ON A STEP METHOD AND A PROPAGATION OF DISCONTINUITY
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ABSTRACT. In this paper we analyze how to compute discontinuous solutions for functional-
differential equations, looking at an approach which allows to study simultaneously continuous
and discontinuous solutions. We focus our attention on the integral representation of solutions
and we justify the applicability of such an approach. In particular, we improve the step method
in such a way to solve a problem of vanishing discontinuity points. Our solutions are considered
as regulated functions.

1. INTRODUCTION.

In the classical theory of differential or integral equations generally solutions are expected to be
at least continuous. However, for many types of delay-differential equations (DDE’s), for impulsive
equations or measure differential equations, solutions need not be continuous (cf. [25, Chapter 2.5.2],
[41, Chapter 5] or [39]). Despite that the problem can be also considered in terms of distributional
derivative (see, for instance, [16]) we believe that it is too far from the problems leading to DDE’s
and in this paper we keep the advantages of the classical theory. All derivatives considered here are
taken in the classical sense.

In the paper we concentrate on computational aspects of this theory, so we study the applicability
of the step method for discontinuous initial functions and then for problems having discontinuous
solutions. There are two main problems to be solved: what kind of integral representations of
solutions can be applied for the step method and how to ensure the propagation of discontinuity
points from the initial interval to the future. Our results are of practical nature and they should
allow the use of mathematical models based on DDE’s with discontinuous initial functions with the
“almost classical” step method.

Motivated by the papers [4, 5] we will study the problem of discontinuous solutions for DDE’s.
In this case, the definition and the construction of solutions seem to be rather complicated with
respect to the case of ordinary differential equations (ODE’s). Here we suggest a simpler approach
which allows to use the same types of proof for both cases. We consider some retarded functional-
differential equation of the form

(1) () = fltat-7))
z(t) = o) for te[-7,0].
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Problems of this kind arise, for instance, in population dynamics (such as the growth of cell mod-
elling: 2/(t) = La(t — 7), see [6, 26]; with discontinuous initial function ¢, see [3, Section 1.4] for
more details).

Let us stress that, in view of seasonability of some population dynamics, the population observed
as discontinuous in the past should be discontinuous in the future and the model should preserve
this property, we recall that time scales are sometimes used to describe such a situation (cf. [10],
for instance). As in this case we are able to think that ¢ has values zero outside of the time
scale (whence it is possibly discontinuous), we cover and extend this approach too. Thus both
continuous and discontinuous functions should be considered as solutions and we unify both cases
in one approach. The choice of the study of the problem (1) is sufficient to show all the ideas which
will be then applied for more general problems.

The classical theory for DDE’s is based on the assumption that the initial function ¢ is continuous
on [—7,0], consequently solutions are continuous too. As claimed above, in some mathematical
models, it is not a realistic case. Following [5] we will allow the function ¢ to be discontinuous at
some points in [—7,0]. As z is determined by the initial function ¢ the solution is expected to be
discontinuous too.

We think that regulated functions constitute a convenient function space with respect to the
supremum-norm to study problems of this form. Due to some properties of the space of regulated
functions we will be able to extend the results to this space in a manner unified with continuous
case. We will give a proper integral representation for problem (1) defined in terms of Stieltjes-type
integrals, namely using the Kurzweil-Stieltjes integral. Note that integral equations with Kurzweil-
type integrals were investigated (see [16], for instance) mainly by its generality. It is known, that not
only DDE’s, but also some other functional equations can be treated as special cases for generalized
differential equations and the existence theorems are then proved (cf. [16]). Here we concentrate on
a computational aspect from the model to its solution. We will show that the integral representation
by means of the Kurzweil-Stieltjes integral is a very natural approach, which coincides with the
classical integral representation in the case of DDE’s with continuous initial functions (see [21,
Lemma 2.1]). As applications, we will discuss the step method and the problem of vanishing points
of discontinuity for solutions (studied in [4, 5, 38], for instance).

The paper is recommended for all readers interested on DDE’s and is organized as follows. The
next two sections are devoted to recall fundamental concepts and basic facts, respectively, about
the space of regulated functions and on Henstock-Kurzweil and Kurzweil-Stieltjes integrals. In the
fourth section we introduce the notion of regulated solutions and we take into consideration other
notions of solutions from the classical theory and some generalized notions of solution. Then we
give the integral representation for regulated solutions and we show that classical and Carathéodory
solutions as well as piecewise continuous and natural solutions are special cases of regulated ones.

Adapting the step method for the new integral representation we allow its use for problems with
continuous and discontinuous initial functions ¢ and we prove also some existence theorems. For
discontinuous solutions we solve the problem of vanishing discontinuity points (cf. [12]). In the last
section we study population dynamics for discontinuous past states (initial functions). The paper
is supplemented by explanatory examples.

2. REGULATED FUNCTIONS.

We denote by R the set of all real numbers. Given a,b € R, a < b, we denote by C([a,b],R),
PC([a,b],R), C([a,b],R) and AC([a,b],R) the space of all continuous, piecewise continuous (cf.
[7, 8]), continuously differentiable and absolutely continuous real-valued functions u defined on [a, b],
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respectively. A function u : [a,b] — R is said to be regulated if there exist finite the right u(¢*) and
left w(s™) limits for every points ¢ € [a,b) and s € (a,b]. The Banach space G([a,b],R) consists of
all regulated real-valued functions defined on [a,d] (see [23]) equipped with the supremum-norm.
Every regulated function is bounded, has a countable set of discontinuities and is the limit of a
uniformly convergent sequence of step functions. Clearly C([a,b],R) C G([a,b],R). We recall that
a function g : [a,b] — R is said to be of bounded variation if Varlg < oo, where the variation
Vartg is defined by Varlg = sup {30, |g(t;) — g(ti-1)| :a =t < t; < --- < t, = b}. The
Banach space BV ([a,b],R) is the space of all functions of bounded variation equipped with the
norm ||g||gy = |g(a)| + Vartg. We have BV ([a,b],R) C G([a,b],R).

It is well known that a function x of bounded variation can be decomposed as the sum of a
continuous function of bounded variation z. and a break function z4. Precisely, if {t; : k € N},
where () is assumed below to be ordered as increasing, denotes the set of discontinuity points
then
(2) za(t) = Y [(@(te) = @ty )X e + @) = 2(tk)X(tem]  on [a,b],

k=1
where we set z(a™) = z(a) and x(b*) = z(b), and z. = x — 24 € C([a,b],R) (cf. [39]). We refer to
x. and x4 as the continuous and discrete part of x. It is know, that Var([a,b],x) = Var([a,b], z.) +
Var([a,b], z4). Throughout we will deal with the subspace Zg of G([a, b], R) consisting of regulated
functions having finite sum of jumps, i.e.

ST [la(te) — ()] + |2(t) — ()] < oo,

trE€D,

where D, denotes the set of discontinuity points of 2 (so is at most countable).

Proposition 2.1. Any function x € Zg is representable in the form x = x. + x4, where x4 is the
function, of bounded variation, defined by (2) and . = x — x4 € C([a,b],R).

Note that BV ([a, b],R) C Zg and C([a, b], R) is the subspace of G([a, b], R) consisting of functions
having vanishing discrete parts. This class of functions will form a general space consisting of
possible initial functions for considered DDE’s.

Let f : [a,b] xR — R, then the Nemytskii superposition operator Sy : RI%* — Rl*%] is defined by
the formula S¢(x)(t) = f(¢,x(t)). It is one of the most important nonlinear operators in the theory
of differential and integral equations. Properties of the Nemytskii operator have been studied in
different function spaces (cf. [1]), here we summarize some properties of the operator in the space
G([a,b],R). The following useful theorem is proved by Michalak [27].

Theorem 2.1. ([28, Proposition 2.2]) The operator Sy maps G([a,b],R) into itself if and only if
the function f has the following properties:
(1) the limit lim{g g)xR3(u,y)—(s,2) [ (W, y) exists for every (s,z) € (a,b] X R,
(2) the limit limy ) x R3S (u,y)—(s,2) [ (U, y) ewists for every (t,x) € [a,b) x R.
In particular, it implies that if f(¢,z(t)) = f(x(t)) then the (autonomous superposition) operator
Sy maps G([a, b], R) into itself if and only if f is continuous (see [27, Corollary 3.6]).

Corollary 2.1. ([2, Theorem 2.3]) Suppose that the function f(-,u) is regulated on [a,b] for all
u € R, and the function f(t,-) is continuous on R, uniformly with respect to t € [a,b]. Then the
operator Sy maps G([a,b],R) into itself and is (norm) bounded.
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3. KURZWEIL-STIELTJES INTEGRAL.

The Kurzweil-Stieltjes integral will be used in the new integral representation formula for dis-
continuous solutions of DDE’s. Here we collect some important properties of the integral.

A partition of [a,b] is a finite collection P = {([t;—1,¢:], &) : ¢ = 1,2,---  p} where [t;—1,1]
are non-overlapping intervals in [a,b], & € [t;—1,t;] and JY_, [ti—1,t:] = [a,b]. A positive function §
on [a,b] is called a gauge on [a,b]. Given a gauge § on [a,b], a partition P = {([t;—1,t], &), i =
1,2, ,p} of [a,b] is called o-fine if [t;—1,t;] C (& — 0(&),& +0(&)) fori=1,...,p.

Definition 3.1. A function f : [a,b] — R is said to be Kurzweil-Stieltjes integrable with re-
spect to g : [a,b] — R on [a,b] (shortly, KS-integrable) if there exists a function denoted by
(KS) [, f(s)dg(s) : [a,b] = R such that, for every e > 0, there is a gauge 0. on [a,b] with

p

D

i=1

ti—1

F(E)g(t) — glti1)) — ((KS) / " f(s) dg(s) — (15) [ e dg(s)) H <.

for every d.-fine partition {([ti—1,t:],&) : i =1,...,p} of [a,b].
The KS-integrability is preserved on all sub-intervals of [a, b]. The function t — (KS) fat f(s)dg(s)

is called the KS-primitive of f with respect to g on [a,b], and the KS-integral will be denoted by

(KS) ff f(s) dg(s) or simply by (KS) fff dg (we refer to [33] or [39]). We note that in the case
g(t) =t we have the usual Henstock-Kurzweil integral (see [19, 30, 35]).

It is well-known that if g is of bounded variation the KS-integral f; f dg exists for any regulated
function f (or conversely) ([35, Lemma 4.16]) and ‘(KS) fabf dg‘ < |[|flls (Varlg). Moreover, we
have

Proposition 3.1. ([40, Theorem 2.15]) Let f : [a,b] — R be of bounded variation and g : [a,b] — R
be regulated. Then both the integrals (KS) f; f dg and (KS) ffg df exist and

b b
(KS)/ fdg+ (KS)/ gdf = f(b)g(b) = fla)g(a) + Y [ATF()ATg(t) = AT f(t)ATg(t)]

a<t<b
where AT f(t) = f(t+) — f(t) and A~ f(t) = f(t) - f(t-).

The following result implies that, under some natural assumptions, the solutions of (1) are
regulated functions.

Proposition 3.2. ([14, Theorem 2.2], [39, Proposition 2.3.16.]) Letg: [a,b] = R and f : [a,b] —
R be such that the Kurzweil-Stieltjes (KS) f: f(s) dg(s) exists. If g is regulated, then so is the
primitive h : [a,b] = R, h(t) = (KS) fat f(s) dg(s) and for every t € [a,b],

ATR(t) = h(t") = h(t) = f(t) [g(t7) = g(t)] and AT(t) = h(t) = h(t™) = f(t) [9(t) — g(t7)].
Moreover, if [ is bounded and g is of bounded variation, then h is of bounded variation.

In contrast to the case of the Lebesgue integral the primitive t — (HK) fat g(s) ds is not absolutely
continuous. However, such a kind of integrals allows to integrate arbitrary derivative. Recall, that
any ACG, function is differentiable a.e. (for basic notions we refer the reader to [32], it contains
a survey about generalized notions of absolute continuity of functions), we have the following
characterization:
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Proposition 3.3. ([19, Theorem 9.17]) A function f : [a,b] — R is Henstock-Kurzweil integrable
on la,b] if and only if there exists an ACG, function F, given by F(t) = (HK) fat f(s) ds on [a,b]
such that F'(t) = f(t) a.e. on [a,b].

In view of Proposition 3.2 we are unable to expect such a nice property for the KS-integral. A
problem of differentiability is discussed in details in [31].

4. DELAY-DIFFERENTIAL EQUATIONS.

Let now consider problem (1):

dt) = fltat-7))
x(t) = o) for te[-70].

Any solution z(t) of (1) derives its properties from ¢ and f. Assume ¢ € G([—7,0],R). We expect
that all the discontinuity points of ¢ will be then propagated in [0, 7] as points of discontinuity of
the solution x(t). This paper is based on the following definition of solution.

Definition 4.1. A function x : [—7,T] — R is called a regulated solution for the problem (1) on
[—7, T provided it is a regulated function, it coincides with ¢ on [—7,0], is a.e. differentiable on
[0,T] and its derivative satisfies the equation x'(t) = f(t,z(t — 7)) a.e. on this interval.

In the sequel of this section we will present a short comparison of the above definition with the
notions of solution from the classical theory in the case of a continuous initial function ¢, and other
approaches to define a generalized notion of solution of (1) in the case of a discontinuous ¢. In
particular, the definition of a regulated solution, together with the integral representation of the
problem by means of K S-integral, generalizes all these approaches. We will try to justify here that
the above definition is the best choice for the study of DDE’s and can be used to improve the
method of steps.

Considering the case of a continuous function ¢, from the classical theory usually a solution
is required to be either continuously differentiable or absolutely continuous. Let us recall that a
function z : [—7,T] — R is called a classical solution for the problem (1) if it is continuous on [—7, 0]
and it is continuously differentiable on [0, T, its derivative satisfies the equation z'(t) = f (¢, z(t—7))
on [0, 7] and it coincides with ¢ on [—7,0]; while z : [—7, T] — R s called a Carathéodory solution for
the problem (1) if it is continuous on [—7, 0] and it is absolutely continuous on [0, T, its derivative
satisfies the equation z'(t) = f(t,z(t — 7)) a.e on [0,T], and it coincides with ¢ on [—7,0].

The definition of regulated solution is a natural extension of both the notions of classical and
Carathéodory solution, indeed C'([-7,T],R) Cc AC([-7,T],R) C C([-7,T],R) C G([-,T],R).
Moreover, due to the definition, the assumptions on the operator Sy and the linear integral operator
H will be less restrictive.

The cases of classical and Carathéodory solution are related to the case when f is, respectively,
jointly continuous or a Carathéodory function. Usually such solutions are presented in a very
convenient integral form (cf. [21, 22], for instance):

x(t) = ¢(0) Jr/o f(s,z(s—7))ds for t>0.

For a brief discussion for DDE’s we refer to [4] and much more detailed for oDE’s to [13]. Now we
look at the attempts to define a generalized notion of a solution for (1). Typically in the case of
Carathéodory type (see [5] and [8]) solutions the differentiability is expected except at the points
t=nr,n=0,1,2 .. (cf. the step method). One needs to fix the properties of solutions in such
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points: usually, it is assumed that the solution should be right-continuous and right-differentiable.
We point out that the use of the integral representation with the K S-integral allows us to control
the properties of solutions at those points, taking into account the properties of ¢. Note that the
discontinuity of ¢ implies, that we are unable to find classical solutions, because for any point tg of
discontinuity of ¢ the derivative z’(t) of a solution z(t) cannot exist at time ¢ = ¢y + 7 (as claimed
in [8, Lemma 3.2], for instance).

If a delay differential problem, observed in the past, has some discontinuity points (¢ is discontin-
uous), then we can expect that the same property should be valid in the future (so-called breaking
points, in this paper they are of the form {&x +n7:n =1,2,...}, where (§) are discontinuity points
of ¢). We point out that, according to Definition 4.1, the negligible set on which the derivative of
a regulated solution does not exist may consist of two kind of points: breaking points dependent
on ¢ and some points of continuity of  in which z has no derivative (points of discontinuity of
f). But when studying discontinuous solutions for differential problem the situation is much more
complicated than presented above (see [20, Section 2.2], for an interesting discussion). As clarified
in [41, Chapter 5] we have a few different approaches. For the case of DDE’s with discontinuous
initial function ¢ the most appropriate choice seems to be the use of the definition which coincides
with Carathéodory solutions for continuous ¢ (cf. [8, Lemma 3.2]). An interesting discussion about
the notion of a solution for DDE’s can be found in [3, Section 1.4].

We recall the definition from [4] and [5] for continuous f and for right-continuous ¢ with fi-
nite number points of discontinuity (adapted to the case of our problem), which is used to study
discontinuous solutions for (1), but it is closer to the notion of solutions for impulsive differential
equations (see also [7]).

Definition 4.2. (][4, Definition 3.14], [5, Definition 2.7]) A function x : [-7,T] — R is called a
natural solution for the problem (1) on [—7,T] provided it is right-continuous and satisfies for all
t € [0,T] the equation (1) with the derivatives being taken as right-hand derivatives.

The function f is supposed to be continuous, so the integral, in the integral representation, is
taken in the Riemann sense. However, if we don’t need to control the (right-) differentiability (as in
[4]), then the above definition can serve as a Carathéodory solution too (the differentiability almost
everywhere). The above definition suggests to use the integral representation instead of the original
one and we will use this idea by presenting the integral representation for regulated solutions. If
the points of the future discontinuity are known, then the following definition is used:

Definition 4.3. ([8, 38]) A function x : [—7,T] — R is called piecewise continuous solution for
(1) if it is continuous and satisfies (1) (either everywhere [38] or almost everywhere [8]) on some
intervals [tg, tr+1) C [0,T] for some prescribed points (t) (k =1,2,...N ), possibly dependent on a
piecewise continuous initial function ¢.

In fact, it is a solution for the set of problems

2 (t) = fult, 2t — 7)), ot —te) = ge(@(t — 1)),
where t € [tk,tkt1), K =1,2,..., N and fi, gi are sufficiently well-defined. Note that the space of
piecewise continuous functions also forms a proper subspace of the space of regulated functions, so
it is also a special case of our Definition 4.1 (see also [25, Chapter 2.2]).

Sometimes, functional-differential problems for which piecewise continuous solutions are expected
are formulated directly as impulsive delay differential equations (cf. [7]). So the set of solutions is
in the space PC([—7,T],R) and the initial function is also piecewise continuous. It is connected
again with integral problems with the Henstock-Kurzweil integral as observed in [17], but impulsive
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delay differential equations have separated description of the points of discontinuity and jumps
and this is not object of our study (cf. [15] for recent results). However, due to the fact that
PC([-7,T],R) € G([—7,T],R), such an approach is close, in some sense, to ours. As claimed in
[3, Theorem 2.1] any Carathéodory solution is also a piecewise continuous one.

5. INTEGRAL REPRESENTATION FOR SOLUTIONS OF (1).

The problem of the existence of an integral representation formula for discontinuous solutions was
observed and discussed in [4]. It is worthwhile to note that for natural solutions it was investigated
under very restrictive assumptions on f (see [4, Lemma 3.13]), moreover the initial function ¢ was
assumed to be right-continuous with a finite number of points of discontinuity having bounded
jumps (see [4, Assumption 3.2]). We observe that such a class of functions is contained in the space
of regulated functions (even in the subspace of the so-called “cddldg” functions).

Denote by Zg((—r,0,r) the subspace of G([—,0],R) consisting of regulated functions having
finite sum of their jumps, i.e. their discrete parts are of bounded variation (see Section 2). We
will give a proper equivalent integral representation for (1) in the more general case in which
¢ € Zg(—r0),r)- Throughout we will assume that the operator Sy maps the space G([—7,T],R)
into itself (cf. Theorem 2.1 for the necessary and sufficient conditions). We need to construct

a function g associated with the initial function ¢, which will keep all the information about its
discontinuity points and then we define an integral form of solutions by means of the K S-integral.
This approach will allow to prolong discontinuity points in a method of steps and, of course, to
keep all the advantages of integral representation of solutions.

Definition 5.1. Assume that ¢ € Zg(—ro)r). Let t € I, = (m7,(m + 1)7) for some m € N for
which (m + 1)7 < T, then we define a function g : [0,7] — R:

gt)y=@t-mr)+ Y. AT+ Y. ATe(y),

y<t—(m+1)7 y<t—(m+1)7

and if ¢ is one of the endpoints of any interval I,,, we put the left limits. We call g the associated
function with ¢. If necessary, we can put also g(t) = ¢(t) for ¢t € [—7,0] and g(t) =0 for t > T.

Lemma 5.1. (cf. [34, Proposition 15]) Assume that the function ¢ : [—7,0] — R is requlated and
let g the associated function with ¢. Then
i) The function g is requlated and if ¢ € Zg(—r.0),r), then g € BV ([0,T],R).
ii) Let ¢ € Zg(—r0r)- Then A™g(t) = A= ¢(t — (m+1)7) and At g(t) = AT¢(t — (m+1)7)
forte (mr,(m+1)7), m € N.
iii) For any regulated function h : [—7,T] — R the integral (KS) fz; h(s) dg(s) is well-defined
and its KS-primitive is a regulated function on [—1,T].

Proof. i) Clearly g is regulated function. Put M > 1 be such that T < M -7 < T + 1. If ¢ has its
discrete part of bounded variation on [—7, 0], then by the definition of the discrete part

Varlg < (M +1) 4+ Var® ¢4 < oo.

ii) Let t € (m7,(m 4+ 1)7) for some m € N and take a sequence t;, — t, ¢, < t. Note, that
by definition, t is a point of continuity of ¢ if and only if both A~¢(t — (m 4+ 1)7) = 0 and
AT ¢(t — (m+1)7) = 0, so the thesis holds true.
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Suppose now, that ¢ is such that ¢t — (m + 1)7 is a point of discontinuity of ¢. Then

g(t) =g = |te—mm)+ Y. AT+ Y, ATy

y<tp—(m+1)7 y<t—(m+1)r
- (t-mn) = D> ATy - >, ATe)
y<t—(m+1)7 y<t—(m+1)T
< fty—t]+ > A~ o(y)| + > AT o(y)].
tr—(m+1)T<y<t—(m+1)7 ty—(m+1)T<y<t—(m+1)T

Clearly, |ty —t| — 0 as k — oo. If t — (m + 1)7 is not an accumulation point for the set of all
discontinuity points of ¢, then for sufficiently big &k there is no right discontinuity points in the
interval (tx,t), then >, 41y, cpcr i1y, [AT@(y)] = 0. In this case ¢ is the unique point of left
discontinuity in this subinterval and then 3°, (., 1), <<t (mi1)r A7) = A7o(t — (m +1)7).

Consider now the case, when ¢ — (m + 1)7 is an accumulation point for the set of all dis-
continuity points of ¢. As this function is regulated, it should have limits at ¢t. Thus the set
{t € [-7,0] : [¢(t) — ¢(t—)| > £} is finite and consequently A~¢(ty — (m + 1)7) — 0 as k — oc.

As ¢ € Zg(-r0),r), then for k sufficiently big Ztk_(m+1)T<y§t_(m+1)T A= o(y)| < % Again

Ztk—(m+1)7<y§t—(m+l)r |A+¢(y)| = 0.

Whence [g(ty) — g(t)] < [t — t| + A7 ¢t — (m+ 1)7)| 4+ + = [A"¢(t — (m+ 1)7)| as k — oo.

Hence for any t € [0,T]: A~g(t) = A~ ¢(t — (m + 1)7). For the right limit we have similar
estimations.

iii) Due to i) g is of bounded variation. If h is regulated, then the integral (KS) fot h(s) dg(s)
exists and is a regulated function too. Thus it is an immediate consequence of Proposition 3.2. [

Observe that if ¢ is a continuous function then the discrete part of the associated function g
vanishes, so we get dg(s) = ds.

Consider now the following integral equation with the K S-integral:

(3) z(t) = ¢(0) + (KS)/O f(s,z(s—7)) dg(s) for te]0,T],

with z(t) = ¢(t) for t € [-7,0], ¢ : [-7,0] = R.
We have the following integral representation theorem (cf. [21, Lemma 2.1] for the case of
continuous ¢ and f):

Theorem 5.1. Assume, that ¢ € Zg((—r0r) and f: [-7,T] x G([~7,T],R) — R is such that the
Nemytskii operator Sy maps the space G([—,T),R) into itself. Then x is a regulated solution for
(1) if and only if it is requlated function satisfying the integral equation (3), where the function g
is the associate function with ¢.

Proof. Let ¢ € Zg(_r0,r)- Denote by N its set of discontinuity points. We will not expect
differentiability for solutions on the set {N + k7 : k =0,1,2,...} (possibly this set can be empty),
which is at most a countable set. Let g be the associated function with ¢.

I. First assume that z is a regulated solution for (1). Then z is a.e. differentiable on [—7,T]
and its derivative satisfies the equation 2/(t) = f(¢t,2(t — 7)) a.e. on [—7,T]. Since the derivative
of  may not exists in the set {N + k7 : k =0,1,2,...} and for KS-integrability we need to have a
function everywhere defined, we can put z’(t) = 0 at these points. Clearly x(- —7) is also regulated,
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by our assumption on the Nemytskii superposition operator we have that the function f(-,2(- — 7))
is regulated and, by (1), the same is true for a’.

Since the function ¢ is regulated and the mapping s — s — 7 strictly increasing, then the
composition ¢(-—7) is regulated too, as a consequence of the Sierpiriski characterization of regulated

functions ([37]). Then by Lemma 5.1 4ii) the integral (KS) f(f f(s,z(s — 7)) dg(s) is well-defined.
It means that we are able to KS-integrate both sides of z'(t) = f(¢,z(t — 7)) with respect to g,

(K5S) / #/(s) dg(s) = (KS) / F(s,2(s — 7)) dg(s).

Consequently, by Proposition 3.2 (as 2/(t) = 0 at the point of its discontinuity) we get:
t
o(t) = 2(0) = (KS) [ Fls.als~ 1) dofs)
0

(KS) / f(s,(s — 7)) dg(s)

8
—
~~
N

|
<
—~~
(=)
=

I

() = (0) + (KS) / F(s,2(s — 7)) dg(s).

Thus « is a solution for (3).

II. Now let = be a regulated function satisfying (3). Then, from the hypothesis on f, for any
t € [0, T] the integral y(t) = (KS) f(f f(s,x(s—7)) dg(s) exists and by Proposition 3.3 y is an ACG,
function, whence differentiable a.e., say outside the null set Ny with ¢/(t) = f(¢t,2(t — 7)) a.e. on
[0,T]. Moreover by Proposition 3.2, y is a regulated function.

If we differentiate both sides of (3) at a common point of differentiability ¢ (the set with a full
measure, i.e. [0,¢] \ (N U{N +k7:k=0,1,2,...})), we get

o0 = (1) | (s (s — ) dg<s>)/ — )

and clearly z(0) = ¢(0) = y(0), so z(t) = y(t). Therefore the regulated function x satisfies
2'(t) = f(t,x(t — 7)) a.e. on [0,7]. Consequently, it is a regulated solution for (1). O

Remark 5.1. The regulated solution satisfies the equation a.e., so if we expect the uniqueness of
solutions we need to add some rules how to fulfill the values at the points of discontinuity (and
values of a derivative at some points). Recall, that definitions for both natural and piecewise
solutions contain such conditions. It is important, when we need to study natural solutions and it
was discussed in earlier papers ([3, 4, 5], for instance). But the Stieltjes-type integrals are defined
everywhere, so the only possibility is to redefine the function g.

As the initial function is defined on a closed interval, some regularity conditions for ¢ are neces-
sary. It can have jumps at ¢ = —7 and ¢ = 0 and we need to have

z(0)

0
6(0) + (HK) / f(s,2(s — 7)) dg(s) = (HE) / £(s, (s — 7)) dg(s)
= 5(0) + £(0,d(—7)) - [9(0+) — 9(0)].

It means that f(0,¢(—7)) - [¢g(0+) — g(0)] = f(0,¢(—7)) - [¢p(—7+) — ¢(—7)] should be equal to 0
(ct. [22, p. 50]).
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Now, we should compare our result with a classical one when ¢ is continuous. In such a case for
classical solutions we should have Sy : C([—7,T],R) — C([—7,T],R), which is equivalent with the
fact that f is jointly continuous ([1, Theorem 6.3]). Then

Lemma 5.2. For a given f : [a,b] x R — R if the operator Sy maps C([a,b],R) into itself, then
Sy : G([a,0],R) = G([a, 0], R).

Proof. In view of Theorem 6.3 in [1] the assumption implies, that f is continuous on [a,b] x R. In
particular, it means, that the following limits exist: limp, o) xrs(u,y)—(s,2) f (4, y) for every (s, ) €
(a,b] x R and lim p)xrs(u,y)—(s,2) f(u,y) for every (t,x) € [a,b) x R. Moreover, they are equal
f(s,z) and f(t,z). Thus the limits are finite and due to Theorem 2.1 the operator S; maps
G([a,b], R) into itself. O

6. STEP METHOD.

The introduced notion of regulated solutions is also appropriate for a classical step method used
for solving DDE’s. For the case of (discontinuous) natural solutions it was proposed in [4, Section
4.2] and here we will present an extension. Suppose, that ¢ € Zg(|_r),r) and that the Nemytskii
(autonomous) superposition operator Sy maps G([—7,T],R) into itself (for some T' > 0). Consider
the integral equation

x(t) = x(0) + (KS)/O f(s,xz(s—7)) dg(s) forte[0,T],

with z(t) = ¢(t) for t € [—7,0].
Step I. Let ¢ € [0,7]. Then we have

£(t) = $(0) + (KS) / F(s,2(s — 7)) dg(s).

0] we get x(s — 7) = ¢(s — 7). Thus by using the substitution formula for the
) we get

As s — 1 € [T,
KS-integral ([30]

o) = ¢(0)+ (KS) / F(s,2(s — 7)dg(s)
-7+t

— 4(0) + (KS) / f(z + 7 x(2))dg(z +7)

-7

-7+t
= 6(0) + (KS) / f(z + 7 0(2))dg(z + 7)

= 6(0) + (KS) / (5,65 — 7)dg(s) = b (2).

We need to show, that the latter integral exists and is regulated. As claimed in the proof of
Theorem 5.1 the integral is well-defined. Since the operator Sy maps regulated functions into
the same class of functions ¢; is regulated on [0,7]. We extend it to [—7,7]| by assuming that
¢1(t) = (t) on [=7,0).

Step II. Let t € [1,27]. Again we have

£(t) = 6(0) + (KS) / f(s,2(s — 7))dg(s) = $(0) + (KS) / F(s, (s — 7))dg(s) = da(t).
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We are able to repeat our above comments about existence and regularity of function ¢s, so this
function exists and is regulated. Put again ¢2(t) = ¢1(t) on [—7,7), so we have a regulated solution
on [—,27].

Step III. By repeating this procedure we are able to extend a solution = as long as the considered
integral exists to [—7, 7] (by induction).

Remark 6.1. Note that if the equation is of the form (a delayed logistic equation with potentially
discontinuous initial function, for instance)

(4) () = flt,x(@t),x(t—1))
2(t) = () for te[-r,0]

then in a first step we have z(t) = ¢(0) + (KS) fg f(s,z(s), (s — 7)) dg(s) we get usual differential
equation (¢(-—7) is the known function), which can be treated as in [41] and under our assumptions
it is possible to find a solution by step method too (cf. also [12]).

We are ready to present an existence theorem based on the step method with assumptions
presented in terms of considered operators (i.e. assumptions on Sy rather than on f), which is
an extension of that presented in classical books and can be even easily adapted to more general
problems.

Theorem 6.1. Suppose, that ¢ € Zg(_ro0.,r) and that for some T > 0 the operator Sy maps
G([-7,T],R) into itself. Then there exists a requlated solution for the problem (1) on [—7,T).

Proof. As ¢ satisfies all assumptions of Lemma 5.1 the associated function g is regulated and has
bounded variation. By our assumption, the function S¢(¢) is regulated on [—7, 0], so KS-integrable
on this interval with respect to g. Therefore, the step method can be used (as Sy(¢y) are regulated
functions too for k = 1,2, ..., where ¢ are constructed above) to obtain a regulated solution for
the integral equation (3) on [—7,7T]. Thus by Theorem 5.1 we obtain a regulated solution for the
problem (1) on [—7,T]. O

As in the case of continuous solutions (cf. [22]) we are able to study the case when T' = co:

Corollary 6.1. Suppose that the assumptions of Theorem 6.1 hold true. If, moreover, the operator
St is bounded, then we can put T' = oo and any regulated solution can be prolonged up to T = oco.

Remark 6.2. It follows from the above consideration that the classical method is valid for the
case when ¢ (so g too) is of bounded variation and the substitution formula holds true for the
K S-integral (and the set of discontinuity points need not be necessarily a finite set, cf. [4]). Thus
we are able to treat also different delay-differential problems ([22]) including the case of initial
functions with possible countable number of the discontinuity points. It is worthwhile to note that,
since S¢(x) is regulated, it has at most a countable set of discontinuity points, so the proper choice
for the step method is the K S-integral representation.

Under our assumptions, when ¢ is continuous we have more general existence results, due to the
fact that we require the Henstock-Kurzweil integrability of the function Sy(z)(-). Its primitive is
continuous, but not necessarily absolutely continuous, so even in such a case the solution need not
to be a Carathéodory solution. Note, that the Lebesgue integrability implies the Henstock-Kurzweil
integrability, but the converse need not be true. However, in both cases the primitives are derivable
almost everywhere. In view of Lemma 5.1 we get
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Corollary 6.2. If the initial function ¢ is continuous, then the requlated solution is a continuous
function. If moreover, Sy(x)(-) is Lebesgue integrable, then it is absolutely continuous and we get a
Carathéodory solution.

Remark 6.3. The converse implication need not be true, so even for a continuous function ¢ we
have more general results.

Sometimes, instead of the step method, we need to construct a sequence of approximations for a
solution of (1). In such a case we can apply the following convergence proposition (cf. [29, Theorem
6.3] or [30, Corollary 3.4]):

Proposition 6.1. Let g be a function of bounded variation on [0,T] and assume that the Nemytskii
operator Sy generated by a function f :[0,T] x R — R satisfying Carathéodory conditions maps
G([0,T],R) into itself. Then for any sequence (x,,) C G([0,T],R) pointwisely convergent to some
z € G([0,T],R) such that for some M > 0 we have sup,, ||S¢(zn)|lcc <M < 00 we get

lim (KS)/O f(s,zn(s)) dg(s) = (KS)/O f(s,xz(s)) dg(s) for te[0,T].

n—o0
By assuming that ¢ € Zg(—7,0), let us consider again the problem (1). Put
x1(t) = p(t) for t € [-7,0] and z1(t) = ¢(0) for ¢ € [0, T).

Then for any ¢ € [0, T] we can define a sequence of successive approximations:

(5) 2r(t) = 9(0) + (KS) [ fls.a(s =) dols)  n =1

(see [4, Section 4.4 and Theorem 4.6] for the applicability of the method of iterations for natural
solutions). By our assumptions we ensure that all integrals exists and that the functions z,, (n € N)
are regulated. Clearly, zo coincides with a function defined as a solution by the step method on
a interval [0,7] and is constant in (7,7]. The same property holds true for x,41 on [0,n7] and
(n,T), respectively. Thus for any finite T' we get a solution on a finite number of steps:

Proposition 6.2. Let g be a function of bounded variation on [0,T] and assume that the Nemytskii
superposition operator Sy generated by a function f : [0,T] x R — R satisfying Carathéodory
conditions maps G([0,T],R) into itself. Then there exists a regulated solution of (1), which is
obtainable by Picard iteration based on (5).

Note, that for the case T' = oo the sequence (x,,) is pointwisely convergent to a solution of (1).

6.1. Problem of vanishing discontinuity points. It is known that the current version of the
step procedure is, in some sense “improving”. We believe, that there is no reasons to think, that
process which was discontinuous in the past should be continuous in the future. Indeed, even
if mathematical models are studied with discontinuous initial function (piecewise continuous, for
instance as in [38, Section IT] or with jumps like in [9]), then the solutions were continuous. However,
in the paper mentioned above the necessity of the study for discontinuous solutions is explained
and for some special cases a research method is presented.

Unfortunately, it is based on the description of jumps in the future, i.e. for tx > 0, k € N. It
means, that we need to consider a sequence of problems

o' (t) = fu(t,z(t — 7)), (t — tht1) = gr(x(t — tpt1)),

where t € [tg,tr+1) and fi, g are sufficiently well-defined. Such an approach allows to obtain
discontinuous solutions, but only in prescribed points with determined for a countable number
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of points transition functions g (cf. [38, Section III]). In such a case, we need to solve several
differential problems (without use of the step method), we are unable to use classical methods and
so the assumptions are really strong (like Lipschitz conditions, for instance). Let us emphasize, that
in that paper solutions are just piecewise continuous functions and additional property of right-
continuity is separated from the existence problem. We should note that, as space PC([—7,T],R) is
a subspace of the space of regulated functions, our method can be also applied in the case considered
in [38] with standard (more natural) formulation of the problem.

Now, let us underline that in [4] one of the problems lies in the fact that after each step the
solution is more regular than in the previous step. In particular, in a classical approach with
the integral, the points of discontinuity vanish after one step. It means, that we are not able to
find discontinuous solutions. Since it is not a realistic case, the authors in [4, 5] discussed some
assumptions allowing to keep the discontinuities for the next step, described all the discontinuity
points in the future ([38]).

In the case of a fixed time delay considered here, the constructed function g allows to preserve
the points of discontinuity for the next interval in the step method. More detailed theory devoted
to study such a problem for DDE’s is presented in [12, Section 2]. It is discussed the fact that as
t increases, the solution « of (1) becomes smoother than the initial function ([21]) (a discussion is
also for derivatives of a solution, but it goes beyond the goal of this work).

Remark 6.4. We should also mention some theoretical approaches, where DDE’s are treated as
special cases of generalized ordinary differential equations, dynamic or measure differential equa-
tions. In contrast to the case considered in this paper, such papers are devoted to unify some earlier
theories and not related to computational aspects.

The first case is when solutions are expected to be functions of bounded variation ([18, 36], for
instance). It is a subspace of the space of regulated functions G([—7,T],R). As the norm considered
in the space of functions of bounded variation is stronger than the supremum-norm, then additional
properties of solutions are required (and so additional assumptions). However, the form of the
considered problems are closer to impulsive differential equations (¢ is supposed to be piecewise
continuous with finite number of jumps, whence of bounded variation), solutions are obtained as
limits of some approximated solutions. It is interesting, despite that integral representation for
considered solutions are not in a Henstock-Kurzweil sense, it has separated continuous and discrete
parts, so our approach is valid also for this case.

In [16] some DDE’s are studied in the space of regulated functions by considering some integral
equations with the K S-ntegral, but the goal and the methods used there are completely different,
indeed derivatives are taken in the distributional sense and the problem is reformulated to measure-
differential equations or generalized differential equations. Here we prefer the direct approach and
we study classical DDE’s derived directly from some mathematical models.

The next lemma will allow to check if discontinuity points for the K S-integral are preserved. It
provides an answer to what we need to assume to keep the continuity or differentiability property
at t = 0 (cf. [12]). It is a basis for our computational method allowing to calculated the points of
discontinuity separately.

Lemma 6.1. ([35, Lemma 4.23], [35, Theorem 2.34]) Let f € G([a,b],R) and g be a regulated
function with bounded variation. Denote by D, the set of discontinuity points of g in (a,b) and by



14 DIANA CAPONETTI, MIECZYSLAW CICHON, AND VALERIA MARRAFFA

ge the continuous part of g. Then

(6) KS/fdg— KS/fdgc+f( )A*g(a) + S F(d)Ag(d) + F(B)A=g(b).

deD
We are able to present a result about non-vanishing continuity points for our problem (1).
Theorem 6.2. Under the assumptions of Theorem 6.1 any regulated solution x of (1) has at every
interval [mT, (m + 1)7] the set of discontinuity points of the form N,, = {& + m7 : k € N}, where

N = {& : k € N} is the set of discontinuity points of ¢ with the exception of points &, satisfying
the condition f(&m—1,2(Em—1— 7)) = 0.

It is an immediate consequence of the above Lemma 6.1. If in the above formula (6) for some
point d we have f(d) = 0, then a discontinuity point vanishes, and for f(d) # 0 it is distributed
for the next interval. Let us omit the detailed proof and, instead, we illustrate the idea by the
following example.

Example 6.1. As a special case of (1), for f(t,x) =t -z, we consider the following problem:
(7) () = t-x(t—1)
z(t) = o) for te[-1,0],
with
t for te[-1,—
o(t) =S t+2 for te[- %,— ),
t+2 for te[- %
Then A~¢(—2) = 2 and A~ ¢(—1) = 3.

3/= 3 3
Let g : [0,1] — R be the associate function with ¢, defined according to Definition 5.1. Then we

have g(t) =t fort € [0,1), g(t) =t + A ¢(—3) =t + 2 fort € [5,2) and g(t) =t + A" p(—2) +
A~¢(—%) =t+2for t € [2,1]. Clearly, g.(t) =t.

We will calculate the solution of (7) on [—1,1]. By applying Lemma 5.1, let us consider three
cases:

A) Let t € [0, 3). Then

o(t) = KS/f o(s — 1)) dg(s)

t
1
= (b(O)—l—/s ¢(s—1)ds:2+/s2ds:2+§t3.
0 0
B) Let ¢ € [, 2). Then

a(t) = KS/f 6(s — 1)) dg(s)

= 2+/3 qb(s—l)ds—f—f( »o(— §>>~A‘g(%>

0

t 2
1 t
= 2+/352ds+/s( )dsff + +§.

¢
s~¢(s—1)d5+/ s-¢p(s—1)ds+0

3

ol

[}
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Observe that lim

continuous at t = %
C) Let ¢ € [2,1]. Then

~a(t) = 24 & and lim, .1+ z(t) = 2 + g7, therefore the function x(t) is
3

(.v\»—-

z(t) = KS/f d(s—1)) dg(s)
2 1 _ 2
= 2+ f 8—1)ds+f(a¢( 3))-A7 g( )+f( ,9(=3)) - A79(3)
1 1
- 2+/ Bl = 1) ds+0- 2+ f(3,6(-3) 2
Ol 2 t
3 3 2 1
= 2+/ s-¢(s—1)ds+/ s-¢(s—1)d3—|—/ s-¢(s—1)ds+f(§,¢(—§))~2
0 1 2
s g 32 ¢ 3 2 4
= 2+/ s2ds+/ s-(s—l—f)ds—l—/s-(s—|—2)ds—|—7-7-2
0 1 3 2 3 3
— ﬁ t2+ﬁ
-3 9"
Observe now, that lim 12 z(t) =2+ 2 and limt_>§+ z(t) = 2 + 181 therefore the function z(t)
is discontinuous at ¢ = %
Finally,
342 for ¢ € [0, 3],
o1(t) = %t?’—i—%-l-% for t € [%, 2],
P24 3 for t € (3,1].

Thus the function ¢; has a discontinuity point only at ¢ = % and not at t = % Note that in the
next steps the situation will be the same.

If we intend to find a solution on the interval [1,2], then the integral form of the problem is the
following

o) = (1) + (S) [ f.01(5 1)) dyto) = 5+ (S) [ 5015 = 1) do(s).

Note, that g is defined for the values in this interval and g(t) =t — 1+ o, s A7é(y).

Let us concentrate now on a point tg = %. Note that in this case the point ty —2 is a discontinuity
point (of ¢) and tg — 1 is not (see the above formula for ¢1).
If1<t< 3, then

43 ¢ 1 1 167
t (24 =83 ds= —t° + 12+ —
x(t) = 9 +/ls ( +3s) 5= 1¢ + +45
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For t € [4, 2] we obtain

z(t) = %3—&-/1s~¢1(s—1)ds+§.¢1(%).A¢(_é)

43 [% 1 t 1 1, 2
= = (24 =5%d (2-—=+-t24+=2)d
9+/ls(+3s)s+[§s( 27+3 +2)s
4 1 1
Z b (2) AT H(=2).
+Sa5) ATe(—5)
Thus the discontinuity comes back as the integrand is not zero at the point #y.

7. AN EXTENSION.

Till now our approach is presented for retarded differential equations (1). It can be used for the
case of the growth of cell modelling (z'(t) = Ta(t — 7), cf. [6]), also for the case of discontinuous
initial function ¢ ([3, Section 1.4] with piecewise continuous solutions). Now, we are able to study
population dynamics also for discontinuous past states and we are not restricted to the cases studied
earlier.

Let us consider now DDE of the form:

d
(8) o ) —a(t =7} = fltz(t-7))
z(t) = o) for te[-7,0].
Let g the associated function with ¢. Then by integrating the equation we get

(1) [ (5 06) — s = 7)) s = (569) [ fGssats =) date
and whence .
o(0) = a(t =) = 60) = () + (KS) [ f(s.a(s = 7)) dg(s).

Again for t € [0, 7] we have the integral representation of a solution:

z(t) = ¢(0) = ¢(=7) + ot — 7) + (KS)/O f(s,x(s — 7)) dg(s).

Clearly, its properties are dependent directly on the properties of ¢ as well as on the properties of
operators Sy and H. Therefore, our previous results are applicable in this case.

Note, that if we need to investigate (8) in an explicit form we need to require that there exist
derivatives 2/(t) and for 7(¢) (the existence of a derivative of x(t) — z(¢ — 7) does not imply the
existence of 2/(t)). In [5] (see also [4, Example 2.1] and [4, Section 4.4]) the above problem with
f(t,x) = z is investigated:

d
(9) o ) —at -1} = a(t-7)
z(t) = o) for tel-1,0],
where the initial function ¢(¢) = ¢ for ¢ < 0 and ¢(0) = 1. The natural solution = (obtained by the
method of steps) is studied. It is discontinuous function, but x(-) — z(- — 7) is continuous and has
a continuous two-sided derivative for all ¢ > 0. However, it does not imply the continuity of x(t)

and z(t) inherits discontinuities, for certain ¢ > 0, from discontinuities at earlier times, through
dependency on z(t — 7).
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Let us investigate regulated solutions on [—1,1]. In this case g(¢t) =t for t < 0, g(0) = 1 and
g(t)=t+1forte (0,1), g(1) = 3. Its integral representation for ¢ € [0,1) is given by

x(t):1+1+(t—1)+(KS)/t¢(s—1)dg(s)=t+l+/t(s—l)ds:;t2+1
0 0

and z(1) = %—i— 1+1. It means that the regulated solution coincides with the natural one consider in
[5], but now we are able to apply directly the new integral representation of a solution. Note, that
it is the simplest case, when ¢ is discontinuous only at the right-endpoint of the interval. Obviously,
this solution can be calculated on next intervals by the same manner.

(1]
2]
3]
(4]

[5]

(10]
[11]
(12]

[13]
(14]

(15]
[16]
(17]
(18]

[19]
20]

(21]
(22]

23]

REFERENCES

J. Appell, P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics 95, Cambridge
University Press, Cambridge, 1990.

W. Aziz, N. Merentes, J.L. Sdnchez, A note on the composition of regular functions, J. Anal. Appl. 20 (2014),
1-5.

Ch.T.H. Baker, G. Bocharov, F.A.R. Rihan, Neutral delay differential equations in the modelling of cell growth,
University of Chester, 2008.

Ch.T.H. Baker, P.M. Lumb, On integral equation formulations of a class of evolutionary equations with time-lag,
J. Integral Equations Appl. 18 (2006), 227-247.

Ch.T.H. Baker, Ch.A.H. Paul, Discontinuous solutions of neutral delay differential equations, Appl. Numer.
Math. 56 (2006), 284-304.

Ch.T.H. Baker, G.A. Bocharov, Computational aspects of time-lag models of Marchuk type that arise in im-
munology, Russian J. Numer. Anal. Math. Modelling 20 (2005), 247-262.

G. Ballinger, X. Liu, Continuous dependence on initial values for impulsive delay differential equations, Appl.
Math. Lett. 17 (2004), 483-490.

G. Ballinger, X. Liu, Ezistence, uniqueness and boundedness results for impulsive delay differential equations,
Appl. Anal. 74 (2000), 71-93.

A. Bellen, N. Guglielmi, Solving neutral delay differential equations with state-dependent delays, J. Comput.
Appl. Math. 229 (2009), 350-362.

M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Springer,
Berlin, 2012.

H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type,
Acta Numer. 13 (2004), 55-145.

H. Brunner, W.K. Zhang, Primary discontinuities in solutions for delay integro-differential equations, Methods
Appl. Anal. 6 (1999), 525-534.

M. Cichoni, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60 (2005), 651-667.

M. Federson, R. Bianconi, Linear integral equations of Volterra concerning Henstock integrals, Real Anal.
Exchange 25 (1999/00), 389-417.

M. Federson, J.G. Mesquita, A new continuous dependence result for impulsive retarded functional differential
equations, Czechoslovak Math. J. 66 (2016), 1-12.

M. Federson, J.G. Mesquita, A. Slavik, Measure functional differential equations and functional dynamic equa-
tions on time scales, J. Differential Equations 252 (2012), 3816-3847.

M. Federson, S. Schwabik, Generalized ODE approach to impulsive retarded functional differential equations,
Differential Integral Equations 19 (2006), 1201-1234.

Yu.N. Fetisova, A.N. Sesekin, Discontinuous solutions of differential equations with time delay, WSEAS Trans.
Syst. 4 (2005), 487-492.

R.A. Gordon, The Integrals of Lebesque, Denjoy, Perron and Henstock, AMS, 1994.

N. Guglielmi, E. Hairer, Computing breaking points in implicit delay differential equations, Adv. Comput. Math.
29 (2008), 229-247.

J.K. Hale, Functional Differential Equations, Springer, Berlin, 1971.

J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Vol. 99, Springer, Berlin,
2013.

C.S. Honig, Equations intégrales generalisées et applications, Pub. Math. d’Orsay 5, 1983.



18

DIANA CAPONETTI, MIECZYSLAW CICHON, AND VALERIA MARRAFFA

[24] M. Jarnicki, P. Pflug, Continuous Nowhere Differentiable Functions: the Monsters of Analysis, Springer, Berlin,

2015.

[25] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Vol. 85, Springer, Berlin,

2012.

[26] E. Liz, R. Pouso, Ezistence theory for first order discontinuous functional differential equations, Proc. Amer.

Math. Soc. 130 (2002), 3301-3311.

[27] A. Michalak, On superposition operators in spaces of regular and of bounded variation functions, Z. Anal.

Anwend. 35 (2016), 285-308.

[28] A. Michalak, On superposition operators in spaces BV,(0,1), J. Math. Anal. Appl. 443 (2016), 1370-1388.
[29] G.A. Monteiro, U.M. Hanung, M. Tvrdy, Bounded convergence theorem for abstract Kurzweil-Stieltjes integral,

Monatsh. Math. 180 (2016), 409-434.

[30] G.A. Monteiro, M. Tvrdy, On Kurzweil-Stieltjes integral in a Banach space, Math. Bohem. 137 (2012), 365-381.
[31] R. Pouso, A. Rodriguez, A new unification of continuous, discrete, and impulsive calculus through Stieltjes

derivatives, Real Anal. Exchange 40 (2015), 319-354.

[32] S. Saks, Theory of the Integral, IM PAN, Warszawa, 1937.

[33] S. Schwabik, Linear operators in the space of regulated functions, Math. Bohem. 117 (1992), 79-92.

[34] S. Schwabik, Abstract Perron-Stieltjes integral, Math. Bohem. 121 (1996), 425-447.

[35] S. Schwabik, M. Tvrdy, O. Vejvoda, Differential and Integral Equations: Boundary Value Problems and Ad-

joints, Academia, Praha and D. Reidel, Dordrecht, 1979.

[36] A.N. Sesekin, Yu.V. Fetisova, Functional differential equations in the space of functions of bounded variation,

Proc. Steklov Inst. Math. 269 (2010), 258—265.

[37] W. Sierpinski, Sur une propriété des fonctions qui n’ont que des discontinuités de premiére espéce, Bull. Math.

Soc. Sci. Math. Roumanie 16 (1933), 1-4. (in French)

[38] Y. Sun, A.N. Michel, G. Zhai, Stability of discontinuous retarded functional differential equations with applica-

tions, IEEE Trans. Automat. Control 50 (2005), 1090-1105.

[39] M. Tvrdy, Differential and Integral Equations in the Space of Regulated Functions, Mem. Differential Equations

Math. Phys. 25 (2002), 1-104.

[40] M. Tvrdy, Regulated functions and the Perron-Stieltjes integral, Casopis pro Péstovani Matematiky 114 (1989),

187-209.

[41] S.T. Zavalishchin, A.N. Sesekin, Discontinuous Solutions to Ordinary Nonlinear Differential Equations in the

Space of Functions of Bounded Variation, in: Dynamic Impulse Systems, Springer, Netherlands, 1997.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF PALERMO, VIA ARCHIRAFI 34, 90123

PALERMO, ITALY

E-mail address: diana.caponetti@unipa.it

FAcuLTY OF MATHEMATICS AND COMPUTER SCIENCE, A. MICKIEWICZ UNIVERSITY, UMULTOWSKA 87, 61-614

PozNAN, POLAND

E-mail address: mcichon@amu.edu.pl

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF PALERMO, VIA ARCHIRAFI 34, 90123

PALERMO, ITALY

E-mail address: valeria.marraffa@unipa.it



