ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 2006

NON ABSOLUTELY CONVERGENT INTEGRALS OF FUNCTIONS TAKING VALUES IN A LOCALLY CONVEX SPACE

V. MARRAFFA

ABSTRACT. Properties of McShane and Kurzweil-Henstock integrable functions taking values in a locally convex space are considered and the relations with other integrals are studied. A convergence theorem for the Kurzweil-Henstock integral is given.

1. Introduction. In this paper we continue the investigation of the McShane and the Kurzweil-Henstock integrals for functions defined on a compact interval of the real line and taking values in a locally convex space. In [12] the McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space were introduced and some properties of the integrals were considered.

When the range is a Banach space, a measurable and Pettis integrable function f is McShane integrable, see [9, Theorem 17]. We prove that the same result holds for functions whose range is a Hausdorff locally convex topological vector space (Theorem 3), if we consider the measurability by seminorm instead of measurability.

In Section 3 we study some properties of the McShane and Pettis integrals.

In Section 4 we establish relations between the McShane, the Pettis and the Kurzweil-Henstock integrals.

In Section 5 we prove a convergence theorem for the Kurzweil-Henstock integral.

2. Definitions and notations. Let X be a Hausdorff locally convex topological vector space (briefly a locally convex space) with

Copyright ©2006 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 28B05, 46G10.

Key words and phrases. Pettis integral, McShane integral, Kurzweil-Henstock integral, locally convex spaces. Supported by MURST of Italy.

Received by the editors on Nov. 12, 2003, and in revised form on March 3, 2004.

its topology \mathcal{T} and topological dual X^* . $\mathcal{P}(X)$ denotes a family of \mathcal{T} continuous seminorms on X so that the topology is generated by $\mathcal{P}(X)$. For $p \in \mathcal{P}(X)$, let $V_p = \{x \in X : p(x) \leq 1\}$, so that V_p^0 , the polar of V_p in X^* , is a weak*-closed, absolutely convex equicontinuous set in X^* . For a set E of the real numbers |E| and χ_E denote respectively the Lebesgue outer measure and the characteristic function of E. \mathcal{M} denotes the family of all Lebesgue measurable subsets of [0,1]. The word "measurable" as well as the expression "almost everywhere," abbreviated as a.e., always refer to the Lebesgue measure. An *interval* is a compact subinterval of \mathbf{R} . A collection of intervals is called *nonoverlapping* if their interiors are disjoint. A *partition* P in [0,1] is a collection $\{(I_i, t_i) : i = 1, \ldots, s\}$, where I_1, \ldots, I_s are nonoverlapping subintervals of [0, 1] and $t_1, \ldots, t_s \in [0, 1]$. Given a set $E \subset \mathbf{R}$, we say that P is

- (i) a partition in E if $\bigcup_{i=1}^{s} I_i \subset E$;
- (ii) a partition of E if $\cup_{i=1}^{s} I_i = E$;
- (iii) a *Perron* partition if $t_i \in I_i$, $i = 1, \ldots, s$.

Given $f : [0,1] \to X$ and a partition $P = \{(I_i, t_i) : i = 1, \dots, s\}$ in [0,1], we set

$$\sigma(f, P) = \sum_{i=1}^{s} |I_i| f(t_i).$$

A gauge δ on $E \subset [0,1]$ is a positive function on E. For a given gauge δ on E a partition $P = \{(I_i, t_i) : i = 1, \ldots, s\}$ in [0,1] is called δ -fine if $I_i \subset (t_i - \delta(t_i), t_i + \delta(t_i))$.

A function $f:[0,1] \to X$ is called

(a) strongly measurable if there exists a sequence $(f_n)_n$ of simple functions such that $f_n(t) \to f(t)$ a.e.;

(b) measurable by seminorm if for any $p \in \mathcal{P}(X)$ there exists a sequence $(f_n^p)_n$ of simple functions such that $\lim_{n\to\infty} p(f_n^p(t)-f(t)) = 0$ a.e.;

(c) weakly-measurable if the function x^*f is measurable for every $x^* \in X^*$.

We recall the following definitions, see [2, Definition 2.4].

Definition 1. A function $f : [0,1] \to X$ is said to be strongly (or Bochner) integrable if there exists a sequence $(f_n)_n$ of simple functions such that

(i) $f_n(t) \to f(t)$ a.e.;

(ii) $p(f(t) - f_n(t)) \in L^1([0,1])$ for each $n \in \mathbb{N}$ and $p \in \mathcal{P}(X)$, and $\lim_{n\to\infty} \int_0^1 p(f(t) - f_n(t)) dt = 0$ for each $p \in \mathcal{P}(X)$;

(iii) $\int_A f_n$ converges in X for each measurable subset A of [0, 1]. In this case we put $(B)\int_A f = \lim_{n\to\infty} \int_A f_n$.

Definition 2. A function $f : [0,1] \to X$ is said to be integrable by seminorm if for any $p \in \mathcal{P}(X)$ there exists a sequence $(f_n^p)_n$ of simple functions such that

(i) $\lim_{n \to \infty} p(f_n^p(t) - f(t)) = 0$ a.e.;

(ii) $p(f(t) - f_n^p(t)) \in L^1([0,1])$ for each $n \in \mathbf{N}$ and $p \in \mathcal{P}(X)$, and $\lim_{n\to\infty} \int_0^1 p(f(t) - f_n^p(t)) dt = 0$ for each $p \in \mathcal{P}(X)$;

(iii) for each measurable subset A of [0, 1] there exists an element $y_A \in X$ such that $\lim_{n\to\infty} p(\int_A f_n^p(t) - y_A) = 0$ for every $p \in \mathcal{P}(X)$. We then put $\int_A f = y_A$.

Clearly a Bochner integrable function is integrable by seminorm, and the two definitions coincide in a Banach space.

Definition 3. A function $f : [0,1] \to X$ is said to be Pettis integrable if x^*f is Lebesgue integrable on [0,1] for each $x^* \in X^*$ and for every $E \in \mathcal{M}$ there is a vector $\nu_f(E) \in X$ such that $x^*(\nu_f(E)) = \int_E x^*f(t) dt$ for all $x^* \in X^*$.

The set function $\nu_f : \mathcal{M} \to X$ is called the indefinite Pettis integral of f. It is known that ν_f is a countably additive vector measure, continuous with respect to the Lebesgue measure (in the sense that if |E| = 0 then $\nu_f(E) = 0$).

We recall the definition of McShane and Kurzweil-Henstock integral, see [12, Definition 4].

Definition 4. A function $f : [0,1] \to X$ is said to be McShane integrable, respectively Kurzweil-Henstock integrable, (briefly McSintegrable, respectively KH-integrable) on [0,1], if there exists a vector $w \in X$ satisfying the following property: given $\varepsilon > 0$ and $p \in \mathcal{P}(X)$ there exists a gauge δ_p on [0,1] such that for each δ_p -fine partition, respectively Perron partition, $P = \{(I_i, t_i) : i = 1, \dots, s\}$ of [0,1], we have

$$p\left(\sigma(f, P) - w\right) < \varepsilon.$$

We denote by McS([0,1], X), respectively KH([0,1], X), the family of all McS-integrable, respectively KH-integrable, functions on [0,1], and we set $w = (McS)\int_0^1 f$, respectively $w = (KH)\int_0^1 f$. If f : $[0,1] \to X$ is McS-integrable, respectively KH-integrable, and if $0 \le a < b \le 1$, then the function $f\chi_{[a,b]}$ is McS-integrable, respectively KH-integrable, see [12, Lemma 1]. Moreover every Bochner integrable function is McS-integrable and the two integrals coincide, see [12, Corollary 1].

To simplify the notation, in the following we write $|x^*| \leq p$ instead of $|x^*(x)| \leq p(x)$ for each $x \in X$, and we denote by X_p^* the set $\{x^* \in X^* : |x^*| \leq p\}$. We recall that a seminorm $p \in P(X)$ is called *representable* if

(1)
$$p(x) = \sup_{X_p^*} |x^*(x)|$$

for all $x \in X$. If (1) holds for all $p \in \mathcal{P}(X)$, the space X is said to be *representable by seminorm*. If a space X is separable by seminorm, then it is representable by seminorm, see [7, p. 185].

3. Properties of McShane and Pettis integrable functions. In this section we extend to locally convex spaces some results known for Banach spaces.

From now on X will be a complete locally convex space.

We need the following lemmata.

Lemma 1 [15, Lemma 7]. There exists a positive McS-integrable function $\varphi : [0,1] \to (0,\infty)$ and a gauge δ_{φ} such that $0 \leq \sigma(\varphi, P) \leq 1$ for every δ_{φ} -fine partition P of [0,1].

Lemma 2 [12, Lemma 2]. Let $f : [0,1] \to X$ be an McS-integrable function. Then to each $\varepsilon > 0$ and to each $p \in \mathcal{P}(X)$ there corresponds a gauge δ_p such that

$$p\left(\sum_{i=1}^{s} \left(\left|I_{i}\right| f(t_{i}) - (McS) \int_{I_{i}} f\right)\right) < \varepsilon$$

for each partition δ_p -fine $P = \{(I_i, t_i) : i = 1, ..., s\}$ in [0, 1].

The following proposition when the range is a Banach space, has been proved in [9, Theorem 15] with a different technique.

Proposition 1. Let $(E_n)_n$ be a sequence of disjoint measurable sets in [0,1] and let $(x_n)_n$ be a sequence in X and let $f : [0,1] \to X$ be defined by

$$f(t) = \sum_{n} x_n \chi_{E_n}(t).$$

If the series $\sum_{n} |E_n| x_n$ is unconditionally convergent, then the function f is McS-integrable on [0, 1] and

$$(McS)\int_0^1 f = \sum_n |E_n|x_n.$$

Proof. The function f is countably valued, so f([0, 1]) is separable and without loss of generality we can restrict our domain to f([0, 1]). Therefore for every $p \in \mathcal{P}(X)$ and $y \in X$, we have $p(y) = \sup_{\{|x^*| \le p\}} |x^*(y)|$. Fix $p \in \mathcal{P}(X)$ and $\varepsilon > 0$. Since the series $\sum_{n=1}^{\infty} |E_n| x_n$ is unconditionally convergent there is a natural number N such that for n > N

(2)
$$\sum_{k=n}^{\infty} |x^*(x_k)| |E_k| < \frac{\varepsilon}{4}$$

uniformly with respect to $x^* \in X_p^*$, [14, p. 120]. Moreover for each natural number *n* the function $f_n = \sum_{k=1}^n x_k \chi_{E_k}$ is Bochner integrable,

therefore it is McS-integrable and $(McS)\int_0^1 f_n = \sum_{k=1}^n |E_k| x_k$. So by Lemma 2 there is a gauge $\delta_p^n = \delta_n$ such that

(3)
$$p\left(\sum_{i=1}^{s} \left(|I_i| f_n(t_i) - (McS) \int_{I_i} f_n \right) \right) < \frac{\varepsilon}{2^{n+1}}$$

for each δ_n -fine partition $P = \{(I_i, t_i) : i = 1, \ldots, s\}$ in [0, 1]. Also $\lim_{n \to \infty} (McS) \int_0^1 f_n = \sum_{n=1}^\infty |E_n| x_n$ and $(f_n)_n$ converges to f pointwise. Thus for every $t \in [0, 1]$ there exists $n(t) \ge N$ such that if k > n(t)

(4)
$$p(f_k(t) - f(t)) < \frac{\varepsilon}{4} \varphi(t)$$

where $\varphi(t)$ is an McS-integrable function satisfying Lemma 1. Let $g_k(t) = x_k \chi_{E_k}$. Define $\delta_{\varphi}(t)$ related to the real valued function $\varphi(t)$ as in Lemma 1 and put $\delta_p(t) = \min\{\delta_{n(t)}(t), \delta_{\varphi}(t)\}$. If $P = \{(I_i, t_i) : i = 1, \ldots, s\}$ is a δ_p -fine partition of [0, 1], we have

$$p\left(\sigma(f,P) - \sum_{n=1}^{\infty} |E_n|x_n\right)$$

$$= p\left(\sum_{i=1}^{s} |I_i| f(t_i) - \sum_{n=1}^{\infty} |E_n|x_n\right)$$

$$= p\left(\sum_{i=1}^{s} \left\{\sum_{k=1}^{\infty} |I_i| g_k(t_i) - \sum_{k=1}^{\infty} (McS) \int_{I_i} g_k\right\}\right)$$
(5)
$$\leq p\left(\sum_{i=1}^{s} \left\{\sum_{k=n(t_i)+1}^{\infty} |I_i| g_k(t_i)\right\}\right)$$

$$+ p\left(\sum_{i=1}^{s} \sum_{k=n(t_i)+1}^{\infty} (McS) \int_{I_i} g_k\right)$$

$$= A_1 + A_2 + A_3,$$

where the definitions for A_j are obvious. We estimate each A_j . Applying (4) and Lemma 1 to A_1 , we get

(6)
$$A_{1} \leq \sum_{i=1}^{s} p \bigg(\sum_{k=n(t_{i})+1}^{\infty} |I_{i}| g_{k}(t_{i}) \bigg) \leq \sum_{i=1}^{s} |I_{i}| p \bigg(\sum_{k=n(t_{i})+1}^{\infty} g_{k}(t_{i}) \bigg)$$
$$< \sum_{i=1}^{s} |I_{i}| \frac{\varepsilon}{4} \varphi(t_{i}) = \frac{\varepsilon}{4} \sigma(\varphi, P) \leq \frac{\varepsilon}{4}.$$

For estimating A_2 , let $r = \max\{n(t_1), \ldots, n(t_s)\}$. By (3) we obtain

(7)

$$A_{2} = p\left(\sum_{i=1}^{s} \left\{ |I_{i}| f_{n(t_{i})}(t_{i}) - (McS) \int_{I_{i}} f_{n(t_{i})} \right\} \right)$$

$$= p\left(\sum_{k=1}^{r} \sum_{\{i:n(t_{i})=k\}} \left\{ |I_{i}| f_{n(t_{i})}(t_{i}) - (McS) \int_{I_{i}} f_{n(t_{i})} \right\} \right)$$

$$\leq \sum_{k=1}^{r} p\left(\sum_{\{i:n(t_{i})=k\}} \left\{ |I_{i}| f_{n(t_{i})}(t_{i}) - (McS) \int_{I_{i}} f_{n(t_{i})} \right\} \right)$$

$$\leq \sum_{k=1}^{r} \frac{\varepsilon}{2^{k+1}} < \frac{\varepsilon}{2}.$$

For A_3 , by (2) we get

(8)
$$A_{3} \leq \sup_{\{|x^{*}| \leq p\}} \sum_{i=1}^{s} \sum_{k=n(t_{i})+1}^{\infty} \int_{I_{i}} |x^{*}g_{k}|$$
$$\leq \sup_{\{|x^{*}| \leq p\}} \sum_{i=1}^{s} \sum_{k=N+1}^{\infty} \int_{I_{i}} |x^{*}g_{k}|$$
$$\leq \sup_{\{|x^{*}| \leq p\}} \sum_{k=N+1}^{\infty} \int_{0}^{1} |x^{*}g_{k}|$$
$$\leq \sup_{\{|x^{*}| \leq p\}} \sum_{k=N+1}^{\infty} |x^{*}(x_{k})| |E_{k}| < \frac{\varepsilon}{4}.$$

Applying (6), (7) and (8) in (5) we obtain

$$p\bigg(\sigma(f,P) - \sum_{n=1}^{\infty} |E_n| x_n\bigg) \le \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon,$$

and the assertion follows. $\hfill \Box$

In the sequel we shall use the fact that every separated convex space is a projective limit of normed spaces, see [13, p. 86]. For each continuous seminorm p on the convex space X, $p^{-1}(0)$ is a vector subspace and p defines a norm on $X/p^{-1}(0)$. X_p is the associated Banach space, namely the completion of the normed linear space $X/p^{-1}(0)$ and π_p is the canonical mapping of X into X_p . Then X is the projective limit of the spaces X_p by the canonical mapping π_p of X onto X_p . For a function $f : [0,1] \to X$ and for each $p \in \mathcal{P}(X)$, define the function $f_p : [0,1] \to X_p$ by

$$f_p(t) = (\pi_p \circ f)(t) = \pi_p(f(t))$$

for $t \in [0, 1]$.

We characterize measurable by seminorm Pettis integrable functions. The analogous result in the case in which the range is a Banach space, has been proved in [3, Theorem 1].

Theorem 1. Let $f: [0,1] \to X$ be a measurable by seminorm Pettis integrable function. Then, for each $p \in \mathcal{P}(X)$, there are two functions g and h such that f = g + h, with $h(t) = \sum_n x_n \chi_{E_n}(t)$, where the sets E_n are disjoint, the series $\sum_n |E_n|x_n$ is unconditionally convergent in X_p and the function g is bounded in X_p . If f is integrable by seminorm, then the series $\sum_n |E_n|x_n$ is absolutely convergent in X_p .

Proof. Let $p \in \mathcal{P}(X)$ and $\varepsilon > 0$. Since f is measurable by seminorm, we can assume that f([0,1]) is separable for p, so there exists a countable subset $\{x_1, x_2, \ldots\}$ dense for p in f([0,1]). The collection

$$U_n^p = \{ t \in [0,1] : p(f(t) - x_n) < \varepsilon \} \quad n = 1, 2, \dots$$

covers f([0,1]). Put

$$E_1 = U_1$$

and

$$E_n = U_n \setminus \bigcup_{i=1}^{n-1} U_i, \quad n > 1$$

and define the function $h(t) = x_n$ for $t \in E_n$. The function h is a countably valued strongly measurable function, then g(t) = f(t) - h(t)is measurable by seminorm and $p(q(t)) < \varepsilon$. Moreover the function

$$g_p = \pi_p \circ g : [0,1] \to X_p$$

is strongly measurable and has an essentially bounded range. Therefore it is Bochner integrable; in particular, it is Pettis integrable, see [4].

Being h is the difference of two Pettis integrable functions, it is scalarly integrable. Then for each $x^* \in X^*$, $x^*h \in L^1([0,1])$ and for every $E \in \mathcal{M}$

$$\int_E x^* h = \sum_n x^*(x_n) |E \cap E_n|$$

and

(9)
$$\int_{E} |x^*h| = \sum_{n} |x^*(x_n)| |E \cap E_n| < \infty.$$

Moreover, there is a $\nu_h(E)$ such that

$$x^*(\nu_h(E)) = \int_E x^*h.$$

To prove that the series

(10)
$$\sum_{n} x_n |E \cap E_n|$$

converges unconditionally in the Banach space X_p for every $E \in \mathcal{M}$, by the Pettis-Orlicz theorem it suffices to show that every subseries of it converges weakly to an element in X_p . If $(n_k)_k$ is a subsequence of natural numbers and $A = \cup_k E_{n_k}$, then

$$x^{*}(\nu_{h}(E \cap A)) = \int_{E \cap A} x^{*}h = \sum_{n} x^{*}(x_{n})|E \cap E_{n} \cap A|$$
$$= \sum_{k} x^{*}(x_{n_{k}})|E \cap E_{n_{k}}|.$$

By (9) the last series converges for all $x^* \in X^*$, thus (10) converges unconditionally in X_p .

If the function f is integrable by seminorm, then the same is true for h(t) = f(t) - g(t). Since the sets E_n are disjoint $\int_E p(h) = \sum_{n=1}^{\infty} p(x_n) |E \cap E_n|$ and the series $\sum_{n=1}^{\infty} x_n |E_n|$ is absolutely convergent in X_p .

Corollary 1. Let $f : [0,1] \to X$ be a measurable Pettis integrable function. Then there are two functions g and h such that f = g + h, with $h(t) = \sum_n x_n \chi_{E_n}(t)$, where the sets E_n are disjoint, the series $\sum_n |E_n|x_n$ is unconditionally convergent in X and the function g is bounded in X. If f is strongly integrable then the series $\sum_n |E_n|x_n$ is absolutely convergent in X.

Proof. The function f is measurable, so we can assume that f([0, 1]) is separable. If $\{x_1, x_2, \ldots\}$ is a countable subset dense in f([0, 1]) the proof follows as in Theorem 1 with slight changes. \Box

Theorem 2. Let X be a locally convex space whose topology is generated by a sequence of seminorms, and let $f : [0,1] \to X$ be a measurable by seminorm Pettis integrable function. Then there are two functions g and h such that f = g + h, with $h(t) = \sum_n x_n \chi_{E_n}(t)$, where the sets E_n are disjoint, the series $\sum_n |E_n|x_n$ is unconditionally convergent in X and the function g is bounded in X.

Proof. If X is a locally convex space with a countable family of seminorms, then a measurable by seminorm function is measurable, [8, p. 247]. Therefore the assertion follows from Corollary 1. \Box

4. Relations between McShane, Pettis and Kurzweil-Henstock integrals. We now proceed to prove that every measurable by seminorm, Pettis integrable function is McShane integrable.

Theorem 3. Let $f : [0,1] \to X$ be a function which is Pettis integrable and measurable by seminorm, then it is McS-integrable (then KH-integrable) and the two integrals coincide.

Proof. Let f be a function which is Pettis integrable and measurable by seminorm and let $p \in \mathcal{P}(X)$. Then

$$f_p = \pi_p \circ f : [0, 1] \longrightarrow X_p$$

is a measurable Pettis integrable function, so by [9, Theorem 17], we get that $f_p(t)$ is McS-integrable with integral $(McS)\int_0^1 f_p = \pi_p(\nu_f([0,1]))$. Let $\varepsilon > 0$ be fixed; then there is a gauge δ_p such that if $P = \{(I_i, t_i) : i = 1, \ldots, s\}$ is a δ_p -fine partition of [0, 1], we have

(11)
$$p\left(\sigma(f_p, P) - (McS)\int_0^1 f_p\right) < \varepsilon$$

Since

$$p\left(\sigma(f_p, P) - (McS)\int_0^1 f_p\right) = p\left(\pi_p\left(\sigma(f, P) - \nu_f([0, 1])\right)\right)$$

we obtain by (11)

$$p(\pi_p(\sigma(f,P) - \nu_f([0,1]))) = p(\sigma(f,P) - \nu_f([0,1])) < \varepsilon,$$

and the assertion holds true. $\hfill \square$

Remark 1. By the Pettis measurability theorem [2,Theorem 2.2], it follows that in separable by seminorm spaces every Pettis integrable function is McShane integrable.

When the range is a Banach space, the following proposition has been proved in [5, Theorem 8].

Proposition 2. Let $f : [0,1] \to X$. Then f is McS-integrable if and only if f is Pettis integrable and KH-integrable.

Proof. If f is McS-integrable, then it is KH-integrable. The Pettis integrability follows by [12, Theorem 2]. To prove the converse, let f be a function which is Pettis integrable and KH-integrable and let $p \in \mathcal{P}(X)$ be fixed. Then the function

$$f_p = \pi_p \circ f : [0, 1] \longrightarrow X_p$$

is Pettis integrable and KH-integrable. So, by [5, Theorem 8], we get that $f_p(t)$ is McS-integrable with integral $(McS)\int_0^1 f_p = \pi_p((KH)\int_0^1 f)$. With the same computation of Theorem 3 it follows that the function f is McS-integrable and the assertion holds true.

Proposition 3. Let $f : [0,1] \to X$ be a KH-integrable function. If, for every $p \in \mathcal{P}(X)$, the real valued function p(f) is KH-integrable, then f is Pettis integrable.

Proof. Since f is KH-integrable, for all $x^* \in X^*$ the real valued function x^*f is KH-integrable [12, Proposition 1], therefore it is measurable, see [10, Theorem 9.12). Moreover being p(f) KH-integrable for all $p \in \mathcal{P}(X)$, it is also Lebesgue integrable, see [10, Theorem 9.13]. For each $p \in \mathcal{P}(X)$, for all sets $E \in \mathcal{M}$ and for every $x^* \in X_p^*$, it follows

$$\int_E |x^*f| \leq \int_E p(f) < \infty$$

Thus f is equiscalarly integrable, see [1, Definition 2.5]. If $[a, b] \subset [0, 1]$, the Kurzweil-Henstock integrability of f implies $(KH) \int_a^b f = \nu(a, b) \in X$. Fix $\varepsilon > 0$. The Lebesgue integrability of p(f) implies the existence of a positive number η such that if $|E| < \eta$ then $\int_E p(f) < \varepsilon$. Thus, if $|E| < \eta$, we get

(12)
$$\sup_{x^* \in V_p^0} \left| \int_E x^* f \right| \le \sup_{x^* \in V_p^0} \int_E |x^* f| \le \int_E p(f) \le \varepsilon.$$

Considering [6, Proposition 2B], by (12) we get that the function $f_p = \pi_p \circ f : [0,1] \to X_p$ is Pettis integrable. Since the space is complete, applying [1, Lemma 2.9], we get that the function f is Pettis integrable. \Box

Corollary 2. Let $f : [0, 1] \to X$ be a KH-integrable function. If, for every $p \in \mathcal{P}(X)$, the real valued function p(f) is KH-integrable, then f is McS-integrable.

Proof. By Proposition 3 f is Pettis integrable, then by Proposition 2 it is McS-integrable. \Box

5. A convergence theorem. We will prove a convergence theorem for the *KH*-integral.

Definition 5. Let $\{f_{\alpha} \in KH([0,1],X)\}_{\alpha}$ be a family of KHintegrable functions. The family $\{f_{\alpha}\}$ is said to be uniformly KHintegrable on [0,1] if, for each $\varepsilon > 0$ and $p \in \mathcal{P}(X)$, there exists a gauge δ_p on [0,1] such that, for each δ_p -fine partition $P = \{(I_i, t_i) : i = 1, \ldots, s\}$ of [0,1], we have

$$\sup_{\alpha} p\left(\sigma(f_{\alpha}, P) - (KH) \int_{0}^{1} f_{\alpha}\right) < \varepsilon.$$

The following result is due to James [11].

Theorem 4 [11, Theorem 1]. Let X be a complete locally convex space and let C be a bounded weakly closed subset of X. Then the following are equivalent:

(i) C is weakly compact.

(ii) There does not exist a positive number θ , a sequence $\{z_n\}$ in C, and an equicontinuous sequence $\{g_n\}$ of linear functionals such that

 $g_n(z_k) > \theta$ if $n \le k$, $g_n(z_k) = 0$ if n > k.

Theorem 5. Let $(f_n \in KH([0,1],X))_n$ be a sequence of KHintegrable functions. Suppose that $\{f_n\}_n$ converges to f weakly in [0,1]. If the family $\{f_n\}_n$ is uniformly KH-integrable on [0,1], then f is KHintegrable on [0,1] and

$$(KH)\int_0^1 f = \lim_{n \to \infty} (KH)\int_0^1 f_n$$
 weakly.

Proof. According to the uniform KH-integrability for each $\varepsilon > 0$ and $p \in \mathcal{P}(X)$, there exists a gauge δ_p on [0, 1] such that, for each δ_p -fine Perron partition $P = \{(I_i, t_i) : i = 1, \dots, s\}$ of [0, 1], we have

$$\sup_{n \in \mathbf{N}} p\left(\sigma(f_n, P) - (KH) \int_0^1 f_n\right) < \frac{\varepsilon}{3}.$$

Then if $x^* \in X_p^*$ we have

(13)
$$\sup_{n \in \mathbf{N}} \left| \left(\sigma(x^* f_n, P) - x^* (KH) \int_0^1 f_n \right) \right| < \frac{\varepsilon}{3}$$

for every δ_p -fine Perron partition P of [0, 1]. Since, if $x^* \in X^*$, there exist a positive constant C and a seminorm p such that $|x^*(y)| \leq Cp(y)$ for all $y \in X$, see [7, p. 158], it follows that $(x^*f_n)_n$ is a sequence of real valued uniformly KH-integrable functions. Thus by [10, Theorem 13.16], x^*f is a real valued KH-integrable function and

$$x^*(KH)\int_0^1 f_n = (KH)\int_0^1 x^*f_n \to (KH)\int_0^1 x^*f.$$

Fix $t_0 \in [0, 1]$ and denote by C the weak closure of the set $((KH)\int_0^{t_0} f_n)_n$. Since $((KH)\int_0^{t_0} f_n)_n$ is a weakly Cauchy sequence, it is bounded. Moreover $C \setminus \{(KH)\int_0^{t_0} f_n : n \in \mathbf{N}\}$ contains at most one point. We want to prove that C is weakly compact. Assume by contradiction that Cis not weakly compact. Then applying Theorem 4, there are $\theta > 0$, $(x_m) \subset C$ and a sequence (y_m^*) of equicontinuous functionals of X^* such that $\langle y_k^*, x_m \rangle = 0$ if k > m and $\langle y_k^*, x_m \rangle > \theta$ if $k \leq m$. Thus we can find a subsequence (g_m) of (f_n) such that:

- (i) $(KH) \int_0^{t_0} y_k^* g_m = 0$ if k > m;
- (ii) $(KH) \int_{0}^{t_0} y_k^* g_m > \theta$ if $k \le m$;

(iii)
$$\lim_{m\to\infty} (KH) \int_0^{t_0} x^* g_m = (KH) \int_0^{t_0} x^* f$$
 for each $x^* \in X^*$.

Now we are going to prove that the sequence $(y_m^*f)_m$ is uniformly KH-integrable. Since the sequence $(y_m^*)_m$ is equicontinuous, it is also equibounded. So by (13), the family $\{y_m^*g_n : n, m \in \mathbf{N}\}$ is uniformly KH-integrable. Moreover, for each Perron partition $P = \{(A_i, t_i) : i = 1, \ldots, p\}$ and for each $m \in \mathbf{N}$ we have

$$\left| \left(\sigma(y_m^*f, P) - (KH) \int_0^{t_0} y_m^*f \right) \right|$$
$$= \lim_{n \to \infty} \left| \left(\sigma(y_m^*g_n, P) - (KH) \int_0^{t_0} y_m^*g_n \right) \right| < \frac{\varepsilon}{3}.$$

Then also the sequence $(y_m^* f)_m$ is uniformly KH-integrable.

Thus there exists a KH-integrable function $h: [0, t_0] \to \mathbf{R}$ such that

(14)
$$\lim_{m \to \infty} (KH) \int_0^{t_0} y_m^* f = (KH) \int_0^{t_0} h.$$

By (iii) and (ii), $(KH)\int_0^{t_0} y_m^* f = \lim_{n\to\infty} (KH)\int_0^{t_0} y_m^* g_n \ge \theta$ for all m; then

(15)
$$(KH)\int_0^{t_0} h \ge \theta.$$

Let z_0^* be a weak*-cluster point of the sequence $(y_m^*)_m$ and let $(w_s^*)_s$ be a subnet weakly* converging to z_0^* . Then, for each n and for each $t \in [0, t_0]$, we have

(16)
$$\lim_{s} w_{s}^{*} g_{n}(t) = z_{0}^{*} g_{n}(t).$$

Moreover by (13) the family $(w_s^*g_n)_s$ is uniformly *KH*-integrable in $[0, t_0]$, for each *n*. Thus, by [**10**, Theorem 13.16] and by (i) we get

$$\lim_{s} (KH) \int_{0}^{t_{0}} w_{s}^{*} g_{n} = (KH) \int_{0}^{t_{0}} z_{0}^{*} g_{n} = 0.$$

Therefore, by (iii), we infer

(17)
$$(KH) \int_0^{t_0} z_0^* f = 0.$$

As $(y_m^*f)_m$ is uniformly *KH*-integrable in $[0, t_0]$, the same holds for the family $(w_s^*f)_s$. Moreover for almost each $t \in [0, t_0]$, $\lim_s w_s^*f(t) = z_0^*f(t)$.

So, applying once again the convergence theorem for uniformly integrable real valued functions, we have

$$\lim_{s} (KH) \int_{0}^{t_{0}} w_{s}^{*} f = (KH) \int_{0}^{t_{0}} z_{0}^{*} f$$

Then by (14) it follows that $(KH)\int_0^{t_0} z_0^* f = (KH)\int_0^{t_0} h$. Hence by (15) we get

$$(KH)\int_0^{t_0} z_0^* f \ge \theta,$$

in contradiction with (17). Thus the set C is weakly compact. Since t_0 is arbitrary, there is $F : [0,1] \to X$ such that $x^*(F(t)) = \lim_{n\to\infty} (KH) \int_0^t x^* f_n = (KH) \int_0^t x^* f$, for all $t \in [0,1]$ and for all $x^* \in X^*$. We want to prove that $F(1) = (KH) \int_0^1 f$.

Let $P = \{(I_i, t_i) : i = 1, ..., s\}$ be a δ_p -fine Perron partition of [0, 1]. Fix $x^* \in V_o^p$. Since $(x^*f_n)_n$ converges to x^*f choose a natural number k such that

(18)
$$|\sigma(x^*f_k, P) - \sigma(x^*f, P)| < \frac{\varepsilon}{3}$$

and

(19)
$$\left| (KH) \int_0^1 x^* f_k - (KH) \int_0^1 x^* f \right| < \frac{\varepsilon}{3}.$$

By (18), (13) and (19) we get

$$\begin{aligned} |x^*(\sigma(f,P) - F(1))| &= |\sigma(x^*f,P) - x^*F(1)| \\ &= \left| \sigma(x^*f,P) - (KH) \int_0^1 x^*f \right| \\ &\leq |\sigma(x^*f,P) - \sigma(x^*f_k,P)| \\ &+ \left| \sigma(x^*f_k,P) - (KH) \int_0^1 x^*f_k \right| \\ &+ \left| (KH) \int_0^1 x^*f_k - (KH) \int_0^1 x^*f_k \right| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{aligned}$$

By the arbitrariness of $x^* \in V_o^p$, it follows that

$$p(\sigma(f, P) - F(1)) \le \varepsilon$$

and the assertion holds true.

Acknowledgments. The author thanks Professor L. Di Piazza and Professor K. Musial for helpful discussions and comments.

REFERENCES

1. Sk. Jaker Ali and N.D. Chakraborty, *Pettis integration in locally convex spaces*, Anal. Math. 23 (1997), 241–257.

2. C. Blondia, Integration in locally convex spaces, Simon Stevin **55** (1981), 81–102.

3. J.K. Brooks, Representations of weak and strong integrals in Banach spaces, Proc. Natl. Acad. Sci. USA **63** (1969), 266–270.

4. J. Diestel and J.J. Uhl Jr., *Vector measures*, Math. Surveys Monogr., vol. 15, Amer. Math. Soc., Providence, RI, 1977.

5. D.H. Fremlin, The Henstock and McShane integrals of vector-valued functions, Illinois J. Math. **38** (1994), 471–479.

6. D.H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127–147.

7. H.G. Garnir, M. De Wilde and J. Schmets, *Analyse fonctionnelle*, T. I, Théorie générale, Birkhauser Verlag, Basel, 1968.

8. — , Analyse fonctionnelle, T.II, Mesure et intégration dans l'espace Euclidien E_n , Birkhauser Verlag, Basel, 1972.

9. R. Gordon, *The McShane integral of Banach valued functions*, Illinois J. Math. **34** (1990), 557–567.

10.——, *The integrals of Lebesgue, Denjoy, Perron and Henstock*, Grad. Stud. Math., vol. 4, Amer. Math. Soc., Providence, 1994.

11. R.C. James, Weak compactness and reflexivity, Israel J. Math. ${\bf 2}$ (1964), 101–119.

12. V. Marraffa, Riemann type integral for functions taking values in a locally convex space, Czech. Math. J. 56 (131) (2006), 475–489.

13. A.P. Robertson and W. Robertson, *Topological vector spaces*, Cambridge Univ. Press, Cambridge, 1964.

14. H.H. Schaeffer, *Topological vector spaces*, The MacMillan Co., New York, 1966.

15. C. Swartz, Beppo Levi's theorem for vector-valued McShane integral and applications, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 589–599.

DEPARTMENT OF MATHEMATICS, VIA ARCHIRAFI 34, 90123 PALERMO, ITALY *E-mail address:* marraffa@math.unipa.it