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Abstract

Caretta caretta is the most common sea turtle species in the Mediterranean Sea. The spe-

cies is threatened by anthropomorphic activity that causes thousands of deaths and hun-

dreds of strandings along the Mediterranean coast. Stranded turtles are often cared for in

rehabilitation centres until they recover or die. The objective of this study was to characterize

the gut microbiome of nine sea turtles stranded along the Sicilian coast of the Mediterranean

Sea using high-throughput sequencing analysis targeting V3–V4 regions of the bacterial

16S rRNA gene. Stool samples were collected from eight specimens hosted in the recovery

centre after a few days of hospitalization (under 7) and from one hosted for many weeks (78

days). To better explore the role of bacterial communities in loggerhead sea turtles, we com-

pared our data with published fecal microbiomes from specimens stranded along the Tus-

can and Ligurian coast. Our results highlight that, despite the different origin, size and health

conditions of the animals, Firmicutes, Bacteroidetes and Proteobacteria constitute the main

components of the microbiota. This study widens our knowledge on the gut microbiome of

sea turtles and could be helpful for the set up of rehabilitation therapies of stranded animals

after recovery in specialized centres.

Introduction

The gut microbiota represents the ecological community of the microorganisms that reside in

the gastrointestinal tract and influence host physiology, immunity and development in all ani-

mals studied so far [1]. In recent years studies of the complex microbial communities have rap-

idly been increased and have been facilitated by high throughput approaches based on next-

generation sequencing of 16S rDNA [2]. Numerous studies demonstrated that the microbial

genome (microbiome) is about 10–100 times larger than the host genome and that microbial
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enzymes are involved in numerous biological processes, such as energy production and food

digestion [3–8].

In the last decade, the study on gut microbiota has also been extended to wild animals in

order to determine the relationships between the microbiota and the diet, the environment

and the host ecology and to understand pathogen transmission [1]. The gut microbiota was

studied in many vertebrates, including birds [9,10], fish [11], amphibians [12], and reptiles

[13–17]. It has been discovered that the microbiota plays a role in digestion homeostasis, gen-

eral metabolic regulation and defence against pathogenic organisms in fish and birds [18,19].

The carnivorous loggerhead sea turtle (Caretta caretta L.) is currently considered “Vulnera-

ble” by IUCN (https://www.iucnredlist.org/species/3897/119333622). Many events, such as

incidental catches by fishing [20], water pollution [21], and global climatic changes, affect the

health status of sea turtles [22] causing eventual stranding of these animals. Stranded sea turtles

are usually recovered and hosted in recovery centres, and released back to the sea after rehabil-

itation [20].

To date, little is known about the gut microbiome diversity in the loggerhead sea turtle. The

knowledge is limited to two recent studies [23,24]. The first one analysed microbiome from

four fecal samples from three specimens and six cloacal samples from other five individuals

stranded or accidentally caught along the coast of Tuscany and Liguria regions (Tyrrhenian

Sea) [25]. The second study reported the fecal microbiome of twenty-nine sea turtles stranded

or captured in trawling nets in the upper-west part of Adriatic Sea [26]. These two studies

found a different microbial composition; in the first case the phyla more represented were Fir-

micutes, Proteobacteria and Bacteroidetes [23] while in the second one Firmicutes and Fuso-

bacteria [24]. So far, more in-depth studies have been carried out on the herbivorous green

turtle Chelonia mydas [25–28]. Besides the gut microbial composition, studies on the green

turtles revealed that gut microbiomes differ between wild and stranded turtles [26] and after

rehabilitation in recovery centres [27]. In addition, gut microbiome responds to shifts in habi-

tat and diet in developing sea turtles [25] and it is acquired soon after settlement in the coastal

waters [28].

The objective of this study was to investigate and to enlarge knowledge on the role and

importance of the gut microbiome diversity in the loggerhead sea turtles stranded along the

Sicilian coasts. In addition, our results were combined with data from the sea turtles stranded

along the Tyrrhenian Sea coast in Tuscany and Liguria regions (Italy) [25] for a more complete

data coverage.

Material and methods

Sample collection

Stool samples were collected from nine specimens of loggerhead sea turtle stranded along the

coast of Sicily, Mediterranean Sea. The locations of the studied individuals were mapped using

the QGIS software v. 2.18.2 (http://www.qgis.org) and are reported in Table 1. Specimens

were conferred to the personnel of the Regional Centre of the Recovery for Sea Turtles at the

Veterinary Public Health Institute of Sicily (IZS Sicily), located in Palermo; they are engaged

in the recovery and transportation of loggerhead turtles to the Centre. The health status of

the stranded turtles was assessed by an expert veterinary technician. Morphometric data such

as sex, body weight and curved carapace length (CCL) were recorded and are presented in

Table 1. During hospitalization, all sea turtles were housed separately in individual tanks with

sea water. Tanks had been previously cleaned and disinfected with regular bleach. Every two

days, tanks were cleaned and water was replaced. Duration of hospitalization in the Centre at

the sampling date is listed in Table 1. In the Centre, turtles were fed twice a week with small

Caretta caretta gut microbiome
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pelagic fishes. Since the microbiome of animals from rescue centres might be highly biased, as

demonstrated in the green sea turtle C. mydas [27] we proceeded with analysing the first fecal

samples collected a few days after animal recovery. After collection, the fecal samples were

stored at -20˚C, until DNA extraction. The fecal sample (S5) is derived from a loggerhead sea

turtle after rehabilitation just before being released back to the sea.

Ethics statement

All methods and experimental protocols on sea turtles were conducted by the personnel of the

Regional Centre of the Recovery for Sea Turtles at IZS Sicily, in strict accordance with the rec-

ommendations of the Region of Sicily and the Ministry of Health (regional law n. 6067/2013

and national law n. 96/2016). All efforts were made to minimize animal suffering.

Genomic DNA extraction, PCR amplification and sequencing

DNA was extracted from all the samples as described below. Each fecal sample was incubated

in 3 ml of STE buffer (100 mM NaCl, 10 mM Tris-Cl, pH 8.0, 1 mM EDTA) containing 3-mm

sterile glass beads for 1h at 70˚C with periodic vortexing. After addition of 10 mg of lysozyme

(Sigma-Aldrich), the samples were further incubated at 37˚C for 1 h. 200 μl of 0.5 mg/ml Pro-

teinase K and 600 μl of 10% SDS were added and the samples were incubated at 55˚C for 90

minutes. 2 ml of 5 M NaCl were added and samples were mixed by inversion. After addition of

5 ml of chloroform, the samples were mixed by inversion for 30 minutes at RT. Samples were

then centrifuged at 4500×g for 15 minutes at 4˚C. The supernatant was transferred to a fresh

tube and 0.6 volumes of isopropanol were added. Samples were then centrifuged at 13000 ×g

for 30 minutes at 4˚C. The supernatant was aspirated and discarded and the DNA pellet washed

several times with 70% ethanol and resuspended in 1 ml di TE (10 mM Tris-Cl, pH 8.0, 1 mM

EDTA). Purity and quantity of DNA were assessed via spectrophotometry (Nanodrop, Thermo

Fisher Scientific, Waltham, MA). The extracted DNA was sent to Biodiversa srl, Rovereto (TN)

for DNA sequencing of the V3-V4 region of the 16S rDNA using the primers described in

Takahashi et al. 2014 [29] in one 300-bp paired end run on an Illumina MiSeq platform.

Raw data processing and statistical analyses

Raw sequences were analysed following the UPARSE pipeline as previously described [30,31].

Using the USEARCH algorithm [32] several steps were made in order to remove low-quality

Table 1. Details of sea turtles and sampling. Geographical coordinates are expressed as decimal degrees (Map Datum: WGS84).

Sample Sex CCL1 Weight (Kg) Stranding location Latitude (N) Longitude (E) Recovery date Sampling date Hosp days2

S1 F 50 17 Terrasini (Palermo) 38.1603 13.0845 17/08/2017 24/08/2017 7

S2 F 61 21 Augusta (Siracusa) 37.2428 15.2287 20/08/2017 22/08/2017 2

S3 F 46 11 Pantelleria (Trapani) 36.8325 11.9344 08/09/2017 13/09/2017 5

S4 M 48 15 Porto Rosso (Catania) 37.5133 15.1060 07/08/2017 14/08/2017 7

S5 F 30 2.6 Catania 37.4852 15.0877 28/08/2017 14/11/2017 78

S6 F 51 7.4 Catania 37.4852 15.0877 30/07/2017 06/08/2017 7

S7 F 46 8 Catania 37.4852 15.0877 30/09/2017 02/10/2017 2

S8 F 71 29 Augusta (Siracusa) 37.2428 15.2287 26/08/2018 07/09/2018 7

S9 F 57 19 Pozzallo (Ragusa) 36.7202 14.8333 02/07/2018 04/07/2018 2

1 indicates the Curved Carapace Length.
2 indicates days of hospitalization before fecal sample collection.

https://doi.org/10.1371/journal.pone.0220329.t001
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reads that can generate errors in downstream analyses, merge the read-pairs and remove sin-

gletons before the OTU (Operation Taxonomic Units) clustering step, which was performed

using an identity threshold of 97%. Moreover, chimeras were detected and removed by

UPARSE during the clustering step (“cluster_otus” command). A total of 725157 filtered reads

of all sample of C. caretta passed a quality filtering (71.24% of total reads). UPARSE pipeline

was chosen for the higher resolution of the data in terms of contents of filtered reads and

detected OTUs in respect to the QIIME pipeline [33] (Table 2 and S1 Table). Finally, from

each OTU cluster, a single representative sequence was selected and used for taxonomical

identification by SINA classifier on the latest SILVA dataset available when the analysis was

performed [34] (https://www.arb-silva.de/ngs/). Rarefaction analysis was carried out plotting

the number of observed OTUs against the total number of filtered reads for each sample. To

evaluate the variations among samples, we analysed the dataset using Bray–Curtis distance

matrix, which were visualized by principle coordinate analysis (PCoA). The analyses were per-

formed with PRIMER 6+PERMANOVA software package from Plymouth Marine Laboratory,

UK. Alpha diversity, Abundance-based Coverage Estimator (ACE), Chao1, Shannon-Wiener

diversity, H’, and Simpson index, 1-D (this index takes values between 0 and 1), and evenness,

e (equitability assumes a value between 0 and 1 with 1 being complete evenness), were esti-

mated to determine the specific fecal microbial richness and diversity. Good’s coverage was

estimated to evaluate the completeness of sampling. To enlarge the number of samples,

sequences of C. caretta microbiota from sea turtle feces obtained by Abdelrhman et al. [23]

were added in the analysis. T1 and T3 came from the same sea turtle after 40 and 37 days of

hospitalization before sampling, T11 and T12 from different turtles after 28 and 41 days.

Unfortunately, data comparison with Biagi et al. [26] was not possible due to the different data

format and because different pipelines were applied: UPARSE in Abdelrhman et al. [23] and

this study, and QIIME in Biagi et al. [24].

Links to deposited data

The sequence dataset was deposited in the GenBank database (Bioproject PRJNA481425,

Submission ID: SUB4304187). The sequence dataset can be downloaded and freely used for

research purpose by users that are requested to acknowledge us and to cite this paper as refer-

ence to the data. Sequences will be available and downloaded after the acceptance of the paper.

Results

Sequencing output and analysis

In total, 725157 high-quality reads (Q>33 and 470 bp in size) were filtered from 1017914 raw

reads obtained from nine fecal samples (indicated by S). 1,423 unique OTUs were successfully

identified using UPARSE pipeline (Table 2) and classified at family level using a 97% sequence

similarity threshold against the “Silva” database (Fig 1). OTUs that were unable to be assigned

were categorized as “Unclassified”. Each sample contained between 89 and 234 OTUs for a

total of 1,423 that allowed us to identify 20 phyla, 32 classes, 62 order and 114 families. Micro-

bial composition of S samples was compared to four fecal samples (indicated by T) obtained

from loggerhead sea turtles stranded or accidentally caught along the Tuscan and Liguria coast

[23].

Diversity of bacterial communities

Estimation of rarefaction curves indicated a satisfactory level of diversity sampling (S1 Fig).

Good’s coverage, used to estimate the completeness of sampling, showed a high level (0.994–

Caretta caretta gut microbiome
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0.996) in the identification of bacterial groups. Bacterial diversity estimated by the Shannon-

Wiener index varied from 2.70 to 3.66 in S samples, and 2.92–4.58 in T samples, indicating

similar diversity values between the two groups (Table 3). Simpson index and evenness

revealed no significant difference between the two groups (S and T). Furthermore, abundance-

based richness estimators, Chao1 and ACE, found in T samples a higher number of phylo-

types, ranging between 203–234 than S samples, ranging from 67 to 219 (Table 3).

Table 2. Total number of OTUs resulting from the UPARSE pipeline dataset.

Sample Total Reads Merged Reads (%) Filtered Reads Chimeras OTUs

S1 99926 72.65 68028 (93.7%) 263 91

S2 129304 78.26 93264 (92.2%) 358 149

S3 166807 76.71 120147 (93.9%) 570 153

S4 102189 71.35 67464 (92.5%) 92 89

S5 130991 76.79 94073 (93.5%) 301 116

S6 140362 79.2 102303 (92%) 573 188

S7 144340 75.60 101607 (93.1%) 470 234

S8 48370 72.71 36095 (75%) 736 206

S9 55625 74.98 42176 (76%) 1831 197

Total 1423

https://doi.org/10.1371/journal.pone.0220329.t002

Fig 1. Relative abundance (%) of fecal bacterial communities in loggerhead sea turtles at different taxonomic levels. Microbial composition was

determined taking into account only the 25 most abundant components of phylum (a), class (b), order (c) and family (d).

https://doi.org/10.1371/journal.pone.0220329.g001
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Taxonomic composition of the fecal bacterial communities in C. caretta
The most dominant phylum in fecal samples of C. caretta was Firmicutes with an average rela-

tive abundance of 49.4±8.0, followed by Bacteroidetes (21.5±6.3%) and Proteobacteria (11

±5.3%) (Fig 1a). Less represented were Epsilonbacteraeota (2.1±1.3%) and Fusobacteria (2.1

±1.3%). Bacteria belonging to other phyla (such as Synergistetes, Actinobacteria, Spirochaetes

and so on) were minor components and were not present in all samples. Comparison with

data from T samples revealed a similar bacterial composition, except a higher abundance of

Proteobacteria in T samples (23.6±12.9%). At family level, the most dominant bacterial fami-

lies were represented by Ruminococcaceae (23.8±6.4%), Rikenellaceae (10.3±3.5%), Lachnos-

piraceae (8.8±4.3%) and Clostridiales vadinBB60 group (6%±3%). In respect to ours, T

samples were dominated by Lachnospiraceae (15.4±5.6%) Ruminococcaceae (15.3±3.6%),

Clostridiaceae 1 (11.2±3.6%) and Rikenellaceae (10.2±3.7%). Both the S and T samples differed

for the less represented bacterial components, as an example, Enterobacteriaceae family was

found only in S5, S6, S7 and S8 samples and Flavobacteriaceae only in S3, S5 and S8.

The PCoA plot based on Bray-Curtis distance matrix showed that most samples were dis-

similar to each other with S5 clustering alone (Fig 2A). When T samples were included in this

analysis, the PCoA showed that S and T samples, except S5 and T1, respectively, segregated in

two independent groups. In particular, S5 and T samples cluster together; this might be due to

the long period of hospitalization (S5 = 78 days; T = more than 28 days).

Phenotypic and metabolic inference

Based on the inference of taxonomic-to-phenotypic mapping of metabolism using META-

GENassist [35], all samples contain prevalently anaerobic and mesophilic bacteria (Fig 3A and

3B). Regarding the energy source, all samples mainly have bacteria with an autotrophic and

heterotrophic metabolism (Fig 3C). Surprisingly, more differences were found when the type

of metabolism was investigated (Fig 3D); in fact, all samples contain bacteria with the meta-

bolic potential to degrade cellulose, chitin (except S1) and xylan, to reduce nitrite, and to fix

nitrogen, and so on. Conversely, a few samples contain bacteria able to metabolize the pesti-

cide atrazine (samples S6, S7, S8 and S9, T1 and T11), either to reduce selenate, a component

of some pesticides (S2, S5, S6, S7, S8 and T11), or to degrade aromatic hydrocarbons (S3, S6,

Table 3. Diversity indexes of the studied samples. Samples S are from this study, Samples T are from Abdelrhman et al.23.

Sample Families Good’s coverage Chao1 ACE α diversity Simpson index Shannon-Wiener diversity Evenness

S1 26 0.996 67.42 67.35 3.50 0.07 2.781 0.853

S2 35 0.996 100.94 98.35 4.25 0.1 2.847 0.801

S3 50 0.996 133.31 128.92 3.06 0.05 3.427 0.876

S4 29 0.995 149.43 146.63 3.06 0.01 2.809 0.834

S5 38 0.996 165.39 162.45 3.05 0.05 3.284 0.902

S6 38 0.996 177.86 175.40 4.94 0.01 2.924 0.803

S7 65 0.994 189.10 188.85 3.60 0.04 3.657 0.876

S8 59 0.995 124.96 139.53 3.49 0.09 3.22 0.79

S9 42 0.996 170.45 174.54 4.69 0.13 2.70 0.72

T1 163 0.994 203.46 204.71 4.70 0.01 4.579 0.899

T3 40 0.998 211.93 213.38 5.50 0.08 2.925 0.793

T11 34 0.990 222.75 224.83 2.73 0.05 3.148 0.892

T12 34 0.993 234.39 236.02 3.97 0.05 3.074 0.871

https://doi.org/10.1371/journal.pone.0220329.t003
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S7, and T12). Some samples (S5, T1 and T11) carry denitrifying and sulfur-oxidizing bacteria,

whereas only samples T1 and T11 contain lignin-degraders and only S5 has lignin-reducers.

Discussion

In this study we aimed to expand the knowledge of the gut microbiome of the loggerhead sea

turtle Caretta caretta. The animals were recovered and hosted after stranding along the Sicilian

coast of the Mediterranean Sea. To the best of our knowledge, only a few studies have been car-

ried out on gut microbiomes of stranded loggerhead (C. caretta) [23,24] and green (C. mydas)
[26,27] sea turtles so far. Our results were compared to the above mentioned studies. The main

conclusions of these studies and the corresponding microbial abundance of the four top phyla

are reported in Table 4 and Fig 4. Abdelrhman et al. [23] and Biagi et al. [24] reported the fecal

microbiomes of loggerhead sea turtles stranded along the Tyrrhenian and the Adriatic coast,

respectively; while Ahansan et al. [26,27] published cloacal microbiomes of green turtles

stranded along the Australian coast. Our results showed that despite the differences in origin,

size and conditions of the animals, Firmicutes, Bacteroidetes, and Proteobacteria constitute

the core of the gut microbiome of all stranded sea turtles. Fusobacteria are also dominant in

the loggerhead sea turtles stranded along the Adriatic coast and the green turtles (Table 4).

Firmicutes represent the overwhelming majority of bacteria in all the microbiomes of C.

caretta analysed so far, accounting almost for the 50% of the total microbiome (Table 4). Dif-

ferently, in the fecal microbiome of the herbivorous C. mydas, Firmicutes represent the second

most abundant phylum (approximately 18–25%). Firmicutes are common components found

in the gut microbiota of many herbivorous reptiles [14,36–39] with the exception of the alliga-

tor, whose gut microbiome is prevalently constituted by Fusobacteria [40]. Therefore, the prev-

alence of Firmicutes in the gut of the herbivorous C. mydas is likely due to the diet, mostly

based on seaweed. In the carnivorous C. caretta this result is somewhat surprising and it con-

firms that these turtles may also feed on seaweed and algae as well as wood or debris [41,42],

even if in smaller quantity than on the benthic crustaceans, the sea urchins and gastropods,

generally preferred by C. caretta [43–45]. Indeed, METAGEN analysis indicated that all C. car-
etta specimens analysed in this study contain bacteria able to degrade cellulose from different

Fig 2. Principle coordinate analysis (PCoA) plot of S samples of this study (A) and S+T samples (B). S and T indicate samples obtained from this

study and from Abdelrhman et al.23, respectively.

https://doi.org/10.1371/journal.pone.0220329.g002
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Fig 3. Putative metabolic requirements and activities of microbial communities of samples S and T. (A) Oxygen requirements, (B) temperature

ranges, (C) energy sources, (D) type of metabolism.

https://doi.org/10.1371/journal.pone.0220329.g003

Table 4. Percentage of the top four dominant phyla in the microbiome of stranded sea turtles and main features of the corresponding studies.

Sea

turtle

Firmicutes Bacteroidetes Proteobacteria Fusobacteria Sample Stranding Site Sequenced

Region

Mean days of

hospitalization

Reference

C.

caretta
49.4 21.5 11.0 2.1 Fecal Sicily (Italy) V3-V4 <13 This study

47.4 19.0 23.6 1.9 Fecal Tuscan and Liguria

(Italy)

V4 <38 Abdelrhman,

2016

46.5 15 10 26.5 Fecal Adriatic coast (Italy) V3-V4 <75 Biagi, 2018

C.

mydas
18.7 19 47.6 13.6 Cloacal Queensland

(Australia)

V1-V3 AR� Ahansan, 2017

25.5 14.4 33.6 9.1 Cloacal Queensland

(Australia)

V1-V3 <143 Ahansan, 2018

AR � immediately after their arrival for rehabilitation.

https://doi.org/10.1371/journal.pone.0220329.t004
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sources as well as chitin, xylan, lignin, and components of seaweed and algae. Ruminococca-

ceae, Rikenellaceae and Lachnospiraceae were the most dominant families, similarly to the

bacterial composition found in the microbiomes of the loggerhead sea turtles analysed by

Abdelrhman et al. [23] and of the herbivorous green turtles (C. mydas) [25,27]. Conversely,

Clostridiaceae and Peptostreptococcaceae were the most represented families in the gut micro-

biome of the loggerhead sea turtles stranded along the Adriatic coast [24], suggesting a higher

grade of dysbiosis. In the human gut Ruminococcaceae comprise “protective” intestinal bacte-

ria while Clostridiaceae and Peptostreptococcaceae are considered harmful [46].

Besides Firmicutes, the microbial core of the microbiome of all sea turtles contains the Bac-

teroidetes and Proteobacteria phyla. The latter are also abundant in the human gut [47,48] as

well as in other land vertebrates and reptiles [13,40]. Different Bacteroidetes/Proteobacteria

ratios were determined with respect to the microbiomes of other sea turtles. In fact, our sam-

ples contained more Bacteroidetes than Proteobacteria, similarly to the results obtained in

Biagi et al, while the opposite trend was registered in Abdelrhman et al. [23] and in stranded

green turtles [26,27] (Table 4 and Fig 4). These differences could be linked to a different diet,

different health conditions, or type of sample, in that Ahansan et al. [26,27] used cloacal swabs.

Indeed, a higher abundance of Proteobacteria is recognized as a signature of dysbiosis as well

as an indication of disease within the gastrointestinal tract of animals, including humans [43].

However, Proteobacteria also represent a physiologically and metabolically assorted group that

can be relevant for maintaining gut pH, and for producing carbon dioxide and nutrients for

further colonization by strict anaerobes. The low percentage of pathogen families found in our

samples and the evidence that Proteobacteria remained the most dominant phylum even after

green sea turtles rehabilitation [27] strongly suggest their role in gut homeostasis.

Fig 4. Percentage mean of abundance of main microbial components found in different studies on sea turtles. Samples are indicated as follows:

blue: this study; red: Abdelrhman et al. [23]; grey: Biagi et al. [24]; yellow: Ahansan et al. [26]; light blue: Ahansan et al. [27].

https://doi.org/10.1371/journal.pone.0220329.g004
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In contrast to the results obtained in the loggerhead sea turtles stranded along the Adriatic

Coast [24] and in the green sea turtles [26,27] and similarly to the results obtained in the log-

gerhead sea turtles stranded along the Tuscan and Ligurian coast [23], we did not find Fuso-

bacteria as a dominant phylum in stool samples of C. caretta. Usually Fusobacteria are scarcely

abundant in reptiles [15,16,37], but can be commonly isolated from infected animals [49], and

represent a dominant phylum in the microbiome of vertebrates that generally feed on carrion,

i.e. alligators and vultures [40,50]. We surmise that Fusobacteria abundance increases in sea

turtles after many days of hospitalization.

A comparable abundance of the phylum Bacteroidetes was found in all the microbiomes of

sea turtles investigated so far. Bacteroidetes are considered commonly associated with the gut

microbiota in many vertebrates. Members of the Bacteroidetes show an elaborate apparatus

for acquiring and hydrolysing otherwise indigestible dietary polysaccharides. They also have

an associated environment-sensing system consisting of a large repertoire of extracytoplasmic

function sigma factors and signal transduction systems. Thus, the enzymatic and regulatory

activities of Bacteroidetes may contribute to the turtle adaptation to the digestion of acciden-

tally ingested food containing carbohydrates. [5,51].

Gut microbiome was not found to be related with the curved carapace length in accordance

with results reported in C. mydas [25–27] and in contrast with the report on the loggerhead

sea turtles stranded along the Adriatic coast [24]. The results obtained by Biagi et al.[24] could

reflect an adaptation of microbiota to the diet and housing conditions at the recovery centre

since most samples were collected after many days of hospitalization (up to 240 days).

PCoA and diversity indices showed heterogeneity between fecal samples of this study col-

lected after a few days (2–7) and many days (more than 28) of hospitalization, independently

of the stranding location, suggesting that hospitalization and diet could influence gut micro-

biota. This result is in accordance with the reports on C. mydas [25–27] and in contrast with

results obtained on C. caretta stranded along the Adriatic coast [24].

Surprisingly, bacteria capable of metabolizing pesticides, like atrazine and sodium selenate,

were found in our samples suggesting that these compounds are present in the Mediterranean

Sea. Despite its EU-wide ban in 2004, the pesticide atrazine is frequently detected in the aque-

ous environment [52]. In addition, ammonia-oxidizers and bacteria capable of dehalogenate

organic compounds were found in all the analysed samples. Considerable amounts of ammo-

nia are usually present in sewage treatment plants and both haloaliphatic and haloaromatic

compounds are produced industrially in large quantities and represent an important class of

environmental pollutants [53]. These bacteria may have been ingested through accidentally

contaminated food or sediment or sea water. It remains to be investigated whether the gut

microbial community is modified after the ingestion of pollutants, since we were not able to

determine if the bacteria are transiently or stably associated with the sea turtle gut.

Moreover, we cannot exclude that microbiome differences could be related to the origin of

the sample, the time of sample collection, or to diseases, stress or other processes that influence

the immune system, as demonstrated in other reptiles [54]. Finally, our data indicates that the

8% of the total bacteria were not identified, revealing that many classes and their metabolic

capabilities are still to be unveiled.

Supporting information

S1 Fig. Rarefaction curves on total filtered sequencing data of Caretta caretta fecal micro-

biota.
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S2 Fig. Matrix of the bacteria present in the nine samples. Blue boxes indicate the presence.

(TIF)

S1 Table. Total number of OTUs resulting from the QIIME pipeline.
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