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ABSTRACT   

Ultrasonic guided-wave testing can greatly benefit from (1) an ability to provide quantitative information on the damage 

that is being detected, and (2) an ability to select the best mode-frequency combination for maximum sensitivity to a 

given type of damage. Achieving these capabilities in complex structures (e.g. nonprismatic structures such as a stiffened 

panel in aerospace fuselages) is a nontrivial task. This paper will discuss an improved Global-Local (GL) method where 

the geometrical “local” discontinuity (e.g. the stiffener) is modelled by traditional FE discretization and the rest of the 

structure (“global” part) is modelled by Semi-Analytical Finite Element (SAFE) cross-sectional discretization. The 

boundaries of the “local” domain and the “global” domain are then matched in terms of wave displacement and stresses. 

GL models have been proposed in the past using theoretical (Lamb) wave solutions that only apply to isotropic plates. 

The authors have also previously studied GL methods using the SAFE approach for application to multi-layered 

anisotropic plates for which theoretical solutions are either not existent or hard to obtain. This work will extend recent 

research on these methods by optimizing the Matlab routine that is used to run the GL code, correcting some formulation 

errors that were present in the previous edition, and studying the specific case of a composite panel stiffened with co-

cured stringers that is representative of modern commercial aircraft construction (e.g. Boeing 787). The newly-

formulated GL method will be shown to provide excellent results that can help designing a guided-wave test on these 

aircraft components for optimum detection of relevant damage that can be induced by impacts (including skin 

delaminations, stringer heel cracks, and stringer to skin disbonds). Other applications of the GL methods beyond 

stiffened aircraft panels will be discussed. 

   

Keywords: guided waves, scattering, global-local method, semi-analytical finite element method 

 

1. INTRODUCTION  

Ultrasonic testing has been extensively used in the last decades as one of the most promising nondestructive methods to 

assess the integrity of many kind of structures. In particular, “guided” elastic waves are nowadays increasingly used to 

probe structural components with a waveguide geometry such as plates, rods, pipes. They have the capability to reach 

long propagation distances maintaining a sufficient sensitivity to small structural anomalies owing to the relatively large 

frequencies. A guided wave is obtained as the combination of several wave modes propagating simultaneously. Given 

this multimode character, together with its dispersive characteristic, closed form solutions are available for simple 

geometries without defects. When the propagation of the guided wave involves structures with discontinuities such as 

defects or abrupt changes of the geometry (e.g. insertion of a stiffener), purely theoretical predictions are either non-

existent or hard to obtain. 

Transportation systems via air or land use vehicles subjected to increasingly higher velocities and external loads. To 

prevent as much as possible structural failures, which can lead to catastrophic consequences from both the human and 

the economic points of view, innovative materials are employed. Innovation is in reducing weight maintaining the 

characteristics of strength and stiffness of the structure. Fiber-reinforced composite materials perform this task, but the 

complexity of the manufacturing process, together with the severity of external service loads, can develop several defects 

that need to be detected and quantified through nondestructive techniques.     
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Analytical solutions of guided waves propagation through multi-layered structures can be found in Rose1 using the global 

matrix or transfer matrix methods. An improved analytical approach to predict Lamb waves scattering from a 

geometrical discontinuity (such as a thickness change in isotropic plates or the presence of a horizontal crack) is 

followed by Poddar and Giurgiutiu2-3 and Haider et al.4 

A second way to face with these problems is using numerical tools. Since the numerical results are sensitive to the case 

of small wavelength propagation, it is not optimum to run a finite element (FE) analysis extended to the entire structure, 

because the great number of elements needed to reach an accurate result makes the analysis not computationally 

efficient. However, considering that the discontinuity is localized in a small region with respect to the total dimensions of 

the structural element, a hybrid Global-Local approach is the best solution. Hybrid methods couple the solution available 

analytically in the “global” regular region with that applicable numerically in the “local” defected region. A hybrid 

approach based on a FE discretization of the local region was applied by Goetschel et al.5, Karunasena et al.6, 

Rattanawangcharoen et al.7, Mal and Chang8, Zhou and Ichchou9. Applications were dedicated to axial-symmetric 

scattering problems, axial-symmetric inclusions in homogeneous isotropic media, isotropic plates with notches and rivet-

hole cracks, reflections from free edges, etc. A hybrid approach employing the boundary element method (BEM) for the 

local region is instead at the base of the applications of Galan and Abascal10-11 on semi-infinite plates, plates with 

inclusions, different cracks and materials. 

In the referenced works analytical solutions are considered for the global region, but this part is generally constituted by 

a plate with a single isotropic material. The easiness to obtain theoretical guided wave solutions in presence of 

anisotropic composite laminate with a general number of layers is strongly reduced. For this reason, in other works the 

behavior in the global region is simulated exploiting the advantages of a Semi-Analytical Finite Element method 

(SAFE). Hayashi et al.12, Bartoli et al.13, Marzani et al.14 discretized in finite elements the cross-section of the laminated 

composite waveguide, maintaining the known analytical harmonic solution of the displacement component in the 

propagation direction of the guided wave. Srivastava and Lanza di Scalea15 applied the SAFE in the GL scattering 

problem of composite plates of arbitrary number of layers with delamination defects. 

This paper will discuss an improved GL method where the geometrical local discontinuity is modelled by traditional FE 

discretization and the global part is modelled by SAFE cross-sectional discretization. The boundaries of the local and the 

global domains are then matched in terms of wave displacement and stresses. This work will extend recent research on 

the GL method (Srivastava and Lanza di Scalea15) by optimizing the Matlab routine used to run the GL code, correcting 

some formulation errors that were present in the previous edition, and studying the specific case of a composite panel 

stiffened with co-cured stringers that is representative of modern commercial aircraft construction (e.g. Boeing 787). The 

newly-formulated GL method will be shown to provide excellent results that can help designing a guided-wave test on 

these aircraft components for optimum detection of relevant damage that can be induced by impacts (including skin 

delaminations, stringer heel cracks, and stringer to skin disbonds). A second application on a 136lb AREMA cross-

section rail with a defected head is also shown, in order to prove the versality and potentiality of the method to face with 

problems of different nature and complexity. 

 

2. THEORETICAL FORMULATION  

Let us consider the general scattering case of Fig. 1. An incident time harmonic guided wave travelling along the x 

positive direction in a prismatic region (global region) is scattered into reflected and transmitted waves after interacting 

with a local region with geometrical discontinuities (e.g. build-ups) and/or structural defects (e.g. cracks, delaminations, 

etc.). 



 

 
 

 

 

 

 
 

Figure 1. Geometrical representation of the scattering of an incident wave in reflected and transmitted waves from a local region 

including possible defects and/or geometrical build-ups, with indication of the adopted discretization strategies in each region. 

 

The SAFE method is adopted to discretize the global region, while a classical FE mesh is employed for the local part. 

The approximate displacement 
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g  are the vector of nodal displacements and the shape function matrix of the global element, 

respectively. x is the propagation direction,  the wavenumber and  the circular frequency of the propagating wave. 

Similarly, the displacement e
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u  of a point inside an element of the local part is: 
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where e−
d  is the vector of nodal displacements and N  the shape function matrix of the local element. 

With a look to Fig. 1, it is therefore possible to assume that the displacements at nodes on the left boundary are a 

combination of displacements given by the incident wave and the reflected waves: 

l B incident reflected= +q q q , (3) 

while the displacements at nodes on the right boundary are obtained only if transmitted waves are present: 

r B transmitted=q q . (4) 

If the symbol Φ  is used to represent the generic mode shape, and the factor i te −  is omitted for simplicity, Eqs. (3) and 

(4) are explicitly rewritten as: 
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where the superscript “+” represents a wave travelling in the right direction and the superscript “-” a wave travelling in 

the left direction. The subscript “in” refers to an incident wave, the subscript “j” to the generic reflected or transmitted 

mode among the NM ones included in the analysis. 
sd , l Bx  and r Bx  measure the distances of the source, left boundary 

and right boundary respectively from the origin of the reference system, which we fixed in correspondence of the middle 

point of the local region. Finally, Aj is the complex amplitude of the generic mode. The incoming mode is imposed. 



 

 
 

 

 

 

Mode shapes and correspondent wavenumbers and circular frequencies are derived by solving a generalized 

eigenproblem. 

By imposing the principle of virtual displacement on the local region, and separating the contribute of the inner (I) and 

boundary (B) degrees of freedom, the following equilibrium equations hold: 
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where 

2= −S K M  (8) 

is the dynamic stiffness matrix of the local region, being K  and M  the stiffness and mass matrices. The vector of 

displacements is also partitioned in displacements of inner nodes ( IU ) and displacements of boundary nodes ( BU ). The 

force vector is instead non-null only at the two boundaries of the local region, since the internal stresses transmitted 

between the global and the local regions act as external tractions at left and right boundaries for the local part. The 

displacement and force vectors at boundary can be explicitly written as: 
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with in

+
F , ( )j −

F and ( )j +

F the consistent nodal force vectors for the incident, j-th reflected wave and j-th transmitted wave, 

respectively. 

Equilibrium equation (7) can be statically condensed. The unknowns 
jA−  and 

jA+  are determined through the least square 

method. 

If   is the area of the cross-section normal to the propagation direction n, the energy flux carried by the j-th reflected or 

transmitted wave along the n direction can be evaluated as 

( ) ( )j j
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where ( )j
P  indicates the Pointing vector of the j-th mode. The conservation of energy is therefore ensured if the 

following expression is valid: 
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3. APPLICATION 1: SCATTERING FROM SKIN-TO-STRINGER ASSEMBLY OF 

COMPOSITE AIRCRAFT PANELS  

The geometry of the analyzed panel is shown in Fig. 2. It represents a scaled version of a skin-to-stringer assembly found 

commercially for aircrafts. This assembly is of interest because it constitutes a suitable application of ultrasonic guided-

wave inspections for structural damage (Capriotti et. al.16). In this section two results will be shown. First, a comparison 

between the cases skin-to-stringer vs skin only will demonstrate the effect of the geometrical discontinuity in pristine 



 

 
 

 

 

 

Property GPa Property GPa 

C11 135.00 C23 8.51 

C12 = C13 5.70 C44 2.87 

C22 = C33 14.20 C55 = C66 4.55 

conditions. Second, the results of the comparison between the scattering effects in the skin-to-stringer assembly obtained 

when the damage shown in Fig. 2 is present with respect to the pristine conditions will be discussed.    

 

 

Figure 2. GL model of the composite skin-to-stringer assembly, with indication of the defect considered in this study. 

 

Skin and stringer are both 8-layers of [0/+45/-45/0]S carbon-epoxy unidirectional laminae with a total thickness of 1.6 

mm. At the interface between skin and stringer there is an additional 0° lamina. The density of each lamina is 1530 

kg/cm3 and the elastic properties in the principal direction of material symmetry are given in Table 1, where 1 is the fiber 

direction while 2 and 3 lay in the plane orthogonal to direction 1. The local region was discretized using a total of 12376 

quadrilateral isoparametric linear elements, the global region with 16 monodimensional isoparametric linear elements. 

The size of the elements was chosen in order to respect the wavelength/element size minimum ratio. The correspondent 

dispersion curves in the 1-500 kHz frequency range are reported in Fig. 3. As it can be seen, four modes are detected in 

this frequency range, with the first three fundamental modes and one higher mode (m4).  

In Fig. 4 the comparison between the reflection and transmission spectra for the skin-only case and the skin-to-stringer 

assembly case is reported. The result clearly shows how the presence of the geometrical discontinuity strongly affects the 

response. In the skin-only case in pristine conditions no scattering takes place, as the structure behaves as a plate and the 

incoming mode is totally transmitted without any conversion (Fig. 4a-b). 

 

  

 Figure 3. (a) Phase velocity dispersion curves and (b) group velocity dispersion curves for the [0/+45/-45/0]S composite. 

 

Table 1. Elastic properties for the CFRP lamina. 

 

 

 



 

 
 

 

 

 

 

 

Figure 4. Transmission and reflection spectra for the skin-only case in pristine conditions having a m1 incoming mode (a) or a m2 

incoming mode (b). Transmission and reflection spectra for the skin-to-stringer case in pristine conditions having a m1 incoming mode 

(c) or a m2 incoming mode (d). 

 

In the skin-to-stringer case, even ifstill in pristine conditions, many conversions take place. For an incident m1 mode 

(Fig. 4c), most of the energy is transmitted and reflected as the same m1, with little mode conversion into m2 except some 

specific frequencies where the m2 mode is transmitted more then m1. Besides, the m1 mode is more transmitted below 

250 kHz (up to 80% of transmission) with respect to higher frequencies (up to 60% of transmission), with almost 

complete reflections in the 350-450 kHz range. For an incident m2 mode (Fig. 4d), strong conversions appear in the 

range 150-350 kHz, but as before most of the energy is transmitted and reflected as m2, with higher levels of 

transmission in the higher 300-500 kHz range and higher levels of reflections around specific frequencies.   

In all four cases the computed total energy spectrum is one or close to one, which satisfies the conservation of energy.  

In Fig. 5 the effect of damage in the skin-to-stringer assembly with respect to the pristine case is shown. The considered 

damage is the heel crack of Fig. 2. The results are presented in terms of “difference spectra” for the transmission modes 

only, in order to highlight the changes in energy absorption (negative values in the difference spectra) or in wave 

transmission (positive values in the difference spectra).  

Analyzing the transmitted m1 energy for an incoming m1 (Fig. 5a), a very good sensitivity in the lower frequencies zone 

is visible: the flexural nature of the mode interacts with the crack and is absorbed by it, reaching a peak of absorption of 

90% at 250 kHz and of 70% at 75 and 160 kHz. An increasing in transmission of around 50% is instead recovered at 115 

and 195 kHz. The transmitted m2 for an incoming m2 (Fig. 5d) also shows a very good detectability of the defect, if used 

in the higher frequency regime (above 350 kHz), where less than the 20% of the energy can travel to the right boundary. 

No differences with respect to the pristine case are shown below 200 kHz. From Figs. 5b-c it is clear how the presence of 

the defect reduces almost totally mode conversions from m2 to m1 mode (Fig. 5b) and from m1 to m2 mode (Fig. 5c). In 

these two cases energy absorption is of the order of 40% in the range 200-350 kHz. 



 

 
 

 

 

 

 

 

Figure 5. Wave transmission spectra for pristine, defect and (defect-pristine) difference for: (a) m1 transmitted wave with respect to m1 

incident wave; (b) m1 transmitted wave with respect to m2 incident wave; (c) m2 transmitted wave with respect to m1 incident wave; 

(d) m2 transmitted wave with respect to m2 incident wave. 

 

4. APPLICATION 2: SCATTERING FROM DAMAGE IN THE HEAD OF A 136LB 

AREMA SECTION RAIL  

The geometry of the analyzed case is shown in Fig. 6.  

 

Figure 6. 136lb AREMA section rail with indication of the dimensions of the analyzed local region and location of the 100% damaged 

head. Dimensions are in cm. Cross-sectional front view (left), lateral view (right). 



 

 
 

 

 

 

The total length of the local part considered for the analysis is 20 cm. This length was the maximum one allowed by the 

power of the computer used for the analysis, on the base of the considered discretization. According to the propagation 

velocity of the transverse waves obtained from the dispersion curves depicted in Fig. 7, the local region has been 

discretized in 22884 wedge linear elements, arranged on 81 columns. The head area is around 30 cm2, with a height of 

4.5 cm. Damage is reproduced by eliminating the elements of the head in the 41st column. 

 

 

 

Figure 7. Dispersion curves for the 136lb AREMA section rail, according to the chosen cross-section FE discretization. (a) phase 

velocity; (b) group velocity.  

 

From Fig. 7, where the 0-200 kHz range is covered, it is possible to note the high number of modes found at each 

frequency. It is therefore necessary to understand which modes can be the most suitable for damage detection in the head 

of the rail. For the sake of simplicity, the fourth mode is chosen in this application as the incoming mode for the GL 

approach. The fourth mode is a compressive mode in the propagation x-direction and is shown in Figs. 8a-b at the two 

frequencies 1 kHz (Fig. 8a) and 11 kHz (Fig. 8b).   

The transmission and reflection spectra for the cases of pristine and damaged rail are instead reported in Fig. 9 for the 

range 11-180 kHz.  

 

           

 

Figure 8. Mode shape of the fourth mode at (a) 1 kHz and (b) 11 kHz. 
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Figure 9. Transmission and reflection spectra for the (a) pristine rail and (b) damaged rail in the case of the incoming fourth mode. 

 

In the case of a pristine rail (Fig. 9a) the incoming wave is totally transmitted, and the conservation of energy is fully 

respected. At higher frequencies (>130 kHz) also the effect of higher modes is visible, since the incoming mode starts to 

convert into other transmitted mode shapes. In the case of a damaged rail (100% of damage in the head, Fig. 9b), the 

energy conservation is respected in the range 40-160 kHz. Below 40 kHz an error of maximum 20 % is obtained, due to 

the neglected contribution of the evanescent modes to the total energy into the analysis. This means that the two 

boundaries are not sufficiently far from the damage location to avoid the presence of evanescent modes. At higher 

frequencies (more than 160 kHz), a second fall of total energy is visible. This second reduction is due to the considered 

number of scattered modes. It is possible to notice how the presence of the damage causes many conversions into other 

modes. Strong reflections of the same mode and other converted modes are also recovered. The incoming wave is 

reflected with the same mode shape below 40 kHz and from 70 kHz till the end. Between 40 and 70 kHz other four 

modes are reflected with an energy greater than 40%, while generally all other modes are transmitted or reflected 

carrying an energy below the 20%. 

 

5. CONCLUSIONS  

This work proposes a GL method to predict and study ultrasonic guided wave propagation into complex structures, with 

and without discontinuities. The implementation of such techniques guides the mode-frequency selection for NDE 

inspections of the skin-to-stringer assembly in aerospace structures and head defects in railroad tracks. For example, the 

first flexural mode (m1) can be used to inspect the stiffened skin using frequencies up to 200 kHz, in a trough 

transmission modality, while frequencies below 40 kHz or above 70 kHz for mode m4 should be used to assess the head 

of a rail, preferably in a pulse-echo mode. The obtained transmission/absorption (“difference spectra”) are extremely 

useful to interpret the outcome of experimental tests, where multiple modes of increased/reduced amplitude with respect 

to the pristine case are present and difficult to evaluate. For example, when inspecting the composite panel at 115 kHz, a 

recovery of the same m1 mode should not be mistaken for a sound condition of the skin-to-stringer, but acknowledged as 

a heel crack. Respectively, an almost halved m4 mode in reflection should be interpreted as a 100% defected head of the 

inspected rail track. 

These results can be extended to a variety of damage cases and structures. Current work is also focused on the 

computation of a time domain forced solution of such cases, to be compared to experimental tests. 
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