2H2H3 0 0 x3 0 0 0 0 Q15

C16 E1H1H2E3H3 0 x2 1 0 0 x2 0 Q16

C17 E1H1H2E3H3 0 x2 0 0 0 0 0 Q17

C18 E1H1H2H3 0 x2 x3 0 0 x23 0 Q18

C19 H1E2H2E3H3 x1 1 1 x1 x1 1 x1 Q19

C20 H1E2H2E3H3 x1 1 0 x1 0 0 0 Q20

C21 H1E2H2H3 x1 1 x3 x1 x13 x3 x13 Q21

C22 H1E2H2E3H3 x1 0 1 0 x1 0 0 Q22

C23 H1E2H2E3H3 x1 0 0 0 0 0 0 Q23

C24 H1E2H2H3 x1 0 x3 0 x13 0 0 Q24

C25 H1H2E3H3 x1 x2 1 x12 x1 x2 x12 Q25

C26 H1H2E3H3 x1 x2 0 x12 0 0 0 Q26

C0 H1H2H3 x1 x2 x3 x12 x13 x23 x123 Q0

Q15 “ Q10, Q16 “ Q11, Q17 “ Q13, Q18 “ Q14. Then, the condi-
tion M P I amounts to the solvability of the following system

pΣ1q
M “

ř8
h“1 λ

1
hQ

1
h,

ř8
h“1 λ

1
h “ 1,

λ1h ě 0, h “ 1, . . . , 8

that is

pΣ1q

$

’

’

&

’

’

%

λ11 ` λ
1
2 ` λ

1
3 ` λ

1
4 “ x1, λ11 ` λ

1
2 ` λ

1
5 ` λ

1
6 “ x2,

λ11 ` λ
1
3 ` λ

1
5 ` λ

1
7 “ x3, λ11 ` λ

1
2 “ x12,

λ11 ` λ
1
3 “ x13, λ11 ` λ

1
5 “ x23, λ11 “ x123,

ř8
h“1 λ

1
h “ 1, λ1h ě 0, h “ 1, 2, . . . , 8.

System pΣ1q can be written as

pΣ1q

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λ11 “ x123, λ12 “ x12 ´ x123,
λ13 “ x13 ´ x123, λ14 “ x1 ´ x12 ´ x13 ` x123,
λ15 “ x23 ´ x123, λ16 “ x2 ´ x12 ´ x23 ` x123,

λ17 “ x3 ´ x13 ´ x23 ` x123,
λ18 “ 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23 ´ x123,
λ1h ě 0, h “ 1, 2, . . . , 8.

As it can be verified, by non-negativity of λ11, . . . , λ
1
8 it follows

that pΣ1q is solvable (with a unique solution) if and only if

"

x123 ě maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,
x123 ď mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u,

(46)

or, in a more explicit way, if and only if the following condi-
tions are satisfied

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

px1, x2, x3q P r0, 1s3,
maxtx1 ` x2 ´ 1, x13 ` x23 ´ x3, 0u ď x12 ď mintx1, x2u,
maxtx1 ` x3 ´ 1, x12 ` x23 ´ x2, 0u ď x13 ď mintx1, x3u,
maxtx2 ` x3 ´ 1, x12 ` x13 ´ x1, 0u ď x23 ď mintx2, x3u,
1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23 ě 0,
x123 ě maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,
x123 ď mintx12, x13, x23, 1´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

(47)

Notice that the conditions in (47) coincide with that ones
in (18). Moreover, assuming pΣ1q solvable, with the solu-
tion pλ11, . . . , λ

1
8q, we associate the vector pλ1, λ2, . . . , λ26q,

with λ1 “ λ11, λ2 “ λ12, λ4 “ λ13, λ5 “ λ14, λ10 “

λ15, λ11 “ λ16, λ13 “ λ17, λ14 “ λ18, λh “ 0, h R

t1, 2, 4, 5, 10, 11, 13, 14u, which is a solution of pΣq. Moreover,
defining J “ t1, 2, 4, 5, 10, 11, 13, 14u, it holds that

Ž

hPJ Ch “

H1 ^ H2 ^ H3. Therefore,
ř

hPJ λh “
ř

h:ChĎH1H2H3
λh “ 1

and hence
ř

h:ChĎHi
λh “ 1, i “ 1, 2, 3,

ř

h:ChĎHi_Hj
λh “ 1,

i ‰ j,
ř

h:ChĎH1_H2_H3
λh “ 1; thus, by (2), I0 “ H. Then,

by Theorem 2, the solvability of pΣq is also sufficient for the
coherence of M. Finally, Π is the set of conditional previ-
sion assessments px1, x2, x3, x12, x13, x23, x123q which satisfy
the conditions in (18). [\

Proof of Theorem 16.
Notice that, pEi|Hq ^ pEj |Hq “ pEiEjq|H, for every ti, ju Ă
t1, 2, 3u, and pE1|Hq ^ pE2|Hq ^ pE3|Hq “ pE1E2E3q|H. Then
F “ tE1|H,E2|H,E3|H, pE1E2q|H, pE1E3q|H, pE2E3q|H,
pE1E2E3q|Hu. The computation of the set Π is based on
Section 2.2. The constituents Ch’s and the points Qh’s as-
sociated with pF ,Mq are illustrated in Table 2. We re-
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Table 2 Constituents Ch’s and corresponding points Qh’s associated with pF ,Mq, where M “ px1, x2, x3, x12, x13, x23, x123q
is a prevision assessment on F “ tE1|H,E2|H,E3|H, pE1E2q|H, pE1E3q|H, pE2E3q|H, pE1E2E3q|Hu.

Ch Qh
C1 E1E2E3H 1 1 1 1 1 1 1 Q1

C2 E1E2E3H 1 1 0 1 0 0 0 Q2

C3 E1E2E3H 1 0 1 0 1 0 0 Q3

C4 E1E2E3H 1 0 0 0 0 0 0 Q4

C5 E1E2E3H 0 1 1 0 0 1 0 Q5

C6 E1E2E3H 0 1 0 0 0 0 0 Q6

C7 E1E2E3H 0 0 1 0 0 0 0 Q7

C8 E1E2E3H 0 0 0 0 0 0 0 Q8

C0 H x1 x2 x3 x12 x13 x23 x123 Q0

call that Qh “ pqh1, . . . , qh7q represents the value associated
with Ch of the random vector pE1|H,E2|H,E3|H, pE1E2q|H,

pE1E3q|H, pE2E3q|H, pE1E2E3q|Hq, h “ 1, . . . , 8. With C0 “

H it is associated Q0 “ M. Denoting by I the convex hull
generated by Q1, Q2, . . . , Q8, as all the conditioning events
coincide with H the assessment M on F is coherent if and
only if M P I; that is, if and only if the following system is
solvable

M “
ř8
h“1 λhQh,

ř8
h“1 λh “ 1, λh ě 0, h “ 1, . . . , 8.

(48)

The points Q1, Q2, . . . , Q8 coincide with the points
Q11, Q

1
2, . . . , Q

1
8 in the proof of Theorem 15, respectively. Then,

system (48) coincides with system pΣq1 in the proof of The-
orem 15. Therefore, it is solvable if and only if the condi-
tions in (18) are satisfied. In other words, the set Π of all
coherent assessments M on F coincides with the set of points
px1, x2, x3, x12, x13, x23, x123q which satisfy the conditions in
(18). [\

Proof of Theorem 18.
In order to prove the theorem it is enough to prove the fol-
lowing implications: a) piq ñ piiq; b) piiq ñ piiiq; c) piiiq ñ piq.
a) piq ñ piiq. We recall that F p-entails En`1|Hn`1 if and
only if either Hn`1 Ď En`1, or there exists a nonempty
FΓ Ď F , where Γ Ď t1, . . . , nu, such that QCpFΓ q implies
En`1|Hn`1 (see, e.g. [27, Theorem 6]). Let us first consider
the case where Hn`1 Ď En`1. In this case P pEn`1|Hn`1q “ 1
and En`1|Hn`1 “ Hn`1 ` Hn`1 “ 1. We have Cn`1 “

Cn ^ pEn`1|Hn`1q, with En`1|Hn`1 “ 1. We distinguish two
cases: pαq Hn`1 is true; pβq Hn`1 is false. In case pαq, by
Definition 5 and Remark 4, as En`1|Hn`1 is true it fol-
lows that the values of Cn`1 and of Cn coincide. In case
pβq, let C0, . . . , Cm be the constituents associated with F ,
where C0 “ H1 ¨ ¨ ¨Hn. Then, the constituents C10, . . . , C

1
m

associated with F Y tEn`1|Hn`1u and contained in Hn`1

are C10 “ C0Hn`1, . . . , C1m “ CmHn`1. For each constituent
C1h, h “ 1, . . . ,m, by formula (10) the corresponding value
of Cn is zh P t1, 0, xS3

h
u. We denote by z1h the value of

Cn`1 associated with zh and we recall that C1h Ď Hn`1,
h “ 0, 1, . . . ,m. For each index h, if zh “ 1, then z1h “ 1;
if zh “ 0, then z1h “ 0; if zh “ xS3

h
, then z1h “ xS3

h
Ytn`1u. We

set P pEn`1|Hn`1q “ xn`1; in our case xn`1 “ 1. Moreover,
by Theorem 10

maxtxS3
h
` xn`1 ´ 1, 0u ď xS3

h
Ytn`1u ď mintxS3

h
, xn`1u;

therefore xS3
h
Ytn`1u “ xS3

h
. Then, the values of Cn`1 and

of Cn coincide for every C1h. Thus, Cn`1 “ Cn when Hn`1 Ď

En`1.
We consider now the case where there exists FΓ Ď F , FΓ ‰ H,

such that QCpFΓ q Ď En`1|Hn`1. First of all we prove that
CpFΓ YtEn`1|Hn`1uq “ CpFΓ q. For the sake of simplicity, we
set CpFΓ q “ CΓ and CpFΓ Y tEn`1|Hn`1uq “ CΓYtn`1u.

If the value of CΓ is 1 (because all the conditional events
in FΓ are true), then QCpFΓ q is true and hence En`1|Hn`1

is also true; thus CΓYtn`1u “ 1, so that CΓYtn`1u “ CΓ .
If the value of CΓ is 0 (because some conditional event in FΓ
is false), then CΓYtn`1u is 0 too, so that CΓYtn`1u “ CΓ .
If CΓ is xS for some nonempty subset S Ă Γ (that is, all the
conditional events in FS are void and the other ones in FΓ zS
are true), then QCpFΓ q is true and and hence En`1|Hn`1 is
also true; thus CΓYtn`1u “ xS , so that CΓYtn`1u “ CΓ .
If CΓ is xΓ because all the conditional events in FΓ are void,
then QCpFΓ q is void and for En`1|Hn`1 there are two cases:
1) En`1|Hn`1 true; 2) En`1|Hn`1 void. In case 1), by also
recalling Remark 4, it holds that CΓYtn`1u “ xΓ so that
CΓYtn`1u “ CΓ .
In case 2) it holds that CΓYtn`1u “ xΓYtn`1u, where
xΓYtn`1u “ PpCΓYtn`1uq. Now, we observe that the ran-
dom quantities CΓ and CΓYtn`1u coincide conditionally on
Ž

iPΓYtn`1uHi being true; then by Theorem 3 it holds
that PpCΓ q “ PpCΓYtn`1uq, that is xΓ “ xΓYtn`1u; thus
CΓYtn`1u “ CΓ .
Finally, denoting by Γ c the set t1, . . . , nuzΓ , by the associative
property of conjunction we obtain

Cn`1 “ Cn ^ En`1|Hn`1 “ CΓc ^ CΓ ^ En`1|Hn`1

“ CΓc ^ CΓ “ Cn.

b) piiq ñ piiiq. By monotonicity property of conjunction it
holds that Cn`1 ď En`1|Hn`1. Then, by assuming Cn “

Cn`1, it follows Cn ď En`1|Hn`1.
c) piiiq ñ piq. Let us assume that Cn ď En`1|Hn`1, so
that PpCnq ď P pEn`1|Hn`1q. Moreover, by assuming that
P pEi|Hiq “ 1, i “ 1, . . . , n, from (15) it follows PpCnq “ 1 and
hence P pEn`1|Hn`1q “ 1, that is F p-entails En`1|Hn`1. [\
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