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ABSTRACT 

A cohesive element able to connect and simulate crack growth between independently 

modeled finite element subdomains with non-matching meshes is proposed and validated. The 

approach is based on penalty constraints and has several advantages over conventional FE 

techniques in disconnecting two regions of a model during crack growth. The most important is 

the ability to release portion of the interface that are smaller than the local finite element length. 

Thus, the growth of delamination is not limited to advancing by releasing nodes of the FE model, 

which is a limitation common to the methods found in the literature. Furthermore, it is possible 

to vary the penalty parameter within the cohesive element, allowing to apply the damage model 

to a chosen fraction of the interface between the two meshes. A novel approach for modeling the 

crack growth in mixed mode I+II conditions has been developed. This formulation leads to a 

very efficient computational approach that is completely compatible with existing commercial 

software. In order to investigate the accuracy and to validate the proposed methodology, the 

growth of the delamination is simulated for the DCB, ENF and MMB tests and the results are 

compared with the experimental data. 
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Delamination, Mixed-mode propagation. 

 

1. Introduction 

Unmatched interface problems are increasingly common because it is difficult to satisfy 

the connectivity of elements for complex domains and the transition between coarse and fine 

meshes often results in distorted elements that reduce the accuracy of the solution in transition 

regions. For example, there is a growing need to perform combined analyzes of complex 

structures, as an airplane or a ship, using sub-structural numerical models created independently 

by teams of engineers using different software and collaborating remotely. Frequently the 

meshes of these numerical models are incompatible at the interfaces, therefore all the sub-

structural models must be joined to build the entire structure. Even within the same team, 

discretizing problems in regions, dividing them into sub-structural models, and then using a 

coupling technique to connect their mismatched interfaces, can be a winning strategy. 

Many different methodologies have proposed for non-matched interface problems [1-8]. 

Most of them use Lagrange multipliers with a negative result that the resulting system of 

equations is not definite positive. A possible fix is to enforce the interface constraints via a 

penalty method, the following advantages are obtained: a formulation that can be easily 

implemented in commercial codes, a positive-definite and banded stiffness matrix and a reduced 

number of DOFs. Therefore, the penalty approach should greatly improve the computational 

efficiency. However, specific procedures are required for the selection of an appropriate value of 

the penalty parameter. A rule for selecting the penalty parameter in the framework of the 

cohesive element for non-matched interface problems has been developed by Pantano and 

Averill [9-10].  
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More and more often the sub-structural models that must be united to build the entire 

structure, or parts of it, are made of composite materials, of which it is important to simulate 

possible risks of delamination. The penalty-based cohesive element can also be effectively used 

to model delamination in composite materials or adhesive failure in composite-composite or 

metal-composite bonding.  

To describe the delamination, many authors started from the basics of Linear Elastic 

Fracture Mechanics (LEFM) and from the concept of energy release rate, G, the energy released 

for crack advance unit [11-13]. It is clear from the literature that this magnitude has often been 

measured using the technique known as Virtual Crack Closure Technique (VCCT). Since this 

technique is based on the principles of LEFM, it is only appropriate if the crack propagates in a 

fragile way along a predefined path. In other words, if the LEFM theory is valid, then it is true 

that the necessary and sufficient condition for delamination is G > Gc , where Gc is the energy 

needed to break the internal bonds of the material and create two new surfaces of unit area and it 

is called the critical strain energy release rate. The substantial advantage of this technique is that 

of calculating the energy contributions through a single analysis and that the calculation is based 

on energy and not on the stresses, however there are several limitations. VCCT requires that the 

points where the propagation is triggered are identified a priori, it is necessary to define an initial 

delamination, but this operation is largely influenced by the type of geometry and by the acting 

loads, which can make it difficult to determine the initial position of the delamination front.  

In order to overcome some of the difficulties related to VCCT (or other different 

techniques, but always deriving from the LEFM approach), over time other theories have been 

developed for the simulation of delamination starting from different fields. Among these, that of 
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the cohesive finite elements is the one that perhaps has been more successful in recent decades 

and that today is the subject of an ever increasing number of researches. 

The cohesive finite element theory is based on the so-called Cohesive Zone Model (or 

process zone, or also Cohesive Zone Model (CZM)) developed at the beginning of the sixties 

[14-15]. These models combine aspects of strength-based analysis to predict the onset of damage 

at the interface between laminae and fracture mechanics to predict delamination propagation. 

Since the cohesive zone can still transfer load after the onset of damage, a softening model is 

required that describes how the stiffness is gradually reduced to zero after the interfacial stress 

exceeds the interlaminar tensile strength. The relation between the traction and separation that 

are normal to the fracture surfaces is considered. The cohesive models were later extended to the 

mode II fracture process, in which the tangential traction and separation are considered instead. 

The main advantage in the use of cohesive finite elements lies in the ability to describe both the 

activation and the propagation of delamination without knowing a priori neither the position of 

the crack nor the direction of propagation. Cohesive models to the determination of the 

delamination growth has been adopted by several authors [16-26] 

In this article the penalty-based cohesive element technology previously developed [9-10] 

is reviewed, subsequently new applications of the cohesive element for predicting delamination 

crack growth in laminated structures are introduced. 

 

2. Formulation of the cohesive element 

A cohesive element can act as a "glue" in the common interface of two subdomains 1  

and 2  modeled independently, as shown in Figure 1. The nodes of the cohesive element are 

independent of the interface nodes in the two subdomains. The cohesive element has a "stiffness" 
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matrix, which includes the coupling terms and it is assembled as usual with the other stiffness 

matrices. 

The sub-domain j has nodal displacements identified by o

jq  and i

jq . The degrees of 

freedom (DOFs) that are not on the interfaces are denoted with the superscript o, while i 

represents DOFs that are on the interfaces. The interface displacement field uj is function of the 

unknown nodal displacements i

jq  of the sub-domain j . The displacement field of the cohesive 

element, identified as V,  is approximated in terms of unknown nodal displacements qs.  

i

j j ju N q=          sV T q=                                                        (1) 

where Nj can be the matrices of interpolation functions and T is a matrix of cubic spline 

interpolation functions. Two vectors of penalty parameters, 1 and 2, are used to enforce the 

displacement continuity constraint in a least squares sense. Therefore the total potential energy of 

the system takes the form: 

( ) ( )
1 2

2 21 2
1 2

2 2
S S

V u ds V u ds
 

   = + + − + −                                 (2) 

By taking the first variation of  respect to all the DOFs, with the exception of the vectors 

of penalty parameters 1 and 2 that are preset constants, the equilibrium configuration is found. 

1 1 2 2, , , ,
0o i o i

Sq q q q q
 =                                                          (3) 

The global system of equations method assumes the following form:  

1 1 1 1

1 1 1 1 1 1
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2 2 2 2 2 2

2 2 2 2

0 0 0

0 0

0 0 0

0 0

0 0 0
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K K q f

K K G G q f
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G K G K q f

K K q f

     
     

+ −     
   

  =− + −    
     − +     
          

                        (4) 

where: 
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( )ii T

j j j j

S

G N N ds=  , ( )is T

j j j j

S

G N T ds=  , 
T

si is

j jG G =   , ( )ss T

j j j j

S

G T T ds=               (5) 

This global stiffness matrix is symmetric, banded and positive definite (after imposing 

boundary conditions). Thus the cohesive element can be associated with a “stiffness” matrix and 

a generalized vector of unknown displacements: 

1 1 1

1 1 2 2

2 2 2

0 0

0

0 0

ii is i

si ss ss si

s

is ii i

G G q

G G G G q

G G q

   −  
     
− + − =    

    −     

                                       (6) 

For a detailed description of the cohesive element formulation, see [9-10]. 

 

2.1 Automatic calculation of the proper penalty parameters 

In the penalty method, the displacement continuity constraint is imposed through penalty 

parameters, a set of predetermined constants. The FE solution obtained with the penalty method 

is approximate, and the value of the penalty parameters used determines its accuracy. The 

penalty parameter should be function of the material and geometric properties of the two sub-

regions. It is known that there exists a relationship between the penalty parameter and the 

corresponding Lagrange multiplier that enforces the same constraint. If the Lagrange multiplier 

method is used the continuity constraint is enforced exactly; thus it can be a reference value to 

assess the accuracy of the penalty method. If simple models are studied is easier to find relations 

among the penalty parameter and the geometrical and material properties of the model under 

examination. 

A broad variety of one-dimensional, two-dimensional and three-dimensional problems 

have been solved with both the Lagrange multiplier method and the penalty method. Finite 

elements studied are of the following types: conventionally formulated and reduced integrated 
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Timoshenko beam elements, plane stress quadrilateral elements and plate elements based on the 

first order shear deformation theory (FSDT), or Mindlin plate theory, tetrahedral and hexahedral 

elements.  

Different penalty parameters are needed for the various nodal DOFs of each finite 

element formulation. Since each degree of freedom can be associated in different ways with the 

material and geometric properties of the model, the penalty parameters must be chosen 

independently. If we consider Timoshenko's beam element as an example, it has three 

independent nodal DOFs: the axial displacement u, the transverse displacement w and the 

rotation . Thus the interface continuity constraints on the three DOFs requires three different 

penalty parameters u, w and  to be enforced.  

The approach adopted can be summarized as follow. A simple model of one or two 

elements is considered and the most common load cases for the FE type studied are applied 

separately. Both the Lagrange multiplier method and the penalty method are used to find the 

solutions in terms of displacements, then they are compared individually for each degree of 

freedom. The ratio between the two solutions is expressed in the form: 

1
penalty

Lagrange

u f

u 
= +                                                         (7) 

where f = f (material properties, element geometric properties, and loads). 

If the penalty parameter   is set equal to f = , the ratio between the solutions is 

independent of geometrical and material properties: 

1
1

penalty

Lagrange

u

u 
= +                                                          (8) 

The parameter  determines the accuracy of the solution, however  it cannot be 

indefinitely increased since round off amplification error would rise. A reasonable compromise 
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between constraint representation error and the round off error is required. Once a value of  is 

identified, the same level of accuracy can be achieved for every combination of material and 

geometrical properties. It should be underlined that an exact value of the penalty parameter is not 

required. Rather, a value that is of the right order of magnitude is sufficient. In fact, even in the 

most complex FE analysis, there exists a range of values for this parameter for which the 

numerical outcomes change very little. This range can equal as much as 12 orders of magnitude 

for simple analyses, but usually is not less than two orders of magnitude in most situations. 

An automatic control of the round-off error has been developed in previous works [9-10] 

as summarized in the following lines. Due to finite precision in floating-point arithmetic used 

when the cohesive element stiffness matrix is numerically integrated, the stiffness coefficients 

are always approximated. However, in order to be imposed correctly (and to contribute no 

energy to the system), the displacement continuity constraint ( )V u−  requires the sum of the 

terms in every row of its stiffness matrix (6) to be zero. This condition usually cannot be 

achieved, due to the round-off error, and the resulting inaccuracy grows with the value of the 

penalty parameter. Precisely, the important measure is the ratio between the order of magnitude 

of the cohesive element stiffness matrix rows’ imbalance and the element stiffness. If nK  is the 

stiffness associated to the n-th nodal DOF, it is sufficient to consider the ratio: 

n
n

n

ER
Q

K
=                                                                (9) 

where nER  is the unbalance in the cohesive element stiffness matrix row related to the DOF n. 

n nj

j

ER K=                                                           (10) 

When the value of nQ  exceeds about 41 10− , errors in the solution may become 
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appreciable. The discussed row imbalance is proportional to the value of the penalty 

parameter, nER  . It is also approximately true that:  

          n n nER K Q                                                (11) 

Accordingly, an algorithm has been developed to control the round-off error. Its steps can 

be summarized as follows: 

• Stiffness terms for every nodal DOF in the cohesive element are computed from known 

geometrical and material properties. 

• For each row in the stiffness matrix: 

o The highest stiffness term is selected and assigned to a variable K  

o The row imbalance of the stiffness matrix is stored in a variable ER  

o 
ER

Q
K

=  is evaluated 

• The highest Q found is compared to a given constant value C . Typically C = 71 10− is used. 

• If Q C , the parameter   is reduced according to: 
new C

Q
 =   

• The cohesive element stiffness matrix is recalculated using the new value new = . 

This approach reduces the risk that round-off errors could adversely affect the solution. 

Thus, the initial value of   can be increased, in order to get a higher degree of accuracy, 

knowing that it will be automatically reduced if rounding errors don’t allow that precision to be 

realized. 

 

2.2 Interface technology for modeling delamination 

The cohesive element technology [9-10], in addition to being used to connect non-
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matching meshes, has several advantages over conventional FE one in disconnecting two regions 

of a model during crack growth. The most important is the ability to release portion of the 

interface that are smaller than the local finite element length. This is possible since the extreme 

values of the interval of integration of the cohesive element can be freely modified, moreover it 

is possible to reduce the value of the penalty parameter for a part of that interval. So the growth 

of delamination is not limited to advancing by releasing nodes or elements of the FE model, 

which is a common limitation to delamination techniques found in literature. 

A frequently used damage model with bilinear softening has been implemented, 

combining strength of materials and fracture mechanics approaches, see Figure 2. In single-mode 

delamination, when the load grows, the relative displacement  the two joined FE meshes 

increases proportionally to the value of the penalty stiffness . Once 0 is reached the stress is 

equal to the maximum stress level possible, the interfacial tensile strength t. As displacements 

are further increased the interface accumulates damage and its capability to withstand stress 

decreases progressively. The model would unload to the origin after 0 has been exceeded, but F 

has not been reached. The interface is fully debonded when  exceeds F. For example, if from 

point K, see Figure 2, the load is reduced, the model follows the line KO. If the load is reapplied, 

the stress grows with the relative displacement along the same line KO.  

This damage model works by acting on the penalty stiffness . A parameter D controls 

the damage accumulated at the interface:  

(1 )D = −                                                            (12) 

The damage parameter D, whose initial value is zero, starts growing when    0 and 

reaches the value 1 when    F. From geometry is possible to compute the value of D to be: 
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0

0

( )
( )

( )

F

F

D
  


  

−
=

−
                                                         (13) 

To define the interfacial constitutive model when two among the following four 

properties are known: Gc, t, 0 and F, where Gc is the critical strain energy release rate, which 

is equal to the area under the -  curve in Figure 2. 

Among these parameters two relations exist: 

2

F t
cG

 
=                                                             (14) 

0
t




=                                                               (15) 

The cohesive model keeps together a sub-region of the interface between the two meshes. 

More are the sub-regions in which the interface is divided the higher is the accuracy of the 

prediction. The common implementation of the damage model with bilinear softening requires it 

to be applied along the length of one finite element. In this case the crack can only advance by 

weakening and releasing at a time a length of the interface equal to one element. Thus a refined 

finite element mesh is needed. Instead, if the previously presented cohesive element is adopted 

the damage evolution is effectively mesh-independent. 

The present cohesive model is applied to a desired fraction of the interface by dividing 

the cohesive element into a given number of intervals n, this means that the total potential energy 

of the system is modified as follows: 

( ) ( )
1 2

1 1

2 2

1 1 2 2

1 1

1
(1 ) (1 )

2

i i

i i

n nL L

i i
L L

i i

D V u ds D V u ds    
− −

 

= =

= + + − − + − −         (16) 

where Di is the damage parameter associated with the interval i, and the interval i is defined over 

the range ( Li-1, Li ). Li is the value of the interface coordinate L at the end of the ith interval. 

Thus, each interval i  will obey the rules of the failure model independently from the others. The 
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value of the relative displacement  is evaluated at the center of the interval i. By allowing crack 

advance in a more continuous manner, greater accuracy of the simulation can be obtained. 

For a given problem, it is necessary to perform a convergence study progressively 

reducing the size of the intervals in which the cohesive element is divided. This study does not 

require many simulations because the convergence rate is generally high and the familiarity in 

choosing the length of the intervals from similar simulations can be applied to new calculations. 

The other important convergence study regards the number of increments in which the 

given load/displacement is progressively applied. This study is required for the great majority of 

the FE approaches to crack growth simulations, because if the increase in applied load or 

displacement is too high, the bilinear softening model cannot work properly and the results will 

be not be accurate.  

 

2.3 Mixed mode failure 

The definition of the damage model for crack initiation and propagation in mixed-mode 

I/II requires the interlaminar tensile and shear strengths T and S, the penalty parameter , and the 

critical strain energy release rates GIc and GIIc. For simplicity, we assume the same material 

behavior for both tensile and compressive loading.   

At a given load increment the FE solution gives x and z for each interval of the cohesive 

element. It is known: 

0z

T



=                                                                  (17) 

0x

S



=                                                                  (18) 
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z z =                                                                (19) 

xz x =                                                                (20) 

A quadratic interface failure criterion takes the following forms: 

22

1xzz

T S

   
+ =   

   
                                                     (21) 

2 2

0 0

1xz

z x



 

   
+ =   

   
                                                   (22) 

If the condition (22) is not satisfied, it is not necessary to do anything. Else the following 

ratio is assumed: 

0

1

0

z

z

x

x

C









 
 
  =
 
 
 

                                                        (23) 

to be the same as it was when the failure condition (22) was satisfied first (see Figure 3). 

If small load steps are used, the assumption is rather accurate. Then it is possible to 

determine the value of the relative displacements x’ and z’, corresponding to point F in Figure 

3.  

0

0 2 2

0 0

'

x

x

x x

z x

z x




 

 

 

 
 
 =

   
+   

   

                                                  (24) 

0

0 2 2

0 0

'

z

z

z z

z x

z x




 

 

 

 
 
 =

   
+   

   

                                                  (25) 
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The interfacial models is now modified for both modes I and II by setting x0’=x’ and 

z0’=z’, see Figures 4 and 5. The interlayer tensile strengths T and S are modified consequently: 

0' 'z zT  =                                                              (26) 

0' 'x xS  =                                                              (27) 

Note that the following inequalities hold. 

0 0 0 0 0 0'    ,   '    ,    '  ,      'x x z z x x z z                                        (28) 

 

The quadratic interaction criterion forecasts reaching the final failure when the following 

condition is met: 

2 2

1I II

Ic IIc

G G

G G

   
+ =   

   
                                                   (29) 

In a similar way to the previous one, the ratio between (GII/GIIc) and (GI/GIc) is assumed 

not to change as the work of separation grows, as shown in Figure 6 

2

II

IIc

I

Ic

G

G
C

G

G

 
 
  =
 
 
 

                                                        (30) 

Delamination researches commonly use specimens that, for a given configuration 

(geometry and loads), have a ratio between the strain energy release rates for modes I and II, 

GI/GII, that does not change appreciably during the entire test, e.g. [27]. This fact provides a 

valid basis for our assumption. Consequently, it is possible to determine the value of the strain 

energy release rate GI’ and GII’ corresponding to point F in Figure 6. 

From geometry, the value of the (GI/GIc)’ at F is: 
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2 2
'

I

Ic

I Ic

I II

Ic IIc

G

G
G G

G G

G G

 
 
 

=

   
+   

   

                                             (31) 

To evaluate this expression we must determine the value of GI divided by GIc, see Figure 

7.  

0 ' '' '

2 2

z z zFzF
Ic

T
G

    
= =                                             (32) 

 0
(1 ) '' '

(Area Triangle )
2 2

z z z zFz z zF
I Ic

D
G G OBK

     −  
= − = −           (33) 

 0

0 0

(1 ) '' '

2 2 1 (1 )
' ' '

2

z z z zFz z zF

I z
z

z z zFIc z

D

G
D

G

    


   

−  
−

 
= = − −    

              (34) 

In the same way, we have: 

 0

0 0

(1 ) '' '

2 2 1 (1 )
' ' '

2

x x x xFx x xF

xII
x

x x xFIIc x

D

G
D

G

    


   

−  
− 

= = − −    
               (35) 

Now, the updated state of the interfacial models can be completed for both modes I and II 

by setting GIc’ = GI’ and GIIc’ = GII’. The final form of the interfacial constitutive models is 

reported in Figures 7 and 8. Note that the models have different penalty and damage parameters.  

 

2.4 Friction model 

A friction model has been implemented in the cohesive element, since friction can be 

required for an accurate simulation when, after complete failure, the two meshes remain in 

contact, e.g. ELS test specimen. The friction model can also be used for cohesive elements 
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whose only purpose is to avoid overlapping and to enforce friction. Interface forces can be 

evaluated for a portion of the interface length by changing the extreme values of the interval of 

integration and they do not depend on the compatibility of the interface meshes. 

For each of the intervals in the interface, the normal force Fn can be computed as function 

of the normal relative displacement n :  

1

2
n n n

s

F ds =                                                             (34) 

The tangential force Ft needed to generate the friction phenomenon is:  

( )
1

1
2

t t t t n

s

F D ds F  = − =                                                (35) 

where µ is the friction coefficient and t is the tangential relative displacement. Before failure Dt 

was used as a damage parameter, now employed as a scale factor able to decrease the value of 

the penalty parameter for the tangential DOF. From equality (35), the required damage parameter 

*

tD  related to the tangential relative displacement t, which generate the right amount of friction, 

can be determined from the following relation: 

* 2
1 n

t

t t

s

F
D

ds



 
= −


                                                          (36) 

 

3. Numerical results 

3.1 Mode I, mode II, and mixed-modes I and II delamination growth 

The experimental considered for the validation of the numerical model are taken from the 

works of Camanho and Dávila [18]. The available data concern the displacement load curves of 

five delamination tests: a DCB test, an ENF test and 3 MMB tests respectively with a mixed 
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mode coefficient κ = 20%, 50% and 80%. The Mixed Mode Bending (MMB) test, see Figure 9, 

allows to perform mixed I / II delamination tests in unidirectional FRP laminated specimens, 

including the DCB test, which is a pure Mode I, and the ENF tests, which is a pure Mode II, that 

are two special cases. The test was designed by Reeder and Crews in the late 1980s [28], 

improved by the same authors over the years and finally regulated by ASTM International in 

2014 [29].  The main advantages of the MMB test method are the possibility of using virtually 

the same specimen configuration for the I mode tests and the possibility of obtaining different 

mixed-mode ratios, ranging from pure I to II modes, changing the length c of the loading lever 

shown in Figure 9. The unidirectional FRP laminated specimens are 24-ply unidirectional 

AS4/PEEK (APC2) carbon fibre reinforced composites, mechanical properties of the material of 

the specimens are listed in Tables 1 and 2. The specimens dimensions, with reference to Figure 

9,  are reported in Table 3. The initial delamination length of the specimens (a0) for the different 

experiments are shown in Table 4, while the length c of the loading lever for the three MMB 

tests are listed in Table 5. 

 

 

Table 1. Mechanical properties of the material, AS4/PEEK, of the specimens [18]. 

𝐸11 [GPa] 𝐸22=𝐸33 [GPa] 𝐺12=𝐺13 [GPa] 𝐺23 [GPa] 𝜈12=𝜈13 𝜈23 

122.7 10.1 5.5 3.7 0.25 0.45 

 

Table 2. Properties for AS4/PEEK [18]. 

𝐺𝐼𝐶 [N/mm] T [MPa] 𝐺𝐼𝐼𝐶 [N/mm] S [MPa] 

0.969 80 1.719 100 
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Table 3. Specimen geometry 

𝐿 [mm] 𝐵 [mm] ℎ [mm] 

51 25.4 1.56 

 

Table 4. Experimental data: initial delamination length [18]. 

 0% (DCB) 20% (MMB) 50% (MMB) 80% (MMB) 100% (ENF) 

𝑎0 [𝑚𝑚] 32.9 33.7 34.1 31.4 39.3 

 

Table 5. Length of rigid lever c. 

𝜅 20% 50% 80% 

𝑐  [𝑚𝑚] 97.4 42.2 27.6 

 

Models able to simulate the DCB, ENF and MMB test cases and using cohesive elements 

along the length of the specimens were built. Two independent meshes compose the finite 

element models of the upper and lower part of the specimens; they are joined by several cohesive 

elements. Along the initial delamination length of the specimens (a0), whose lengths are 

indicated in Table 4, the cohesive elements used do not connect the two faces but only avoid 

overlap. Three different convergence analyses of the solutions have been performed to set up 

accurate finite element models: convergence with the number of elements along the length of the 

specimens, convergence with the number of load increments, convergence with number of 

cohesive elements and with the intervals in which the cohesive elements are divided. For a high 

degree of accuracy, as result of the convergence study, 510 elements were used along the length 
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of the specimens for the mesh of the two domains connected by the cohesive elements. The 

predictions from coarse meshes contain many local “bumps”, this phenomenon was analyzed by 

Mi et al. [30], concluding that coarse meshes can induce these “false instabilities”. The 

convergence study proved that a good level precision can be reached with 400 load increments, 

however for the maximum accuracy 800 load increments were used. For the discretization of the 

interface each cohesive element connects six elements, three for each side of the two domains to 

be connected. As discussed previously, the damage technique implemented in our model allows 

portions of the interface, intervals, much smaller than the finite element length, to be released. A 

convergence study was performed progressively reducing the size of the n intervals in which the 

cohesive element is divided, 8 intervals were used for maximum precision.  

The experimental results relate the load to the displacement of the point of application of 

the load P in the lever, see Figure 9. A comparison among the numerical and experimental 

results for the DCB test, ENF test and 3 MMB tests are shows in Figure 10. A good agreement 

was found between the numerical predictions and the experimental results. Figures 11 to 15 

show the maps of the von Mises stresses of the 5 tests in the final deformed configuration of the 

simulations. For the MMB tests, at the end of the analysis, the point of application of the load P 

in the lever c are equal to: 10.5 mm for the 20% MMB test (Figure 12), 7 mm for the 50% MMB 

test (Figure 13), 6 mm for the 80% MMB test (Figure 14). For the DCB test in the final 

deformed configuration, Figure 11, the total opening at the end of the specimen is 7 mm. For the 

ENF test in the final phase of the simulation, Figure 15, the displacement of the load applied to 

the center on the top of the sample is 4.2 mm. The insets in Figures 11 to 15 show a 

magnification of the area where the crack tip is located.  
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4. Conclusions 

A cohesive element capable of joining and simulating crack growth between 

independently modeled finite element subdomains with non-matching meshes was presented and 

validated. It can be effectively used to model delamination in composite materials or adhesive 

failure in composite-composite or metal-composite joints. The approach is based on: penalty 

constraints, an automatic choice of the penalty parameter, a displacement-based damage 

parameter applied in a model with bilinear softening law, and a novel method for modeling the 

crack growth in mixed mode I+II conditions. The approach has several advantages over 

conventional FE one, the most important is the ability to release sub-regions of the interface 

surface whose length is smaller than that of the finite elements, thereby allowing for a mesh-

independent tracking of the crack front. Furthermore, it is possible to vary the penalty parameter 

within the cohesive element, allowing to apply the damage model to a chosen fraction of the 

interface between the two meshes. This formulation leads to a very efficient computational 

approach that is completely compatible with existing commercial software. The proposed 

methodology has been validated by comparing numerical simulations with experimental data 

from DCB, ENF and MMB tests. The results indicate that the method is able to accurately 

predict the growth of delamination. 
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Figure 1. Interface element configurations. 
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Figure 2. Bilinear interfacial constitutive damage model. 
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Figure 3. Quadratic failure envelope. 
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Figure 4. Updated interfacial constitutive model for mode I. 
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Figure 5. Updated interfacial constitutive model for mode II. 
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Figure 6. Quadratic final failure surface. 
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Figure 7. Final interfacial constitutive model for mode I delamination. 
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Figure 8. Final interfacial constitutive model for mode II delamination. 
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Figure 9. Loading, geometry and boundary conditions for the Mixed 

Mode Bending test. 
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Figure 10. Numerical and experimental load-displacement results for the 

DCB test, ENF test and 3 MMB tests.  
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Figure 11. Map of von Mises stresses of the DCB test in the final 

deformed configuration of the numerical simulation. The 

inset shows a magnification of the area where the crack tip is 

located. 
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Figure 12. Map of von Mises stresses of the MMB 20% test in the final 

deformed configuration of the numerical simulation. The 

inset shows a magnification of the area where the crack tip is 

located. 
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Figure 13. Map of von Mises stresses of the MMB 50% test in the final 

deformed configuration of the numerical simulation. The 

inset shows a magnification of the area where the crack tip is 

located. 
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Figure 14. Map of von Mises stresses of the MMB 80% test in the final 

deformed configuration of the numerical simulation. The 

inset shows a magnification of the area where the crack tip is 

located. 

 

 



 

 38 

  

 
 

 

Figure 15. Map of von Mises stresses of the ENF test in the final 

deformed configuration of the numerical simulation. The 

inset shows a magnification of the area where the crack tip is 

located. 

 

 
 


