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Numerical Methods for a Non-Linear Impact

Model: a Comparative Study with Closed-Form

Corrections
Stefano Papetti*, Federico Avanzini, and Davide Rocchesso

Abstract

A physically-based impact model – already known and exploited in the field of sound synthesis –

is studied using both analytical tools and numerical simulations. It is shown that the Hamiltonian of a

physical system composed of a mass impacting on a wall can be expressed analytically as a function

of the mass velocity during contact. Moreover, an efficient and accurate approximation for the mass

outbound velocity is presented, which allows to estimate the Hamiltonian at the end of the contact.

Analytical results are then compared to numerical simulations obtained by discretizing the system with

several numerical methods. It is shown that, for some regions of the parameter space, the trajectories

of the discretized systems may significantly drift from the analytically-derived curves. Two approaches,

based on enforcing numerical energy consistency, are then proposed to improve the accuracy of numerical

simulations.

Index Terms

Real time systems, simulation.

I. I NTRODUCTION

Physical models of impacts between objects are ubiquitous inmany areas of science and engineering,

including robotics [1], haptics [2], computer graphics [3], acoustics [4] and sound synthesis [5]. The
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phenomenologically plausible and energy-consistent behavior of contacting bodies is especially crucial

in simulations of interactions based on sustained or repeated impacts, such as in rolling [6], scraping, or

bouncing [7].

The higher is the upper limit of the perceptual bandwidth (andthe rendering rate), the more critical

is the accuracy that real-time numerical simulations can afford, thus making the problem of impact

modeling increasingly complex when moving from graphic, tohaptic, to auditory displays. Whereas

for most graphic displays it is sufficient to describe an impact in terms of the ratio between outbound

and inbound velocities, in haptic display and in sound synthesis the perceived characteristics of the

impact depend on how bodies interact during contact. Therefore, more sophisticated impact models and

carefully-designed discretizations are necessary in audio and haptic contexts.

A. Impact Models

The classic starting point is the Hertz model of collision between two spheres, which can be extended

to include internal viscosity [8]. The impact force in such models is the sum of a nonlinear elastic term –

in the form of a power law of compression – and a dissipative component proportional to the compression

velocity – via a second power law of compression. The exponents of the two power laws, as derived for

two colliding spheres, are3/2 and1/2, respectively [9].

In the context of musical acoustics, Stulov proposed a piano hammer model that includes relaxation

properties of felt [10]. Such model has exponentsα and α − 1 for the power laws, and the actual

value ofα can be used to match experimental data. Other models exist that take plastic deformations

into account, thus introducing abrupt direction changes inthe force-compression curves at the transition

between loading and unloading [11].

Particularly popular is the model by Hunt and Crossley [12],[1], [13], [14], [15], that generalizes the

extended Hertz model by considering a variable exponent that accounts for different contact shapes. In this

model, the power laws in the elastic and dissipative term areconsidered to be equal, thus allowing easier

closed-form calculations [16]. Despite not being fully justified in physical terms, the Hunt-Crossley model

has been quite successful in some areas of engineering because it allows to derive the phase trajectories

in closed form, and because it is sufficiently complex to represent a wide variety of contact phenomena.

In our work, we adopted this model and extended the range of the available analytical results.
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B. Applications in acoustic modeling

Contact models can serve as a basis for developing models of acoustic phenomena. In the context of

physically-based sound synthesis, the Hunt-Crossley model has been used to develop an impact sound

model [5], where a generic resonating object is used in placeof the classic rigid wall.

Other models of more complex acoustic phenomena have been developed based on the very same impact

model studied here. As an example, abouncingsound model [7] has been obtained by superimposing a

constant force, which simulates gravity, on a plain impact sound model. Also, arolling sound model [6]

has been implemented by driving an impact sound model by means of a physically-inspired control layer.

More precisely, the continuous interaction of a ball rolling on a surface has been modeled as a dense

temporal sequence of micro-impacts driven by the geometry of the contacting surfaces, and modulated

by the ball’s asymmetry.

Accurate and consistent impact modeling is crucial in some audio-haptic rendering applications, such

as interactive floors or shoes with vibratory and sonic augmentation [17].

In the context of musical sound synthesis, the piano and other percussive musical instruments have

also been modeled by using dissipative impact models [10].

C. Issues with discrete time

A wide range of numerical methods can be employed to discretize the interaction of impacting bodies.

Given a reference continuous-time system, such as the Hunt-Crossley model, the goal is to obtain

numerical quantities that follow the continuous-time trajectories as closely as possible, at an affordable

computational cost. Thus, efficiency and accuracy are centralissues.

Another important goal is energy consistency, especially in the case of repeated or sustained contacts.

A numerical method, albeit being accurate, can introduce spurious oscillations or instabilities if it fails in

terms of energy conservation. This justifies the development of energy-based methods, i.e. numerical

schemes based on the definition of a numerical energy that is proved to be conserved in lossless

conditions [18]. These provably-stable discrete-time models can be derived for some continuous-time

models, including some nonlinear oscillators, but are not available for more general nonlinear contact

models.

As for applications which make use of impact/contact models, energy inconsistencies are a recurring

issue. In computer graphics, where the constraint of low frame rates makes numerical systems prone to

instabilities [3], a typical example is provided by a steadyobject in resting contact with a rigid floor: when

the system does not retain passivity, the object can move upward and bounce [19]. Similar issues are
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encountered in simulations of haptic contact, where stiffness values are usually limited by requirements on

system passivity [20], [21], whereas higher values can cause the system to become unstable, for example

oscillating, or reacting actively to the input. In numerical sound synthesis by physical models [22],

artifacts and inconsistencies can become audible especially in situations of sustained or repeated contact

interactions, as in rolling, sliding or bouncing.

Instead of aiming at provably-stable numerical methods, this study looks at the accuracy of some

methods commonly found in physics-based engines [3], and measure their performance in following the

theoretical phase trajectories and in reproducing the energy exchanges that occur in the continuous-time

impact model.

D. Outline

In this paper, the Hunt-Crossley impact model is first characterized by proving some novel analytical

results. Such results are then used as a reference to compare the accuracy of several numerical simulations

of the model, obtained by discretizing the continuous-timeequations with a number of widely used

numerical methods. It is shown that for some regions of the parameter space, the trajectories of the

discretized systems may significantly drift from the analytically-derived curves. Finally, by exploiting the

provided analytical results, two approaches are proposed which allow to improve the accuracy of the

numerical simulations, thus restoring their energy consistency.

More in detail, the main contribution of this work can be summarized as follows:

1) Novel approximate closed-form expression for the outbound velocity, and quantification of its

relative error. Expression of the total energy (Hamiltonian) as a function of compression velocity

(Section II-A).

2) Analysis of the distortion caused by a constant external force on the analytically derived phase por-

traits. This is of some importance for applying the results toreal-world simulations (Section II-B).

3) Comparison of the analytically-derived phase portrait and Hamiltonian with those obtained by

applying four relevant numerical methods to the Hunt-Crossley impact model. Two critical cases

are examined: low dissipation and hard impact (Section III-B).

4) Proposal of two correction methods for numerical models, one based on the analytic dependence

of compression on velocity, and one based on a constraint on the outbound velocity (Section IV).

The remainder of the paper is organized as follows. Section II contains the analytical study, Section III-A

describes different numerical methods which are used for discretizing the continuous-time system, while

in Section III-B the corresponding numerical simulations are compared. Sections IV-A and IV-B show
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how the provided analytical results can be used to improve the behavior of the numerical simulations.

Finally, in Sections IV-C and IV-D the computational cost and accuracy of simulations with and without

corrections are compared and evaluated.

II. I MPACT MODEL

The Hunt-Crossley impact model [12] is described by the following non-linear equation describing the

impact force:

f(x, v) =





kxα + λxαv = kxα · (1 + µv) , x > 0

0 , x ≤ 0
(1)

wherex is the compression, v = ẋ is the compression velocity, α > 1 is the exponent of a power law

and represents thelocal shapeof contact surfaces,k is the stiffness coefficient, and 0 ≤ λ ≤ k is the

damping coefficient. The mathematically convenient termµ (= λ/k) allows to simplify some closed-form

calculations. The impact force model thus represents a non-linear spring of constantk in parallel with

a non-linear damper of constantλ. The termkxα corresponds to theelastic component, while λxαv

represents thedissipationdue to internal friction.

Marhefka and Orin [1] made use of the Hunt-Crossley model in order to represent the impact between

a lumped point-mass and a rigid wall (representing a comparatively massive surface which does not move

during collision), therefore considering the system described by the equation:

ma(t) = −f(x(t), v(t)) (2)

wherem is themass, anda is its acceleration. In this basic case, during contact the compression and the

compression velocity are respectively equivalent to the displacement and the velocity of the point-mass.

A. Properties and analytical results

Thanks to the simple form of (2), the model can be treated analytically and some of its properties can

be inferred. Hereafter the initial conditionsx(0) = 0 and ẋ(0) = vin are considered, that is to say that

the point-mass hits the rigid wall with velocityvin at time t = 0.

1) Compression:It is shown in [1] that from (2) it follows:

x(v) =

[
m(α+ 1)

kµ2
·

(
−µ(v − vin) + log

∣∣∣∣
1 + µv

1 + µvin

∣∣∣∣
)] 1

α+1

(3)

which can be exploited for plotting the phase portraits on the (x, v) plane shown in Fig. 1. From Fig. 1 it

can be inferred that, due to the viscous dissipation occurring during contact, the relationv(t+dt) < v(t)

holds, and in particular the output velocityvout is always smaller in magnitude than the corresponding
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Fig. 1. Phase portraits for varying input velocities:vin = 1 . . . 4 m/s. Other values of parameters are:m = 10−2 kg,

k = 109 N/mα, µ = 0.5 s/m, α = 1.5. Solid lines represent the mass trajectory during contact; dashed lines represent free

motion.

vin. Moreover, for increasingvin’s, vout converges to the limit valuevlim , −1/µ. The line v = vlim

represents the trajectory where the elastic and dissipative terms cancel, and separates two regions of the

phase space, each of which is never entered by trajectories started in the other one.

Equation (3) allows to infer themaximum compressionexperienced during contact, which occurs when

the compression velocity equals zero:

xmax = x(0) =

[
m(α+ 1)

kµ2
·

(
µvin + log

∣∣∣∣
1

1 + µvin

∣∣∣∣
)] 1

α+1

. (4)

As remarked in [1], (1) together with Fig. 1 show that the forcef becomes sticky (inward) when

v < vlim . However there is no physical inconsistency in this “stickiness” property, and indeed this never

occurs for trajectories with initial conditionsx(0) = 0 and ẋ(0) = vin > 0.

Finally, by substituting (3) in (2) the compression-force characteristics during collision can be plotted,

which are shown in Fig. 2. It can be noted that the dissipative term λxαv introduces hysteresis around

the curvekxα.

2) Output velocity:The restitution coefficientE is defined as:

E ,

∣∣∣∣
vout

vin

∣∣∣∣ . (5)
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Fig. 2. Compression-force characteristics for varying input velocities: vin = 1 . . . 4 m/s. Solid lines represent the case when

dissipation is taken into account (the values of parameters are the same asin Fig. 1). The dashed line represents the curvekxα,

where no dissipation is considered (λ = 0).

Note thatvin andvout correspond to the roots of the right-hand side of (3), that isthe points wherex = 0.

As a result,vout can be defined implicitly from (3) as a function of(µ, vin) only:

µvout − log |1 + µvout| = µvin − log |1 + µvin| . (6)

This implies thatµvout is a function ofµvin only, and thereforeE is also a function ofµvin only.

Analytical derivations of the dependenceE(µvin) have been classically performed in the limit of small

initial velocities and/or small dissipation [12].1 However, we suggest that a non-local approximation

ṽout can be empirically determined as anansatzwhich fits the curveE(µvin) in the two limit regions

µvin → 0+ andµvin → +∞, thus obtaining2:

ṽout(µ, vin) = vlim


1−




n∑

j=0

bj · v
j
in


 e−2µvin


 (7)

where, in the casen = 4, the coefficientsbj are:

b0 = 1, b1 = µ, b2 =
2

3
µ2, b3 =

2

9
µ3, b4 =

14

135
µ4. (8)

1Appendix A provides an example.

2See Appendix B for details.
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Fig. 3. Log-scaled percentage error of the output velocity approximated by ṽout, with respect to the value computed numerically

as a zero of (6). Ranges ofµvin are shown, for which the maximum error is respectively less than1% and0.1%.

From now on, unless specified otherwise, the notationṽout will refer to the fourth-order approximation

provided by (7) and the coefficients (8). Conventional iterative zero-finding methods applied to (6) can

always be used to compute a more precise release velocity at ahigher computational cost (see IV-C).

Fig. 3 shows the error introduced by the approximate valueṽout, when compared to the corresponding

value computed numerically as a zero of (6).

3) Contact time:It is shown in [23] that thecontact timecan be expressed as:

τ =
(m
k

) 1

α+1

·

(
µ2

α+ 1

) α

α+1

·

·

∫ vin

vout

1

(1 + µv)
[
−µ(v − vin) + log

∣∣∣ 1+µv
1+µvin

∣∣∣
] α

α+1

.
(9)

Equation (9) states that the contact timeτ depends only onµ, the exponentα and the ratiom/k, plus

obviously the impact velocityvin. Since neitherm nor k affect the value of the integral (recall thatvout

depends only onµ andvin), it follows that, given a fixedvin, the proportionalityτ ∼ (m/k)1/(α+1) holds.

From an auditory point of view the value of the contact time is strongly correlated to the perceived

“hardness” of the impact [23], [24]. Namely, as the contact time decreases, the perceived hardness

increases. Recalling the power-law dependence above and (1) it follows that, for a fixed massm, “hard”

and “soft” impacts correspond respectively to high and low force values.
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4) Energy properties and behavior:The energy variation in a mechanical system can be calculatedas

the work made by the non-conservative forcesfnc acting on the system along a certain pathx1 → x2:

∆H =

∫ x2

x1

fnc(x) dx =

∫ t2

t1

fnc(t)v(t) dt = −∆Λ (10)

whereH is the total energy content, known as theHamiltonian, Λ is the energy dissipation, and the

second integral is obtained by considering thatt1 andt2 correspond respectively to the instants when the

displacementsx1 andx2 are reached. The HamiltonianH is the sum of potential and kinetic energies,

hereafter namedV andT , respectively:

H(t) = V (t) + T (t) . (11)

With regard to the system represented by (2),T is related to the dynamics of the point-mass, which is

described by the left-hand side of (2), whileV is related to the elastic component of the impact force

of (1).

In agreement with the last integral in (10), multiplying both sides of (2) byv(t) = dx/dt and time-

integrating them, gives:
∫ t

0
ma(s)v(s) ds

︸ ︷︷ ︸
T (t)−T0

=

= −

∫ t

0
kx(s)αv(s) ds

︸ ︷︷ ︸
V (t)

−

∫ t

0
λx(s)αv(s)2 ds

︸ ︷︷ ︸
Λ(t)>0

(12)

where the force expression of (1) has been considered in the casex > 0 only. The first two integrals

in (12) can be solved explicitly, obtaining:

V (t) =
kx(t)α+1

α+ 1
, T (t) =

mv(t)2

2
. (13)

Considering a system where the point-mass travels with velocity vin before an impact occurs, then the

initial Hamiltonian corresponds to the initial kinetic energy:

H0 = T0 =
mv2in
2

. (14)

From (10) it follows that at each time instantt:

H(t) = H0 − Λ(t) (15)

and, sinceΛ(t) > 0, the following inequalities hold:

0 ≤ H(t+ dt) ≤ H(t) . (16)
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Fig. 4. Compression velocity-Hamiltonian characteristic. The two horizontal lines displayH0 = T0 andHτ = Tτ , that is

respectively the initial and the final Hamiltonian. The values of parametersare the same as in Fig. 1 forvin = 1 m/s. The

compression velocity axis has been inverted, thus allowing to read the graph from left to right.

Indicatingτ as the instant when an impact ends, thefinal Hamiltonianof the system, that is the energy

content right after contact, can be written as:

Hτ = Tτ =
mv2out

2
. (17)

Also, the total amount of energy dissipation occurred during contact is:

∆Hτ = Hτ −H0 = −Λτ (18)

which corresponds to the area enclosed by the hysteresis loops shown in Fig. 2.

As for the rightmost integral in (12), which is non-solvable, an equivalent expression can be obtained

by substituting the complementary results for the remaining integrals:

Λ(t) =

∫ t

0
λx(s)αv(s)2 ds =

m(v2in − v(t)2)

2
−

kx(t)α+1

α+ 1
. (19)

Finally, by substituting (3) in (19) and recalling (15), the following expression inv only is found:

H(v) = H0 − Λ(v) =
m

2
v2 −

m

µ
(v − vin) +

m

µ2
log

∣∣∣∣
1 + µv

1 + µvin

∣∣∣∣ (20)

which can be used for plotting the curve shown in Fig. 4.
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B. Addition of a constant external force

When a constant external forcefe (e.g. the force of gravity) is applied to the point mass, (2) has to

be rewritten as:

ma(t) + fe = −f(x(t), v(t)) . (21)

Unfortunately, in this case no closed-form analytical results can be found as those described in II-A.

In more detail, multiplying both sides of (21) byv(t) and time-integrating them, an equation is found

where an unsolvable integral is present, this way preventing to directly obtain explicit-form expressions

for x(v), ṽout andτ .

Rewriting the 2nd-order equation (21) as a system of 1st-order equations:




ẋ = v

v̇ = − k
mxα − λ

mxαv − fe
m

(22)

the equilibrium point of the system is found to be(xeq, veq) = (−f
1/α
e /k, 0), which corresponds to the

compression offsetin stationary conditions.

As Fig. 5 shows, for positive values offe andvin, the velocity of the point mass during the compression

phase is generally greater than in the case whenfe = 0. In particular, at the beginning of contact

interaction, sincefe is higher than the current impact forcef , the compression velocity exceedsvin.

On the other hand, compared to the case whenfe = 0, during the decompression phase the absolute

value of the point mass velocityv decreases, resulting in lower output velocities. Moreover, the resulting

maximum compression is always greater than that calculatedby (4).

III. N UMERICAL SIMULATIONS

In this section, the continuous-time system described by (2) is discretized by means of several numerical

methods, and the resulting numerical systems are studied.

A. Numerical methods

Different numerical methods were considered, which are commonly used in various fields of appli-

cations spacing from computer graphics, to physical simulation of dynamical systems and digital signal

processing. Thanks to their low order – which generally results in low computational cost – the chosen

methods are particularly suitable for real-time applications:

• The trapezoid rule is popular to translate analog filter structures to discrete-time filters, and it is the

basis for wave digital filters;
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Fig. 5. Phase portraits of impacts for different external forces applied: fe = m · (1, 2, 3) N. The bold line represents the case

wherefe = 0. The values of parameters are the same as in Fig. 1 except fork = 105 N/mα andvin = 0.05 m/s. Notice that,

due to the lack of analytical results when an external force is present, thephase portraits have been obtained as the result of

numerical simulations.

• Verlet integration is popular in physics-based graphic engines;

• Heun is a 2nd-order method (complexity similar to the previous two) representative of the Runge-

Kutta family;

• 4th-order Runge-Kutta is expected to be more accurate, and more expensive.

Following the standard notation in numerical analysis, theintegration step is a constant namedh (=

1/Fs).

1) 1-step Adams-Moulton (AM1):is aA-stable 2nd-order implicit method [25], also known asbilinear

transformation, or trapezoid rule.

Discretizing (2) results in the following equation in state-space form:

 xn+1

vn+1


 =


 1 h

0 1




 xn

vn


+




h2

4m

h
2m


 [fn+1 + fn] (23)

where the expression for the discrete-time force is obtained by replacing the continuous-time variables

x(t) andv(t) in (1) with their discrete-time counterparts.

Since the AM1 method is implicit, (23) is also in implicit form, and this is reflected in the instanta-

neous relationship between[xn+1 vn+1]
T andfn+1. Unfortunately, sincefn+1 also has an instantaneous
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dependence onxn+1 andvn+1 (given by (1)), the discrete-time counterpart of the systemdescribed by (2)

contains adelay-free loop, which is not directly computable and – because of the nonlinear dependence

f(x, v) – needs some special handling in order to be solved. In particular, theK-method[26] together

with Newton’s method[25] are used, weighing on the efficiency of the simulation (see IV-C).

2) Verlet: is a 2nd-order explicit method commonly used in computer graphics [3], video games, and

molecular dynamics simulation, where it is typically used for integrating Newton’s equation of motion

in order to describe the trajectory of moving particles. The one used here is a variant, calledvelocity

Verlet, which provides better handling of the velocity variable and can be seen as a predictor-corrector

method.

Discretizing (2), results in the following implementationscheme:

xn+1 = xn + hvn +
h2

2

fn
m

,

vn+ 1

2

= vn +
h

2

fn
m

, predictor,

fn+1 = f(xn+1, vn+ 1

2

) ,

vn+1 = vn+ 1

2

+
h

2

fn+1

m
, corrector.

(24)

It should be noted that this algorithm assumes thatfn+1 only depends on the predicted velocityvn+ 1

2

,

which clearly gives rise to inaccuracies.

3) Heun: is a predictor-corrector explicit method [25], [3], with the forward Euler method as predictor

and the trapezoid rule as corrector. It can also be seen as a2nd-order Runge-Kutta method(RK2).

Discretizing (2) results in the following implementation scheme:

ṽn+1 = vn + h
fn
m

, predictor,

xn+1 = xn +
h

2
(vn + ṽn+1) ,

fn+1 = f (xn+1, ṽn+1) ,

vn+1 = vn +
h

2

fn + fn+1

m
, corrector.

(25)

Again, it should be noted that bothxn+1 and fn+1 only depend on the predicted velocitỹvn+1, and

this gives rise to inaccuracies.

4) 4th-order Runge-Kutta (RK4):is an explicit iterative method [25], [3] which is widely used to

solve ODEs with improved accuracy.
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Discretizing (2) results in the following implementation scheme:

xn+1 = xn +
1

6
(l1 + 2l2 + 2l3 + l4) ,

vn+1 = vn +
1

6
(k1 + 2k2 + 2k3 + k4)

(26a)

where:

l1 = hvn , l2 = h(vn +
k1
2
) ,

l3 = h(vn +
k2
2
) , l4 = h(vn + k3) ,

k1 = h
fn
m

, k2 = h
f(xn + l1

2 , vn + k1

2 )

m
,

k3 = h
f(xn + l2

2 , vn + k2

2 )

m
, k4 = h

f(xn + l3, vn + k3)

m
.

(26b)

It should be noted that, for each sample, both the velocity and the non-linear force of (1) need to be

evaluated four times, therefore strongly affecting the efficiency of the simulation (see IV-C).

B. Experimental results

In order to evaluate the chosen numerical methods, it is useful to compare the behavior of the

corresponding simulations against the known analytical results (see II-A).

The main references used to quantitatively assess the reliability of a particular numerical methodduring

contact are equations (3) and (20), which express respectively the compressionx and the HamiltonianH

as functions of the compression velocityv. The errors onx andH are then measured as the maximum

deviations3 of their discrete-time versions from the respective analytical curvesx(v) andH(v), in relation

to the entire variation range of the quantities considered (i.e. xmax and ∆Hτ ). In detail, taking into

account (20) and definingHsim(xn, vn) as the Hamiltonian computed using the values of compression

and velocity resulting from a numerical simulation,4 and∆Hτ as in (18), themaximum deviation onH

is calculated by means of the following expression:

%dev(H) = 100 ·

∣∣∣∣∣
maxn

{
Hsim(xn, vn)−H(vn)

}

∆Hτ

∣∣∣∣∣ . (27)

3Such measures definitely have a different meaning compared to ordinary relative errors, since the latter would only account

for local deviations from the analytical curves. On the other hand, the proposed measure of error is obtained normalizing the

absolute error according to therange of variationof the quantities being evaluated, and picking the maximum deviation along

such range.

4That is, substitutingxn andvn in (13). Not to be confused with the discrete Hamiltonian defined in [22] forfinite-difference

schemes.
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Considering (3) and definingxmax as in (4), themaximum deviation onx is calculated as:

%dev(x) = 100 ·

∣∣∣∣
maxn {xn − x(vn)}

xmax

∣∣∣∣ . (28)

Finally, another indicator which allows to evaluate the accuracy and consistency of the simulations at

release from contact is provided by the output velocity computed numerically as a zero of (6), which is

used to calculate the relative error %err(vout) of its simulated counterpartvsim
out .

Throughout the following example simulations some values ofparameters are kept constant:m =

10−2 Kg, andFs = 44.1 kHz (i.e. a standard audio sample rate).

1) Non-critical simulations:In order to verify the numerical implementations, the parameters of the

model are set to a “safe” configuration, that is to far-from-extreme values. In this case, contact extends

over many samples, thus ensuring that the simulations are influenced only to a negligible extent by the

chosen sampling rate (see I-C) and should more likely behaveas the original continuous-time system.

This is confirmed qualitatively by Fig. 6, where the plots of all such simulations substantially over-

lap and coincide with the analytical curves. Moreover, Table I offers a quantitative evaluation of the

simulations, showing the errors introduced by the different numerical methods considered.

TABLE I

SUMMARY OF ERRORS IN NON-CRITICAL SIMULATIONS . THE VALUES OF PARAMETERS AREk = 103 N/Mα, µ = 0.5 S/M ,

α = 1.5, vIN = 0.5 M /S.

errors AM1 Verlet Heun RK4

%dev(x) 0.255 0.018 0.319 0.005

%err(vout) +2 ·10−5 +2 ·10−6
−3 ·10−5 +2 ·10−6

%dev(H) 3 ·10−4 0.052 4 ·10−4 1 ·10−5

2) Critical parameter regions:It has been found empirically that whenτ sim ≤ 4 samples, the errors

on x, H andvout heavily increase, resulting in an extremely poor reliability of all the simulations. The

obvious reason for this behavior is that, since only very fewsamples of data are available, the numerical

systems are totally unable to describe the original continuous-time counterpart. Hence, in the study

hereafter, only values of parameters resulting inτ sim > 4 samples are considered.

It has been observed that whenµ → 0+ and/or as the contact timeτ sim decreases (i.e. for “hard” im-

pacts), the behavior of most numerical implementations tends to become inconsistent with the continuous-

time system. Hereafter, the numerical systems are studied for these two critical configurations, respectively
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(a) Phase portraits. The two tangent lines represent the maximum compressionxmax calculated

by (4) and the output velocityvout computed numerically as a zero of (6).
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(b) Energy behaviors. The two horizontal lines displayH0 = T0 andHτ = Tτ , i.e. respectively

the initial and the final Hamiltonian.

Fig. 6. Qualitative comparison of different methods in non-critical simulations. The values of parameters arek = 103 N/mα,

µ = 0.5 s/m,α = 1.5, vin = 0.5 m/s.

namedcase 1andcase 2.

Case 1: low dissipation (µ → 0+)

In case of low dissipation, the Hamiltonian of both Verlet- and Heun-discretized systems is prone to

oscillations, while contact ends in an inconsistent final energy state: typically,HVerlet, Heun
τ > Hτ , where
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Fig. 7. Comparison of Hamiltonians for different implementations of a simulation example followingcase 1. The values of

parameters arek = 107 N/mα, µ = 0.01 s/m,α = 1.3, vin = 0.5 m/s. The contact time equals19 samples.

Hτ is defined as in (17) and is calculated using values ofvout computed numerically as zeros of (6).

As for AM1-discretized systems, these generally tend to dissipate too much energy during contact (i.e.

HAM1 < H), while slightly gaining spurious energy as the contact ends (i.e.HAM1
τ > Hτ ). On the other

hand, RK4-discretized systems generally behave quite consistently both during and after the contact

interaction (i.e.HRK4 ≈ H).

Fig. 7 shows the Hamiltonian of a simulation example with low dissipation (µ = 0.01), while Table II(a)

shows the resulting errors.

Case 2: hard impacts

With the exception of RK4-discretized systems, in this casethe simulations usually show more spread

errors:xsim, Hsim andvsim
out tend to substantially deviate from the respective analytical results.

Fig. 8 shows a hard impact simulation example following the values of parameters adopted in Fig. 1

for vin = 1 m/s, while Table II(b) shows the corresponding errors. The resulting contact timeτ equals

6 samples.

It is worth noticing that the RK4 method has been proved to behave quite consistently across disparate

configurations of parameters. Therefore, a highly oversampled RK-discretized system can be taken as a
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(a) Detail of phase portraits.
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(b) Hamiltonians.

Fig. 8. Comparison of phase portraits and Hamiltonians for different implementations of a simulation example followingcase

2. The values of parameters are the same as in Fig. 1 withvin = 1 m/s. The contact time equals6 samples.

reference, able to provide extremely accurate simulations.
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TABLE II

SUMMARY OF ERRORS IN EXAMPLE SIMULATIONS OFcase 1AND case 2. THE LAST COLUMN SHOWS THE ERROR YIELDED

BY THE APPROXIMATE VALUE ṽOUT WITH RESPECT TO THE VALUE COMPUTED NUMERICALLY: IT IS WORTH NOTICING THAT

IN BOTH CASES THE ERROR IS LOWER THAN THOSE YIELDED BY THE SIMULATIONS.

(a) Simulation example followingcase 1. The values of parameters are

the same as in Fig. 7.

errors AM1 Verlet Heun RK4 ṽout

%dev(x) 1.011 1.083 1.136 0.052 -

%err(vout) +0.039 +0.073 +0.067 +0.006 −1·10−5

%dev(H) 61.302 59.542 63.042 1.427 -

(b) Simulation example followingcase 2. The values of parameters are

the same as in Fig. 1 forvin = 1 m/s.

errors AM1 Verlet Heun RK4 ṽout

%dev(x) 4.381 4.418 19.506 0.412 -

%err(vout) +2.551 +0.839 −4.692 −0.105 −0.013

%dev(H) 7.885 9.475 23.387 0.410 -

IV. I MPROVED NUMERICAL SIMULATIONS

A. Exploitation of analytical results

In this section some solutions are proposed that allow to fix the inconsistencies pointed out in III-B.

The aim is to improve the accuracy and reliability of simulations which make use of the impact model

under study, in view of their implementation as real-time applications.

1) Hybrid numerical-analytical computation:This solution consists in computing the compression

velocity vn numerically – that is as a result of a numerical simulation, using for example one of the

numerical methods described in III-A – and employing it in (3) in order to calculate the corresponding

value of compressionx(vn) analytically. Different numerical methods may need different implementations

of this solution.

As a result, the corrected numerical system strictly follows the analytical curvesx(v) andH(v).

Since the computation is to be made at each sample for the wholeduration of the contact interaction,

this solution noticeably increases the computational loadof the simulation.

2) Output velocity constraint:The solution above can be applied only while the contact interaction

lasts, and therefore it cannot control the behavior of a numerical system upon the end of the impact. At

that time, the energy content (i.e. the residual kinetic energy T sim
τ = Hsim

τ ) can be controlled by forcing
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the output velocity to the approximate valueṽout.

Considering that the error introduced by (7) depends solelyon the productµvin (see Fig. 3), it is

advisable to apply the correction only when the productµvin corresponds to an acceptable error, or

the risk is to even worsen the behavior of the numerical system. However, the use of this conditional

correction always implies a trade-off: on the one hand it guarantees not to introduce errors greater than

a chosen maximum, while on the other hand 1) within the excluded range ofµvin, the output velocity is

not controlled and therefore depends only on the plain numerical method chosen, 2) within the included

intervals ofµvin, the risk is that the correction introduces errors even greater than those provided by the

non-corrected numerical system (this is true especially for non-critical parameter regions).

Once the output velocity has been forced toṽout, the corresponding compression should be set to0,

this way adhering to the compression-force characteristics shown in Fig. 2 by closing their numerical

counterpart at(x = 0, f = 0), and ensuring that the final potential energyV sim
τ is set to zero.

The computation of̃vout only needs to take place in correspondence to an impact event, and as soon

as the impact velocityvin is known.

B. Numerical simulations with corrections

In order to test the described corrections, they were applied to the worst behaving simulation examples

provided in III-B2: Fig. 9 and 10 show a comparison of Heun-based simulations following respectively

case 1andcase 2, with and without corrections.

1) Improved energy behavior:When the hybrid correction described in IV-A1 is applied, any simula-

tion strictly adheres to the analytical curvesH(v) andx(v) during contact, that is the respective errors,

as defined in (27) and (28), are equal to zero.5

As for the energy state upon the end of the interaction, the error on Hτ depends either on the error

introduced byṽout (when the output velocity constraint described in IV-A2 is actually applied), or on

the error introduced by the plain numerical simulation. As already stated in IV-A2, in the first case the

maximum error onvout is predictable, and clearly the same goes for the error onHτ .

Equation (27) allows to quantitatively assess the improvements on the energy consistency of the

numerical simulations.

The trend of error onH resulting from simulations with and without corrections isdepicted in

Figures 11(a) and 11(b), which show that even the best numerical method among those considered

(i.e. RK4) can be improved, especially for critical values of parameters (see III-B2) such asµvin → 0+.

5Not taking into account the inherent errors related to the representation of numbers in the digital domain.
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Fig. 9. Comparison of the Hamiltonians of a Heun-based simulation examplefollowing case 1, with and without corrections.

2) Sequence of impacts:In order to better appreciate the importance of the proposedcorrections,

a sequence of rebounds has been implemented applying a conservative force (e.g. gravity) during free

motion only.6 Thanks to this setup, one can track the accumulation of energyanomalies at each contact

interaction.

To this end, the residual energyHsim
τ(i) of numerical simulations after thei-th impact was examined

and compared to the residual energyHτ(i) due to the exit velocityvout(i) of the i-th rebound, computed

numerically as a zero of (6). The corresponding relative error provides a measure of the inaccuracies

accumulatedduring the sequence of impacts. In addition, the deviation of Hsim with respect to the

analytical curveH(v) was measured according to (27) along the whole sequence of impacts.

Table III shows the errors on the residual energyHsim
τ(100) and the maximum deviations ofHsim occurred

during a sequence of100 impacts, for simulation examples followingcase 1and case 2. Notice that,

since in some simulations the energy can strongly oscillateduring contact (see Fig. 7), the maximum

deviations fromH(v) do not necessarily reflect the accumulated errors. The last columns show the

errors resulting from simulations corrected as suggested in IV-A, where the error threshold for the output

6That is, the external force is temporarily suspended during the short contact at each rebound. As shown in II-B, when an

external force is applied during contact, no closed-form analytical result is available, this way making the corrections provided

in IV-A unsuitable.
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Fig. 10. Comparison of a Heun-based simulation example followingcase 2, with and without corrections.

velocity constraint is set to0.1%, i.e. the correction is always applied (see Fig. 3).

In order to better understand the importance of such corrections, Fig. 12 provides a partial plot of the

sequence of rebounds forcase 2, where only the two better performing simulations are depicted.

From Table III and Fig. 12 it is evident that, even in case of errors apparently negligible for a single
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Fig. 11. Trend of error on the Hamiltonian for RK4-based simulations with and without corrections, for small values ofµ and

vin. For the values ofµvin considered, the output velocity constraint is always applied (see Fig. 3). The values of parameters,

where kept constant, arek = 109 N/mα, µ = 0.5 s/m,α = 1.5, vin = 0.5 m/s. At each corresponding point of the two parallel

plots, the productµvin is the same. It can be noted that, when not using any corrections, the weight of µ on the error is clearly

greater than that ofvin.

impact (see the errors relative to RK4 in Table II), indeed energy inconsistencies accumulate and can

become noticeable – if not disastrous – after a certain number of contact interactions.

On the other hand, the errors resulting from the corrected simulations are actually negligible, and they

are only due to inaccuracies in the forced exit velocityṽout. The effectiveness of such corrections is
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TABLE III

SUMMARY OF ERRORS ON THE RESIDUAL ENERGYHSIM
τ(100) (ACCUMULATED ERROR), AND MAXIMUM DEVIATIONS OF HSIM

CALCULATED ACCORDING TO (27) ALONG THE WHOLE SUCCESSION OF100 REBOUNDS.

(a) Simulation examples followingcase 1. The values of parameters are

the same as in Fig. 7, except for input velocities decreasing at each

rebound.

errors onH AM1 Verlet Heun RK4 corrected

sim.

accum. %err 12.022 10.059 147.036 0.907 < 10−7

max %dev 72.962 72.107 63.043 14.466 0

(b) Simulation examples followingcase 2. The values of parameters are

the same as in Fig. 1, starting with input velocityvin = 1 m/s.

errors onH AM1 Verlet Heun RK4 corrected

sim.

accum. %err 24.285 15.780 946.600 2.153 0.001

max %dev 69.156 43.966 27.418 6.255 0
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Fig. 12. Sequence of rebounds obtained from Verlet- and RK4-basedsimulations followingcase 2, compared with the trajectory

of a corrected simulation.

confirmed comparing the results of a16× oversampled RK4 simulation used as a reference: incase 1

the accumulated error onH is 0.001% and the maximum deviation is0.024%, while in case 2they are
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respectively0.002% and0.006%.

C. Computational cost

In this section, the computational costs of both the numerical implementations seen in III-A and the

corrections suggested in IV-A are taken into account. In particular, the cost has been measured as the

number of operations (i.e., memory write/read accesses andarithmetical operations) needed to execute

an algorithm.

Table IV(a) summarizes the cost of the algorithms implementing the numerical methods. Since the

AM1-based implementation makes use of Newton’s method, itscost is displayed on two sub-columns:

the first one shows the constant cost per sample, while the second one (in italics) shows the cost of a

single iteration of Newton’s method. Notice that the numberof iterations per sample is not predictable.

Table IV(b) shows the cost of the corrections considered. For comparison, the last column reports the

cost of a single zero-finding iteration on (6). The number of iterations depends onµ and vin, and is

usually in the order of some tens.7 It is clear that, despite being more precise than the approximate value

ṽout, the value computed numerically as a zero of (6) implies several times the number of operations

required byṽout.

Since the computational load of simple write/read operations is generally low (if not negligible), two

totals for each column are reported: one excluding write/read operations and, in brackets, one accounting

for them.

Recalling that the hybrid correction only affects the computational cost during contact, whereas the

output velocity constraint is applied at most8 once per impact event, from Table IV one can infer that

Verlet- or Heun-based simulations with corrections are roughly three times as efficient as plain RK4-

based simulations during free motion, and almost twice as efficient during contact. On the other hand,

while the exact computational load of an AM1-based simulation is not predictable, it can be noted that

it already matches the cost of a RK4-based one after two iterations of Newton’s method.

D. Evaluation of methods

The considered implementations can be finally evaluated in thelight of the results regarding their

accuracy (see III-B and IV-B2) and computational load (see IV-C).

7The number of iterations was empirically found as being usually between 15and 40. Moreover, asµ decreases, the number

of iterations increases.

8As shown in IV-A2, the output velocity constraint is applied conditionally.
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TABLE IV

NUMBER OF OPERATIONS NEEDED BY THE NUMERICAL METHODS SHOWN INIII-A AND THE CORRECTIONS DESCRIBED

IN IV-A. T HE TOTALS IN BRACKETS ACCOUNT FOR WRITE/READ OPERATIONS.

(a) Since the AM1-based implementation makes use of Newton’s

method, its cost is displayed on two sub-columns: the first one shows

the cost per sample, while the second one (in italics) shows the cost

of a single Newton’s method iteration.

AM1 Verlet Heun RK4

write 6 10 5 5 20

read 16 33 20 21 72

+/− 3 8 7 8 22

× 8 11 5 5 18

÷ 0 1 3 3 8

bit-shift 0 0 2 3 6

exp 0 1 1 1 4

log 0 0 0 0 0

compare 0 4 1 1 4

TOTAL 11 (33) 25 (68) 19 (44) 21 (47) 62 (154)

(b) The last column (in italics) shows the cost of a

single zero-finding iteration on (6).

hybrid ṽout vout

correct. constraint as zero of (6)

write 1 2 1

read 7 4 3

+/− 6 5 4

× 7 6 3

÷ 3 4 1

bit-shift 0 1 0

exp 0 1 0

log 1 0 1

compare 1 1 0

TOTAL 18 (26) 18 (24) 9 (12)

It can be stated that, among the non-corrected implementations, the best all-round performance is

achieved by RK4-discretized systems, although they are quite computationally expensive. On the other

hand, a corrected Verlet-discretized system is generally at least as good as a non-corrected RK4 imple-
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mentation, at a fraction of its computational load.

As for AM1-based implementations, it was shown that they behave quite poorly in the critical regions

identified ascase 1and case 2. These poor results in terms of accuracy, together with a generally

high (and non-predictable) computational load, set the AM1method as a hardly recommendable choice.

Apparently such conclusion can be quite surprising, especially if one considers that AM1 is the only

implicit andA-stable method among those considered. However, the presence of nonlinearities, together

with the inaccuracies introduced by the K-method and Newton’s method, justify the behavior of AM1-

based implementations.

V. CONCLUSIONS

A non-linear physical model of impact with sound synthesis applications has been reviewed, and its

properties have been studied using both analytical tools and numerical simulations.

Several numerical realizations have been compared, and their shortcomings with regard to the corre-

sponding analytical results have been pointed out. Special emphasis has been placed on energy consistency.

It has been shown that by exploiting the analytical results provided, the inconsistencies of the numerical

realizations can be amended, thus restoring the correct energy state of the simulated systems, during and

after contact.

Future research will consider finding a closed-form approximation of the release velocity for the system

of (21), where a constant external force is applied, in this way allowing to implement suitable corrections.

Even without such a closed-form solution, zero-finding numerical procedures could be profitably used

to fix individual impacts. More interestingly for applications in acoustics, solutions will be investigated

for extending the corrections to the case where vibrationallosses are present, thus being applicable to

impacts with resonating objects.

APPENDIX

A. Polynomial expansion of the output velocity

As mentioned in II-A2, Hunt and Crossley [12] suggested that, in the limit µvin → 0+, the restitution

coefficient can be approximated by the linear functionẼ(µvin) = (1− 2/3µvin). Then, recalling (5), the

corresponding output velocity is:

ṽout(µ, vin) = (−vin +
2

3
µv2in) . (29)

This result can be easily verified through a Taylor expansion ofthe two sides in (6), using the approxi-

mation log |1 + ǫ| ≈ ǫ− ǫ2

2 + ǫ3

3 , for ǫ → 0+.
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The same approach can be used in order to find a polynomial expansion of ordern:

ṽout =

n∑

j=1

aj · v
j
in (30)

in the limit µvin → 0+. Equation (30) is then substituted into the left-hand side ofthe Taylor expansion

of (6). For the casen = 4 one obtains:
[
µ2

2
v2out −

µ3

3
v3out +

µ4

4
v4out −

µ5

5
v5out

]

vout=
∑

4

1
ajv

j

in

=
1

2
µ2v2in −

1

3
µ3v3in +

1

4
µ4v4in −

1

5
µ5v5in .

(31)

The coefficientsaj are then determined by equating the two sides of (31) term by term, leading to the

system: 



1

2
µ2a21 =

1

2
µ2,

1

3
µ3a31 − µ2a1a2 =

1

3
µ2,

1

4
µ4a41 − µ3a21a2 + µ2a1a3 +

1

2
µ2a22 =

1

4
µ2,

1

5
µ5a51 − µ4a31a2 + µ3a1a

2
2+

+ µ3a21a3 − µ2a1a4 − µ2a2a3 =
1

5
µ2

(32)

which yields:

a1 = −1 , a2 =
2

3
µ , a3 = −

4

9
µ2 , a4 =

44

135
µ3 . (33)

It follows that, in (30),vout is a function of(µ, vin) only. Equations (30) and (33) result in a slightly

better approximation than (29), but still provide a local approximation.

B. A non-local approximation for the output velocity

From (6)vout can be written as:

vout =
1

µ

[
(1 + µvin)e

−µ∆v − 1
]
=

= vlim
[
1− (1 + µvin)e

−µ∆v
] (34)

where∆v = vin − vout. Equation (34) emphasizes that the convergencevout → vlim for vin → +∞ is

governed by the fast-decreasing terme−µ∆v.

For smallvin’s, the zeroth order approximation of the exponential term is e−2µvin , however it is easy

to verify that the equation:

ṽout = vlim
[
1− (1 + µvin)e

−2µvin
]

(35)
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does not provide an accurate approximation ofvout for small vin’s. More precisely, its Taylor expansion

aroundvin = 0 only matches the first Taylor coefficient of the expansion (30):

ṽout ≈
vin→0+

n∑

j=1

ãj · v
j
in ,

ã1 = −1 and ãj 6= aj (j > 1) .

(36)

This qualitative discussion justifies to some extent the non-local approximation forvout given in (7).

Indeed (7) combines the two views –µvin → 0+ andµvin → +∞ – onvout: the exponential term ensures

the convergencevout → vlim for high values ofµvin, while the polynomial coefficientsbj are determined

by imposing that the Taylor expansion of (7) aroundvin = 0 matches that of (30). Recalling that:

e−2µvin ≈
vin→0+

n∑

j=1

cj · v
j
in , cj =

(−1)j

j!
(2µ)j , (37)

then one can verify that thel-th order coefficiental of the Taylor expansion of (7) is given asal =

1
µ

∑l
j=1 bj · c(l−j). Then the coefficientsbj can be determined recursively as:

b0 = 1 , bj = µaj −

j−1∑

l=0

bl · c(j−l) (1 ≤ j ≤ n) . (38)

Applying this recursive equation for the casen = 4 yields (8).
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Numerical Methods for a Non-Linear Impact
Model: a Comparative Study with Closed-Form

Corrections
Stefano Papetti*, Federico Avanzini, and Davide Rocchesso

Abstract—A physically-based impact model – already known
and exploited in the field of sound synthesis – is studied using both
analytical tools and numerical simulations. It is shown that the
Hamiltonian of a physical system composed of a mass impacting
on a wall can be expressed analytically as a function of the
mass velocity during contact. Moreover, an efficient and accurate
approximation for the mass outbound velocity is presented, which
allows to estimate the Hamiltonian at the end of the contact.
Analytical results are then compared to numerical simulations
obtained by discretizing the system with several numerical
methods. It is shown that, for some regions of the parameter
space, the trajectories of the discretized systems may significantly
drift from the analytically-derived curves. Two approaches, based
on enforcing numerical energy consistency, are then proposed to
improve the accuracy of numerical simulations.

Index Terms—Real time systems, simulation.

I. I NTRODUCTION

PHYSICAL models of impacts between objects are ubiqui-
tous in many areas of science and engineering, including

robotics [1], haptics [2], computer graphics [3], acoustics [4]
and sound synthesis [5]. The phenomenologically plausible
and energy-consistent behavior of contacting bodies is espe-
cially crucial in simulations of interactions based on sustained
or repeated impacts, such as in rolling [6], scraping, or
bouncing [7].

The higher is the upper limit of the perceptual bandwidth
(and the rendering rate), the more critical is the accuracy
that real-time numerical simulations can afford, thus making
the problem of impact modeling increasingly complex when
moving from graphic, to haptic, to auditory displays. Whereas
for most graphic displays it is sufficient to describe an impact
in terms of the ratio between outbound and inbound veloc-
ities, in haptic display and in sound synthesis the perceived
characteristics of the impact depend on how bodies interact
during contact. Therefore, more sophisticated impact models
and carefully-designed discretizations are necessary in audio
and haptic contexts.
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A. Impact Models

The classic starting point is the Hertz model of collision
between two spheres, which can be extended to include
internal viscosity [8]. The impact force in such models is the
sum of a nonlinear elastic term – in the form of a power law
of compression – and a dissipative component proportional
to the compression velocity – via a second power law of
compression. The exponents of the two power laws, as derived
for two colliding spheres, are3/2 and1/2, respectively [9].

In the context of musical acoustics, Stulov proposed a piano
hammer model that includes relaxation properties of felt [10].
Such model has exponentsα andα − 1 for the power laws,
and the actual value ofα can be used to match experimental
data. Other models exist that take plastic deformations into
account, thus introducing abrupt direction changes in the force-
compression curves at the transition between loading and
unloading [11].

Particularly popular is the model by Hunt and Crossley [12],
[1], [13], [14], [15], that generalizes the extended Hertz model
by considering a variable exponent that accounts for different
contact shapes. In this model, the power laws in the elastic
and dissipative term are considered to be equal, thus allowing
easier closed-form calculations [16]. Despite not being fully
justified in physical terms, the Hunt-Crossley model has been
quite successful in some areas of engineering because it allows
to derive the phase trajectories in closed form, and becauseit
is sufficiently complex to represent a wide variety of contact
phenomena. In our work, we adopted this model and extended
the range of the available analytical results.

B. Applications in acoustic modeling

Contact models can serve as a basis for developing models
of acoustic phenomena. In the context of physically-based
sound synthesis, the Hunt-Crossley model has been used to
develop an impact sound model [5], where a generic resonating
object is used in place of the classic rigid wall.

Other models of more complex acoustic phenomena have
been developed based on the very same impact model studied
here. As an example, abouncingsound model [7] has been
obtained by superimposing a constant force, which simulates
gravity, on a plain impact sound model. Also, arolling sound
model [6] has been implemented by driving an impact sound
model by means of a physically-inspired control layer. More
precisely, the continuous interaction of a ball rolling on a
surface has been modeled as a dense temporal sequence
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of micro-impacts driven by the geometry of the contacting
surfaces, and modulated by the ball’s asymmetry.

Accurate and consistent impact modeling is crucial in some
audio-haptic rendering applications, such as interactivefloors
or shoes with vibratory and sonic augmentation [17].

In the context of musical sound synthesis, the piano and
other percussive musical instruments have also been modeled
by using dissipative impact models [10].

C. Issues with discrete time

A wide range of numerical methods can be employed
to discretize the interaction of impacting bodies. Given a
reference continuous-time system, such as the Hunt-Crossley
model, the goal is to obtain numerical quantities that follow
the continuous-time trajectories as closely as possible, at an
affordable computational cost. Thus, efficiency and accuracy
are central issues.

Another important goal is energy consistency, especially
in the case of repeated or sustained contacts. A numerical
method, albeit being accurate, can introduce spurious oscilla-
tions or instabilities if it fails in terms of energy conservation.
This justifies the development of energy-based methods, i.e.
numerical schemes based on the definition of a numerical en-
ergy that is proved to be conserved in lossless conditions [18].
These provably-stable discrete-time models can be derived
for some continuous-time models, including some nonlinear
oscillators, but are not available for more general nonlinear
contact models.

As for applications which make use of impact/contact mod-
els, energy inconsistencies are a recurring issue. In computer
graphics, where the constraint of low frame rates makes
numerical systems prone to instabilities [3], a typical example
is provided by a steady object in resting contact with a rigid
floor: when the system does not retain passivity, the object can
move upward and bounce [19]. Similar issues are encountered
in simulations of haptic contact, where stiffness values are
usually limited by requirements on system passivity [20],
[21], whereas higher values can cause the system to become
unstable, for example oscillating, or reacting actively tothe
input. In numerical sound synthesis by physical models [22],
artifacts and inconsistencies can become audible especially in
situations of sustained or repeated contact interactions,as in
rolling, sliding or bouncing.

Instead of aiming at provably-stable numerical methods, this
study looks at the accuracy of some methods commonly found
in physics-based engines [3], and measure their performance in
following the theoretical phase trajectories and in reproducing
the energy exchanges that occur in the continuous-time impact
model.

D. Outline

In this paper, the Hunt-Crossley impact model is first
characterized by proving some novel analytical results. Such
results are then used as a reference to compare the accuracy
of several numerical simulations of the model, obtained by
discretizing the continuous-time equations with a number of
widely used numerical methods. It is shown that for some

regions of the parameter space, the trajectories of the dis-
cretized systems may significantly drift from the analytically-
derived curves. Finally, by exploiting the provided analytical
results, two approaches are proposed which allow to improve
the accuracy of the numerical simulations, thus restoring their
energy consistency.

More in detail, the main contribution of this work can be
summarized as follows:

1) Novel approximate closed-form expression for the out-
bound velocity, and quantification of its relative error.
Expression of the total energy (Hamiltonian) as a func-
tion of compression velocity (Section II-A).

2) Analysis of the distortion caused by a constant external
force on the analytically derived phase portraits. This is
of some importance for applying the results to real-world
simulations (Section II-B).

3) Comparison of the analytically-derived phase portrait
and Hamiltonian with those obtained by applying four
relevant numerical methods to the Hunt-Crossley impact
model. Two critical cases are examined: low dissipation
and hard impact (Section III-B).

4) Proposal of two correction methods for numerical mod-
els, one based on the analytic dependence of compres-
sion on velocity, and one based on a constraint on the
outbound velocity (Section IV).

The remainder of the paper is organized as follows. Sec-
tion II contains the analytical study, Section III-A describes
different numerical methods which are used for discretizing
the continuous-time system, while in Section III-B the corre-
sponding numerical simulations are compared. Sections IV-A
and IV-B show how the provided analytical results can be used
to improve the behavior of the numerical simulations. Finally,
in Sections IV-C and IV-D the computational cost and accuracy
of simulations with and without corrections are compared and
evaluated.

II. I MPACT MODEL

The Hunt-Crossley impact model [12] is described by the
following non-linear equation describing the impact force:

f(x, v) =

{
kxα + λxαv = kxα · (1 + µv) , x > 0
0 , x ≤ 0

(1)

wherex is thecompression, v = ẋ is thecompression velocity,
α > 1 is the exponent of a power law and represents thelocal
shapeof contact surfaces,k is the stiffness coefficient, and
0 ≤ λ ≤ k is the damping coefficient. The mathematically
convenient termµ (= λ/k) allows to simplify some closed-
form calculations. The impact force model thus represents
a non-linear spring of constantk in parallel with a non-
linear damper of constantλ. The termkxα corresponds to
the elastic component, while λxαv represents thedissipation
due to internal friction.

Marhefka and Orin [1] made use of the Hunt-Crossley
model in order to represent the impact between a lumped
point-mass and a rigid wall (representing a comparatively mas-
sive surface which does not move during collision), therefore
considering the system described by the equation:

ma(t) = −f(x(t), v(t)) (2)
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Fig. 1. Phase portraits for varying input velocities:vin = 1 . . . 4 m/s. Other
values of parameters are:m = 10−2 kg, k = 109 N/mα, µ = 0.5 s/m,
α = 1.5. Solid lines represent the mass trajectory during contact; dashed
lines represent free motion.

wherem is the mass, anda is its acceleration. In this basic
case, during contact the compression and the compression
velocity are respectively equivalent to the displacement and
the velocity of the point-mass.

A. Properties and analytical results

Thanks to the simple form of (2), the model can be
treated analytically and some of its properties can be inferred.
Hereafter the initial conditionsx(0) = 0 and ẋ(0) = vin are
considered, that is to say that the point-mass hits the rigidwall
with velocity vin at time t = 0.

1) Compression:It is shown in [1] that from (2) it follows:

x(v) =

[
m(α+ 1)

kµ2
·

(
−µ(v − vin) + log

∣∣∣∣
1 + µv

1 + µvin

∣∣∣∣
)] 1

α+1

(3)
which can be exploited for plotting the phase portraits on
the (x, v) plane shown in Fig. 1. From Fig. 1 it can be
inferred that, due to the viscous dissipation occurring during
contact, the relationv(t+ dt) < v(t) holds, and in particular
the output velocityvout is always smaller in magnitude than
the correspondingvin. Moreover, for increasingvin’s, vout

converges to the limit valuevlim , −1/µ. The linev = vlim

represents the trajectory where the elastic and dissipative terms
cancel, and separates two regions of the phase space, each of
which is never entered by trajectories started in the other one.

Equation (3) allows to infer themaximum compressionex-
perienced during contact, which occurs when the compression
velocity equals zero:

xmax = x(0) =

[
m(α+ 1)

kµ2
·

(
µvin + log

∣∣∣∣
1

1 + µvin

∣∣∣∣
)] 1

α+1

.

(4)
As remarked in [1], (1) together with Fig. 1 show that the

forcef becomes sticky (inward) whenv < vlim . However there
is no physical inconsistency in this “stickiness” property, and
indeed this never occurs for trajectories with initial conditions
x(0) = 0 and ẋ(0) = vin > 0.
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Fig. 2. Compression-force characteristics for varying input velocities:
vin = 1 . . . 4 m/s. Solid lines represent the case when dissipation is taken
into account (the values of parameters are the same as in Fig. 1). The dashed
line represents the curvekxα, where no dissipation is considered (λ = 0).

Finally, by substituting (3) in (2) the compression-force
characteristics during collision can be plotted, which are
shown in Fig. 2. It can be noted that the dissipative termλxαv
introduces hysteresis around the curvekxα.

2) Output velocity:The restitution coefficientE is defined
as:

E ,

∣∣∣∣
vout

vin

∣∣∣∣ . (5)

Note thatvin andvout correspond to the roots of the right-hand
side of (3), that is the points wherex = 0. As a result,vout can
be defined implicitly from (3) as a function of(µ, vin) only:

µvout − log |1 + µvout| = µvin − log |1 + µvin| . (6)

This implies thatµvout is a function ofµvin only, and therefore
E is also a function ofµvin only.

Analytical derivations of the dependenceE(µvin) have been
classically performed in the limit of small initial velocities
and/or small dissipation [12].1 However, we suggest that a
non-local approximatioñvout can be empirically determined
as anansatzwhich fits the curveE(µvin) in the two limit
regionsµvin → 0+ andµvin → +∞, thus obtaining2:

ṽout(µ, vin) = vlim


1−




n∑

j=0

bj · v
j
in


 e−2µvin


 (7)

where, in the casen = 4, the coefficientsbj are:

b0 = 1, b1 = µ, b2 =
2

3
µ2, b3 =

2

9
µ3, b4 =

14

135
µ4.

(8)
From now on, unless specified otherwise, the notationṽout

will refer to the fourth-order approximation provided by (7)
and the coefficients (8). Conventional iterative zero-finding
methods applied to (6) can always be used to compute a
more precise release velocity at a higher computational cost
(see IV-C).

Fig. 3 shows the error introduced by the approximate value
ṽout, when compared to the corresponding value computed
numerically as a zero of (6).

1Appendix A provides an example.
2See Appendix B for details.
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Fig. 3. Log-scaled percentage error of the output velocity approximated by
ṽout, with respect to the value computed numerically as a zero of (6). Ranges
of µvin are shown, for which the maximum error is respectively less than 1%
and0.1%.

3) Contact time: It is shown in [23] that thecontact time
can be expressed as:

τ =
(m
k

) 1
α+1

·

(
µ2

α+ 1

) α
α+1

·

·

∫ vin

vout

1

(1 + µv)
[
−µ(v − vin) + log

∣∣∣ 1+µv
1+µvin

∣∣∣
] α

α+1

.
(9)

Equation (9) states that the contact timeτ depends only onµ,
the exponentα and the ratiom/k, plus obviously the impact
velocity vin. Since neitherm nor k affect the value of the
integral (recall thatvout depends only onµ andvin), it follows
that, given a fixedvin, the proportionalityτ ∼ (m/k)1/(α+1)

holds.
From an auditory point of view the value of the contact

time is strongly correlated to the perceived “hardness” of
the impact [23], [24]. Namely, as the contact time decreases,
the perceived hardness increases. Recalling the power-law
dependence above and (1) it follows that, for a fixed mass
m, “hard” and “soft” impacts correspond respectively to high
and low force values.

4) Energy properties and behavior:The energy variation
in a mechanical system can be calculated as the work made
by the non-conservative forcesfnc acting on the system along
a certain pathx1 → x2:

∆H =

∫ x2

x1

fnc(x) dx =

∫ t2

t1

fnc(t)v(t) dt = −∆Λ (10)

whereH is the total energy content, known as theHamilto-
nian, Λ is the energy dissipation, and the second integral is
obtained by considering thatt1 andt2 correspond respectively
to the instants when the displacementsx1 andx2 are reached.
The HamiltonianH is the sum of potential and kinetic
energies, hereafter namedV andT , respectively:

H(t) = V (t) + T (t) . (11)

With regard to the system represented by (2),T is related to
the dynamics of the point-mass, which is described by the left-
hand side of (2), whileV is related to the elastic component
of the impact force of (1).

In agreement with the last integral in (10), multiplying both
sides of (2) byv(t) = dx/dt and time-integrating them, gives:

∫ t

0

ma(s)v(s) ds

︸ ︷︷ ︸
T (t)−T0

=

= −

∫ t

0

kx(s)αv(s) ds

︸ ︷︷ ︸
V (t)

−

∫ t

0

λx(s)αv(s)2 ds

︸ ︷︷ ︸
Λ(t)>0

(12)

where the force expression of (1) has been considered in the
casex > 0 only. The first two integrals in (12) can be solved
explicitly, obtaining:

V (t) =
kx(t)α+1

α+ 1
, T (t) =

mv(t)2

2
. (13)

Considering a system where the point-mass travels with ve-
locity vin before an impact occurs, then theinitial Hamiltonian
corresponds to the initial kinetic energy:

H0 = T0 =
mv2in
2

. (14)

From (10) it follows that at each time instantt:

H(t) = H0 − Λ(t) (15)

and, sinceΛ(t) > 0, the following inequalities hold:

0 ≤ H(t+ dt) ≤ H(t) . (16)

Indicating τ as the instant when an impact ends, thefinal
Hamiltonian of the system, that is the energy content right
after contact, can be written as:

Hτ = Tτ =
mv2out

2
. (17)

Also, the total amount of energy dissipation occurred during
contact is:

∆Hτ = Hτ −H0 = −Λτ (18)

which corresponds to the area enclosed by the hysteresis loops
shown in Fig. 2.

As for the rightmost integral in (12), which is non-solvable,
an equivalent expression can be obtained by substituting the
complementary results for the remaining integrals:

Λ(t) =

∫ t

0

λx(s)αv(s)2 ds =
m(v2in − v(t)2)

2
−

kx(t)α+1

α+ 1
.

(19)
Finally, by substituting (3) in (19) and recalling (15), the
following expression inv only is found:

H(v) = H0−Λ(v) =
m

2
v2−

m

µ
(v−vin)+

m

µ2
log

∣∣∣∣
1 + µv

1 + µvin

∣∣∣∣
(20)

which can be used for plotting the curve shown in Fig. 4.
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B. Addition of a constant external force

When a constant external forcefe (e.g. the force of gravity)
is applied to the point mass, (2) has to be rewritten as:

ma(t) + fe = −f(x(t), v(t)) . (21)

Unfortunately, in this case no closed-form analytical results
can be found as those described in II-A. In more detail,
multiplying both sides of (21) byv(t) and time-integrating
them, an equation is found where an unsolvable integral is
present, this way preventing to directly obtain explicit-form
expressions forx(v), ṽout andτ .

Rewriting the 2nd-order equation (21) as a system of 1st-
order equations:

{
ẋ = v

v̇ = − k
mxα − λ

mxαv − fe
m

(22)

the equilibrium point of the system is found to be(xeq, veq) =

(−f
1/α
e /k, 0), which corresponds to thecompression offsetin

stationary conditions.
As Fig. 5 shows, for positive values offe and vin, the

velocity of the point mass during the compression phase is
generally greater than in the case whenfe = 0. In particular,
at the beginning of contact interaction, sincefe is higher than
the current impact forcef , the compression velocity exceeds
vin. On the other hand, compared to the case whenfe = 0,
during the decompression phase the absolute value of the
point mass velocityv decreases, resulting in lower output
velocities. Moreover, the resulting maximum compression is
always greater than that calculated by (4).

III. N UMERICAL SIMULATIONS

In this section, the continuous-time system described by (2)
is discretized by means of several numerical methods, and the
resulting numerical systems are studied.
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Fig. 5. Phase portraits of impacts for different external forces applied:fe =
m · (1, 2, 3) N. The bold line represents the case wherefe = 0. The values
of parameters are the same as in Fig. 1 except fork = 105 N/mα and
vin = 0.05 m/s. Notice that, due to the lack of analytical results when an
external force is present, the phase portraits have been obtained as the result
of numerical simulations.

A. Numerical methods

Different numerical methods were considered, which are
commonly used in various fields of applications spacing from
computer graphics, to physical simulation of dynamical sys-
tems and digital signal processing. Thanks to their low order –
which generally results in low computational cost – the chosen
methods are particularly suitable for real-time applications:

• The trapezoid rule is popular to translate analog filter
structures to discrete-time filters, and it is the basis for
wave digital filters;

• Verlet integration is popular in physics-based graphic
engines;

• Heun is a 2nd-order method (complexity similar to the
previous two) representative of the Runge-Kutta family;

• 4th-order Runge-Kutta is expected to be more accurate,
and more expensive.

Following the standard notation in numerical analysis, the
integration step is a constant namedh (= 1/Fs).

1) 1-step Adams-Moulton (AM1):is a A-stable 2nd-order
implicit method [25], also known asbilinear transformation,
or trapezoid rule.

Discretizing (2) results in the following equation in state-
space form:
[

xn+1

vn+1

]
=

[
1 h
0 1

] [
xn

vn

]
+

[
h2

4m
h
2m

]
[fn+1+ fn] (23)

where the expression for the discrete-time force is obtained by
replacing the continuous-time variablesx(t) and v(t) in (1)
with their discrete-time counterparts.

Since the AM1 method is implicit, (23) is also in implicit
form, and this is reflected in the instantaneous relationship
between[xn+1 vn+1]

T and fn+1. Unfortunately, sincefn+1

also has an instantaneous dependence onxn+1 and vn+1

(given by (1)), the discrete-time counterpart of the system
described by (2) contains adelay-free loop, which is not
directly computable and – because of the nonlinear depen-
dencef(x, v) – needs some special handling in order to be
solved. In particular, theK-method[26] together withNewton’s
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method [25] are used, weighing on the efficiency of the
simulation (see IV-C).

2) Verlet: is a 2nd-order explicit method commonly used in
computer graphics [3], video games, and molecular dynamics
simulation, where it is typically used for integrating Newton’s
equation of motion in order to describe the trajectory of
moving particles. The one used here is a variant, calledvelocity
Verlet, which provides better handling of the velocity variable
and can be seen as a predictor-corrector method.

Discretizing (2), results in the following implementation
scheme:

xn+1 = xn + hvn +
h2

2

fn
m

,

vn+ 1
2
= vn +

h

2

fn
m

, predictor,

fn+1 = f(xn+1, vn+ 1
2
) ,

vn+1 = vn+ 1
2
+

h

2

fn+1

m
, corrector.

(24)

It should be noted that this algorithm assumes thatfn+1

only depends on the predicted velocityvn+ 1
2
, which clearly

gives rise to inaccuracies.
3) Heun: is a predictor-corrector explicit method [25], [3],

with the forward Euler method as predictor and the trapezoid
rule as corrector. It can also be seen as a2nd-order Runge-
Kutta method(RK2).

Discretizing (2) results in the following implementation
scheme:

ṽn+1 = vn + h
fn
m

, predictor,

xn+1 = xn +
h

2
(vn + ṽn+1) ,

fn+1 = f (xn+1, ṽn+1) ,

vn+1 = vn +
h

2

fn + fn+1

m
, corrector.

(25)

Again, it should be noted that bothxn+1 and fn+1 only
depend on the predicted velocitỹvn+1, and this gives rise to
inaccuracies.

4) 4th-order Runge-Kutta (RK4):is an explicit iterative
method [25], [3] which is widely used to solve ODEs with
improved accuracy.

Discretizing (2) results in the following implementation
scheme:

xn+1 = xn +
1

6
(l1 + 2l2 + 2l3 + l4) ,

vn+1 = vn +
1

6
(k1 + 2k2 + 2k3 + k4)

(26a)

where:

l1 = hvn , l2 = h(vn +
k1
2
) ,

l3 = h(vn +
k2
2
) , l4 = h(vn + k3) ,

k1 = h
fn
m

, k2 = h
f(xn + l1

2 , vn + k1

2 )

m
,

k3 = h
f(xn + l2

2 , vn + k2

2 )

m
, k4 = h

f(xn + l3, vn + k3)

m
.

(26b)

It should be noted that, for each sample, both the velocity and
the non-linear force of (1) need to be evaluated four times,
therefore strongly affecting the efficiency of the simulation
(see IV-C).

B. Experimental results

In order to evaluate the chosen numerical methods, it is use-
ful to compare the behavior of the corresponding simulations
against the known analytical results (see II-A).

The main references used to quantitatively assess the re-
liability of a particular numerical methodduring contact are
equations (3) and (20), which express respectively the com-
pressionx and the HamiltonianH as functions of the compres-
sion velocityv. The errors onx andH are then measured as
the maximum deviations3 of their discrete-time versions from
the respective analytical curvesx(v) and H(v), in relation
to the entire variation range of the quantities considered
(i.e. xmax and∆Hτ ). In detail, taking into account (20) and
definingHsim(xn, vn) as the Hamiltonian computed using the
values of compression and velocity resulting from a numerical
simulation,4 and∆Hτ as in (18), themaximum deviation on
H is calculated by means of the following expression:

%dev(H) = 100 ·

∣∣∣∣∣
maxn

{
Hsim(xn, vn)−H(vn)

}

∆Hτ

∣∣∣∣∣ . (27)

Considering (3) and definingxmax as in (4), themaximum
deviation onx is calculated as:

%dev(x) = 100 ·

∣∣∣∣
maxn {xn − x(vn)}

xmax

∣∣∣∣ . (28)

Finally, another indicator which allows to evaluate the
accuracy and consistency of the simulations at release
from contact is provided by the output velocity computed
numerically as a zero of (6), which is used to calculate the
relative error %err(vout) of its simulated counterpartvsim

out .

Throughout the following example simulations some values
of parameters are kept constant:m = 10−2 Kg, and Fs =
44.1 kHz (i.e. a standard audio sample rate).

1) Non-critical simulations:In order to verify the numer-
ical implementations, the parameters of the model are set to
a “safe” configuration, that is to far-from-extreme values.In
this case, contact extends over many samples, thus ensuring
that the simulations are influenced only to a negligible extent
by the chosen sampling rate (see I-C) and should more likely
behave as the original continuous-time system.

This is confirmed qualitatively by Fig. 6, where the plots
of all such simulations substantially overlap and coincidewith
the analytical curves. Moreover, Table I offers a quantitative
evaluation of the simulations, showing the errors introduced
by the different numerical methods considered.

3Such measures definitely have a different meaning compared to ordinary
relative errors, since the latter would only account for local deviations from
the analytical curves. On the other hand, the proposed measure of error is
obtained normalizing the absolute error according to therange of variation
of the quantities being evaluated, and picking the maximum deviation along
such range.

4That is, substitutingxn and vn in (13). Not to be confused with the
discrete Hamiltonian defined in [22] for finite-difference schemes.
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(a) Phase portraits. The two tangent lines represent the maximum compression
xmax calculated by (4) and the output velocityvout computed numerically as
a zero of (6).
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(b) Energy behaviors. The two horizontal lines displayH0 = T0 andHτ =
Tτ , i.e. respectively the initial and the final Hamiltonian.

Fig. 6. Qualitative comparison of different methods in non-critical simula-
tions. The values of parameters arek = 103 N/mα, µ = 0.5 s/m,α = 1.5,
vin = 0.5 m/s.

TABLE I
SUMMARY OF ERRORS IN NON-CRITICAL SIMULATIONS . THE VALUES OF

PARAMETERS AREk = 103 N/Mα , µ = 0.5 S/M , α = 1.5, vIN = 0.5 M /S.

errors AM1 Verlet Heun RK4
%dev(x) 0.255 0.018 0.319 0.005
%err(vout) +2 ·10−5 +2 ·10−6

−3 ·10−5 +2 ·10−6

%dev(H) 3 ·10−4 0.052 4 ·10−4 1 ·10−5

2) Critical parameter regions:It has been found empiri-
cally that whenτ sim ≤ 4 samples, the errors onx, H andvout

heavily increase, resulting in an extremely poor reliability of
all the simulations. The obvious reason for this behavior is
that, since only very few samples of data are available, the
numerical systems are totally unable to describe the original
continuous-time counterpart. Hence, in the study hereafter,
only values of parameters resulting inτ sim > 4 samples are
considered.

It has been observed that whenµ → 0+ and/or as the
contact time τ sim decreases (i.e. for “hard” impacts), the
behavior of most numerical implementations tends to become
inconsistent with the continuous-time system. Hereafter,
the numerical systems are studied for these two critical
configurations, respectively namedcase 1andcase 2.

Case 1: low dissipation (µ → 0+)
In case of low dissipation, the Hamiltonian of both Verlet-
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Fig. 7. Comparison of Hamiltonians for different implementations of a simu-
lation example followingcase 1. The values of parameters arek = 107 N/mα,
µ = 0.01 s/m,α = 1.3, vin = 0.5 m/s. The contact time equals19 samples.

and Heun-discretized systems is prone to oscillations, while
contact ends in an inconsistent final energy state: typically,
HVerlet, Heun

τ > Hτ , whereHτ is defined as in (17) and is
calculated using values ofvout computed numerically as zeros
of (6). As for AM1-discretized systems, these generally tend
to dissipate too much energy during contact (i.e.HAM1 < H),
while slightly gaining spurious energy as the contact ends (i.e.
HAM1

τ > Hτ ). On the other hand, RK4-discretized systems
generally behave quite consistently both during and after the
contact interaction (i.e.HRK4 ≈ H).

Fig. 7 shows the Hamiltonian of a simulation example
with low dissipation (µ = 0.01), while Table II(a) shows the
resulting errors.

Case 2: hard impacts
With the exception of RK4-discretized systems, in this case

the simulations usually show more spread errors:xsim, Hsim

and vsim
out tend to substantially deviate from the respective

analytical results.
Fig. 8 shows a hard impact simulation example following

the values of parameters adopted in Fig. 1 forvin = 1 m/s,
while Table II(b) shows the corresponding errors. The resulting
contact timeτ equals6 samples.

It is worth noticing that the RK4 method has been proved
to behave quite consistently across disparate configurations of
parameters. Therefore, a highly oversampled RK-discretized
system can be taken as a reference, able to provide extremely
accurate simulations.

IV. I MPROVED NUMERICAL SIMULATIONS

A. Exploitation of analytical results

In this section some solutions are proposed that allow to fix
the inconsistencies pointed out in III-B. The aim is to improve
the accuracy and reliability of simulations which make use of
the impact model under study, in view of their implementation
as real-time applications.
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(a) Detail of phase portraits.
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(b) Hamiltonians.

Fig. 8. Comparison of phase portraits and Hamiltonians for different
implementations of a simulation example followingcase 2. The values of
parameters are the same as in Fig. 1 withvin = 1 m/s. The contact time
equals6 samples.

TABLE II
SUMMARY OF ERRORS IN EXAMPLE SIMULATIONS OFcase 1AND case 2.
THE LAST COLUMN SHOWS THE ERROR YIELDED BY THE APPROXIMATE

VALUE ṽOUT WITH RESPECT TO THE VALUE COMPUTED NUMERICALLY: IT

IS WORTH NOTICING THAT IN BOTH CASES THE ERROR IS LOWER THAN

THOSE YIELDED BY THE SIMULATIONS.

(a) Simulation example followingcase 1. The values of parameters are the
same as in Fig. 7.

errors AM1 Verlet Heun RK4 ṽout

%dev(x) 1.011 1.083 1.136 0.052 -
%err(vout) +0.039 +0.073 +0.067 +0.006 −1·10−5

%dev(H) 61.302 59.542 63.042 1.427 -

(b) Simulation example followingcase 2. The values of parameters are the
same as in Fig. 1 forvin = 1 m/s.

errors AM1 Verlet Heun RK4 ṽout

%dev(x) 4.381 4.418 19.506 0.412 -
%err(vout) +2.551 +0.839 −4.692 −0.105 −0.013
%dev(H) 7.885 9.475 23.387 0.410 -

1) Hybrid numerical-analytical computation:This solution
consists in computing the compression velocityvn numerically
– that is as a result of a numerical simulation, using for
example one of the numerical methods described in III-A –
and employing it in (3) in order to calculate the corresponding

value of compressionx(vn) analytically. Different numerical
methods may need different implementations of this solution.

As a result, the corrected numerical system strictly follows
the analytical curvesx(v) andH(v).

Since the computation is to be made at each sample for
the whole duration of the contact interaction, this solution
noticeably increases the computational load of the simulation.

2) Output velocity constraint:The solution above can be
applied only while the contact interaction lasts, and therefore
it cannot control the behavior of a numerical system upon the
end of the impact. At that time, the energy content (i.e. the
residual kinetic energyT sim

τ = Hsim
τ ) can be controlled by

forcing the output velocity to the approximate valueṽout.
Considering that the error introduced by (7) depends solely

on the productµvin (see Fig. 3), it is advisable to apply
the correction only when the productµvin corresponds to an
acceptable error, or the risk is to even worsen the behavior of
the numerical system. However, the use of this conditional
correction always implies a trade-off: on the one hand it
guarantees not to introduce errors greater than a chosen max-
imum, while on the other hand 1) within the excluded range
of µvin, the output velocity is not controlled and therefore
depends only on the plain numerical method chosen, 2) within
the included intervals ofµvin, the risk is that the correction
introduces errors even greater than those provided by the non-
corrected numerical system (this is true especially for non-
critical parameter regions).

Once the output velocity has been forced toṽout, the corre-
sponding compression should be set to0, this way adhering
to the compression-force characteristics shown in Fig. 2 by
closing their numerical counterpart at(x = 0, f = 0), and
ensuring that the final potential energyV sim

τ is set to zero.
The computation of̃vout only needs to take place in cor-

respondence to an impact event, and as soon as the impact
velocity vin is known.

B. Numerical simulations with corrections

In order to test the described corrections, they were applied
to the worst behaving simulation examples provided in III-B2:
Fig. 9 and 10 show a comparison of Heun-based simulations
following respectivelycase 1and case 2, with and without
corrections.

1) Improved energy behavior:When the hybrid correction
described in IV-A1 is applied, any simulation strictly adheres
to the analytical curvesH(v) andx(v) during contact, that is
the respective errors, as defined in (27) and (28), are equal to
zero.5

As for the energy state upon the end of the interaction,
the error onHτ depends either on the error introduced by
ṽout (when the output velocity constraint described in IV-A2
is actually applied), or on the error introduced by the plain
numerical simulation. As already stated in IV-A2, in the first
case the maximum error onvout is predictable, and clearly the
same goes for the error onHτ .

5Not taking into account the inherent errors related to the representation of
numbers in the digital domain.
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Fig. 9. Comparison of the Hamiltonians of a Heun-based simulation example
following case 1, with and without corrections.
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(a) Phase portraits.
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Fig. 10. Comparison of a Heun-based simulation example following case 2,
with and without corrections.

Equation (27) allows to quantitatively assess the improve-
ments on the energy consistency of the numerical simulations.

The trend of error onH resulting from simulations with
and without corrections is depicted in Figures 11(a) and 11(b),
which show that even the best numerical method among those
considered (i.e. RK4) can be improved, especially for critical
values of parameters (see III-B2) such asµvin → 0+.
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(a) Maximum deviation onH asµ varies.
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Fig. 11. Trend of error on the Hamiltonian for RK4-based simulations with
and without corrections, for small values ofµ andvin. For the values ofµvin
considered, the output velocity constraint is always applied (see Fig. 3). The
values of parameters, where kept constant, arek = 109 N/mα, µ = 0.5 s/m,
α = 1.5, vin = 0.5 m/s. At each corresponding point of the two parallel
plots, the productµvin is the same. It can be noted that, when not using any
corrections, the weight ofµ on the error is clearly greater than that ofvin.

2) Sequence of impacts:In order to better appreciate the
importance of the proposed corrections, a sequence of re-
bounds has been implemented applying a conservative force
(e.g. gravity) during free motion only.6 Thanks to this setup,
one can track the accumulation of energy anomalies at each
contact interaction.

To this end, the residual energyHsim
τ(i) of numerical sim-

ulations after thei-th impact was examined and compared
to the residual energyHτ(i) due to the exit velocityvout(i)
of the i-th rebound, computed numerically as a zero of (6).
The corresponding relative error provides a measure of the
inaccuraciesaccumulatedduring the sequence of impacts. In
addition, the deviation ofHsim with respect to the analytical
curveH(v) was measured according to (27) along the whole
sequence of impacts.

Table III shows the errors on the residual energyHsim
τ(100)

and the maximum deviations ofHsim occurred during a
sequence of100 impacts, for simulation examples following
case 1andcase 2. Notice that, since in some simulations the
energy can strongly oscillate during contact (see Fig. 7), the

6That is, the external force is temporarily suspended during the short contact
at each rebound. As shown in II-B, when an external force is applied during
contact, no closed-form analytical result is available, this way making the
corrections provided in IV-A unsuitable.
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Fig. 12. Sequence of rebounds obtained from Verlet- and RK4-based
simulations followingcase 2, compared with the trajectory of a corrected
simulation.

maximum deviations fromH(v) do not necessarily reflect the
accumulated errors. The last columns show the errors resulting
from simulations corrected as suggested in IV-A, where the
error threshold for the output velocity constraint is set to0.1%,
i.e. the correction is always applied (see Fig. 3).

TABLE III
SUMMARY OF ERRORS ON THE RESIDUAL ENERGYHSIM

τ(100)

(ACCUMULATED ERROR), AND MAXIMUM DEVIATIONS OF HSIM

CALCULATED ACCORDING TO (27) ALONG THE WHOLE SUCCESSION OF

100 REBOUNDS.

(a) Simulation examples followingcase 1. The values of parameters are the
same as in Fig. 7, except for input velocities decreasing at each rebound.

errors onH AM1 Verlet Heun RK4 corrected
sim.

accum. %err 12.022 10.059 147.036 0.907 < 10−7

max %dev 72.962 72.107 63.043 14.466 0

(b) Simulation examples followingcase 2. The values of parameters are
the same as in Fig. 1, starting with input velocityvin = 1 m/s.

errors onH AM1 Verlet Heun RK4 corrected
sim.

accum. %err 24.285 15.780 946.600 2.153 0.001
max %dev 69.156 43.966 27.418 6.255 0

In order to better understand the importance of such cor-
rections, Fig. 12 provides a partial plot of the sequence of
rebounds forcase 2, where only the two better performing
simulations are depicted.

From Table III and Fig. 12 it is evident that, even in case of
errors apparently negligible for a single impact (see the errors
relative to RK4 in Table II), indeed energy inconsistencies
accumulate and can become noticeable – if not disastrous –
after a certain number of contact interactions.

On the other hand, the errors resulting from the corrected
simulations are actually negligible, and they are only due to
inaccuracies in the forced exit velocitỹvout. The effectiveness
of such corrections is confirmed comparing the results of a
16× oversampled RK4 simulation used as a reference: incase
1 the accumulated error onH is 0.001% and the maximum
deviation is 0.024%, while in case 2 they are respectively
0.002% and0.006%.

C. Computational cost

In this section, the computational costs of both the nu-
merical implementations seen in III-A and the corrections
suggested in IV-A are taken into account. In particular, thecost
has been measured as the number of operations (i.e., memory
write/read accesses and arithmetical operations) needed to
execute an algorithm.

Table IV(a) summarizes the cost of the algorithms im-
plementing the numerical methods. Since the AM1-based
implementation makes use of Newton’s method, its cost is
displayed on two sub-columns: the first one shows the constant
cost per sample, while the second one (in italics) shows the
cost of a single iteration of Newton’s method. Notice that the
number of iterations per sample is not predictable.

Table IV(b) shows the cost of the corrections considered.
For comparison, the last column reports the cost of a single
zero-finding iteration on (6). The number of iterations depends
on µ and vin, and is usually in the order of some tens.7 It is
clear that, despite being more precise than the approximate
value ṽout, the value computed numerically as a zero of (6)
implies several times the number of operations required by
ṽout.

Since the computational load of simple write/read opera-
tions is generally low (if not negligible), two totals for each
column are reported: one excluding write/read operations and,
in brackets, one accounting for them.

TABLE IV
NUMBER OF OPERATIONS NEEDED BY THE NUMERICAL METHODS SHOWN

IN III-A AND THE CORRECTIONS DESCRIBED INIV-A. T HE TOTALS IN

BRACKETS ACCOUNT FOR WRITE/READ OPERATIONS.

(a) Since the AM1-based implementation makes use of Newton’s
method, its cost is displayed on two sub-columns: the first one shows
the cost per sample, while the second one (in italics) shows the cost of
a single Newton’s method iteration.

AM1 Verlet Heun RK4
write 6 10 5 5 20
read 16 33 20 21 72
+/− 3 8 7 8 22
× 8 11 5 5 18
÷ 0 1 3 3 8
bit-shift 0 0 2 3 6
exp 0 1 1 1 4
log 0 0 0 0 0
compare 0 4 1 1 4
TOTAL 11 (33) 25 (68) 19 (44) 21 (47) 62 (154)

(b) The last column (in italics) shows the cost of a single
zero-finding iteration on (6).

hybrid ṽout vout
correct. constraint as zero of (6)

write 1 2 1
read 7 4 3
+/− 6 5 4
× 7 6 3
÷ 3 4 1
bit-shift 0 1 0
exp 0 1 0
log 1 0 1
compare 1 1 0
TOTAL 18 (26) 18 (24) 9 (12)

7The number of iterations was empirically found as being usually between
15 and 40. Moreover, asµ decreases, the number of iterations increases.
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Recalling that the hybrid correction only affects the com-
putational cost during contact, whereas the output velocity
constraint is applied at most8 once per impact event, from
Table IV one can infer that Verlet- or Heun-based simulations
with corrections are roughly three times as efficient as plain
RK4-based simulations during free motion, and almost twice
as efficient during contact. On the other hand, while the
exact computational load of an AM1-based simulation is not
predictable, it can be noted that it already matches the costof
a RK4-based one after two iterations of Newton’s method.

D. Evaluation of methods

The considered implementations can be finally evaluated
in the light of the results regarding their accuracy (see III-B
and IV-B2) and computational load (see IV-C).

It can be stated that, among the non-corrected implemen-
tations, the best all-round performance is achieved by RK4-
discretized systems, although they are quite computationally
expensive. On the other hand, a corrected Verlet-discretized
system is generally at least as good as a non-corrected RK4
implementation, at a fraction of its computational load.

As for AM1-based implementations, it was shown that they
behave quite poorly in the critical regions identified ascase 1
andcase 2. These poor results in terms of accuracy, together
with a generally high (and non-predictable) computational
load, set the AM1 method as a hardly recommendable choice.
Apparently such conclusion can be quite surprising, especially
if one considers that AM1 is the only implicit andA-stable
method among those considered. However, the presence of
nonlinearities, together with the inaccuracies introduced by the
K-method and Newton’s method, justify the behavior of AM1-
based implementations.

V. CONCLUSIONS

A non-linear physical model of impact with sound synthesis
applications has been reviewed, and its properties have been
studied using both analytical tools and numerical simulations.

Several numerical realizations have been compared, and
their shortcomings with regard to the corresponding analytical
results have been pointed out. Special emphasis has been
placed on energy consistency.

It has been shown that by exploiting the analytical results
provided, the inconsistencies of the numerical realizations can
be amended, thus restoring the correct energy state of the
simulated systems, during and after contact.

Future research will consider finding a closed-form approx-
imation of the release velocity for the system of (21), where
a constant external force is applied, in this way allowing to
implement suitable corrections. Even without such a closed-
form solution, zero-finding numerical procedures could be
profitably used to fix individual impacts. More interestingly
for applications in acoustics, solutions will be investigated for
extending the corrections to the case where vibrational losses
are present, thus being applicable to impacts with resonating
objects.

8As shown in IV-A2, the output velocity constraint is appliedconditionally.

APPENDIX

A. Polynomial expansion of the output velocity

As mentioned in II-A2, Hunt and Crossley [12] suggested
that, in the limitµvin → 0+, the restitution coefficient can be
approximated by the linear functioñE(µvin) = (1−2/3µvin).
Then, recalling (5), the corresponding output velocity is:

ṽout(µ, vin) = (−vin +
2

3
µv2in) . (29)

This result can be easily verified through a Taylor expansion
of the two sides in (6), using the approximationlog |1 + ǫ| ≈

ǫ− ǫ2

2 + ǫ3

3 , for ǫ → 0+.
The same approach can be used in order to find a polynomial

expansion of ordern:

ṽout =

n∑

j=1

aj · v
j
in (30)

in the limit µvin → 0+. Equation (30) is then substituted into
the left-hand side of the Taylor expansion of (6). For the case
n = 4 one obtains:

[
µ2

2
v2out −

µ3

3
v3out +

µ4

4
v4out −

µ5

5
v5out

]

vout=
∑

4
1
ajv

j

in

=
1

2
µ2v2in −

1

3
µ3v3in +

1

4
µ4v4in −

1

5
µ5v5in .

(31)

The coefficientsaj are then determined by equating the two
sides of (31) term by term, leading to the system:





1

2
µ2a21 =

1

2
µ2,

1

3
µ3a31 − µ2a1a2 =

1

3
µ2,

1

4
µ4a41 − µ3a21a2 + µ2a1a3 +

1

2
µ2a22 =

1

4
µ2,

1

5
µ5a51 − µ4a31a2 + µ3a1a

2
2+

+ µ3a21a3 − µ2a1a4 − µ2a2a3 =
1

5
µ2

(32)

which yields:

a1 = −1 , a2 =
2

3
µ , a3 = −

4

9
µ2 , a4 =

44

135
µ3 .

(33)
It follows that, in (30),vout is a function of(µ, vin) only.

Equations (30) and (33) result in a slightly better approxima-
tion than (29), but still provide a local approximation.

B. A non-local approximation for the output velocity

From (6)vout can be written as:

vout =
1

µ

[
(1 + µvin)e

−µ∆v − 1
]
=

= vlim
[
1− (1 + µvin)e

−µ∆v
] (34)

where∆v = vin − vout. Equation (34) emphasizes that the
convergencevout → vlim for vin → +∞ is governed by the
fast-decreasing terme−µ∆v.
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For small vin’s, the zeroth order approximation of the
exponential term ise−2µvin , however it is easy to verify that
the equation:

ṽout = vlim
[
1− (1 + µvin)e

−2µvin
]

(35)

does not provide an accurate approximation ofvout for small
vin’s. More precisely, its Taylor expansion aroundvin = 0 only
matches the first Taylor coefficient of the expansion (30):

ṽout ≈
vin→0+

n∑

j=1

ãj · v
j
in ,

ã1 = −1 and ãj 6= aj (j > 1) .

(36)

This qualitative discussion justifies to some extent the non-
local approximation forvout given in (7). Indeed (7) combines
the two views –µvin → 0+ and µvin → +∞ – on vout:
the exponential term ensures the convergencevout → vlim

for high values ofµvin, while the polynomial coefficientsbj
are determined by imposing that the Taylor expansion of (7)
aroundvin = 0 matches that of (30). Recalling that:

e−2µvin ≈
vin→0+

n∑

j=1

cj · v
j
in , cj =

(−1)j

j!
(2µ)j , (37)

then one can verify that thel-th order coefficiental of the
Taylor expansion of (7) is given asal = 1

µ

∑l
j=1 bj · c(l−j).

Then the coefficientsbj can be determined recursively as:

b0 = 1 , bj = µaj −

j−1∑

l=0

bl · c(j−l) (1 ≤ j ≤ n) . (38)

Applying this recursive equation for the casen = 4 yields (8).
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