
A microstructural model for homogenization and cracking of
piezoelectric polycrystals

Ivano Benedettia,∗, Vincenzo Gulizzia, Alberto Milazzoa

aDepartment of Engineering, University of Palermo, Viale delle Scienze, Edificio 8, Palermo, 90128, Italy.

Abstract

An original three-dimensional generalised micro-electro-mechanical model for computational ho-

mogenization and analysis of degradation and micro-cracking of piezoelectric polycrystalline mate-

rials is proposed in this study. The model is developed starting from a generalised electro-mechanical

boundary integral representation of the micro-structural problem for the individual bulk grains and

a generalised cohesive formulation is employed for studying intergranular micro-damage initiation

and evolution into intergranular micro-cracks. To capture the electro-mechanical coupling at the

evolving damaging intergranular interfaces, standard mechanical cohesive laws are enriched with

suitable electro-mechanical terms. The boundary integral formulation allows the expression of the

microstructural piezo-electric boundary value problem in terms of generalised grain boundary and

intergranular displacements and tractions only, which implies some definite modelling advantages,

namely: a) the natural inclusion of the intergranular cohesive laws in the formulation; b) a mean-

ingful simplification of the analysis pre-processing stage, i.e. input data and mesh preparation;

c) the reduction of the number of degrees of freedom of the overall analysis with respect to other

popular numerical methods. The developed formulation has been applied to the computation of

the effective properties, i.e. material homogenization, of BaTiO3 crystal aggregates and to the

investigation of micro-cracking in PZT-4 ceramics, providing consistent results.
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1. Introduction

Piezoelectric polymers and ceramics are an important class of multi-physics and multi-functional

materials [1, 2]. Thanks to their inherent coupling between mechanical and electrical fields, they

have found application in the manufacturing of transducers and micro-electro-mechanical systems

(MEMS) for several engineering applications, including smart structures [3], structural health mon-5

itoring [4, 5, 6] and energy harvesting [7].

In the design of effective piezoelectric devices, it is important to understand and consider the

processes leading to material damage initiation and evolution, up to failure. The understanding

of such mechanisms is particularly relevant in the case of piezo-ceramics, due to their inherent

brittleness [8, 9, 10], and in the design of multilayer devices, in which piezoelectric materials are10

often combined with metallic layers [11, 12, 13, 14, 15].

In recent years, thanks to the advancements and affordability of microscopy and high perfor-

mance computing (HPC), much research has been devoted to the experimental characterisation

and computational modelling of materials at the nano/micro-scales, with the aim of enhancing

our understanding of the link between materials’ micro-structure and properties [16]. Compu-15

tational micro-mechanics [17, 18], based on experimental materials characterisation, provides the

opportunity to assess the effects of micro-structural features, e.g. grains size and orientations in

polycrystalline materials or fibre size and alignment in fibre reinforced composites, on damage

and crack initiation mechanisms at the micro-scale and on the transition of damage/cracks to the

macro-scale.20

Several widely used approaches to the analysis of initiation and evolution of cracks in het-

erogeneous materials are based on the use of cohesive laws within a finite element framework.

Cohesive laws are suitable for modelling failure processes and predicting cracks initiation at ma-

terial interfaces. Different approaches have been proposed and used for a broad array of prob-

lems [19, 20, 21, 22, 23]. The cohesive zone approach has also been used for investigating crack25

nucleation and propagation in polycrystalline materials, in conjunction with different numerical

schemes such as the finite element method (FEM) [24, 25, 26] or the boundary element method

(BEM)[27, 28, 29, 30, 31]. A micro-structural cohesive finite element model has been recently

employed for the study of micro-cracking in piezoelectric materials [32].

The BEM is today employed in many areas of science and engineering [33, 34, 35]. One of the30

reasons of its popularity is that it allows pre-processing simplification and computational savings in
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terms of both storage memory and solution time in several applications, due to the fact that only the

boundary of the analysed domain needs to be discretised, thus allowing a reduction in the number

of degrees of freedom necessary for the numerical treatment of a given problem. This aspect may be

appealing in computational micro-mechanics that, due to the inclusion of detailed morphological35

and constitutive descriptions, generally induces high computational costs. The BEM has been

extensively employed for the analysis of problems involving piezoelectric solids, with or without

cracks [36, 37, 38, 39, 40]. On the other hand, recently, the method has been effectively used for

the study of polycrystalline materials micro-mechanics, both in the two-dimensional [41, 27, 42, 31]

as well as three-dimensional case [43, 28, 30, 44, 45, 46, 47]. The application of the BEM for40

effective multi-scale modelling has been demonstrated in Refs.[48, 29]. However, no comprehensive

three-dimensional boundary element model for the study of the micro-cracking in piezoelectric

polycrystalline materials has been developed yet, which forms the subject of the present study.

In this work, a boundary integral framework is developed, implemented and applied to two

different classes of problems involving piezoelectric materials: a) their computational homogeniza-45

tion, i.e. the computation of the effective properties of piezoelectric aggregates, starting from the

features of the individual piezoelectric crystals; b) the analysis of microstructural damage evolution

and crack nucleation, through the employment of suitable generalised cohesive laws.

The framework is developed with the aim of providing a tool useful for the analysis of piezo-

electric devices and is built using several key items. The artificial polycrystalline morphologies50

are generated through Voronoi-Laguerre tessellations. The individual piezoelectric grains are mod-

elled employing a generalised 3D boundary integral representation, which eventually results in a

multi-region generalised BEM formulation for the overall aggregate. The interface between contigu-

ous grains is represented using electro-mechanical cohesive laws embodying an irreversible damage

parameter for modelling the progressive interface degradation. The micro-structural evolution is55

tracked through an incremental-iterative solution algorithm, based on a coefficients matrix whose

elements are continuously updated according to the status of grain boundaries, considering the

appropriate mechanical, electrical and piezoelectric conditions. The developed model was validated

against results available in the literature.

The paper is organised as follows. The algorithms for the generation of the artificial morphologies60

are discussed in Section 2. Section 3 introduces the key items of the formulation, namely the

generalised constitutive model for the piezo-electric grains, the piezo-electric boundary integral
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equations and the generalised inter-granular model. The numerical discretisation strategy, within

the framework of the boundary integral formulation, and the incremental/iterative solution strategy

are discussed in Section 4. Several numerical tests, confirming the potential and effectiveness of the65

developed and implemented model, are eventually presented in Section 5, before some discussion

in Section 6 and the conclusions of the study.

2. Morphology generation and meshing

To simulate the behaviour of piezoelectric aggregates, it is essential to have a suitable repre-

sentation of their microstructure. In this study, aggregates of piezoelectric crystals with different70

crystallographic orientations in the 3D space are considered. The polycrystalline specimens are

contained within the volume V bounded by the surface S = ∂V and they are modelled through

a multi-region boundary element formulation [34], in which each different region represents an

individual grain.

The considered microstructures are generated through Voronoi-Laguerre tessellations of the75

analysed domain V [49, 50, 51, 52, 53]. Such tessellations are mathematically defined space filling

geometric subdivisions of the considered volume and are widely accepted as first-order approxima-

tions of real polycrystalline microstructures. Each Voronoi-Laguerre cell represents an individual

grain g and, geometrically, it is a convex polyhedron with boundary Sg comprised of the union

of flat convex polygonal faces F gn , with n = 1, . . . , Ng
f and Ng

f denoting the number of faces of80

g. The tessellations can be effectively built using open source software packages such as Voro++

(http://math.lbl.gov/voro++/) [54] or Neper (http://neper.sourceforge.net) [50].

Such software packages are particularly effective for the tessellation of convex domains V . For

the tessellation of more general non-convex domains, which can be useful for representing specific

MEMS components (e.g. micro-gears, brackets or beams), they can be used within the context of85

more comprehensive techniques, similar to those used in Refs.[55, 47], which involve operations of

seeds selection and mirroring with respect to the geometrical boundary of the non-convex domain

to represent, with the aim of reproducing such a boundary through the tessellation itself, through

the controlled placement of the tessellation seeds. For further details, the interested readers are

refereed to Ref.[47].90

Once a polycrystalline morphology of V is obtained, its mesh must be generated, to discretise

the micro-mechanics equations. A specific feature of the proposed formulation, at least in the case
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of linear elastic grains, is that only the boundary of the grains, and not their interior volume,

must be meshed, which induces a reduction in the order of the solving system. This aspect, in

conjunction with the fact that the grains faces F gn are a collection of convex flat polygons, allows a95

remarkable simplification of the pre-processing stage of the analysis. Meshing is performed according

to the techniques developed in Ref.[30]: each polygonal face F gn is subdivided into a collection of

non-overlapping triangular and quadrangular, continuous and semi-discontinuous elements. Semi-

discontinuous elements are used in proximity of the edges of the grain faces to avoid the complexities

induced, in the boundary element formulation, by the collocation of nodes on regions with a non100

unique definition of the surface normal vector, see e.g. [56, 57]. The mesh size is selected so that the

average element length le is considerably smaller than the cohesive zone size Lcz employed at the

intergranular interfaces [27, 28], which can be estimated in terms of the material fracture toughness

and the interface strength [58, 25, 59]. Given the statistical nature of the micro-morphology and the

generally high number of grains and intergranular interfaces, adopting an effective discretisation105

scheme is essential for the smooth solution of the numerical problem: an effective discretisation

scheme is instrumental in both ensuring a reduced number of degrees of freedom and a suitable

average quality of the obtained mesh.

Fig.(1) illustrates the different kinds of tessellations that can be generated and analysed in

the discussed framework. Fig.(2a) shows an individual grain generated by the adopted tesselation110

methodology: the grain has flat polygonal faces over which local reference systems are adopted.

Fig.(2b) exemplifies the boundary elements and nodes induced by the adopted meshing strategy.

3. Boundary element modelling of piezoelectric polycrystalline materials

In this study, the homogenization and analysis of inter-granular damage and micro-cracking in

piezoelectric polycrystalline microstructures are considered. The problem is tackled by employing115

a boundary integral formulation whose key items are: a) a suitable constitutive framework for the

bulk piezoelectric grains; b) a set of boundary integral equations representing the electro-mechanical

behaviour of the individual grains in terms of generalised grain boundary quantities; c) a suitable

interface model able to capture damage nucleation, evolution, coalescence and failure at the inter-

granular regions. In this Section, such key items are described, while the numerical discretisation120

and non-linear solution strategies are discussed in Section 4.
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(a) (b)

(c)

Figure 1: Different kinds of morphology can be generated and analysed within the proposed framework: a) example

prismatic non-periodic 1000-grain tessellation; b) example non-prismatic periodic 100-grain tessellation, see Ref.[30];

c) tessellation of a non-convex domain: either 2D columnar or fully 3D morphologies can be generated, see Refs.[55,

47].

3.1. Piezoelectric materials modelling

The constitutive relations for linear piezoelectric materials can be written

σij = cijklγkl − ekijEk

Di = eiklγkl + κijEj

(1)
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(a) (b)

Figure 2: Morphology generation and meshing: a) an individual grain is a convex polyhedron with convex polygonal

flat faces; face-local reference systems x̃1x̃2x̃3 are attached to each face and differ from the global reference system

x1x2x3; the tractions t(ξ, η) acting on the points of the faces can be conveniently decomposed into local normal t̃n

and tangential t̃s components; b) meshing of the grain surface into non overlapping triangular and quadrangular

elements; the collocation nodes are also highlighted. See Ref.[30] for further details about the meshing procedure.

where i, j = 1, 2, 3, σij and γkl are components of the second order stress and strain tensors, Di

and Ei are components of the electric displacement and electric field vectors, cijkl are components

of the fourth order stiffness tensor, κij are components of the second order dielectric tensor and125

eijk are components of the third order piezo-electric tensor. In the subsequent sections, when no

confusion can be induced, we will simply refer to strains, stresses or other fields instead of strain,

stress or other fields components, to make the text smoother.

The strains γij and the electric field Ei are linked with the mechanical displacements ui and

the electric potential φ by the relations

γij =
1

2
(ui,j + uj,i) , Ei = −φ,i, (2)

where, as customary, the comma in the subscripts denotes differentiation with respect to the coor-

dinate identified by subsequent subscript.130

The mechanical stresses σij and the electric displacement Di fulfil the indefinite equilibrium

equations and the Gauss’ law of electrostatics respectively, that, in absence of body forces and free

electric charges, are written

σij,j = 0, Di,i = 0, (3)

where repeated subscripts imply the Einstein’s summation convention.
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For the solution of the piezoelectric problem, the indefinite equations (3), the constitutive equa-

tions (1) and the compatibility equations (2) must be complemented by the mechanical and electrical

boundary conditionsui = ūi on Su

ti = σijnj = t̄i on St

φ = φ̄ on Sφ

ω = −Dini = ω̄ on SD

(4)

where: Su, St, Sφ and Sω are regions of the external surface S over which the field identified by

the subscript is known and such that Su ∩ St ≡ Sφ ∩ Sω ≡ ∅ and Su ∪ St ≡ Sφ ∪ Sω ≡ S = ∂V ;

ni are the components of the unit outward normal; ω denotes free/apparent electric charge surface

density and the over-bar denotes known values.135

The form of Eqs.(1-3) suggests the definition of generalised piezoelectric quantities. In partic-

ular, the components of generalised piezoelectric displacements Ui and tractions Ti are defined by

Ui =

 ui, i ≤ 3

φ, i = 4
, Ti =

 ti, i ≤ 3

ω, i = 4
, (5)

while the components of generalised piezoelectric stresses Σij and strains Γij are given by

Σij =

 σij , i ≤ 3

Dj , i = 4
, Γij =

 γij , i ≤ 3

−Ej , i = 4
. (6)

The definition of generalised displacements and tractions is the basis for the boundary integral

formulation of the piezoelectric problem in the next Section.

3.2. Piezoelectric boundary integral equations

For each grain g of the aggregate the generalised displacements boundary integral equations can

be written, in absence of body forces and free electric charge density, as

c gij (x)U g
j (x) +

∫
Sg

T̂ g
ij (x,y)U g

j (y)dS (y) =

∫
Sg

Û g
ij (x,y)T g

j (y)dS (y) i, j = 1, ..., 4 (7)

where g = 1, ..., Ng identifies the considered grain, bounded by the surface Sg, x,y ∈ Sg denote

the boundary collocation and integration points respectively, U g
j and T g

j are components of the140

generalised displacements and tractions defined in Eq.(5), c gij are constants stemming from the

limiting boundary collocation process [33, 34] and Û g
ij and T̂ g

ij are components of the generalised

three-dimensional fundamental solutions, see Appendix A. In Eqs.(7), Sg = S ge ∪S gc is the boundary
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of the g-th grain, which is given by the union of external regions S ge , over which boundary conditions

may generally be applied, and contact regions S gc , over which suitable inter-granular interface145

conditions, must be enforced.

In Eqs.(7), the mechanical components of boundary displacements and tractions are expressed

in a unique and well defined reference system: for a given grain, a natural choice may be the

material reference system, identified by the material principal directions; a different choice may be

the selection of a unique global reference system for all the grains of the aggregate. In this work,150

following Refs.[27, 43, 28], a different choice is made: with the aim of simplifying the expression of

the intergranular conditions, the mechanical boundary displacements and tractions are expressed

with respect to local face-by-face boundary reference systems that allow to highlight normal and

tangential components and keep changing as the integration point span the boundary S g, as shown

in Fig.(2b). The interested reader is referred to Refs.[27, 43, 28] for further details. This choice has155

an apparent effect on the expression of the mechanical fields, i.e. displacements and tractions, but

it is also reflected in the expression of the normal components of the electric displacement vector at

an interface between two grains, which is to be considered when writing the electric intergranular

conditions. In the next sections, quantities expressed in such face local reference systems will be

denoted with an over-tilde ·̃.160

3.3. Generalised modelling of the inter-granular interfaces

The interface shared between two generic grains a and b is generally assumed initially pristine;

however, during the electro-mechanical loading process, irreversible damage can nucleate, evolve and

coalesce, eventually originating macro-cracks. This micro-damaging/cracking process is modelled

using different sets of equations, according to the current pristine, damaged or cracked status of165

the interface region.

In this model, the initial pristine interface Iab between a and b can be thought as a zero-

thickness surface; the generic geometric point x ∈ Iab is thus shared between the grains and it

is simultaneously coincident with the two phisically distinct points xa ∈ Sa and xb ∈ Sb, which

identify an interface pair. In the following equations, the short notation ũ gi and t̃ gi will be used to170

denote ũ i(x
g) and t̃ i(x

g), i.e. the displacements and tractions associated with the generic physical

grain-boundary point xg ∈ Sg, i.e. belonging to the boundary of the grain g. Analogous short

notation will be employed for the electrical fields.
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3.3.1. Pristine interface

For a pristine interface pair, the generalised displacements continuity and generalised tractions

equilibrium equations readδũ i = −ũ ai − ũ bi = 0

δφ = +φa − φb = 0

and

t̃
a
i − t̃ bi = 0

ω̃a + ω̃b = 0

, (8a,b)

with i = 1, 2, 3. Eqs.(8a) express both mechanical and electrical continuity, so that the two physical175

points xa and xb share the same spatial location and exhibit the same electrical potential. Eqs.(8b),

on the other hand, express both mechanical and electrical equilibrium, which implies that the two

grains exchange the same mechanical tractions t̃ ai = t̃ bi through the interface at the point x ∈ Iab

and that no net free electric charge localises at the interface upon loading. It is worth stressing

that ũ ai , t̃ ai , ω̃a are expressed in their own reference system, see Fig.(2a), while ũ bi , t̃
b
i and ω̃b are180

expressed in the opposite system, which motivates the signs in the interface conditions given above.

Due to the different nature of the mechanical and electrical conditions, it is not possible to use

a simple unique generalised expression, in terms of Ũgi and T̃ gi , for expressing the continuity and

equilibrium conditions so that the mechanical and electrical intergranular equations must be stated

explicitly and independently.185

As the considered inter-granular interface evolves and damages, Eqs.(8b), i.e. the generalised

tractions equilibrium, always hold and they will not be reported anymore. On the other hand,

Eqs.(8a) will be replaced by generalised traction-separation laws, when the interface is damaged,

and by by generalised frictional contact laws, when the interface fails originating a micro-crack.

3.3.2. Damaged interface190

Damage arises at an interface pair when the mechanical effective traction t̃e, defined as follows,

fulfils, for the first time in the loading history, the following threshold condition

t̃e =

√
〈t̃n〉2 +

(
α2

α1
t̃s

)2

≥ Tmax (9)

where Tmax is the mechanical interface cohesive strength, t̃n and t̃s are the normal and tangential

mechanical traction components, respectively, α1 and α2 are cohesive parameters governing the

relative weight of mode I and mode II fracture toughnesses [27, 28] and 〈·〉 denote the McCauley’s

brackets, defined by 〈x〉 = (x+ |x|) /2. It is worth stressing that Eq.(9) is a purely mechanical

condition; however, in principle, it can be activated by general electro-mechanical loads.195

10



As Eq.(9) is fulfilled, a generalised traction-separation law of the form

T̃ a
i = Cij (d∗, δũn, δφ) δŨj (10)

is introduced at the considered interface pair, where d∗ is a parameter quantifying the accumulated

irreversible damage (see below) and δũn is the normal component of displacement jump at the con-

sidered interface pair. More explicitly, using a decomposition into normal and tangential quantities

for the mechanical variables, the generalised cohesive law can be written as
t̃n

t̃s

ω̃


a

=


Cnn (d∗) 0 Cnφ (d∗, δũn, δφ)

0 Css (d∗) 0

0 0 Cωφ (d∗, δũn)



δũn

δũs

δφ

 , (11)

where the terms

Cnn (d∗) =
Tmax

δucrn

1− d∗

d∗
, Css (d∗) =

α1 Tmax

δucrs

1− d∗

d∗
(12)

account for the purely mechanical part of the traction-separation law, with δucrn and δucrs denoting

the critical displacement jumps in opening and sliding mode respectively and d∗ is defined by

d∗ = max
Hd

{d} ∈ [0, 1], with d =

√〈
δũn
δucrn

〉2

+ α2
2

(
δũs
δucrs

)2

, (13)

i.e. as the maximum value attained by the mechanical effective displacement d during the loading

process Hd. The definition of d∗ entails the distinction between loading, unloading and reloading

status for the selected interface pair: in loading d = d∗ and ḋ > 0, so that the interface accumulates

damage and the constitutive parameters in the traction-separation laws evolve; in unloading d ≤ d∗,

ḋ < 0 and ḋ∗ = 0; in reloading d < d∗, ḋ > 0 and ḋ∗ = 0. In unloading and reloading the damage200

remains constants, so that the constitutive cohesive parameters do not change.

On the other hand, according to Ref.[32], a phenomenological expression for the terms Cωφ

and Cnφ can be obtained by considering the damaging interfaces as parallel-plate capacitors, which

yields

Cωφ (d∗, δũn) =
κ̂gb (d∗)

δũn
, Cnφ (d∗, δũn, δφ) =

κ̂gb (d∗)

2

δφ

δũ2n
, (14)

where κ̂gb (d∗) = (1− d∗)κgb + d∗κ0 is the grain boundary permittivity, evolving from a pristine

value κgb to the permittivity of vacuum κ0, as damage evolves from zero to failure (d∗ = 1). In

a capacitor with infinite and parallel flat plates, containing a dielectric medium, the relationship

ω̃a = Cωφ ·δφ expresses the link between the electric charge density ωa at the plates and the electric205
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potential difference δφ between the plates themselves. On the other hand, tan = Cnφ · δφ expresses

the mutual mechanical attraction between the plates.

Few considerations are worthwhile. First of all, it should be noted that Eqs.(11) hold in opening

mode, i.e. when δũn > 0. In compression, when δũn = 0 and t̃n < 0, the first and third equations

in Eqs.(11) should be replaced by

δũn = 0, δφ = 0, (15)

which must be implemented directly into the system. The iso-electricity condition δφ = 0 is equiv-

alent to assuming the points of the considered interface pair in strict contact. This is different from

what is proposed in Ref.[32], where a material parameter dgb, accounting for the grain boundary

thickness when δũn = 0, is introduced to address potential singularities arising with non-zero grain-

boundary potential jumps. On the other hand, the presence of an intergranular thickness dgb can

be easily accommodated within the proposed formulation. In this case, here and in Eqs.(8a), the

iso-electricity condition should be replaced by

dgb · ω̃a = κgb · δφ, (16)

while δũn should be replaced by (dgb + δũn) in Eqs(14). In Eq.(16), it is assumed that the closure

restores the grain-boundary permittivity to κgb.

Eventually, it is worth noting that Eqs.(14) correspond to assuming the intergranular interface as210

an electrically semi-permeable discontinuity evolving between the flat plates of an infinite capacitor,

which remain parallel as the loading/damaging process progresses. In the literature about cracks

in piezoelectric media, two opposite assumptions are generally identifiable [60]: the assumption

of electrically impermeable cracks, found e.g. in Refs.[61, 62], and that of electrically permeable

cracks, discussed e.g. in Refs.[63, 64]. Considering an evolving interface as a flat-plate capacitor215

corresponds, as a matter of fact, to the assumption of semi-permeable crack [65]. The validity

and limitations of the above assumptions in modelling polycrystalline piezoelectric aggregates are

discussed in Ref.[32]. Although the applicability of different electrical permeability conditions is the

subject of numerous investigations [66, 60, 67], it is worth stressing that the present computational

framework can accommodate different and general interface conditions.220
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3.3.3. Failed interface

As the condition d∗ = 1 is fulfilled, mechanical failure is triggered at the considered interface

pair. The mechanical interaction between the grains is modelled resorting to the equations of

frictional contact, modified to take into account the electrical interactions. Three different statuses

are possibile, depending on the condition that are met at the interface: separation, contact-slip and225

contact-stick.

In separation, the condition δũn > 0 is fulfilled and the following equations are implemented

t̃ an =
κ0
2

δφ2

δũ2n
, t̃ as = 0, ω̃a δũn = κ0 δφ, (17)

which may be obtained from Eqs.(11) setting d∗ = 1. Differently from the purely mechanical case,

an electrostatic mutual attraction may persist, if δφ 6= 0, also when the mechanical integrity of the

intergranular interface is lost.

In contact-slip, |ts| = µ|tn|, where µ is the friction coefficient, the mechanical tangential traction

t as and displacement jump δus have the same direction and the following equations are implemented

δũn = 0, t̃ as + µ t̃ an = 0, ω̃a dgb = κgb δφ, (18)

where, again, it is assumed that the closure restores the grain-boundary permittivity to κgb and

the presence of a grain-boundary thickness is taken into account for generality.

In contact-stick, |ts| < µ|tn| and the following equations are implemented

δũn = 0, δ ˙̃us = 0, ω̃a dgb = κgb δφ, (19)

where the over-dot indicates the derivative with respect to the loading parameter. Further details230

about the implementation of the frictional contact conditions can be found in Ref.[28]: the above

equations constitute a suitable generalisation for taking into account the presence of electrical effects

at the intergranular interfaces.

4. Numerical discretisation and non-linear system solution

For the effective numerical treatment of the micro-structural piezoelectric problem, the boundary235

integral equations presented in Section 3.2 and the interface conditions discussed in Section 3.3 must

be suitably implemented. The steps for discretising the equations and solving the resulting algebraic

system are discussed here.
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4.1. Discretisation

For each piezo-electric crystal g within the micro-morphology, Eqs.(7) are used in the framework240

of the boundary element method [34, 33, 30], according to the following steps:

• The boundary of each grain g is subdivided into a set of non-overlapping triangular and

quadrangular elements e;

• The generalised piezoelectric displacements Ũ g
i and tractions T̃ g

i are expressed, over each

element e, as

Ũ ge
i = Ne

k (ξ, η) ∆̃e
ik, T̃ ge

i = Ne
k (ξ, η) Ψ̃e

ik (20)

whereNe
k (ξ, η) are suitable shape functions, defined in element-local 2D coordinates {ξ, η} and

∆̃e
ik and Ψ̃e

ik are nodal values of generalised boundary displacements and tractions, expressed245

in face-local reference systems. In Eq.(20) the summation is implied only with respect to k =

{1, 2, . . . ,Me}, where Me is the number of nodes belonging to the element e; the superscripts

e and g are only used to identify the element and the grain, while the subscript i = 1, . . . , 4

identifies the vector component of the considered field. After applying this procedure, a set

of boundary elements and corresponding nodal points are associated to each grain;250

• Eqs.(7) are then collocated at each of the Mg nodes of the considered crystal and numerically

integrated, considering the above elemental approximation of the boundary fields [34].

After implementing the above discretisation scheme, a set of 4 ×Mg equations is written for the

g-th grain as

H̃g · ∆̃g = G̃g · Ψ̃g, (21)

where ∆̃g and Ψ̃g collect the nodal values of generalised displacements and tractions of the Mg

nodes belonging to the g-th grain, H̃g and G̃g are the matrices stemming from the numerical

integration, in Eqs.(7), of the kernels components T̂ g
ij and Û g

ij multiplied by the relevant rotation255

matrices, shape function and Jacobian terms. In the numerical integration, care must be taken

when integrating over singular elements, i.e. the elements containing the current collocation point.

The interested readers are referred to Refs.[33, 34] for such specific aspects of the boundary element

method.
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The enforcement of active generalised boundary conditions (BCs) on the external walls of the

aggregate leads, for each crystal, to the system

Ag ·Xg = Bg · Y g (22)

where Xg and Y g collect, respectively, the unknown and known nodal components of generalised260

grain-boundary displacements and tractions and Ag and Bg contain BCs-related combinations of

columns of H̃g and G̃g [33, 34].

The equations for the overall polycrystalline aggregate are obtained coupling Eqs.(22), written

for each grain, with the appropriate intergranular conditions, which leads to the following system A

I (d∗,X)

 ·X =

 B · Y (λ)

0

 (23)

where

A =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · ANg

 , C =


C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · CNg

 ,

being Ng the number of grains in the micro-morphology, X =
{
X1, . . . ,XNg

}
the vector collecting

the unknown degrees of freedom, Y =
{
Y 1, . . . ,Y Ng

}
the vector collecting the prescribed nodal

values and λ a suitable load factor expressing the progressive loading of the aggregate. Eventually,265

I (d∗,X) implements the interface conditions that, in general, depend on the intergranular status,

expressed by the vector d∗ collecting the damage values of all the interface pairs, and on the

generalised displacement and traction fields, expressed by X, as discussed in Section 3.3.

4.2. Solution strategy

System (23) can be re-written in compact form as

M (d∗,X) ·X = Z (λ) , (24)

which can be solved using an incremental/iterative algorithm for capturing the initiation, evolution,270

coalescence of intergranular damage and its growth into micro-cracking. The micro-structural evo-

lution of the piezoelectric polycrystalline aggregate is triggered by the progressive increment of the

external loads, generally expressed in terms of the load factor λ. The micro-evolution is tracked by
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solving the boundary value problem for a discrete set of values {λ0, λ1, ..., λN}. Once the solution

Xk corresponding to the load level λk is known, a new load increment ∆λk is applied, so that the275

incremented load level λk+1 = λk +∆λk is attained. The search of the new solution Xk+1 can then

be performed using a Newton-Raphson algorithm for solving system (24).

Since matrix M (d∗,X) is sparse, the iterative solution of Eq.(24) is tackled in this work us-

ing the solver PARDISO (http://www.pardiso-project.org/). In the solution of Eq.(24), which

stems from a boundary element collocation procedure, higher computational efficiency could be280

attained using Krylov iterative solvers in conjunction with special matrix representations, obtained

for example using fast multipoles [68] or hierarchical matrices [69, 70, 71].

5. Numerical experiments

In this section, the developed formulation is employed to estimate the effective properties of

polycrystalline aggregates of piezoelectric grains and to simulate their micro-cracking and the effect285

that the electromechanical coupling may have on the intergranular failure. All tests, except those

involving the individual interface, have been performed on CINECA’s Marconi’s HPC infrastruc-

ture (http://www.hpc.cineca.it/hardware/marconi), on single nodes with 36 cores and 128 GB

RAM.

5.1. Computational homogenization290

The determination of the effective properties of piezoelectric polycrystalline materials has been

tackled, using different techniques, in several literature works, see e.g. Refs. [72, 73, 74, 75, 76, 77].

In this section we estimate the effective properties of piezoelectric aggregates using computa-

tional homogenization algorithms based on the developed multi-field grain-boundary formulation.

For the computation of the polycrystalline micro-fields, we employ non-prismatic periodic 3D unit295

cells, see Fig.(1), as discussed in Ref.[30]. The use of non-prismatic morphologies presents several

advantages, e.g. minimisation of boundary layer artefacts and reduction of number of DoFs, over

classical prismatic, generally cubic, unit cells.

Different types of boundary conditions can be enforced on the exterior of the polycrystalline

morphology. In this work, periodic boundary conditions are considered as, in general, they provide

faster convergence to material effective properties with respect to Dirichlet or Neumann boundary

conditions. Considering two opposite and coupled external grain faces of the aggregate (note that,
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being the aggregate non-prismatic, there are not external flat walls; however, couples of opposite

conjugate grain faces can still be identified), one is assumed as the master face m while the other

is denoted as the slave face s; the mechanical and electric periodic boundary conditions are the

implemented, in global coordinates, as followsu
s
i − umi = 〈γij〉

(
xsj − xmj

)
tsi + tmi = 0

,

φ
s − φm = −〈Ej〉

(
xsj − xmj

)
ωs + ωm = 0

, (25)

where 〈γij〉 and 〈Ej〉 are the prescribed components of macro- strain and electric field, respectively

and the superscripts m and s denote field components of points belonging either to the master or300

slave face.

Once the aggregate boundary value problem is solved, the homogenized stress and electric

displacement components can be estimated by using the relationships

〈σij〉 =
1

V

∫
S

ti xj dS, 〈Di〉 =
1

V

∫
S

ω xi dS, (26)

which, being expressed in terms of integrals over the external surface S of the aggregate, can be

conveniently computed within the context of the developed framework.

In the first set of tests we perform the computational homogenization of aggregates without

texture, i.e. polycrystals in which the grains have random spatial orientation. In other words,305

the poling axes of the individual grains are not aligned along any specific direction and, for such

a reason, it is expected that the aggregate does not exhibit any piezoelectric coupling, while it

is possible to estimate the elastic and dielectric material constants. Fig.(3) reports the apparent

values of the Young’s modulus, shear modulus and relative dielectric constant versus the number

of grains in unpoled aggregates of BaTiO3 crystals. The material properties for BaTiO3 single310

crystals are reported in Table 1. The individual volume averages are computed over sets of 100

realisations, each realisation being provided by a Laguerre-Voronoi tessellation obtained starting

from randomly scattered seed points. Ensemble averages are then computed over the apparent

properties corresponding to the individual realisation. It is possible to observe how the scattering

of the apparent properties is reduced as the number of grains in the individual realisations grows,315

then approaching the effective values of the material properties. The homogenization results appear

consistent with the values reported in Ref.[75].

Fig.(4) explores the role of poling on the effective properties of BaTiO3 aggregates. Poling is

enforced by constraining the angle β̂ formed between the material poling axis of the individual
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Table 1: Material constants for barium titanate BaTiO3 [75] and transversely isotropic lead zirconate titanate (PZT-

4) [78].

Material property Component BaTiO3 PZT-4

Elastic constants c1111, c2222 275.1 139.0

c3333 164.9 115.0

c1122 179.0 77.8

[109 N/m2] c1133, c2233 151.6 74.3

c2323, c1313 54.3 25.6

c1212 113.1 (c1111 − c1122)/2

Piezoelectric constants e113, e223 21.3 12.7

[C/m2] e333 3.7 15.1

e322, e311 -2.7 -5.2

Dielectric constants κ11, κ22 16.9 6.5

[10−9 C/(V ·m)] κ33 0.9 5.6

crystals and a reference direction for the overall aggregate that, in the present work, is selected as

the x3 aggregate direction. More specifically, the grains orientation is defined by the Euler angles(
α̂, β̂, γ̂

)
, according to the ZXZ convention (the symbol ·̂ is used here to avoid confusion between

the Euler angles and the cohesive parameters α1 and α2): α̂ and γ̂ represent rotations around the

Z axis, which is assumed coincident with the grain poling axis, and are assumed to be uniformly

distributed in the [0, 2π) interval; on the other hand, to account for the either unpoled, partially

poled or fully poled aggregates, the angle β̂ is assumed to be distributed over the interval [0, βmax)

according to the following probability density function

p(x) =
sinx

2 sin2 (βmax/2)
(27)

where βmax denotes the maximum angle allowed between the poling axis and the x3 reference

direction. It is clear that βmax = π identifies an unpoled aggregate, whereas βmax = 0 defines a

fully polarised state. The results reported in Fig.(4) correspond to βmax = π and βmax = π/4 and320

highlight how the overall aggregate acquires piezoelectric properties as a consequence of the partial

poling of the individual crystals. The computed material properties fall within the Voigt and Reuss
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Figure 3: Apparent (a) Young’s modulus, (b) Shear modulus and (c) relative dielectric constant as function of the

number of grains for BaTiO3 piezoelectric polycrystalline aggregates with isotropic grain orientation. Dotted lines

denote the single crystal constants and ε0 = 8.854 · 10−12 Fm−1 is the vacuum permittivity constant. Constants’

subscripts are given according to Voigt notation.

averages.

Fig.(5) reports the effective material properties of BaTiO3 aggregates versus βmax. The com-

puted material properties always fall within the Voigt and Reuss averages. It is interesting to325

observe how isotropic macroscopic properties are retrieved when βmax = π, which corresponds to

unpoled aggregates.
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Figure 4: Apparent macroscopic constitutive properties of (a,c,e) unpoled (βmax = π) and (b,d,f) partially poled

(βmax = π/4) as function of the number of grains for BaTiO3 piezoelectric polycrystalline aggregates: (a,b) selected

elastic constants, (c,d) selected piezoelectric constants, (e,f) selected dielectric constants. The grey regions around the

shown constants denote the corresponding Voigt and Reuss averages. Dotted lines denote the single crystal constants

and ε0 = 8.854 ·10−12 Fm−1 is the vacuum permittivity constant. Constants’ subscripts are given according to Voigt

notation.
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Figure 5: Apparent macroscopic constitutive properties of BaTiO3 piezoelectric polycrystalline aggregates as a

function of the maximum polarisation angle βmax: (a) selected elastic constants, (b) selected piezoelectric constants,

(c) selected dielectric constants. The grey regions around the shown constants denote the corresponding Voigt and

Reuss averages as a function of βmax. Dotted lines denote the single crystal constants and ε0 = 8.854 · 10−12 Fm−1

is the vacuum permittivity constant. Constants’ subscripts are given according to Voigt notation.

5.2. Intergranular interface between piezoelectric grains

The simple system shown in Fig.(6a) is analysed here, to assess the behaviour of the cohesive330

interface between two piezoelectric domains and the effect of the piezoelectric coupling on the

aggregate response. The system consists of two cubic PZT-4 crystals with edges of size l = 10 µm

aligned with the reference axes, as represented by the arrows in the figure. The material properties

for PZT-4, namely the constants Cijkl, eijk and κij , are given in Table 1 and the poling vectors

of both domains are aligned with the x3 reference axis. The cohesive interface is identified by the335

material parameters (Tmax, δu
cr
n , δu

cr
s , α1, α2, κgb, dgb) given in Table 2. The system is subjected to

prescribed generalised displacements at the top and bottom surfaces; for the points belonging to
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the lateral faces, the mechanical displacements along the normal ni, the surface tangential traction

components and the free electric charge are set to zero.

Fig.(6b) shows the effect on the curve of the homogenized stress component 〈σ33〉 versus a340

nominal measure of strain of the applied electric potential between the top and bottom faces of the

two-crystal system: it is apparent how the piezoelectric effect may influence the macro-response,

inducing either an increase or a decrease of the value of the homogenized response with respect

to value found in the purely mechanical case. It is worth noting that, in this case, the effect

is particularly evident because of the alignment of the poling axes of the two crystals with the345

external electric fields. As it will be shown next, in random or slightly textured polycrystals such

effect may be less noticeable.

From the numerical point of view, it should be noted that, in this test, the external boundary

conditions are applied in a non-proportional format: while the top face displacements evolve with

the load factor λ, the electric potential on the top face is held constant during the mechanical350

loading, so that the right hand side Eq.(24) could be written as Z (λ) = λZu + φ̄Zφ. In general,

the proposed formulation allows the enforcement of non-proportional loading: in this specific test

the value of the initial potential had been previously assessed, so to verify that it would not induce

initial damage at the interface between the grains and justify the use of an initial linear solution

for ūn = 0.355

Table 2: Cohesive interface material parameters. ε0 = 8.854 · 10−12 Fm−1 is the vacuum permittivity constant.

Tmax δucrn δucrs α1 α2 κgb dgb

80 MPa 0.05 µm 0.1 µm 1 1 635ε0 1 nm

5.3. Intergranular micro-cracking

The micro-cracking behaviour of piezoelectric polycrystalline aggregates is analysed here using

the developed integral cohesive formulation.360

Fig.(7) shows the homogenized component of stress 〈σ33〉 as a function of the applied macro-

component of strain 〈γ33〉 for 100-grain PZT-4 aggregates simulated under the same boundary
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Figure 6: Effect of the piezoelectric coupling on the macroscopic stress for a simple two-crystal system: a) Geometry

and boundary conditions for the analysed system (the grains are cubes with edge l); b) homogenized stress component

〈σ33〉 at various levels of applied electric potential between the top and bottom face of the system.

conditions as those used for the two cubic grains in Fig.(6a). In this set of tests βmax = π,

so that there is no preferential grain poling direction, and the applied electric potential between

the top and bottom surfaces of the aggregate is forced to zero, i.e. φ̄ = 0. Fig.(7a) shows the365

response of five different morphologies MI , . . . ,MV containing grains of average size d = 5 µm (d

would be the diameter of a sphere with the grains average volume). It is possible to note how the

five different morphologies exhibit almost the same macroscopic response so that, in this specific

sense, morphologies with 100 grains can be considered representative of the material behaviour at

the macro-scale. Fig.(7b) shows, under the same boundary conditions, the effect of the average370

grain size on the aggregate response: as the average grain size increases, more elastic energy is

stored within the grains and thene available to the micro-cracking process; as a consequence, if

the cohesive parameters are kept unchanged, aggregates of larger grains appear more brittle with

respect to aggregates of smaller ones.

The effect of the applied electric potential on the macroscopic stress-strain curve 〈σ33〉 versus375

〈γ33〉 for different values of the maximum polarisation angle βmax is investigated in Fig.(8), where

the same 100-grain morphology is considered with four different distributions of the poling angle β̂,
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Figure 7: a) homogenized stress component 〈σ33〉 as a function of the applied strain 〈γ33〉 for five different realisations

of a cubic 100-grain morphology with average grain size d = 5 µm. b) Effect of the average grain size d on the

homogenized stress component 〈σ33〉 as a function of the applied strain 〈γ33〉; the displayed regions represent the

envelopes of maximum and minimum values of the computed averaged stress component for five different random

realisations of 100-grain morphologies for each considered value of the average grain size.

corresponding to the four selected values of βmax. It is apparent how the applied electric potential

has little effect on macroscopic stress-strain curve of unpoled aggregates (βmax = π), which do not

exhibit macroscopic piezoelectric coupling, while the maximum effect is shown by the fully poled380

aggregates.

Fig.(9) investigates the effect of the applied electric potential on the link between the homoge-

nized component 〈D3〉 of the electric displacement and the applied strain 〈γ33〉, for different values

of the maximum polarisation angle βmax. It is interesting to observe that, for unpoled aggregates,

the value of the macroscopic electric displacement depends almost only on the value of the external385

applied potential. This is due to the fact that, in such a case, the macroscopic effective piezoelectric

constants vanish, so that the electric displacement components depend only on the applied electric

field, see Eqs.(1). For partially or fully poled aggregates, on the contrary, 〈D3〉 depends also on

the value of the external applied strain 〈γ33〉, as expected when the piezoelectric constants do not

vanish.390
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Figure 8: homogenized stress component 〈σ33〉 versus applied strain 〈γ33〉 for a cubic 100-grain morphology with

average grain size d = 5 µm and different distributions of the poling angle β̂. For each diagram, the three curves are

obtained for three different level of applied electric potential between the top and bottom faces of the morphology.

Figs.(a), (b), (c) and (d) are obtained by random distributions of β̂, with the constraint on the maximum polarisation

angle βmax = π, 2π/3, π/3 and 0, respectively.

6. Discussion

In this study an original boundary integral formulation for the analysis of intergranular failure

of three-dimensional aggregates of piezoelectric grains has been developed, implemented, tested and

applied to the homogenisation of piezoelectric polycrystalline materials and to the analysis of their

micro-cracking. Although previous works have addressed the analysis of micro-cracking in piezo-395
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Figure 9: homogenized electric displacement component 〈D3〉 as a function of the applied strain 〈γ33〉 of a cubic

100-grain morphology with average grain size d = 5 µm. For each figure, the three curves are obtained for three

different level of applied electric potential between the top and bottom faces of the morphology. Figs.(a), (b), (c)

and (d) are obtained by selecting the maximum polarisation angle equal to βmax = π, 2π/3, π/3 and 0, respectively.

electric aggregates, see e.g. Ref.[32], or have proposed multi-domain formulations for piezoelectric

laminates [37], the one proposed here is the first fully three-dimensional boundary element model

for the analysis of failure in polycrystalline piezoelectric materials.

Some specific aspects are worth mentioning here. In this study only intergranular damage and

failure have been considered. The analysis of transgranular failure is certainly possible, as shown for400

example in Ref.[45], where a boundary integral formulation has been used for the analysis of inter-

and transgranular failure of three-dimensional crystal aggregates. However, although conceptually

very similar to the approach proposed in the present work, the consideration of transgranular cracks

calls for partial re-meshing and the for a considerably more sophisticated implementation, beyond

the scope of the proposed work. Assumed an available suitable characterisation of the material405
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parameters needed in the model, the extension to transgranular micro-cracking is certainly possible,

but is left for future investigation.

As piezoelectric polycrystalline materials are often used in transducers subjected to cyclical

loads [79], a line of further investigation could be addressed to the analysis of fatigue degradation

in piezoelectric MEMS, following the approach suggested e.g. in Ref.[47].410

In general, if coupled with suitable material characterisation at the microscale, the framework

proposed here could be a valuable tool in the design of MEMS devices. Additionally, where the

separation of scales holds, it could be in used in the multiscale analysis of piezoelectric components,

based on suitable computational homogenisation of representative volume elements.

7. Conclusions415

An original framework for the computational homogenization and micro-cracking analysis of

three-dimensional piezoelectric polycrystalline aggregates has been developed in this study. The

developed tool is based on a boundary integral representation of the electro-mechanical problem for

the individual grains of the aggregates and on the employment of generalised cohesive laws for the

intergranular interfaces. The methodology has been implemented and tested for the computation420

of the effective properties of BaTiO3 polycrystals, providing accurate estimates for various cases of

unpoled, partially poled and poled aggregates. Subsequently, the micro-cracking behaviour of PZT-

4 microstructures has been numerically studied, providing qualitatively consistent results. With

suitable microstructural material input, the developed tool may offer valuable support in the design

of MEMS devices.425
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Appendix A. Anisotropic Green’s functions430

The kernels Ûgij(x,y) and T̂ gij(x,y) in Eq.(7) are given by

Ûgij(x,y) = Ggij(x,y), T̂ gij(x,y) = nk(y)Cgjkpq
∂Ggip
∂yq

(x,y) (A.1)
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where i, j, p = 1, 2, 3, 4 and k, q = 1, 2, 3, n(y) = {nk(y)} is the unit outward vector normal to the

boundary at the point y and Cgjkpq is the generalized stiffness tensor defined as follows

Cgjkpq =



cgjkpq, j, p ≤ 3

egqjk, j ≤ 3, p = 4

egkpq, j = 4, p ≤ 3

−κgkq, j = p = 4

. (A.2)

In Eq.(A.1), Ggij(x,y) are the 3D anisotropic Green’s functions for the piezoelectric grain g, obtained

as the solution of the differential system

Cgjkpq
∂2Ggip
∂yk∂yq

(x,y) + δij · δ(y − x) = 0 (A.3)

where x and y are the collocation and observation points, respectively, δij is the Kronecker delta

and δ(y − x) is the Dirac delta function.

Using the Fourier transform with respect to y to Eq.(A.3) and following in Ref.[80], the Green’s

functions Ggij(x,y) and their derivatives can be obtained in terms of spherical harmonics as follows

∂(I)Ggij

∂r
(α1)
1 ∂r

(α2)
2 ∂r

(α3)
3

(r) =
1

4πrI+1

∑
`∈L

P I` (0)
∑̀
m=−`

G̃g,`mij,(α1,α2,α3)
Y `m(r̂), (A.4)

where r ≡ y − x, r =
√
rkrk, r̂ = r/r; I = α1 + α2 + α3 denotes the order of derivation and L is

the set of positive even (odd) integers when I is even (odd). P I` (0) is the `-th associated Legendre

polynomials of degree I evaluated at 0 and Y `m is the spherical harmonic of order ` and degree m.

The coefficients G̃g,`mij,(α1,α2,α3)
of the series are computed by means of the following integral over the

unit sphere S1:

G̃g,`mij,(α1,α2,α3)
=

∫
S1

(ξ̂1)α1(ξ̂2)α2(ξ̂3)α3G̃gij(ξ̂)Ȳ `m(ξ̂)dS(ξ̂), (A.5)

being G̃gij(ξ) = (Cgikjqξkξq)
−1 and Ȳ `m the complex conjugate of Y `m. The interested readers are

referred to Ref.[80] for further details.
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