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Abstract. The faithful reproduction and accurate prediction of the phe-
notypes and emergent behaviors of complex cellular systems are among
the most challenging goals in Systems Biology. Although mathematical
models that describe the interactions among all biochemical processes in
a cell are theoretically feasible, their simulation is generally hard because
of a variety of reasons. For instance, many quantitative data (e.g., kinetic
rates) are usually not available, a problem that hinders the execution of
simulation algorithms as long as some parameter estimation methods are
used. Though, even with a candidate parameterization, the simulation
of mechanistic models could be challenging due to the extreme compu-
tational effort required. In this context, model reduction techniques and
High-Performance Computing infrastructures could be leveraged to mit-
igate these issues. In addition, as cellular processes are characterized by
multiple scales of temporal and spatial organization, novel hybrid simula-
tors able to harmonize different modeling approaches (e.g., logic-based,
constraint-based, continuous deterministic, discrete stochastic, spatial)
should be designed. This chapter describes a putative unified approach
to tackle these challenging tasks, hopefully paving the way to the defini-
tion of large-scale comprehensive models that aim at the comprehension
of the cell behavior by means of computational tools.
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1 Introduction

Cells are inherently complex systems, composed by a wide variety of molecule
types, whose functioning is finely regulated by an intricate network of interac-
tions. In order for cells to respond to environmental cues, surviving and reproduc-
ing, all of their components have to act together in a orchestrated manner. This
wealth of complexity is the main reason for the richness of cellular behaviours
that can be found in nature, but is also a major issue in advancing to a complete
understanding of these systems.

In the last decades, mathematical modeling and simulation proved to be
essential tools to understand and describe how biological functions emerge from
the complex network of interactions existing between cellular components [139].
However, even though modeling and simulation proved successful in describing
single processes or a limited amount of interacting pathways, extending this
approach to define and simulate a whole-cell turned out to be an unfeasible task
(besides the notable exception reported in [58], as it will be mentioned below),
especially in the case of human cells. As a matter of fact, the definition and
simulation of whole-cell models is challenging for several reasons. In particular,
the problem is exacerbated by the complex organization of cell systems; the
difficulties encountered in integrating different data sources and mathematical
formalisms in a single modeling framework; the huge demand of computational
power needed to perform the simulation. Although some of these challenges
were already discussed and highlighted before (see for example [67]), we hereby
provide a brief summary of the main challenges in the definition and simulation
of whole-cell models:

— biomolecular systems are composed of a wide variety of heterogeneous compo-
nents, ranging from small molecules, complex polymers (including proteins,
sugars and ribonucleic acids) and protein complexes. All these components are
further organized in functionally coherent pathways and organized in special-
ized compartments (e.g. the organelles in eukaryotic cells), ultimately giving
rise to complex (observable) phenotypes;

— cells display a complex spatial and functional hierarchical organization, that
results in phenomena occurring at a wide range of spatial and temporal
scales [30]. Moreover, this organization often gives rise to complex non-linear
dynamics;

— cellular systems are inherently stochastic, that is, the dynamics of cellular
processes is characterized by biological noise [39], which is exploited by the
cell to obtain specific responses that would be impossible in its absence [37].



Towards Human Cell Simulation 223

Thus, some cellular pathways (e.g., gene expression) must be modeled and
simulated as stochastic processes;

— the different nature of the cell components entails that they are measured
with different experimental techniques. Some of these components can be
measured with a high accuracy and with a high throughput (e.g., genomic
or RNA sequencing, mass spectrometry), while others are very difficult or
impossible to measure (e.g., kinetic information on the reaction rates). Thus,
modelers have to take into account the presence of vast amounts of data, often
in qualitative, or semi-quantitative form, together with limited quantitative
information;

— the availability of multiple types of data, and the need to model different
layers of organization, led to the definition of multiple modelling frameworks
[118]. Because of this, models of biochemical systems are usually focused
on one of the three main layers in which cellular processes are generally
divided, namely: signalling (perceive environmental changes, process infor-
mation and regulation of behaviour); gene regulation (control of expression
levels of gene products); metabolism, i.e., the production and consumption,
driven by enzymes, of small molecules essential for the life of cells. Even
though attempts to define a single framework were made before [23], the
integration of multiple modeling approaches is still challenging. However, a
unified modeling framework for these three layers would provide a reliable
means to capture their peculiarities [45], as was shown in [58].

— the availability of large amounts of experimental data, combined with the
massive complexity of cells components, leads to huge computational require-
ments, even when considering the simulation of a single cell. Thus, dynamic
mechanistic whole-cell models—encompassing all knowledge about biochemi-
cal reactions—are basically impossible to simulate on any existing computing
architecture. However, we will see that by means of some assumptions about
the system, such complexity can be mitigated using hybrid modeling, and
model reduction techniques.

Considering all these challenges together, it comes to no surprise that, up to
date, the only available example of whole-cell model is the one presented in the
pioneering work of Karr et al. [58]. In this seminal work, the authors succeeded in
simulating a whole-cell of one of the simplest known organisms, the Mycoplasma
genitalium, adopting for each cellular process a suitable mathematical formal-
ism. In particular, the authors showed the feasibility of predicting different cell
phenotypes from a genotype, by relying on computational approaches. To the
best of our knowledge, this results was not achieved again for any more complex
organism. However, the integration of multiple formalism into a single modeling
framework was already explored to smaller extents also in human cell models,
for example in [41]. It is out of question that the simulation of whole-cell models
will prove to be a challenge for modelers and computer scientists in the coming
decades, and this is especially true in the case of human cells. Here, we propose
a set of modeling approaches and techniques that would allow us to advance
towards the simulation of human whole-cell models.
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A dynamic whole-cell model would prove useful to understand how pheno-
types emerge from the complex interactions existing between cellular compo-
nents. Achieving dynamic simulation of a human cell in silico would have an
even more considerable impact in the fields of molecular and systems biology,
bioengineering and medicine [67]. Such a model, once validated, could allow to
uncover new and potential unknown processes inside human cells, providing a
reliable platform to generate new hypothesis to be tested in laboratory. In this
regard, in silico tests would guide the experimental design, greatly reducing
the costs, both in term of time and resources, of a “wet” laboratory. Moreover,
human cell models could be exploited to automatically assess the effects of a vast
number of perturbations in physiological or pathological conditions, in order to
unveil potentially new drug targets or test known drugs in a high-throughput
manner. We envision that human cell models could lead to breakthroughs in
many fields of application, including medicine and personalized medicine, phar-
macology and drug discovery, biotechnology and synthetic biology.

Regardless of the methodology used to create a whole-cell model, there
are some aspects that will always characterize this kind of approach: High-
Performance Computing (HPC) is necessary to mitigate the huge computa-
tional effort, in particular by distributing the computations over massively par-
allel machines and co-processors; dynamics modelling requires a proper kinetic
parameterization to perform predictive simulations, and such parameters are
often difficult—or even impossible—to measure by means of laboratory experi-
ments, leading to a problem of parameter estimation; biological models are often
characterized by multiple scales (temporal and spatial) which are not easy to
handle; to reduce the huge computational effort due to large-scale models, both
model reduction techniques or phenomenological simplifications can be lever-
aged. All these topics will be introduced and discussed in this paper.

This manuscript is organized as follows: in Sect. 2 we describe how HPC can
mitigate the exceptional computational demand required by the simulation of
whole-cell models; in Sect. 3 we propose modeling approaches for the definition
of whole-cell models, while in Sect. 4 we suggest some techniques that could be
employed to tackle the problems mentioned above in order to create a unified
modeling approach; finally, in Sect.5 we give some final remarks and highlight
potential future directions.

2 High Performance Computing and Big Data

As it was highlighted in the previous section, High Performance Computing
(HPC) architectures and handling of huge amounts of data will be necessary
and enabling tools for the simulation of a human cell model. HPC involves the
use of many interconnected processing elements to reduce the time to solution
of given a problem. Many powerful HPC systems are heterogeneous, in the sense
that they combine general-purpose CPUs with accelerators such as, Graphics
Processing Units (GPUs), or Field Programmable Gates Arrays (FPGAs).
There exist several HPC approaches [11,60,89] developed to improve the per-
formance of advanced and data intensive modeling and simulation applications.
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Parallel computing paradigm may be used on multi-core CPUs, many-core pro-
cessing units (such as, GPUs [77]), re-configurable hardware platforms (such as,
FPGAs), or over distributed infrastructure (such as, cluster, Grid, or Cloud).
While multi-core CPUs are suitable for general-purpose tasks, many-core pro-
cessors (such as the Intel Xeon Phi [24] or GPU [85]) comprise a larger number of
lower frequency cores and perform well on scalable applications (such as, DNA
sequence analysis [71], biochemical simulation [53,76,81,123] or deep learning
[129]).

Widely used parallel programming frameworks [70] for heterogeneous sys-
tems include OpenACC [138], OpenCL [115], OpenMP [88], and NVIDIA CUDA
[84]. OpenMP is a set of compiler directives, library routines, and environment
variables for programming shared-memory parallel computing systems. Further-
more, OpenMP has been extended to support programming of heterogeneous
systems that contain CPUs and accelerators. OpenCL supports portable pro-
gramming of hardware provided by various vendors, while CUDA runs only on
NVIDIA hardware. CUDA C/C++ compiler, libraries, and run-time software
enable programmers to develop and accelerate data-intensive applications on
GPU.

As concerns distributed parallel computing, the available frameworks include
the Message Passing Interface (MPI) [48], MapReduce/Hadoop [51] or Apache
Spark [112]. MPI is a specification of library routines helpful for users that
write portable message-passing programs in C/C++, Fortran or Python. Basic
assumption behind MPI is that multiple processes work concurrently using mes-
sages to communicate and collaborate with each other. The MapReduce frame-
work, and its open-source implementation Hadoop software stack, hides the
details about data distribution, data availability and fault-tolerance, and allows
to scale up to thousands of nodes inside cluster or Cloud computing systems.
Lastly, Apache Spark [112] is a large-scale parallel computing platform that
provides a wide variety of tools for structured data processing, including SQL
queries (SparkSQL), streaming applications (Spark Streaming), machine learn-
ing (MLIlib) and graph operations (GraphX), by means of various programming
interfaces in Java, Scala, Python and R.

The data size in Bioinformatics, Computational Biology, and Systems Biol-
ogy is increasing dramatically in the recent years. The European Bioinformatics
Institute (EBI), one of the largest biology-data repositories, had approximately
40 petabytes of data about genes, proteins, and small molecules in 2014, in com-
parison to 18 petabytes in 2013 [56]. Big data problems in these fields are not
only characterized by Velocity, Volume, Value, Variety, and Veracity, but also by
incremental and geographically distributed data. While part of these data may
be transferred over the Internet, the remaining are not transferable due to their
size, cost, privacy, and other ethical issues [69]. Moreover, the computational
time required by algorithms designed for the simulation of detailed mechanis-
tic models (see Sect.3.1) scales poorly when the models are characterized by a
huge number of components. Thus, in recent years, research in Bioinformatics,
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Computational Biology and Systems Biology started to adopt different HPC
approaches to deal with Big Data.

In [86] Hadoop Blast (Basic Local Alignment Search Tool), in short HBlast,
a parallelized BLAST algorithm is presented. HBlast exploits the MapReduce
programming framework, adopting a hybrid “virtual partitioning” approach that
automatically adjusts the database partition size depending on the Hadoop clus-
ter size, as well as the number of input query sequences.

Sadasivam et al. considered in [100] a time efficient approach to multiple
sequence alignment, as essential tool in molecular biology. They proposed a novel
approach that combines the dynamic programming algorithm with the compu-
tational parallelism of Hadoop data grids to improve accuracy and to accelerate
of multiple sequence alignment.

Li et al. developed in [65] ClustaWMPI, an accelerated version of ClustalW
tool for aligning multiple protein or nucleotide sequences. In Clustal WMPI
adopts MPI and runs on distributed workstation clusters as well as on tradi-
tional parallel computers.

The work presented in [15] describes a new Molecular Dynamics approach,
named Desmond, that achieves unusually high parallel scalability and overall
simulation throughput on commodity clusters by using new distributed-memory
parallel algorithms. Desmond adopts a novel parallel decomposition method
that greatly reduces the requirement for inter-processor communication, a novel
message-passing technique that reduces the number of inter-processor messages,
and novel highly efficient communication primitives that further reduce commu-
nication time.

The estimation of kinetic parameters, mandatory to perform cellular simu-
lations, can be performed using population-based global optimization methods
(see Sect. 4.2 for additional information). These algorithms are intrinsically par-
allel and can be accelerated using GPUs [78,79]. In [124] acceleration of the
Differential Evolution algorithm is considered. In this work, a parallel imple-
mentation of an enhanced DE using Spark is proposed. Two different platforms
have been used for the evaluation, a local cluster and the Microsoft Azure public
cloud. The proposal drastically reduces the execution time, by means of includ-
ing a selected local search and exploiting the available distributed resources.
The performance of the proposal has been thoroughly assessed using challeng-
ing parameter estimation problems from the domain of computational systems
biology. Additionally, it has been also compared with other parallel approaches,
a MapReduce implementation and MPI implementation.

Coulier et al. presented in [29] a new framework, named Orchestral, for
constructing and simulating high-fidelity models of multicellular systems from
existing frameworks for single-cell simulation. They combined the many existing
frameworks for single-cell resolution reaction-diffusion models with the diverse
landscape of models of cell mechanics. They decoupled the simulation of reaction-
diffusion kinetics inside the cells from the simulation of molecular cell-cell inter-
actions occurring on the boundaries between cells. Orchestral provides a model
for simulating the resulting model massively in parallel over a wide range of
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distributed computing environments. They proved the flexibility and scalability
of the framework by using the popular single-cell simulation software eGFRD to
construct and simulate a multicellular model of Notch-Delta signaling over the
OpenStack cloud infrastructure.

Finally, HPC is exploited to accelerate the simulation of biochemical mod-
els that are defined according to mechanistic formalisms [118] (refer also to
Sect. 3.1 for some examples). In this context, GPUs [77] were already success-
fully employed to achieve a considerable reduction in the computational times
required by the simulation of both deterministic [53,76,123] and stochastic mod-
els [81,150]. Besides accelerating single simulations of such models, these meth-
ods prove to be particularly useful when there is a need of running multiple
independent simulations of the same model. Hundreds (or even thousands) of
simulations are often necessary to perform a wide variety of analysis on validated
models (e.g., sensitivity analysis of kinetic parameters, or parameter sweep anal-
ysis), but also to perform parameter estimation (PE) during the definition of
such models (please, refer to Sect. 4.2 for an extensive description). This kind of
tasks leverages at most the availability of the many cores of the GPUs, greatly
reducing the overall running time that is required to perform them [82,83].

3 Modeling Approach

In the field of Systems Biology, several modeling approaches have been defined
[114,118]. Each approach exploits a different mathematical formalism and was
developed to address the challenges posed by a specific (subset of) biochemical
processes (e.g. metabolism [117], gene regulation, or signaling). The definition of
a single, homogeneous mathematical framework to model and simulate a whole-
cell seems currently unfeasible, while the integration of multiple formalisms has
already proved to be able to achieve outstanding results [58]. Following this
principle, we decided to define our human cell modeling framework by inte-
grating multiple modeling approaches, namely: (i) mechanism-based models (in
particular reaction-based and agent-based models); (ii) constraint-based mod-
els; (4i) logic-based models (in particular boolean and fuzzy logic-based models).
These approaches, together with their peculiarities and limitations, will be briefly
described in the following subsections.

3.1 Reaction-Based Modeling

Biochemical systems are traditionally formalized as mechanistic and fully param-
eterized reaction-based models (RBMs) [12]. A RBM is defined by specifying the
following sets:

— the set S = {S1,...,Sn} of molecular species;

— the set R = {Ry,..., Ry} of biochemical reactions that describe the inter-
actions among the species in S;

— the set K = {ki,...,kn} of kinetic constants associated with the reactions
in R;



228 S. Spolaor et al.

— the set of the initial concentration Y; € Ra‘, withi =1,..., N, for each species
S; €S.

Any RBM can be represented in a compact matrix-vector form AS K, BS,
where S = (S1,...,98)", K = (k1,...,ka) 7, and A,B € NM*N are the sto-
ichiometric matrices whose elements [A]; ; and [B]; ; represent the number of
reactants and products occurring in the reactions, respectively. Given an RBM
and assuming the law of mass-action [22], the system of coupled Ordinary Dif-
ferential Equations (ODEs) describing the variation in time of the species con-
centrations is obtained as follows:

& B-ATKoYA), (1)
where Y = (Yi,...,Yy) represents the state of the system at time ¢, YA
denotes the vector-matrix exponentiation form [22], while the symbol @ denotes
the Hadamard product. The system can then be simulated using a numerical
method, which is usually based on implicit integration (e.g., Backward Differen-
tiation Formulae [19]) due to the stiffness that characterizes these models.

When the chemical species have a low concentration, the dynamics of the
system becomes instrinsically stochastic and the biochemical system should be
simulated using specific approaches like Gillespie’s Stochastic Simulation Algo-
rithm (SSA) [43]. In SSA, the simulation proceeds one reaction at a time. Both
the reaction to be fired and the time interval 7 before the reactions occur are
determined in a probabilistic fashion. Thus, the simulated trajectory of the sys-
tem can radically diverge from the one predicted by a deterministic simulation,
allowing the investigation of the emergent effects due to the intrinsic noise and
providing a deeper knowledge of the system’s behavior. In the case of stochastic
modeling, the state of the system represents the exact number of molecules; K
denotes the vector of the stochastic constants, encompassing all the physical and
chemical properties of the reactions. These parameters are used to calculate the
propensity functions, ultimately determining the probability of each reaction R,
to occur. Propensity functions are defined as:

am(Y) =k - din (YY), (2)

where d,, (Y) is the number of distinct combinations of reactant molecules occur-
ring in R,,. The delay time 7 before the next reaction will occur is calculated
according to the following equation:

1 1

= oY) -In s (3)

where ag(Y) = 271\7/521 am (Y) and rnd is random number sampled with uniform
distribution in [0,1).

Mechanistic modeling is considered the most likely candidate to achieve a
detailed comprehension of biological systems [20], since it can lead to quantita-
tive predictions of cellular dynamics, thanks to its capability to reproduce the
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temporal evolution of all molecular species occurring in the model. Nonetheless,
the computational complexity of the simulation and analysis of such models
increases with the size (in terms of components and interactions) of the systems,
limiting the feasibility of this approach. Moreover the usual lack of quantita-
tive parameters (e.g., kinetic constants, initial molecular concentrations of the
species) and the partial lack of knowledge about the molecular mechanisms,
sometimes due to the difficulty or impossibility to perform ad hoc experiments,
represent further limits to a wide applicability of this modeling approach. The
problems of simulation performances and parameter estimation are discussed in
the next Sections.

3.2 Constraint-Based Modeling

Constraint-Based Modeling (CBM) is based on the idea that phenotypes of a
given biological system must satisfy a number of constraints. Hence, by restrict-
ing the space of all possible systems states, it is possible to determine the func-
tional states that a biochemical (in particular, metabolic) network can or cannot
achieve. The fundamental assumption of constraint-based modeling is that the
organism will reach a quasi-steady state that satisfies the given constraints [20].

The starting point of CBM is the transposed stoichiometric matrix S =
(B—A)T, i.e., a matrix in which each row corresponds to a chemical species (e.g.,
metabolites), while columns correspond to reactions involving those species.
Since metabolic networks typically include more reactions (“fluxes”) than meta-
bolites, the stoichiometric constraints and the steady assumption alone lead to an
under-determined system in which a bounded solution space of all feasible flux
distributions can be identified. Additional constraints should be incorporated
to further restrict the solution space; this is usually performed by specifying
linear bounds to minimum and maximum values of fluxes. Additioanl capacity
constraints are generally set according to experimental data.

On top of CBM, Flux Balance Analysis (FBA) can be used to identify opti-
mal distribution of fluxes with respect to a given objective function. Thanks to
the linear definitions of fluxes, constraints and objective function, the solution
space is a multi-dimensional convex polytope. FBA exploits a simplex method to
efficiently identify the optimal fluxes that maximize, or minimize, the objective
function (e.g., the maximization of ATP [128] in the context of mithocondria
energy metabolism). CBM methods do not perform an actual simulation of the
biochemical system, but can be used—under a quasi-steady state assumption—
to investigate the distribution of fluxes. Interestingly, FBA has a very limited
computational complexity, so that it can be leveraged to study the behavior of
a metabolic systems on a whole-cell level.

3.3 Markovian Agents

Markovian agents [13] are a modeling tool that is specially suitable for large
scale phenomena composed of groups of single entities that behave as Markov
chains. Such entities, said agents, are individuals belonging to classes that are
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characterized by a common description of their dynamics. Agents may influence
each other by means of a technique called induction, which accounts for their
position in a logic map that represents the space in which they can move or be
positioned in the system. The system is described by considering for each class
the density of agents in each state and the probability of transition between
states, so that, thanks to a mean-field approach, the evolution in time of the
density in states may be approximately described by differential equations and
a closed form solution may be obtained, with the significant advantage that the
higher is the number of agents in a class, the best the approximation describes the
system. The communication mechanism acts by enabling or disabling transitions,
thus influencing the probability of transitions between states. This analytical
description is suitable to study both transient and regime behavior of the system.

Markovian agents may be used to describe the interactions of reactions that
happen in a cell in a large number of independent instances, including the effects
of inhibiting factors, as well as for describing the expression of cells in tissues
and organs. The technique has been applied to study biological pathways [27],
cancer cells [28], whole ecosystems, such as forestry landscape [142], and other
complex real-world systems [7,21,47]. The Markovian property make them suit-
able to describe processes that are characterized by exponentially distributed
interarrival time in their evolution.

From the formal point of view, let a Markovian agents model be composed
by different classes, with each class ¢ characterized by a Markov chain with
n. states: the space X in which agents are located and can move is finite and
can be continuous or discrete. The distribution of agents in the space can be
represented by a density function § : X — RT so that, considering any sub-
space U C X, the number of agents in U is described by a Poisson distribution
with mean [ fU d(x)dz. The model evolves by accounting for state changes of
agents in their class and induction effects, birth of agents and death of agents:
its evaluation can be obtained as a counting process per each class that counts
the number of agents in each state of its Markov chain, in each position in space
and in each instant.

Let x.(I,t) = |XZ-C] (1,t)| be a vector of size nll, with each element ch] (1,1)
representing the average number of agents of class ¢ in state ¢ at time ¢ and in
location [. If the space is discrete, the evolution of the counting process is thus
described by a set of ordinary differential Equations4 for each class ¢ and in

location [:
dXT(tlt) = be(D 1, 8) + Xl 1) - Kel([x), 1, 1) (1)

where [x] denotes the dependency on all the state of all agents in the model
in any time instant, matrix K. is the main transition kernel that accounts for
spontaneous and induced actions contribution and b. is the birth vector of new
agents for the class in a state.

If the space is continuous, movement of agents is described by a diagonal
velocity matrix w., described in Eq.5, that can be obtained by summing the
contributions for each direction:
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Owe(IX]. L) - xe(l, 1) _ Owae(Dd: 1 8) - Xe(l, 1) | O(wye(DX], L) - xe(l:t))

ol B ol., al,,
(5)

and Eq. 4 is modified accordingly and becomes Eq. 6:

Axc(l,t) . O(we([x],1,t) - xe(ls1))
ot ol

:bc([X]’lvt)+Xc(lat)'Kc([X]7l7t) (6)

in which the second term accounts for the effects of agents movement by v,.

3.4 Logic-Based Modeling

In contrast with mechanism- and constraint-based models, logic-based model do
not require kinetic or stoichiometric information to be defined. Although these
models can describe the system under consideration only in qualitative terms,
they provide an efficient way to simulate the dynamic evolution of complex
systems, even when precise kinetic information is not available. Thanks to their
closeness to human language, logic-based models are able to leverage qualitative
and semi-quantitative data and they are generally regarded as more intepretable
by human experts. Moreover, their flexibility allow modelers to represent in
the same model highly heterogeneous components and the interactions existing
among them.

Logic-based models are defined by a set of v variables V and a set of ¢
IF-THEN logic rules F, describing the interactions existing between the compo-
nents. Evaluation of the rules in discrete time steps drives the system’s dynam-
ics: this can be achieved by either a synchronous (deterministic) or asynchronous
(stochastic) update policy [141]. Logic-based models are commonly employed in
systems biology to model gene regulatory networks and signal processing [74].
Among them, Boolean models are the most simple and widely used: in this kind
of models, variables can assume only two discrete states, often represented as 0
and 1, active or inactive, present or not present. Different Boolean logic models
were successful in predicting cellular behaviours [141], however these assump-
tions often limit their ability of representing biomolecular processes.

In order to overcome these limitations, more recently fuzzy logic was proposed
as an alternative to the modeling of complex biochemical systems [3]. Fuzzy logic
is a powerful, multi-valued extension of boolean logic, which allows variables to
assume multiple states in a continuous manner (i.e., between [0,1]) and deal
with any uncertainty related to the system. More in particular, fuzzy IF-THEN
inference systems are composed of ¢ rules of type:

IF vy isin Vi ; and vp is in V; 2 and ... and v,, is in V; , THEN o is in Oy
IF v; isin Vo ; and v is in Vo 5 and ... and v, is in V5, THEN o is in O,

IF vy isin V1 and vy is in V;, 5 and ... and v,, is in V,,,, THEN o is in O,,
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where v;,0 € V, with ¢ = 1,...,v, while the sets V; ; and O;, withi=1,...,0,
and j = 1,...,v are fuzzy (sub-)sets, that is, the membership of the value
assumed by a generic variable v € V for the fuzzy subset V is equal to a degree
« € [0,1]. This is denoted by uy (v) = «. If all the considered sets are classical
sets (i.e. always holds py (v) € {0,1}), then the inference system is boolean.

An advantage of fuzzy reasoning is that, thanks to the fuzzy sets, it can
handle uncertainty and conflicting conclusions drawn from the logic rules [126].
Thus, it can allow for the dynamic simulation of qualitative and semiquantitative
models, even when precise kinetic information is missing. Fuzzy logic has been
applied to vastly different fields of research, ranging from automatic control [36]
to medicine [99], but it was successfully applied also in the field of cellular biology,
for example, to model signaling pathways [3] and gene regulatory networks [63].

We plan to exploit fuzzy logic in our hybrid framework to overcome the lack
of kinetic parameters [14,66] and model those cellular processes that still are not
understood in mechanistic detail, or whose components cannot be represented
by crisp, real-valued variables (e.g., complex phenotype as apoptosis/survival,
microscopy imaging data, etc.).

4 A Unified Modeling Approach

In principle, the SSA algorithm described in Sect. 3.1 can be used to simulate a
stochastic trajectory of any biological model, including a whole-cell model, and
such dynamics would be exact with respect to the Chemical Master Equation
(CME) underlying the corresponding set of biochemical reactions. This approach
could be even extended to consider the diffusion of molecules inside the cell, like
in the case of the Next Subvolume Method (NSM) [38]). However, both SSA and
NSM perform the simulations by applying a single reaction at a time, proceeding
with time steps that are inversely proportional to the sum of the propensities (see
Eq. 3) which, in turn, is proportional to the amount of reactants in the system.
These circumstances generally cause an explosion of the computational effort due
to exact stochastic simulation, making it unfeasible for whole-cell simulation.

An approximate but faster version of SSA, called tau-leaping [44], was pro-
posed by Gillespie to reduce the computational burden typical of SSA: by assum-
ing that the propensities do not change during a given time-interval (the so-called
leap condition) the number of reactions firing can be approximated by Poisson
random variables.

When the number of estimated reaction firings for all reactions increases,
the Poisson processes can be approximated by a normal distribution with same
mean and variance [44]. In this case, Stochastic Differential Equations (SDEs)
like the Langevin equations can be exploited to model the system, which is then
simulated using numeric solvers like the Euler-Maruyama method [119], strongly
reducing the overall computational effort. Finally, when the propensities become
extremely large, the noise term in the SDEs becomes negligible and can be
removed, so that the system can be modeled using simple ODEs [44].

The proper modeling approach must be carefully selected according to the
characteristics of the chemical system. Unfortunately, cellular mechanisms are
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controlled by reactions and pathways spanning over multiple scales, so that none
of these modeling methods is really adequate. By partitioning the reactions set
R into multiple regimes, according to their characteristics (e.g., their propensity
values), it is possible to simulate each subsystem using the optimal modeling
approach. It is clear that the firing of reactions in one regime can have a huge
impact to the others, so that the synchronization phase—necessary to propagate
the information across the regimes—becomes a mandatory and very delicate
phases of multi-scale hybrid simulators, like in the case of the Partitioned Leaping
Algorithm (PLA) [52].

By extending PLA by considering the additional modeling approaches
described in Sect. 3.1, it is possible to achieve whole-cell models [58]. In this
project, we pursue the integration of these modeling approaches, pushing the
limits of human cells simulation. In order to mitigate the huge computational
requirements, we plan to exploit model reduction and automatic simplification
algorithms. We also plan to perform an automatic inference of some missing
parts of the model (e.g., reactions, rules, parameters), exploiting state-of-the-art
evolutionary and statistical methods. Finally, we will test multi-agent approaches
to work on multiple scales (e.g., multiple cells or tissue simulation). All these
approaches will be described in the next subsections.

4.1 Model Reduction and Simplification

The complexity of cellular systems poses some limitations on the scale of the
models that can be simulated. In this context, model reduction techniques can
be used to tame the complexity before the execution of simulation algorithms is
performed.

The theory of complex networks has raised a great development over the
recent years. The empirical and theoretical results analyzing several real sys-
tems show that complex networks can be classified using its probability distri-
bution function P(k), i.e. the probability that a node is connected to k nodes of
a network. A scale-free network has the grades distribution function fitting the
power-law function [57]. Several studies examining the cellular metabolism of
different organisms have been conducted for determining the topological struc-
ture of a metabolic network [57]. In this direction, studies of Barabdsi and Albert
have also analyzed many issues in scale-free networks [2].

In many organism, the metabolic networks are composed of interconnected
functional modules and follow the scale-free model [49,61]. Three statistical mea-
sures can be considered in a scale-free network: the connectivity degree, the
diameter of the graph, and the clustering coefficient [2]. The connectivity degree
of a node is the number of incident arcs and it allows also for calculating the
distribution function of the connectivity degree. The diameter provides an esti-
mation of the average number of hops between any pair of nodes in the network.
It is also linked to the shortest paths between each node pair as well as to the
number of paths in the network. Finally, the clustering coefficient gives a measure
of the properties of nodes to form agglomerates. In addition, metabolic network
nodes can be classified into distinct groups considering the following parameters
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[49]: the within-module degree, i.e., the membership degree of a node into its
functional module, and the participation coefficient, i.e., a measure of the node
interaction with network functional modules. The above parameters can be used
to define non-hub and hub nodes as well as peripheral, provincial, connector,
and kinless nodes [49,64]. These metrics pave the way to the topological analy-
sis of a network, providing information on the connectivity and the participation
degrees of each node within the network.

The topological analysis of a network can be completed by functional analy-
sis. A cellular network is hierarchically organized with several functional modules
[5,57]. Methods for a rational decomposition of the network into independent
functional subsets are essential to understand their modularity and organization
principles.

Using the modularization approach commonly used in the area of control
theory, a cellular network can be viewed as an assembly of basic building blocks
with its specific structures, characteristics, and interactions [103,135]. Modu-
larization reduces the difficulty in investigating a complex network. Network
decomposition is also needed for cellular functional analysis through pathway
analysis methods that are often troubled by the problem of combinatorial explo-
sion due to the complexity of those networks.

Two main methods can be used for network functional analysis and, as a con-
sequence, for network model reduction and simplification: Flux Balance Analysis
(FBA) and Extreme Pathways Analysis (ExPA) [59,103,137].

FBA is a mathematical technique based on fundamental physical and che-
mical laws that quantitatively describe the metabolisms of living cells. FBA is a
constraint-based modeling approach [96]: it assumes that an organism reaches a
steady-state (under any given environmental condition) that satisfies the physic-
ochemical constraints and uses the mass and energy balance to describe the
potential cellular behavior. FBA model has been developed considering the mass
and energy conservation law: for each node/metabolite, the sum of incoming
fluxes must be equal to the sum of the outgoing ones. The space of all feasible
solutions of a linear equation constrained system lies within a three-dimensional
convex polyhedron, in which each point of this space satisfies the constraints
of the system [96]. When the system has an optimal and limited solution, this
is unique and it is located on a polyhedron vertex. However, the system can
have multiple optimal solutions (axis or plan) that are used to detect network
redundancies [96].

ExPA analysis detects the vital pathways in a network. They are the unique
set of vectors that completely characterize the steady-state capabilities of a net-
work. A network steady-state operation is constrained to the region within a
cone, defined as the feasible set. In some special cases, under certain constraints,
this feasible set collapse in a single point inside the cone. The algorithm detects
the extreme rays/generating vectors of convex polyhedral cones. Algorithm time
execution is proportional to the number of nodes and pathways [137].

Many software frameworks for cellular networks analysis and simulation
have been developed. Some solutions, such as Pajek [34], allows for either large
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complex networks analysis and visualization or network structural properties and
quantities analysis. CellNetAnalyzer [62] is a MATLAB package for performing
biochemical networks functional and structural analysis.

The BIAM framework implements an integrated analysis methodology based
on topological analysis, FBA analysis, and Extreme Pathways analysis [26,134].
The framework supplies the needed tools for drawing a network and analyzing
its structural and functional properties. Several scale-free network architectures,
dealing with different application domains, have been simulated and validated
[26,136]. Topological and functional analysis can be combined to select the main
functional nodes and paths of a cellular network. Redundant nodes and non-vital
paths could be ignored before the execution of time-constrained simulation algo-
rithms, reducing the overall computational complexity of large scale simulation.

4.2 Parameter Estimation

Mechanistic models are characterized by a kinetic parameterization (i.e., the K
vector described in Sect. 3.1). A precise estimation of such parameters is manda-
tory to perform faithful simulations of the system’s dynamics. The problem of
Parameter Estimation (PE) can be formulated as a minimization problem: the
goal is to reduce to zero a distance between the target experimental discrete-
time time-series and a simulated dynamics performed with the optimal vector
of parameters [83]. Due to the characteristics of the fitness landscapes defined
by the PE problem (i.e., multi-modal, non-linear, non-convex, noisy), classic
optimization methods cannot be employed efficiently. On the contrary, Compu-
tational Intelligence (CI) methods based on evolutionary computation or swarm
intelligence were shown to be effective for this problem [35,83], in particular
the settings-free variant of PSO named Fuzzy Self-Tuning PSO [80]. Moreover,
CI methods can be combined with probabilistic frameworks (e.g. expectation-
maximization methods [55]) to efficiently tackle the PE of stochastic models (see
for example [95]). However, when the number of missing parameters in the model
becomes extremely large, like in the case of whole-cell models, conventional CI
methods can show some limitations and large-scale methods must be employed.

Among the existing CI algorithms for large number of parameters, Differ-
ential Evolution (DE) [116] variants like the recent DISH [132] algorithm could
be exploited. DE algorithm was introduced in 1995 by Storn and Price [116]
and since then formed a basis for a set of successful algorithms for optimization
domains, such as continuous, discrete, mixed-integer, or other search spaces and
features [146]. The whole encompassing research field around DE was surveyed
most recently in [32] and even since then, several other domain- and feature-
specific surveys, studies, and comparisons have also followed [1,90,92,93]. The-
oretical insight and insights to inner workings and behaviors of DE during con-
secutive generations has been studied in the works like [87,122,133,144].

As the continuing research in DE enhancements and insight supports a much
vigorous research community, the DE algorithm variants have also steadily
placed top in competitions held annually at Congress on Evolutionary Com-
putation (CEC) [16,17,31,68,73,97,98,140]. For this reason, we expect these
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advanced versions of DE to be effective for the PE problem and outperform
classic algorithms, especially on high dimensional problem.

The most recent variants’ strain of DE is the Success-History based Adap-
tive Differential Evolution (SHADE) [120], which has a line of recent improve-
ments following a taxonomy [1] stemming from JADE [149] that is based on
jDE [16,144], upgraded as L-SHADE [121], SPS-L-SHADE-EIG [50], LSHADE-
cnEpSin [4], jSO [18], aL-SHADE [91], and most recently, DISH [132]. These
algorithms include different mechanisms and to describe the basic outline work-
ing principle to apply DE, from the following paragraph on, the basic canonical
1995 DE is described.

The canonical 1995 DE is based on parameter estimation through evolution
from a randomly generated set of solutions using population P, which has a
preset size of NP. Each individual (a set of estimated parameter values) in this
population P consists of a vector x with a of length D. Each vector & compo-
nent corresponds to one attribute of the optimized task for which parameters
are being estimated. The objective function value f(x) evaluates quality of the
solution. The individuals in the population create improved offspring for the next
generation. This process is repeated until the stopping criterion is met (either
the maximum number of generations, or the maximum number of objective func-
tion evaluations, or the population diversity lower limit, or overall computational
time), creating a chain of subsequent generations, where each following genera-
tion consists of eventually better solutions than those in previous generations.

Some of most used computational operators operating on population P
over each generation and its vectors, are parameter adaptation, mutation [149],
crossover [121], selection [132], and population restructuring including adapta-
tion of population size [144]. First, all vectors in the initial population are uni-
formly generated at random between bounds [J:lower}j, xupper’j], Vi=1, ..., D:

x; = {U [Ilower,jy xupper,j]};vj =1, ..., D;Vi=1, ..., NP, (7)

then, three mutually and from current vector index ¢ different, indices r1, ro,
and r3, are used to computing a differential vector (hence the name DE for
algorithm) and combine it in a scaled difference manner:

Vi = Tp1 + F (337“2 - 337“3) ) (8)
which is then taken into crossover with the current vector at index :

Wis = Vji it Y [O’ 1] < CRl OI'j = jrand (9)
S otherwise ’

finally through selection yielding a new vector x; ¢+ at this location 7 for next
generation G + 1:

_ _Juigif f(uig) < f(xia)
Ti,G+1 = {aci’(; otherwise ’ (10)

As mentioned in the beginning of this subsection, the work on DE is ongo-
ing and still challenging. To apply DE most efficiently on a new challenge for
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parameter estimation like the discussed simulation in this chapter, one of effec-
tive DE variants should be taken and adapted for the domain challenge at hand,
following recent experiences on DE applications in e.g. image processing [143],
energy scheduling [145], and autonomous vehicle navigation [147,148].

To assess the feasibility of DISH for the large-scale PE problem, we plan
to compare its performances against state-of-the-art methods, in particular the
aforementioned variants of DE and those algorithms that were shown effective
for the PE in previous studies (i.e., PSO [35] and FST-PSO [83]).

Another approach for DE that may be beneficial for the given application is
through unconventional synergy of the DE with several different research fields
belonging to the computational intelligence paradigm, which are the stochastics
processes, complex chaotic dynamics, and complex networks (CN).

As the key operation in metaheuristic algorithms is the randomness, the
popularity of hybridizing them with deterministic chaos is growing every year,
due to its unique features. Recent research in chaotic approach for metaheuris-
tics mostly uses straightforwardly various chaotic maps in the place of pseudo-
random number generators. The observed performance of enhanced optimizer
is (significantly) different, mostly the chaotic maps secured very fast progress
towards function extreme, but often followed by premature convergence, thus
overall statistics has given mixed results. Nevertheless, as reported in [106], the
the chaos driven heuristics is performing very well [104,107], especially for some
instances in the discrete domain [33,72].

The CN approach is utilized to show the linkage between different individuals
in the population. Interactions in a swarm/evolutionary algorithms during the
optimization process can be considered like user interactions in social networks
or just people in society. The population is visualized as an evolving CN that
exhibits non-trivial features - e.g., degree distribution, clustering, and centrali-
ties. These features can be then utilized for the adaptive population control as
well as parameter control during the metaheuristic run. Analysis of CNs from DE
algorithm can be found in [105,108,109,130,131]; and also in a comprehensive
study discussing the usability of network types [110].

4.3 Automatic Inference of Fuzzy Rules

Fuzzy IF-THEN inference systems are typically constructed by consulting
human experts, who give the related fuzzy rules, shapes of the corresponding
fuzzy sets and all the other required information. However, when human experts
are not available or in the presence of numerous system components and/or rules,
the definition of the inference system results to be particularly time consuming
and laborious. An alternative approach is exploiting data mining methods, in
order to automatically build inference systems by leveraging available data.

In particular, here we focus on GUHA (General Unary Hypotheses Automa-
ton), a method of automatic generation of hypotheses based on empirical data.
GUHA is based on a particular first order logic language, which allows to
treat symbolically sentences such as « appears often simultaneously with 3,
in most cases « implies 3, @ makes [ very probable, etc. The GUHA method
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is implemented in the LISpMiner software [127], which is freely downloadable
from https://lispminer.vse.cz/. Once the user provides relevant analytic ques-
tions regarding the data, the LISpMiner software outputs the dependencies
between the variables that are supported by the data. In practice, LISpMiner
runs through millions of fourfold contingency tables, from which it outputs those
which support the dependence provided by the user. From these findings, the
IF-THEN inference system can then be constructed.

GUHA and LISpMiner were already successfully employed in different fields
[127]: in the context of human cell modeling, this approach could be exploited
in order to automatically build large fuzzy inference systems. In particular, this
data mining method could leverage the vast availability of transcriptomic data
[54], which nowadays can be generated in short time, for a reasonable cost and
at single-cell resolution [113]. In such a way, we envision that the automatic
generation of large-scale dynamic fuzzy models of cellular processes would be
feasible. Such models would represent a significant step forward towards the
integration of cellular processes that are not known in full mechanistic detail, or
necessitate of a qualitative or semi-quantitative representation, inside a unified
framework for human cell modelling and simulation.

4.4 Multiformalism Approaches

Given the complexity and the heterogeneity of the sub-problems that charac-
terize the challenge posed by whole-cell modeling, a promising approach can be
provided by multiformalism modeling [46]. Multiformalism modeling offers the
possibility of obtaining complex models by allowing the coexistence of differ-
ent modeling formalisms in the same model, using model composition, model
generation, model abstraction on the basis of different supporting mechanisms.
Multiformalism approaches allow the representation of each subsystem with the
most appropriate representation, or with the description that is more familiar
for the developer of that submodel, easing the interaction between experts from
different domains without forcing any of them to relinquish established model-
ing practices: this allows to preserve existing know how and minimizes the effort
needed to integrate the overall model, that is a process that is supported by a
proper specialist in formalism design. Multiformalism models may be supported
by closed frameworks [25,102,125], that support a predefined set of formalisms,
or by open frameworks [6,42], that are designed to allow the definition of new
formalisms.

The solution, or analysis, of multiformalism models may be performed by
generating a specific solvable model, by generating or instantiating a simula-
tion tool, by orchestrating specific solvers for different submodels, by producing
executable code. Solution can be obtained by means of simulation, analytical
techniques or by applying multisolution, that is the possibility of using alter-
nate tools, explicitly decided by the modeler or automatically chosen according
to the characteristics of the model, to perform the analysis. This approach also
preserves, in general, tracking of numerical results back to logical elements in the
model, and can provide model-wide or submodel-wide results, such as properties
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of parts of the system that emerge from element-related results, and may also
be used to interface existing tools with new solvers, extending their applicabil-
ity [10]. Multiformalism modeling approaches may support combinatorial for-
malisms [125], logic modeling [25], discrete state space based formalisms [6,42],
continuous state space based formalisms [6], and hybrid formalisms [8] (that
may use specialized solution techniques [9]). More details about multiformalism
modeling concepts and principles are available for the reader in [46] and [101].
For a similar and wider concept, namely multiparadigm modeling, the reader can
refer to [75].

5 Future Developments

In this chapter we described a putative hybrid modeling and simulation frame-
work—exploiting several different approaches (e.g., RMBs, CBMs, boolean and
fuzzy rules) and leveraging High-Performance Computing—designed to perform
large-scale cell simulations. In this context, we highlighted some issues that pre-
vent the simulation of whole-cell models, proposing some approaches in order to
achieve this challenging task.

In particular, we propose the use of population-based metaheuristics for
global optimization to estimate the large number of missing kinetic parame-
ters. The emphasis in future research will be on modifying and testing robust
algorithms based on DE/DISH inspired by techniques successfully adopted for
solving highly constrained, large-scale and multi-objective problems. We will
compare this class of algorithms against swarm intelligence techniques (e.g., PSO
[94] and FST-PSO [80]) that were shown to be the most effective in previous
empirical studies [35,83].

Furthermore, a thorough analysis of the relatively good results of genetic
algorithms can help to develop powerful metaheuristics. Moreover, it is neces-
sary to emphasize the fact that, like most of the above mentioned metaheuristic
methods, they are inspired by natural evolution, and their development can be
considered as a form of evolution. Such a fact is mentioned in the paper [93]
that even incremental steps in algorithm development, including failures, may
be the inspiration for the development of robust and powerful metaheuristics.
Future directions in DE can be discussed not only in the journals like Swarm and
Evolutionary Computation, IEEE Transactions on Evolutionary Computation,
or Evolutionary Computation, but also at forthcoming conferences like Swarm,
Evolutionary and Memetic Computing Conference (SEMCCO), IEEE Congress
on Evolutionary Computation (CEC), and The Genetic and Evolutionary Com-
putation Conference (GECCO), all forthcoming also for year 2019.

A lot of work still needs to be done, in order to achieve a faithful repre-
sentation of a human cell in silico. The unified approach that we propose in
this work, although challenging to achieve and possibly able to capture a wide
variety of cellular behaviors, must be considered just as a starting point. As
a matter of fact, many additional layers of complexity can still be considered.
We assume that the biochemical systems is well-stirred, but this is often not
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the case. Spatial modeling and simulation can be leveraged to capture the orga-
nization in space of molecules (e.g., membrane receptors), cell organelles and
cell shape itself. The combinatorial complexity of the formation of huge protein
complexes or bio-polymers can also be tackled by means of specific modeling
[40] and simulation frameworks [111]. Moreover, cells are not closed systems:
they respond to environmental cues and they continuously interact with with
other cells by exchanging chemical signals. Furthermore, cell’s life cycle is coor-
dinated by a complex cell cycle program, that allows them to grow and divide,
and they are constantly subjected to the evolutionary pressure posed by the
environment. External signals and cell cycle both require additional complex
modeling approaches that are currently not considered in our approach. Whilst
we envision that human cell simulation will remain a challenging task for the
coming decades, we are working in that direction as it carries the promise of
elucidating the very basic mechanisms governing the functioning of our bodies
and life itself.
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