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HIGHLIGHTS 

 

1) Economic and energy analysis in Do It Yourself shopping centers ventilation systems 

is presented, comparing three different stores with different HVAC plants and climatic 

regions; 

2) A brief review on retrofit solutions in non-residential building sector is performed; 

3) The economic profitability of three new different retrofit hypotheses for each store and 

is evaluated; 

4) A comparison between the less attractive retrofit solution and most widely adopted 

retrofit solution is provided; 

5) A comparison between international standards for ventilation systems design is 

provided. 

 

ABSTRACT 

This paper investigates energy saving measures for the ventilation system of large shopping 

centers. This kind of buildings is characterized by high yearly energy consumptions, because 

of the high level of operating hours and the frequent use of obsolete technologies. In the 

analyzed case studies, three big Do It Yourself (DIY) shops, located in Italy, are considered. 

Two different approaches are considered, they are aimed at reducing the annual energy 

consumption for the indoor air exchange of the sales area. The first considered retrofit 

solution consists in the installation of heat recovery exchangers, reducing the energy demand 

for the air thermal treatment without changing the airflow value. In the second scenario, smart 

air quality sensors are inputs for the modulation of the air exchange rate according to the 

actual requirement for indoor air quality. In a third scenario, the application of both retrofit 
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solutions is considered. For each scenario, the paper reports the yearly energy savings, the 

avoided CO2 emissions and cost saving indicators. Furthermore, as the three shops are 

equipped with different heating systems and are located in different parts of Italy, a 

technological and climatic comparison is provided. 

KEYWORDS 

Buildings; Energy saving; Indoor Air Quality; Shopping Center; Ventilation Control. 

1 INTRODUCTION 

The building sector is one of the most impacting on energy consumptions of a developed 

country (European Commision, 2010). Buildings are indeed responsible for 40% of the 

energy consumption of the EU member states and 36% of their CO2 emissions. Furthermore, 

about 35% of buildings in EU are over 50 years old, so these may represent the main target 

for future energy efficiency policies. ‘Energy saving’ is one of the means suggested in the 

Kyoto Protocol for getting a reduction of environmental pollution and global warming 

(Beccali, Cellura, & Mistretta, 2007). ‘Energy saving’ can be defined as a reduction of 

primary energy consumptions in final uses only by the utilization of more efficient equipment, 

without compromising the quality of service (Retail Forum for sustainability, 2011). 

More in detail, different examples of ‘energy saving’ measures can be found in the literature, 

divided by sector (ICF Consulting Ltd, 2015): 

 in the primary and secondary sectors, the substitution of obsolete equipment with more 

modern and efficient ones, in order to reduce the energy consumption, is often 

adopted; 

 in the transport sector, a spreading solution is the implementation of public transport 

vehicles supplied by hydrogen, electrical energy or biomass-derived fuels (Cotana et 

al., 2014), so as to reduce the dependence from fossil fuels, greenhouse gas emissions 

as well as environmental pollutants (Volpe, Bermudez Menendez, Ramirez Reina, 

Messineo, & Millan, 2017); 

 in the buildings sector, many different techniques can be adopted (Ferrari & Zanotto, 

2016), ranging from the improvement of thermophysical properties of the building 

envelope to the adoption of building automation systems both in tertiary and 

residential buildings (Ingrao, Messineo, Beltramo, Yigitcanlar, & Ioppolo, 2018). In 

this way, the energy demand can be met efficiently, while reducing the energy 

consumption for air conditioning/ventilation and lighting (Naik, Dhamankar, & Karve, 

2015; Pan, Xu, & Li, 2012). 

Figure 1 shows how the primary energy consumptions in Italy has evolved in last sixteen 

years, by sector: industry, transport and buildings (Eurostat, 2019). As it can be noted, the 

buildings sector has a great impact on the national energy demand. 
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Figure 1. Primary energy consumption in final uses in Italy by sector (Eurostat, 2019) 

Figure 2 shows the yearly trend of the primary energy consumption for commercial activities, 

as a part of the total energy consumption for buildings. Two terms are here considered: 

electricity and thermal consumptions. A comparison between Figure 1 and Figure 2 reveals 

that the primary energy consumption for commercial activities is about one sixth of the total 

primary energy consumption for buildings in Italy. 

 

Figure 2. Annual primary energy consumption for commercial activities in Italy (Eurostat, 2019) 

In the last two decades, the commercial activities have been growing in Italy, thus requiring 

the construction of large buildings. The yearly statistics of the Italian Ministry of Economy 

considered two different activities: malls (“Grandi Magazzini”, in Italian), mainly dedicated 

to the sale of non-food products, and supermarkets (“Supermercati”, in Italian), specialized in 

food sales. Both of these activities require a commercial area above 400 square meters 

(Osservatorio Nazionale del Commercio, 2017). 

Figure 3 shows the total number of shopping centers (malls and supermarkets) and the 

number of commercial buildings having an area that is larger than 2000 square meters since 

2001 in Italy. The figure also shows the segmentation by geographic location, dividing Italy 

into four areas: Middle, North East, North West, South & Islands. As energy consumption 

indicator, the overall heated surface of malls and supermarkets respectively amounts to 3.26 

and 9.76 millions of square meters (Osservatorio Nazionale del Commercio, 2017). 
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Figure 3. Number of shopping centers over sixteen years in Italy 

These buildings are considered very energy-intensive (International Council of Shopping 

Centers (ICSC), 2016), mainly because of the high air conditioning demand. As the number 

of this kind of buildings is growing very rapidly, a case study on the energy saving potential 

in shopping centers appears to be interesting for the scientific community; besides very few 

studies about similar topics are reported in literature. 

HVAC systems in shopping centers usually have a central air-conditioning system, providing 

also for indoor air exchange, representing only a fraction of the total airflow used to offset 

thermal losses (ASHRAE Handbook - Fundamentals, 2017). As in most cases HVAC systems 

serving shopping centers are obsolete, working with fixed airflow (Canbay, Hepbasli, & 

Gokcen, 2004; Homod, 2014), the installation of smarter technologies may induce interesting 

energy and economic savings. Some examples of technological improvements are air-to-air 

heat exchangers to recover energy from the air extracted or inverter-equipped fans and 

motorized shutters for the regulation of the airflow. 

The work carried out in this paper belongs to a growing literature sector (Calay & Wang, 

2013; Chenari, Dias Carrilho, & Gameiro Da Silva, 2016; Curto, Montana, & Milone, 2018; 

Yu et al., 2016) concerning the evaluation of potential energy and economic savings resulting 

from the installation of heat recovery exchangers and automation technologies in the HVAC 

plant of non-residential buildings. In details, the work is focused only on the savings related 

to the indoor air change, as the whole energy consumption for the heating and cooling of the 

building is more related to the thermophysical features of building envelope and to the local 

climate, thus making the results obtained in this analysis more general. 

As the modulation of the airflow rate, according to the real-time demand of occupants for 

health reasons, is not considered by the technical standards below considered, the authors 

want to demonstrate the potential benefits that can be achieved introducing innovative 

techniques to control the indoor air quality. 

In order to demonstrate the suitability of these solutions, big shopping center buildings have 

been selected as case study. In order to generalize the results presented in this paper, three 

shopping centers were selected in Italy, one near Milan (Northern Italy) with a gas-based 

heating system, and two near Bari (Southern Italy), one with an electrical-based and the other 

with a gas-based heating system. In this way, retrofit benefits are also compared between two 

shops with similar climate but different heating systems and between two shops with similar 

heating system but different climate conditions. 
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All the three case studies are investigated considering the economic benefits, using the initial 

investment, the breakeven time and the discounted cash flow in ten year as indicators. From 

the environmental point of view, the avoided CO2 emissions and the avoided primary energy, 

electricity and gas consumptions were evaluated and compared. 

2 BACKGROUND 

2.1 Theoretical Background on air ventilation 

Air is composed mainly of gases such as nitrogen (78%), oxygen (21%), argon (1%), and 

carbon dioxide (0.04%). Other materials, whose concentration is variable, may be contained 

in outdoor air depending on natural phenomena, as wind erosion or volcanic eruption, or on 

anthropogenic processes, as electric power generation or agriculture. These substances, 

known as contaminants or pollutants, can affect the human health and should be somehow 

limited or removed. This problem is particularly important in the indoor environment, where 

people spend most of their time (European Comission, 2003; Klepeis et al., 2001) and where 

other pollutants may also appear, because of human presence (e.g. tobacco smoke, carbon 

dioxide, ammonia or ethanol) or building materials (e.g. formaldehyde, paints, VOC or radon, 

that is also radioactive) (ASHRAE Handbook - Fundamentals, 2017). 

The main solution to reduce the concentration of pollutants and odors in the indoor air is the 

dilution with external air, eventually pre-treated (filtered), if air contaminants concentration 

overcomes values defined by national standards (“ANSI/ASHRAE 62.1 - Ventilation for 

Acceptable Indoor Air Quality,” 2013). As an example, Table 1 provides a list of acceptable 

concentration of contaminants in the external air that allows to skip the filtration process in 

USA. While the air change in residential buildings is generally carried out by opening the 

windows, in non-residential buildings the air dilution is mainly provided with mechanical 

ventilation systems to stay below maximum air pollutants concentration values. 

Ventilation systems designers are assisted by international standards, as ASHRAE Standard 

62.1 (“ANSI/ASHRAE 62.1 - Ventilation for Acceptable Indoor Air Quality,” 2013) in USA 

and European Report CEN CR 1752 (“CEN CR 1752 - Ventilation for Buildings: Design 

Criteria for the Indoor Environment,” 1998). These documents contain a prescriptive method, 

based on minimum ventilation rates values indicated for different types of buildings, and an 

analytical method to calculate the required ventilation rate, depending on type of pollutants, 

acceptable concentrations, and emission rates. The difference between these standards lays 

into the approach, as CEN CR 1752 method is based on people entering a space, while 

ASHRAE 62.1 method is aimed at satisfying adapted persons, i.e. people occupying a space 

that have adapted to the odor level (Olesen, 2004). 
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Table 1. Acceptable contaminant concentration for external air direct use in USA (“ANSI/ASHRAE 62.1 

- Ventilation for Acceptable Indoor Air Quality,” 2013) 

Pollutant Primary Standard Averaging Times Secondary Standard 

Carbon monoxide 
9 ppm (10 mg/m3) 8 hours None 

35 ppm (40 mg/m3) 1 hour None 

Lead 0.15 μg/m3 
Rolling three-month 

average 
Same as primary 

Nitrogen dioxide 
100 ppb 1 hour - 

0.053 ppm (100 μg/m3) 1 year (arithm. mean) Same as primary 

Particulate matter (PM10) 150 μg/m3 24 hours Same as primary 

Particulate matter (PM2.5) 
12 μg/m3 1 year (arithm. mean) 15 μg/m3 

35 μg/m3 24 hours Same as primary 

Ozone 0.075 ppm 8 hours Same as primary 

Sulfur dioxide 
75 ppb 1 hour - 

- 3 hours 0.5 ppm 

2.2 Mathematical Background on air ventilation 

In order to evaluate the rated airflow necessary for the dilution of an air pollutant in a room, 

both analytical methods of ASHRAE 62.1 and CEN CR 1752 rely on a mass balance 

evaluated over the indoor space. Figure 4 shows the philosophy behind these standards. In the 

figure, a room with volume V is depicted. This room is characterized by a constant internal 

pollutant production rate Ċ, diluted by an external airflow V̇ with pollutant concentration Cout. 

 

Figure 4. Schematic for rate dilution airflow calculation 

Assuming a perfect air mixing in the room (lumped parameters approach), the pollutant mass 

balance provides: 

  
out

d C V
C V C V C V

d


       1. 

where the unknown C(τ) is the pollutant concentration course in the room or in the extraction 

air varying with time τ. 
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Solving this equation and assuming known the pollutant concentration in the room when the 

dilution starts, i.e. C(τ=0) = C0, Eq. 1 can be integrated over the time τ to obtain the function 

C(τ) reported in Eq. 2: 

    0 expout out

C C
C C C C n

n n
 

 
        

 
 2. 

where n = V / V is the air change rate. When steady state conditions are achieved (τ → ∞), the 

exponential term tends to zero and the required airflow can be calculated as: 

 

out

C V
V

C C





 3. 

where C∞ is the pollutant concentration in the room in steady state condition, i.e. the required 

indoor value, indicated by national standards. Ventilation efficiency Ev can be introduced in 

Eq. 3, in order to consider non-perfect air mixing in the room, thus rising the required 

ventilation value: 

 

 out v

C V
V

C C E




 
 4. 

Prescriptive methods are instead based on a different approach. As an example,  

ANSI/ASHRAE 62.1 (“ANSI/ASHRAE 62.1 - Ventilation for Acceptable Indoor Air Quality,” 

2013) reports the following formula, that calculates the ventilation airflow rate as a function of 

people’s emissions and of the floor area: 

 
p aV R P R A     5. 

where V  is the breathing zone outdoor airflow, Rp is the outdoor airflow rate required per 

person, P is the rate number of occupants in the ventilation zone, Ra is the outdoor airflow 

rate required per unit area and A is the occupiable floor area. 

More in details, the same standard suggests evaluating the number of people, as linear 

function of the floor area, so: 

 sP n A   6. 

Substituting this condition into Eq. 5., the following simplified equation is obtained, that 

determinates the rate ventilation airflow, as function of the only floor area: 

   0p s aV R n R A V A       7. 

Another approach, based on Ole P. Fanger studies (Fanger, 1988), has been integrated in the 

CEN CR 1752 (“CEN CR 1752 - Ventilation for Buildings: Design Criteria for the Indoor 

Environment,” 1998), where the ventilation rate is determined according to the sensory load 

related to pollutant emission and on statistical Percentage of Dissatisfied (PD) occupants, 

expressed by Eq. 8: 

  0.36

,395 exp 3.66 p sPD R     8. 
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where Rp,s is the ventilation rate per person and per unit sensory load. Moreover, the report 

suggests evaluating three different values of PD, equal to 15%, 20%, 30%, depending on the 

application, in order to find the required specific ventilation rate. 

2.3 Mathematical Background on air conditioning 

The heating or cooling requirement of a building over the whole conditioning season Q can 

be evaluated as the product between the air mass to be conditioned m and the specific heat 

(i.e. heat per unit mass) q, as in Eq. 9: 

 Q m q    9. 

In constant pressure conditions, the heat rise is equal to the enthalpy rise of the air mass: 

 Q H q h Q m h          10. 

In this case study, the heat is provided to the building through an airflow replacing the indoor 

air, thus the air mass can be replaced with an airflow: 

 

0 0

end end

m m d V d

 

 

         11. 

where ṁ is the mass airflow, is the air density, V̇ is the volume airflow, 0 is the time when 

the conditioning season starts and end the duration of the conditioning season. Assuming the 

air as the homogeneous mix of two perfect gases (dry air and water vapor), a common 

hypothesis in psychrometry (Çengel & Boles, 2006) can be adopted: the enthalpy of the air 

can be evaluated as the sum of the enthalpies of the two gases. In details, dry air enthalpy is 

represented by a sensible heat term (i.e. heat transfer related to a temperature variation) while 

the water enthalpy is composed by a sensible heat term and a latent heat term (i.e. heat 

transfer related to a phase transition): 

  , ,a w p a p w
h h h c t x r c t         

 , ,a w p a p wdh dh dh c dt dx r c dt         

12. 

where cp is the specific heat capacity, t is the air temperature, x is the specific humidity and r 

is the latent heat of vaporization of the water. Replacing Eqs. 11 and 12 in Eq. 10: 

 

0

2 2

1 1

end

Q m h m dh V d dh





              

 

0

2

1

end

Q V d dh





        13. 

where enthalpy integration is evaluated between outdoor condition 1 and indoor condition 2. 

As outdoor conditions are time dependent, while indoor climate is typically kept constant,  

Eq. 13 can be simplified in a single integral term, where the integration variable is time. 
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 
0 0

2

1

2 1

end end

Q V d dh V dh h

 

 

                 14. 

Depending on the plant and the demand (heating is a sensible requirement while cooling may 

be also a latent requirement), the air conditioning may provide sensible only or both sensible 

and latent contributions, thus these two cases are analyzed separately. 

2.3.1 Sensible requirement only 

If no latent heat is exchanged, the air can be assumed as a unique gas with equivalent 

properties evaluated at average temperature, thus the enthalpy difference can be evaluated as: 

 0x       ph c t    15. 

 

  
0

2 1

end

pQ V c t t d





           

 

  
0

2 1

end

pQ V c t t d





          16. 

In Eq. 16, the product of air density, airflow and specific heat capacity can be considered as a 

constant, where thermodynamic properties are equal to the average values between external 

(variable) temperature and indoor required temperature, while the airflow is known and equal 

to the rated airflow of the fan, if no regulation is adopted. The integral term in Eq. 16 

represents the cumulated requirement of air conditioning during the whole conditioning 

period and is commonly known as degree days. Thus, Eq. 16 can be simplified as in Eq. 17 

adopting degree days in heating and cooling period: 

 

, pheat sens heatQ V c DD       

17. 
 

, pcool sens coolQ V c DD      

2.3.2 Sensible and latent requirement 

The cooling requirement of a building may include the latent energy as an additional 

contribution to the sensible requirement. Assuming the air as the mixture of two perfect gases, 

the sensible and latent enthalpy difference can be evaluated as: 

  , ,p a p w
dh c dt dx r c dt       

      , 2 1 2 1 , 2 1p a p wh c t t x x r c t t                       

18. 

ACCEPTED M
ANUSCRIP

T



10 

 

 

 
0

end

Q V h d





         

 

     
0 0

, 2 1 2 1
{

end end

p a
Q V c t t d r x x d

 

 

                 

     
0

, 2 1 2 1
}

end

p w
c x x t t d





         

19. 

The last integral in Eq. 19, composed by the integral of a higher order differential term, can be 

neglected with respect to the other two terms. Thus, adopting the degree days for the first 

integral, and the accumulated difference of specific humidity, the equivalent of degree days 

for specific humidity (UNI - Ente Italiano di Normazione, 2016), for the second integral, the 

combined sensible and latent requirement can be expressed as: 

 

 ,, p aheat sens lat heat heatQ V c DD r ADSH        

20. 
 

 ,, p acool sens lat cool coolQ V c DD r ADSH        

2.4 Retrofit techniques on non-residential buildings 

Non-residential buildings are known to be very energy-intensive. Neglecting industrial 

processes, the main energy uses in this kind of buildings are air conditioning and lighting. 

Energy saving techniques in non-residential buildings have been rarely considered in existing 

literature. Very few examples are available, and also International Energy Agency programs 

on this topic are scarce, with IEA SHC Task 47 being the most known example (International 

Energy Agency, 2011).  

Indeed, many works are focused on residential buildings, covering the larger portion of 

buildings (Wu & Skye, 2018). In order to achieve a primary energy saving, different 

techniques can be used: 

 Increasing the energy performance of buildings’ envelope (Ferrari & Zanotto, 2012); 

 Supplying plants by renewable energy sources (Lucentini, Naso, & Borreca, 2014); 

 Installing more modern and efficient technologies (Vakiloroaya, Samali, Fakhar, & 

Pishghadam, 2014); 

 Optimizing the energy demand for final uses (Capozzoli, Piscitelli, Gorrino, Ballarini, 

& Corrado, 2017). 

The first solution can potentially generate the highest energy saving, especially if applied in 

the design phase. In the existing literature, examples of heritage buildings in arid regions are 

based on free-cooling solutions, avoiding significant primary energy consumption for the 

indoor comfort (Khalili & Amindeldar, 2014). A common retrofit solution is the improvement 

of the energy performance of the envelope (Ferrari & Zagarella, 2015), replacing the external 

doors and windows with more performing ones, as double and triple glazed windows, and the 

realization of thermal insulation of the walls and roofs (Huang, Qi, & Mi, 2017). 
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The installation of building integrated Renewable Energy Sources (RES) is a common 

solution to reduce the primary energy demand from the electrical grid (Chel & Kaushik, 

2018).  

Although the environmental benefits related to the installation of RES systems is well 

demonstrated (Gerbinet, Belboom, & Léonard, 2014), in the authors’ opinion it is a priority to 

increase the energy efficiency in final uses, in order to reduce the total energy demand of 

buildings regardless of which source is used. 

Concerning retrofit actions, many examples are related to air-conditioning systems, and more 

specifically to ventilation systems (Jouhara & Yang, 2018).  

In details, as the air change requirement for health reasons also requires the air thermal 

treatment, a possible measure is the installation of heat recovery exchangers, in order to 

minimize the energy expenditure for ventilation (Rose & Thomsen, 2015). New techniques 

try to recover the latent thermal energy related to the air humidity, introducing a thermal 

storage (Chen, Zhang, & Zhai, 2016; Cui, Xiao, & Wang, 2016) or a desiccant wheel, a 

rotating heat recovery exchanger equipped with adsorption materials (Antonellis, Intini, 

Joppolo, Molinaroli, & Romano, 2015). 

Thanks to the improvement of control techniques, the energy efficiency of ventilation systems 

can be also increased through the installation of modulating control systems, as inverters to 

change the rotary speed of fans and compressors (Ahmed, Gao, & Kareem, 2017; Delwati, 

Merema, Breesch, Helsen, & Sourbron, 2018). The energy saving is achieved thanks to the 

smooth operative conditions of systems in comparison with the old regulation techniques (on-

off control and step capacity control) (Qureshi & Tassou, 1996). 

Finally, an even more sophisticated control is the innovative approach of modulating plants 

according to the real-time demand. As an example, the indoor artificial lighting can be 

modulated measuring the natural contribution from windows and skylights (Curto & Milone, 

2018). In the case of HVAC system, a profitable solution is the installation of temperature 

sensors to control the airflow (Zhou & Huang, 2015). More specifically, in the case of 

ventilation systems, the air exchange rate could be managed considering the actual number of 

occupants or pollutants inside the indoor space. 

Focusing on the thermal energy production system, two main technologies are available 

nowadays for the centralized indoor ventilation and climatization: air handling units (AHU) 

and rooftop units (RTU). The main difference between these latter technologies, in terms of 

heat treatment, is that AHUs only include heating or cooling heat exchangers, allowing the 

thermal production from any source, while RTUs enclose a heat pump/air conditioner, 

enabling local thermal generation and reducing piping and distribution losses. The reason to 

prefer one system to the other mainly resides in space or noise constraints, as both systems are 

very efficient, allowing temperature and airflow regulation through different systems (e.g. fan 

speed regulation, heat pump compressor speed regulation). 

3 METHODOLOGY 

Given the context depicted above, the authors are interested in evaluating the potential energy 

savings related to the ventilation system of large commercial buildings. Among the above 

reported techniques, the paper investigates the effects produced by the installation of heat 

recovery exchangers and control systems to modulate in real-time the air exchange flow as a 

function of the actual number of occupants. As demonstrated in the following sections, these 

techniques are characterized by limited investments and do not require significant changes on 

the existing buildings, as compared to the improvement in energy efficiency of the envelope 

or the installation of plants supplied by renewable energy sources. These peculiarities are 

fundamental in a retrofit scenario of existing buildings. Case studies are related to three DIY 
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centers located in different climatic zones of Italy. For each center, the AS-IS scenario has 

been analyzed, considering electricity and natural gas consumption data from monthly bills 

and extrapolating consumptions related to air conditioning. In order to consider only 

ventilation-related consumptions, Italian Standard UNI 10339 (UNI - Italian Organization for 

Standardization, 1995) methodology has been adopted, as this method was followed for the 

design of these plants. In order to identify potential energy and economic saving options, the 

following options have been investigated: 

 heat recovery from air extraction through installation of sensible heat exchangers; 

 regulation of air fans according to internal pollutant concentration through installation 

of inverter-equipped air fans and pollution concentration sensors; 

 combination of both interventions. 

These improvements have been compared according to following criteria: 

 primary energy savings related to airflow thermal treatments, assessed by an approach 

based on heating and cooling degree-days, as no latent cooling is operated in these 

buildings; 

 primary energy savings related to fans electricity consumption; 

 discounted cash flow for the period of ten years; 

 breakeven time of the investment; 

 avoided operating CO2 emissions; 

 avoided primary energy consumption. 

In details, discounted cash flow has been evaluated through the following Eq. 21: 

 

0

1

1

1

iN

i

f
DCF I E c



 
        

  21. 

where I0 is the initial investment, N is the useful life of the investment, ΔE is the avoided 

yearly energy consumption, c is the energy cost, f is the inflation rate for energy sector and α 

is the monetary interest rate. In order to estimate operating savings deriving from the fan 

regulation, a standard trend for occupancy was considered, derived from a similar store, as 

more detailed data were not available. 

Furthermore, results for each store were compared, considering two criteria: 

 same location but different conditioning plant; 

 different location but same conditioning plant. 

4 CASE STUDIES 

4.1 AS-IS scenarios analysis 

As case study, the authors selected three stores belonging to a worldwide chain of DIY shopping 

centers. As shown in Figure 5, two stores are located in Bari (Casamassima and Santa Caterina) 

and one in Milan (Caponago). 
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Figure 5. Location of the three case studies. Maps from Google Earth Pro 

The selected stores are characterized by large sales areas (over 5,000 m2), covering a large 

area of the store and consequently being the most energy-consuming part. In details, the sales 

area is equal to 5,346 m2 for Casamassima store, 7,745 m2 for Santa Caterina and 6,686 m2 

for Caponago. 

From the analysis of the energy bills related to last four years (2015-2018), the following 

graphs (see Figures 6-8) have been elaborated, showing the average annual trends of 

electricity and natural gas consumptions for each store. 

 

 

Figure 6. Average annual energy consumption of Casamassima store 
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Figure 7. Average annual energy consumption of Santa Caterina store 

 

Figure 8. Average annual energy consumption of Caponago store 

In the above graphs, the energy consumption for HVAC was extrapolated considering the 

total electricity and natural gas consumption reported in bills and removing the energy 

consumption related to lighting and other services, that were estimated taking into account the 

average daily working hours. Furthermore, data are presented with an uncertainty interval, as 

in the last four years several changes have happened in each store, as replacement of lighting 

system with LED technology, change of the daily working hours, failure of some HVAC unit, 

extraordinary weather conditions, change of HVAC units set-points, etc. Furthermore, data 

reported on bills (especially gas bills) were sometimes based on consumption estimations, 

verifying the actual consumption only few times per years. 

As shown in Figure 6 and Figure 8, Casamassima and Caponago stores consume natural gas 

for heating during winter, while Santa Caterina store consumes only electricity (see Figure 7). 

In the first two cases, gas is consumed only for heating. 

In any case, graphs demonstrate the strong relevance of the electricity consumption for 

HVAC, representing about 38.8% (Casamassima) and 50% (Caponago) in the cases of gas 

supplied for heating, while this item rises up to 66.8% (Santa Caterina) in the case of absence 

of gas supply. 
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Table 2. Yearly electrical and gas consumptions by utilities in 2017 

Utility 

Casamassima 

electricity cons. 

[kWh/year] 

Casamassima 

yearly cost 

[Sm3/year] 

Santa Caterina 

electricity cons. 

[kWh/year] 

Caponago 

electricity cons. 

[kWh/year] 

Caponago gas 

consumption 

[Sm3/year] 

HVAC 535,230 33,069 1,476,101 757,127 144,202 

Lighting 394,184 0 382,605 726,050 0 

IT services  40,042 0 44,938 47,549 0 

Other uses 50,057 0 60,069 57,971 0 

Total 1,019,513 33,069 1,963,712 1,578,698 144,202 

 

Focusing on year 2017, Table 2 reports the annual distribution of the electricity and gas 

consumptions for each building, considering four main items: HVAC, lighting, IT services 

and Other uses. As explained above, these values are based on mathematical models. In order to 

monitor the actual consumptions for the main items, these buildings will be equipped with a 

Building Automation System (BAS) within a few months, in order to control and measure all 

main loads, with attention on HVAC units. 

Data reported in Table 2 were used as a starting point for the proposal of retrofit interventions 

and for the economic saving calculations. As large companies usually stipulate a unique 

supply contract for many stores, these centers’ energy costs are the same, equal to 140 

€/MWh for electricity purchase and to 0.35 €/Sm3 for the gas purchase. 

In order to estimate the potential energy saving related to the ventilation system, the design 

external airflow value has been compared to the value indicated by the technical standards. 

Italian standard UNI 10339 (UNI - Italian Organization for Standardization, 1995) suggests to 

evaluate the ventilation rate through Eq. 22: 

 
p aV R n A    22. 

This relation has the same form of Eq. 7, as the ventilation airflow is evaluated as a function 

of occupants only, but the occupants’ number is assumed to be proportional to the net 

occupiable floor area.  

In detail, this term is evaluated considering the number of occupants per unit surface na, that 

is tabulated for different kinds of buildings. Values obtained by Eq. 22 are in accordance with 

the design flowrate of ventilation systems fans, thus these values were used for the energy 

saving calculations. However, as UNI 10339 is quite obsolete and the external airflow values 

indicated in this standard are often generic, they tend to overestimate the actual number of 

occupants. For this reason, results of calculation evaluated with UNI 10339 have been 

compared with the methodology reported in the European EN 15251 standard (European 

Committee for Standardization, 2007), which is more recent than the Italian standard. This 

standard categorizes air ventilation systems for non-residential buildings according to three 

categories of PD value (15%, 20% and 30%), as in CEN CR 1752, while buildings are also 

distinguished in three further categories, according to the pollutants emissions (non-low polluted, 

low polluted, and very low polluted). The comparison between design external flow rate values 

is reported in Table 3, where the evaluation was carried out considering a building with a unitary 

surface, using Eq. 7 for EN 15251 and Eq. 22. for UNI 10339. 

It turns out that using the norm UNI 10339 provides results that are very similar to the values 

obtained by applying EN 15251 in the case of low polluted building with category III ventilation 

system (PD = 30%). Thus, it is possible to state that the approach followed in UNI 10339, 
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although resulting more energy saving-oriented, in this case, may lead to a low-quality internal 

comfort. 

Table 3. External flow rate according to standards UNI 10339 and EN 15251 considering a store with a 

unitary surface 

  Unit 

EN 15251 

UNI 

10339 
Category I Category II Category III 

Non-low 

polluted 

Low 

polluted 

Non-low 

polluted 

Low 

polluted 

Non-low 

polluted 

Low 

polluted 

External air flow 

rate per surface 
l/s m2 3.0 2.0 2.1 1.4 1.2 0.8 0.0 

Occupants per 

unit surface 
people/m2 0.143 0.143 0.143 0.143 0.143 0.143 0.25 

External air flow 

rate per person 
l/s people 14.7 14.7 10.5 10.5 6.3 6.3 6.5 

Total design 

external flow 

rate per surface 

l/s m2 5.10 4.10 3.60 2.90 2.10 1.70 1.63 

 

Currently, the air exchange in each store is realized using Roof Top Units (RTUs), that are 

installed on the roof of the sales area. These air exchange systems work with a fixed flow rate 

value, without the use of a heat recovery exchanger. Excluding HVAC components used for 

the offices, warehouse and the cooling system for the server room, the case studies buildings 

are equipped with the following systems: 

 Casamassima’s plant is composed by 4 RTUs (rated electrical power 81 kW each 

one) and a boiler (rated thermal power 420 kW); 

 Santa Caterina’s plant is equipped with 8 RTUs (51 kW); 

 Caponago’s plant consists in 5 RTUs (95 kW) and two boilers (735 kW each one). 

In these conditions, meeting the air exchange requirement produces a significant waste of 

energy, for this reason, in this phase the Authors considered the hypothesis of installing a heat 

recovery exchanger for each HVAC unit. 

The primary energy consumption for ventilation E has been calculated through Eq. 23: 

 
2

1

p out in

vent

c V t t
E d










   
   23. 

where ρ is the air density, cp is the air specific heat capacity at constant pressure, V̇ is the 

external air flow rate, tout is the external air temperature, tin is the required indoor air 

temperature, dτ is the time interval, and ηvent is the energy conversion efficiency, that is equal, 

depending on the equipment and on the season, to: 

 vent boil   if a gas boiler is used during winter, 

 
vent plantCOP    if a reverse cycle machine is used during winter 

 
vent plantEER    if a reverse cycle machine is used during summer 

where ηboil is the gas boiler efficiency, COP is the reverse cycle machine Coefficient Of 

Performance, EER is the reverse cycle machine Energy Efficiency Ratio and ηplant is the 

average efficiency of the national power plant system. 

As most of the variables in Eq. 23 are time dependent, a simplified approach, based on 

degree-days, has been adopted. The degree-day is a parameter representing the specific 
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energy demand for heating and cooling of indoor spaces. Values of degree-days for all the 

main Italian cities are provided by technical standard UNI 10349-3 (UNI - Ente Italiano di 

Normazione, 2016) for multiple indoor air temperatures. Thus, Eq. 23 can be simplified in Eq. 

24, considering the definition of degree-day (DDcool during the cooling season, DDheat in the 

heating season): 

 
p

cool cool

plant

c V
E DD

COP





 



 

p

heat heat

plant

c V
E DD

EER





 



 

24. 

where Ecool is the primary energy consumption for ventilation during the cooling cool season 

and Eheat is the primary energy consumption for ventilation during the hot season. It is trivial 

that Ecool + Eheat = E. The values of parameters in Eqs. 24 adopted in this study are reported in 

Table 4. In detail, different values of air density and specific heat capacity are reported, 

considering air as a perfect gas. It is important to specify that the heating season is established 

by the Presidential Decree 26 August 1993, n. 412 (Presidente della Repubblica Italiana, 

1993). Regarding the cooling season, as the duration is not fixed by regulation, data are based 

on the technical standards UNI 10349-3 (UNI - Ente Italiano di Normazione, 2016). 
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Table 4. Values of main parameters adopted in the case studies 

Parameter Unit 
Values for 

Casamassima 

Values for  

Santa Caterina 

Values for 

Caponago 

Heating season days 
166 (from 1 Nov. 

to 15 Apr.) 

166 (from 1 Nov. 

to 15 Apr.) 

183 (from 15 Oct. 

to 15 Apr.) 

Cooling season days 
124 (from 15 May  

to 15 Sep.) 

124 (from 15 May  

to 15 Sep.) 

107 (from 1 Jun.  

to 15 Sep.) 

External air flow rate m3/s 8.69 12.59 10.86 

Air density during winter kg/m3 1.292 1.292 1.316 

Air density during summer kg/m3 1.156 1.156 1.157 

Air specific heat capacity at 

constant pressure during winter 
J/(kg K) 1.004 1.004 1.003 

Air specific heat capacity at 

constant pressure during summer 
J/(kg K) 1.005 1.005 1.005 

Indoor air temperature during 

winter 
°C 20 

Indoor air temperature during 

summer 
°C 24 

Heating degree-days °C day 1654 1654 2454 

Cooling degree-days °C day 314 314 212 

Operating hours during winter hours/year 2,263 2,263 2,392 

Operating hours during summer hours/year 1,687 1,687 1,393 

Gas boiler efficiency - 85% - 85% 

Coefficient Of Performance - - 3.24
2
 - 

Energy Efficiency Ratio - 2.992 

Primary energy conversion factor 

for electricity from Italian grid 
TOE/MWh 0.184

3
 

Primary energy conversion factor 

for natural gas 
TOE/MWh 0.086 

CO2 emission factor for electricity 

from Italian grid 
ton CO2/MWh 0.303 (ISPRA, 2018) 

CO2 emission factor for natural gas ton CO2/MWh 
0.201 (Italian Ministry of the Environment and for 

Protection of the Land and Sea, 2017) 

 

Using Eqs. 24 with the parameters reported in Table 4, the yearly electricity and gas 

consumptions for the air ventilation have been evaluated. 

Table 5. Evaluation of the energy demand for ventilation in the case studies 

Parameter Unit Casamassima Santa Caterina Caponago 

Electricity demand during summer MWh/year 28.0 41.3 24.3 

Electricity demand during winter MWh/year 21.5 141.5 26.3 

Electricity demand during neutral period MWh/year 7.6 11.4 8.2 

Gas demand during winter Sm3 31,358 - 56,742 

Annual electricity expenditure €/year 7,993.73 27,175.06 8,229.85 

Annual gas expenditure €/year 10,975.33 - 19,859.64 

Total annual expenditure for ventilation €/year 18,969.06 27,175.06 28,089.49 

 

                                                 
2 Values based on datasheet of similar machines, having same sizes and produced in the same period. 
3
 Author’s elaboration from data contained in (Terna, 2016) 
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It is interesting to compare the results reported in Table 5 with the data reported in Table 2. 

Considering that the energy demand for ventilation is only a part of the total energy 

consumptions for HVAC systems, it is expected that the estimations of energy consumptions 

for ventilations (reported in Table 5) are a small fraction of values reported in Table 2. 

This statement is confirmed in all cases about electricity consumptions, as the ratio between 

ventilation to the total HVAC consumption assumes the values equal to 0.107, 0.132, 0.078, 

for Casamassima, Santa Caterina and Caponago, respectively. On the opposite, analyzing the 

gas consumption, the ratio between ventilation to total HVAC consumption takes values equal 

to 0.948 and 0.393. These high values may be explained considering that, in the common 

operation of the store, the ventilation air exchange is reduced as much as possible, in order to 

limit the energy consumption, especially during winter. 

As the authors’ goal is to assure that the air exchange satisfies technical standards, data 

reported in Table 5 are used as terms of comparison in the following sections. 

4.2 TO-BE scenarios 1: Heat Recovery Exchanger 

As energy consumption for air ventilation conditioning accounts for more than 19,000 €/year 

per building (in the best case), the first retrofit option considered aims to achieve a reduction 

in this energy demand. For this reason, the installation of heat recovery exchangers was 

analyzed. In order to identify the correct size of the heat exchanger and the related energy 

saving and investment cost, a simulation was performed with a sizing tool provided by a 

manufacturer (Sabiana S.p.a., 2018). For this reason, different values of recovery energy 

efficiency are reported, evaluated as a function of the outdoor and indoor temperatures. In 

Table 6, the technical data of the heat exchangers considered are reported: 

Table 6. Technical data of the heat recovery exchangers 

Parameter Unit 
Values for 

Casamassima 

Values for  

Santa Caterina 

Values for 

Caponago 

Design air flow rate m3/h 7,818 5,663 6,519 

Number of units - 4 8 6 

Recoverable thermal 

power during winter 
kW 41.77 30.25 45.9 

Recovery efficiency 

during winter 
- 74.36 % 74.33 % 76.82 % 

Recoverable thermal 

power during summer 
kW 14.85 10.75 12.39 

Recovery efficiency 

during summer 
- 75.24 % 75.21 % 75.31 % 

Installation cost € 5,363 4,300 4,811 

 

The authors evaluated the energy saving potential deriving from the installation of heat 

recovery exchangers. The results of this analysis are reported in Table 7. In details, as direct 

effects of the first retrofit solution, the reduction of electricity and gas consumptions have 

been evaluated. From the economic point of view, Table 7 reports the initial investment, the 

annual avoided expenditure for purchase of electricity and gas, the expected cash flow for a 

period of ten years and the breakeven time of the investments. Regarding the environmental 

benefits, the annual avoided primary energy consumption and the avoided CO2 emission are 

evaluated. 
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Table 7. Results of first retrofit solution in the three case studies 

Parameter Unit 
Values for 

Casamassima 

Values for  

Santa Caterina 

Values for 

Caponago 

Annual electricity demand MWh/year 46.4 93.9 50.1 

Annual gas demand Sm3/year 8,153 0 14,753 

Annual electricity saving MWh/year 10.8 100.2 8.7 

Annual gas saving Sm3/year 23,205.0 0.0 41,989.0 

Initial investment € 21,452.00 34,400.00 28,866.00 

Annual avoided expenditure €/year 9,627.65 14,022.84 15,915.78 

Discounted cash flow (ten years) € 78,871.59 113,777.04 136,761.65 

Breakeven time year 2.20 2.41 1.80 

Annual avoided primary energy 

consumption 
TOE/year 21.1 18.4 36.2 

Annual avoided CO2 emissions t CO2/year 48.0 30.3 83.6 

 

To perform the DCF evaluation, the authors assumed the following parameters: 

 Electricity inflation rate equal to 1.0%; 

 Natural gas inflation rate equal to 0.7%; 

 Interest rate equal to 5.0 %. 

About the economic aspects, Figure 9 shows the comparison of the discounted cash flow 

performed in the case of installing a heat recovery exchanger in each HVAC unit. Three 

different case studies are shown: the heating demand in Casamassima and Caponago is 

fulfilled by gas boiler during winter, while heat pumps are used in Santa Caterina. As 

introduced before, Casamassima and Santa Caterina are located in the same climatic region. 

 

Figure 9. Discounted cash flow, applying the Retrofit 1 

The suitability of the first retrofit solution (installation of heat recovery exchangers) is clearly 

shown in Figure 9. The comparison between breakeven times shows that this solution is more 

suitable in case of heating by gas boilers, especially in harsher climates, as the breakeven time 

of Caponago store (North Italy) is lower than Casamassima store (South Italy), both supplied 

by gas during winter. Santa Caterina store, using heating pump, shows a higher breakeven 

time, also in comparison with Casamassima store, that is located in the same climatic region. 

In any case, the breakeven time assumes very low values (about 2 years). The analysis of the 
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discounted cash flow demonstrated the relevance of climatic conditions, as the retrofit 

solution is able to produce the highest revenues for Caponago store. Regarding the two stores 

with the same climate, revenues are higher for Santa Caterina store than for Casamassima 

store. 

4.3 TO-BE scenarios 2: Air quality control system 

In this section, the authors suggest an interesting solution to optimize the energy expenditure 

for ventilation: install an air quality control system in order to modulate the ventilation rate 

according to the actual need. The approach can be easily applied also in old HVAC units 

realizing very limited upgrades: it is enough the installation of a CO2 and VOC sensor in each 

extraction air duct, in order to manage automatically the opening of the ejection dampers. 

Alternatively, the air quality control system could activate the extraction fans. 

The authors consider two tracer gases for the evaluation of indoor air quality, since CO2 is 

emitted only by occupants, not being other activities producing CO2 inside shopping centers, 

while VOC is emitted essentially by materials and objects exposed in the sales area. As these 

tracers have different origins, the emission rate of VOC is stable during the 24 hours of the 

day, while the CO2 emission is directly linked to the number of occupants, of which three 

different trends are reported in Figure 10. Since data are not available per each single store, a 

normalized profile has been modeled, dividing the number of people for the extension of the 

sales area. The values include also workers in the count. 

 

 

Figure 10. Trends of number of occupants in three typical days 

A quick analysis reveals that the values of occupants according to technical standards UNI 

10339 and EN 15251 are overestimated as compared to the statistical number of occupants in 

the case studies. As reported in Table 3, UNI 10339 suggests a people density equal to 0.25, 

EN 15251 indicates 0.143, while the graph reported above provides a value that, in the worst 

case, is equal to 0.0321.  

As consequence, the non-modulation of air flow rate produces a large waste of energy, due to 

the thermal treatment, not justified by the actual requirements for the indoor health. 

In order to maximize the energy saving for the ventilation, a simplified mathematical model is 

introduced by Eqs. 25, reported below. 
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     VOCVOC VOCA C t t
d

C t A l V
dt

        
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2 2, ,
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CO CO rif VOC VOC rif

V C C C C
V t

C C C C

   
 

  

 

The first two equations represent a mass balancing of pollutants, considering the time 

variation of the concentration of CO2 and VOC, the indoor generation of pollutants and the 

removal of pollutants, thanks to the ventilation. In detail, the indoor volume is expressed by 

the product of the occupiable surface area A and the average height l, the indoor generation of 

CO2 is linearly related to the number of occupants (time dependent function) while the 

generation of VOC is considered stable during the day and is related to the extension of the 

sale area. Finally, the removal of pollutants is based on the model reported in Figure 4, 

assuming the absence of VOC in the external airflow.  

The first two equations are interrelated, as the definition of ventilation air flow, expressed in 

the third equation. In detail, the ventilation system is started when the CO2 or VOC sensor 

measures a concentration of pollutants greater than the respective set points. This check is 

realized with a time step equal to 5 minutes, avoiding a frequent switching on of the 

ventilation systems. 

As furthermore simplification, the external air flow rate is assumed to be selected according 

the UNI 10339, commonly used in existing plants. At the same time, since specific data about 

the occupants’ time profile are not available, the number occupant in each store is assumed to 

be equal to the trends reported in Figure 10, multiplied by the sales area surfaces. As 

consequences, Eq. 25 can be simplified into Eq. 26: 

        2 2,2 0 2 0CO CO outCO COn t C t C t
d

C t l V
dt

            

     0VOCVOC VOC C t t
d

C t l V
dt

      

0 2 2, ,
0

2 2, ,
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CO CO rif VOC VOC rif

CO CO rif VOC VOC rif

V C C C C
V t

C C C C

   
 

  

 

26. 

Where V̇0 represents the air flow rate per unit surface, equal to 1.625 lt/(s-m2) and n0(t) is the 

normalized number occupants, reported in Figure 10. 
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Figure 11. CO2 and VOC concentrations trends in sales area for weekdays, Saturdays and Sundays in 

Retrofit scenario 2 

As the daily working hours are practically the same in the three stores, a single numerical 

simulation has been performed. The numerical results are reported in Figure 11, considering 

three different trends, according to the data of number of occupants introduced in Figure 10.  

In the first hours of the day, the ventilation is required to remove the excess of VOC 

concentration, accumulated during the night. For this reason, the switching on of the 

ventilation system is set at 6 a.m., one hour before the arrival of workers. The control of CO2 

is dominant after the 12:00 p.m. since the number of occupants increases significantly. 

The model is used also to evaluate the equivalent operating time of ventilation plants ensuring 

the indoor health. In detail, from Monday to Friday (having the same time trend of occupants) 

3.5 operating hours are required for the air exchange, 4.6 on Saturday and 3.7 on Sunday. 

Known the potential operative profile of ventilation plants, the authors evaluate the effects on 

the HVAC units, using the same parameters introduced in Table 7. The results of the second 

retrofit solutions are reported in Table 8.  
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Table 8. Results of second retrofit solution in the three case studies 

Parameter Unit 
Values for 

Casamassima 

Values for  

Santa Caterina 

Values for 

Caponago 

Annual electricity demand MWh/year 15.5 52.7 16.7 

Annual gas demand Sm3/year 8,520 0 16,087 

Annual electricity saving MWh/year 41.6 141.4 42.1 

Annual gas saving Sm3/year 22,838.1 0.0 40,654.7 

Initial investment € 8,000.00 11,000.00 9,500.00 

Annual avoided expenditure €/year 13,817.24 19,791.56 20,128.35 

Discounted cash flow (ten years) € 92,323.59 137,177.04 156,127.65 

Breakeven time year 0.83 0.78 0.59 

Annual avoided primary energy 

consumption 
TOE/year 26.5 26.0 41.3 

Annual avoided CO2 emissions t CO2/year 56.6 42.8 91.1 

 

Figure 12 shows the comparison of the discounted cash flow calculated in the case of 

installing a BAS, able to modulate the external airflow, according to the indoor levels of CO2 

and VOC. All three different case studies show a very low breakeven time (lower than one 

year), due to the limited budget for the initial investment and the great energy potential 

savings. 

 

Figure 12. Discounted cash flow, applying the Retrofit 2 

4.4 TO-BE scenarios 3: Combined Heat Recovery Exchanger and Air Quality System 

In last scenario, the effects of heat recovery exchanger and air quality control system are 

simultaneously analyzed. In this case, the working hours are the same of the case of installing 

the air quality system, but the operating energy cost is reduced thanks to the effects of heat 

recovery exchangers. 

The same parameters, used in the previous retrofit solutions, have been evaluated also in this 

scenario. The results are reported in Table 9. Regarding the economic aspect, Figure 13 shows 

the comparison of the discounted cash flow in the three case studies. As regard to the 

breakeven time in this case it is estimated to be ranging between 1.5 to 1.9 years, confirming 

the great economic convenience of this hypothesis. 
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Table 9. Results of third retrofit solution in the three case studies 

Parameter Unit 
Values for 

Casamassima 

Values for  

Santa Caterina 

Values for 

Caponago 

Annual electricity demand MWh/year 12.6 25.5 14.2 

Annual gas demand Sm3/year 2,215 0 4,183 

Annual electricity saving MWh/year 44.5 168.6 44.6 

Annual gas saving Sm3/year 29,142.9 0.0 52,559.2 

Initial investment € 29,452.00 45,400.00 38,366.00 

Annual avoided expenditure €/year 16,433.09 23,601.59 24,640.70 

Discounted cash flow (ten years) € 142,422.61 203,994.07 218,814.10 

Breakeven time year 1.77 1.90 1.54 

Annual avoided primary energy 

consumption 
TOE/year 32.2 31.0 51.5 

Annual avoided CO2 emissions t CO2/year 69.7 51.1 114.8 

 

 

Figure 13. Discounted cash flow, applying the Retrofit 3 

Table 10 shows a comparison of the three different retrofit scenarios of energy savings for the 

ventilation of the sales area: the installation of heat recovery exchangers, the installation of an 

air quality control system and the realization of both solutions. Data in table were colored to 

show the most (in green), the intermediate (in yellow) and the least (in red) profitable 

alternative. 

Data reported in Table 10 demonstrate that each retrofit solution is able to produce better 

results where the climate is harsher. The comparison of different technologies for the winter 

indoor heating shows better results in the case of gas supply (see Casamassima and Santa 

Caterina). From an economic and environmental point of view, this aspect can be related to 

the progressive introduction of Renewable Energy Sources (RES) in the Italian power grid, 

that reduces the impacts related to electricity consumption. Conversely, the case of gas supply 

is independent by the progressive diffusion of RES. Nevertheless, the three case studies 

reported in this paper demonstrate a great feasibility for all three retrofit scenarios. 
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Table 10. A comparison of three retrofit scenarios of energy savings for the ventilation of sales area 

 
Parameter Unit 

Retrofit 1:  

HX 

Retrofit 2:  

BAS 

Retrofit 3: 

HX+BAS 

C
a

sa
m

a
ss

im
a

 

Annual electricity saving MWh/year 10.8 41.6 44.5 

Annual gas saving Sm3/year 23,205.0 22,838.1 29,142.9 

Initial investment € 21,452.00 8,000.00 29,452.00 

Discounted cash flow (ten years) € 78,871.59 92,323.59 142,422.61 

Breakeven time year 2.20 0.83 1.77 

Annual avoided primary energy 

consumption 
TOE/year 21.1 26.5 32.2 

Annual avoided CO2 emissions t CO2/year 48.0 56.6 69.7 

S
a

n
ta

 C
a

te
r
in

a
 

Annual electricity saving MWh/year 100.2 141.4 168.6 

Annual gas saving Sm3/year 0 0 0 

Initial investment € 34,400.00 11,000.00 45,400.00 

Discounted cash flow (ten years) € 113,777.04 137,177.04 203,994.07 

Breakeven time year 2.41 0.78 1.90 

Annual avoided primary energy 

consumption 
TOE/year 18.4 26.0 31.0 

Annual avoided CO2 emissions t CO2/year 30.3 42.8 51.1 

C
a

p
o

n
a

g
o
 

Annual electricity saving MWh/year 8.7 42.1 44.6 

Annual gas saving Sm3/year 41989.0 40654.7 52559.2 

Initial investment € 28,866.00 9,500.00 38,366.00 

Discounted cash flow (ten years) € 136,761.65 156,127.65 218,814.10 

Breakeven time year 1.80 0.59 1.54 

Annual avoided primary energy 

consumption 
TOE/year 36.2 41.3 51.5 

Annual avoided CO2 emissions t CO2/year 83.6 91.1 114.8 

 

In order to provide a comparison between proposed interventions and one of the most typical 

retrofit interventions currently adopted, the installation of PV plant for the reduction of 

electricity bill has been proposed. In details, the comparison was evaluated against the first 

retrofit intervention, as it is the less profitable (check Table 10), and employing average data 

from Italian photovoltaic market (Enel X Italia S.p.A., n.d.), as reported in Table 11. 

If the installation cost is kept constant between HX and PV installation, the second scenario 

provides almost the half annual saving and the double payback time for each shopping center. 

Similarly, if the yearly economic saving is kept constant between HX and PV installation, the 

initial investment in the second scenario ranges between 1.6 times (for Santa Caterina) and 

2.6 times (for Caponago) the investment related to HX adoption. Regarding the avoided 

energy consumption and emissions, in both comparisons the quantities related to PV adoption 

range between 13% (for Caponago) and 51% (for Santa Caterina) of the HX installation 

scenario. 
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Table 11. Average market data for Italian photovoltaic sector 

Parameter Unit Casamassima Santa Caterina Caponago 

Specific PV cost €/kW 1,300 1,300 1,300 

Yearly equivalent operating hours h 1,930 1,930 1,630 

Average electricity selling price €/kWh 0.17 0.17 0.17 

Surface occupancy m2/kW 6.00 6.00 6.00 

 

5 CONCLUSIONS AND FUTURE DEVELOPMENTS 

This paper demonstrated the great energy savings potential that can be achieved in big 

shopping centers thanks to the employment of new technologies. Unlike most of existing 

literature, that is focused on energy savings of residential buildings, this paper shows the great 

relevance of primary energy consumption in non-residential buildings. Furthermore, studies 

on HVAC are typically related to the energy performance of the building envelope, 

representing the highest share, while the ventilation contribution is rarely analyzed. However, 

the case studies reported above demonstrated that the thermal treatment of external air flow 

produces also a not negligible contribution to the total energy demand. For this reason, the 

authors suggested innovative approaches, comparing the economic and thermal benefits. 

A brief review of international technical standards on ventilation systems has been provided, 

showing that the suggested values for air exchange are to be used only in general case, when a 

specific value is not available. Moreover, Italian UNI 10339 standard requires an update, to 

take into account the new available technologies. 

In order to reduce the energy demand for ventilation, different solutions have been 

considered, such as the installation of heat recovery exchangers, especially in existing 

buildings, and air quality control systems. The comparison has been provided considering 

both natural gas and electrical supply to the indoor heating, showing that the case of natural 

gas supply has greater environmental and economic benefits, compared to the electrical 

heating case. The comparison of the same technologies in different climatic context 

demonstrated the relevance of climatic conditions, from an economic and environmental point 

of view. 

Regarding the considered retrofit cases, although every considered option was shown to be 

very profitable, air quality control system (Retrofit 2) appears to be the most appealing 

choice, thanks to the limited initial investment and the high annual energy saving potential. 

On the opposite, the third scenario, where the initial investment is equal to the sum of the two 

separate solutions, shows a significantly lower achievable energy saving than the combined 

potentials of the single investment solutions. This is caused by the lower amount of heat 

recovered by the exchanger because of the airflow reduction. Nevertheless, the last solution is 

also actionable, as the breakeven time is quite low. The Authors wish to underline that the 

adoption of airflow regulation systems may conflict with the prescriptions provided in the 

technical standards. 

As future developments, in order to make results more reliable, shopping centers 

consumptions will be modeled through a thermophysical dynamic simulator. Moreover, a 

monitoring system, to account for the number of customers entering the shops, will be 

installed. This number will be considered as an input for the air fan speed control system. 

ACCEPTED M
ANUSCRIP

T



28 

 

AKNOWLEDGEMENTS 

The authors wish to thank Leroy Merlin Italia S.r.l. and Helexia Energy Services S.r.l. 

companies for the provision of confidential data useful to the present research activity and 

Consulting and Engineering Service Società di Ingegneria S.r.l. for the technical support. 

SYMBOLS AND ABBREVIATIONS 

A plan area 

ADSH Accumulated Difference of Specific Humidity 

AHU Air Handling Units 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers 

BAS Building Automation System 

C pollutant concentration in indoor and extraction air 

Cout pollutant concentration in outdoor air  

C0 pollutant concentration in indoor air when air change is off 

C∞ steady state pollutant concentration in indoor air when air change is on 

c cost for electricity supply 

cp air specific heat capacity 

COP Coefficient Of Performance 

Ċ pollutant indoor production rate 

DCF Discounted Cash Flow 

DD Degree-Days 

DIY Do It Yourself 

E primary energy consumption for ventilation 

Ecool primary energy consumption for ventilation during cooling season 

Eheat primary energy consumption for ventilation during heating season 

Ev ventilation efficiency 

EU European Union 

f inflation rate 

EER Energy Efficiency Ratio 

h enthalpy 

HVAC Heating, Ventilation and Air Conditioning 

HX Heat exchanger 

I0 initial investment 

l height of the room 

m air mass to be conditioned 

ṁ mass airflow 

N useful life of the investment 

n air change rate 

na occupants per unit floor area 

n0(τ) occupants per unit floor area as time function 

P number of occupants 

PD Percentage of Dissatisfied 

r latent heat of vaporization of the water 

Ra outdoor airflow required per unit floor area 

RES Renewable Energy Sources 

Rp outdoor airflow required per occupant person 

Rp,s outdoor airflow required per occupant person and per unit sensory load 

RTU Rooftop Unit 

t air temperature 

tin indoor air temperature 
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tout outdoor air temperature 

V room volume 

V̇ outdoor ventilation airflow rate 

V̇0 normalized outdoor ventilation airflow rate by surface 

VOC Volatile Organic Compounds 

x specific humidity 

α interest rate 

H enthalpy rise 

h specific enthalpy rise 

Q energy requirement for air conditioning 

q specific energy requirement for air conditioning 

ε pollutant emission factor 

ηboil gas boiler efficiency 

ηplant average efficiency of the national power plant system 

ηvent primary energy to thermal energy conversion efficiency 

ρ air density 

τ time 

0 time when the conditioning season starts 

end duration of the conditioning season 
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