
ar
X

iv
:1

90
7.

05
11

1v
1 

 [
m

at
h-

ph
] 

 1
1 

Ju
l 2

01
9

Tridiagonality, supersymmetry and non self-adjoint

Hamiltonians

F. Bagarello1,2, F. Gargano1, F. Roccati3
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Abstract

In this paper we consider some aspects of tridiagonal, non self-adjoint,

Hamiltonians and of their supersymmetric counterparts. In particular, the

problem of factorization is discussed, and it is shown how the analysis of the

eigenstates of these Hamiltonians produce interesting recursion formulas giving

rise to biorthogonal families of vectors. Some examples are proposed, and a

connection with bi-squeezed states is analyzed.

I Introduction

Few years ago some authors have discussed tridiagonal Hamiltonians, and their fac-
torization, in connection with Supersymmetric quantum mechanics (SUSY QM) and
with an eye to orthogonal polynomials, [1]. Their idea was to show how certain self-
adjoint (infinite) tridiagonal matrices can be written as product of two operators,
and how these operators can also be used to deduce results on the Susy partner of
the original matrix. The construction the authors propose give rise to a three-terms
recurrence relation which they analyse in connection with orthogonal polynomials.
These polynomials are constructed both for H = X†X , and for its Susy counterpart
Hsusy = XX†.

In this paper we extend the analysis in the context of tridiagonal matrices which
are not necessarily self-adjoint. In particular, we do not assume that the diagonal ele-
ments are real, and that the non zero off-diagonal entries are related by any symmetry.
The rationale behind this choice is that, as we will discuss in Section III, this can be
relevant in connection with PT -quantum mechanics and its relatives, [2, 3, 4], where
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the Hamiltonian of a given system is not required to be self-adjoint, but still satisfies
some special requirement. For instance, the Hamiltonian could be PT -symmetric,
P and T being respectively the space parity and the time reversal operators. This
extended quantum mechanics has been proved to be quite relevant in the analysis of
gain-loss systems, [5], from a physical point of view, and from a mathematical side
because of the many (and sometimes unexpected) difficulties which arise when going
from self-adjoint to non self-adjoint Hamiltonians. In particular, the role of biorthog-
onal sets of vectors [6], unbounded metric operators [7, 8] and pseudo-spectra [9] have
been widely studied in this perspective.

The paper is organized as follows: in the next section we introduce the mathe-
matical structure needed for the analysis of our tridiagonal Hamiltonians. Then we
discuss their factorization, and we use the operators introduced in this procedure to
define the Susy partner of the original Hamiltonian. Of course, since this Hamiltonian
H is not self-adjoint, in general, we also discuss the role of H† and of its Susy partner.
Hence we deal with four related Hamiltonians. Among other things, we discuss the
consequences of the diagonalization of H , showing that three-terms relations can be
deduced also in this more general settings. Section III is devoted to examples, which
are treated in many details. In Section IV we consider other kind of tridiagonal ma-
trices, and we discuss their connections with bi-squeezed states of the type originally
introduced in [10]. Section V contains our conclusions.

II The functional settings

Let H be an Hilbert space with scalar product 〈., .〉 and related norm ‖.‖, and let
Fϕ = {ϕn, n = 0, 1, 2, 3, . . .} and Fψ = {ψn, n = 0, 1, 2, 3, . . .} be two biorthogonal
sets of vectors in H: 〈ϕn, ψk〉 = δn,k. We are assuming here that H is infinite-
dimensional, except when stated, and separable. Otherwise, if dim(H) < ∞, the
treatment simplifies significantly, from the mathematical point of view, mainly be-
cause all the operators necessary for us are bounded. In what follows Fϕ and Fψ will
be required to be either D-quasi bases or, much stronger requirement, Riesz bases,
[6]. For readers’ convenience we recall that Fϕ and Fψ are D-quasi bases if D is some
dense subspace of H, and if, for all f, g ∈ D,

〈f, g〉 =
∞
∑

n=0

〈f, ϕn〉 〈ψn, g〉 =
∞
∑

n=0

〈f, ψn〉 〈ϕn, g〉 . (1)

Quite often ϕn and ψn also belongs to D. This will be assumed in this paper, as useful
working assumption. Fϕ and Fψ are (biorthogonal) Riesz bases if an orthonormal
(o.n.) basis Fe = {en, n = 0, 1, 2, 3, . . .} exists inH, together with a bounded operator
R with bounded inverse, such that ϕn = Ren and ψn = (R−1)†en. In this paper we
will always assume that D is stable under the action of R, R† and their inverse. We
also assume that en ∈ D for all n, so that ϕn, ψn ∈ D automatically. We refer to
[6, 11] for examples when these assumptions are satisfied. We observe that if Fϕ and
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Fψ are (biorthogonal) Riesz bases, they are D-quasi bases. The opposite implication
is false: D-quasi bases are, in general, not Riesz bases. Also, they are often not even
bases, [6].

Let now H be an operator, not necessarily bounded or self-adjoint, such that
D(H) ⊇ D. Hence H is densely defined. In what follows it will be useful to assume
also that D(H†) ⊇ D.

Definition 1 H is called (ϕ, ψ)-tridiagonal if three sequences of complex numbers
exist, {bn}, {an} and {b′n}, such that

〈ψn, Hϕm〉 = bnδn,m+1 + anδn,m + b′nδn,m−1, (2)

for all n,m = 0, 1, 2, 3, . . .. Furthermore, H is called e-tridiagonal if H is (e, e)-
tridiagonal.

This definition extends that given in [1] in two ways: first of all, H is not required
to be self-adjoint. For this reason no relation is assumed, in general, between {bn}
and {b′n}. Also, an could be complex or not. Secondly, we are replacing a single basis
with two biorthogonal sets, Fϕ and Fψ, none of which is even necessarily a basis.
However, as often explicitly checked in concrete examples involving D-quasi bases,
[6], both Fϕ and Fψ are assumed to be complete in H: the only vector f ∈ H which
is orthogonal to all the ϕn’s, or to all the ψn’s, is f = 0.

Lemma 2 H is (ϕ, ψ)-tridiagonal if and only if H† is (ψ, ϕ)-tridiagonal. Moreover,
if H leaves D stable and if Fϕ and Fψ are Riesz bases, then H is (ϕ, ψ)-tridiagonal
if and only if H0 := R−1HR is (e, e)-tridiagonal.

The proof is easy and will not be given here. We only want to stress that D(H0) ⊇
D and that D is stable also under the action of H0.

Now, from (2) it follows that

Hϕm = b′m−1ϕm−1 + amϕm + bm+1ϕm+1. (3)

In fact, using the biorthogonality between Fψ and Fϕ, we can rewrite equation (2)
as

〈ψn, (Hϕm − b′nϕm−1 + anϕm + bnϕm+1)〉 = 0,

which must be satisfied for all n. Now, since the set Fψ is complete, (3) follows. Notice
that b′−1 = 0 here and in the following. In a similar way, recalling that ψn ∈ D(H†)
and that 〈ψn, Hϕm〉 =

〈

H†ψn, ϕm
〉

, from (2) and from the completeness of Fϕ we
find that

H†ψm = b′m ψm+1 + am ψm + bm ψm−1. (4)

Among other things, this formula shows that b0 = b0 = 0. Also, formulas (3) and
(4) show that ϕm is not an eigenstate of H , and that ψm is not an eigenstate of H†,
except if bm = b′m = 0 for all m. Clearly, when this happens, H is diagonal, rather
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than tridiagonal. Now, if we are under the assumptions of Lemma 2, (3) and (4)
produce, for H0, the following equalities:

H0em = b′m−1em−1 + amem + bm+1em+1, H
†
0em = b′m em+1 + am em + bm em−1. (5)

Lemma 3 Let us assume that H leaves D stable and that Fϕ and Fψ are Riesz bases.

If H0 = H
†
0, then an ∈ R and bm = b′m−1 for all m ≥ 0. Viceversa, if am ∈ R and

bm = b′m−1, then 〈f,H0g〉 = 〈H0f, g〉, for all f, g ∈ E , where E is the linear span of
the en’s.

The proof is a simple consequence of formula (5). In particular, bm = b′m−1 is
automatically satisfied for m = 0, since, as we have already noticed, b0 = b′−1 = 0.
Of course, E is dense in H, since Fe is an o.n. set of vectors in the dense set D.
Hence Fe is an o.n. basis for H. Notice that this Lemma shows that also H0 can
be non self-adjoint. This is often not the case in PT-quantum mechanics, [3], or for
pseudo-hermitian operators, [4], where non self-adjoint Hamiltonians are shown to
be similar to self-adjoint ones, and the similarity is implemented exactly as above, in
H0 := R−1HR. But this is not what happens, in general, in this paper.

II.1 Factorization

Following [1], we now discuss when and how H can be factorized, and we use this
factorization to introduce two more Hamiltonians, the supersymmetric versions of H
and H†.

Let us first introduce an operator X on Lϕ = l.s.{ϕn}, the linear span of the ϕn’s.
Of course, this set is dense in H if Fϕ is complete in H, [6]. We put

Xϕn = cnϕn + dnϕn−1 (6)

It is clear that X is not a lowering operator for Fϕ, if cn 6= 0. Completeness of Fϕ,
and its biorthogonality with Fψ, allows us to deduce that X†ψn = cn ψn + dn+1 ψn+1,
which is a raising operator for Fψ only if cn = 0 for all n. Similarly, we can introduce
an operator Y on the linear span of the ψn’s, Lψ, as in (6):

Y ψn = c′nψn + d′nψn−1, (7)

whose adjoint, Y †, acts on ϕn as follows: Y †ϕn = c′n ϕn + d′n+1 ϕn+1. Again, Y and
Y † are not ladder operators, except if c′n = 0. Also, we require that d0 = d′0 = 0, in
order to avoid the appearance of ϕ−1 or ψ−1 in the two formulas above. Now, the
following can be easily checked: Hϕn = Y †Xϕn if the following relations are true:

an = cn c′n + dn d′n, b′n−1 = dn c
′
n−1, bn+1 = cn d

′
n+1. (8)

Under the same conditions we also deduce the following equality: H†ψn = X†Y ψn,
which shows, not surprisingly, that also H† can be factorized in terms of the same
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operators. In the following, to simplify the notation, we will often write H = Y †X
and H† = X†Y . The operators X and Y † satisfy the following commutation relation

[X, Y †]ϕn =
(

dn+1d
′
n+1 − dnd′n

)

ϕn+dn
(

c′n − c′n−1

)

ϕn−1+(cn+1 − cn) d
′
n+1ϕn+1. (9)

Notice that, in particular, ifX and Y are ladder operators (so that, cn = c′n = 0), then
this formula simplifies and returns [X, Y †]ϕn =

(

dn+1d
′
n+1 − dnd′n

)

ϕn, which becomes
the standard pseudo-bosonic commutation relation, [6, 12, 13, 14], if dn = d′n =

√
n:

[X, Y †]ϕn = ϕn, for all n.

Remark 1 It is interesting to notice that, when cn = 0, even if dn 6= √
n, it is

always possible to define new vectors, ϕ̂n, satisfying Xϕ̂n =
√
nϕ̂n−1. It is enough

to put ϕ̂n =
√
n!

dn!
ϕn, n = 0, 1, 2, 3, . . ., where d0! = 1 and dn! = d1d2 · · · dn, n ≥ 1.

Analogously, if c′n = 0 and d′n 6= √
n, it is again possible to define the new vectors

ψ̂n =
√
n!

d′n!
ψn, satisfying Y ψ̂n =

√
nψ̂n−1. Of course, this change of normalization of

the vectors have consequences in formula (8), and in the computation of

〈

ϕ̂n, ψ̂m

〉

=
n!

dn! d′n!
δn,m.

In general, these two families are still biortogonal, but no longer biorthonormal.

Remark 2 Even if, in general, X and Y † are not pseudo-bosonic operators, we can
still consider linear combinations of them, C := αX+βY †, D := γX+ δY †, and look
for conditions on the coefficients such that [C,D]ϕn = ϕn, ∀n ≥ 0. In particular, if
αδ 6= βγ, we have

[C,D]ϕn = (αδ − βγ)
(

(dn+1d
′
n+1 − dnd′n)ϕn + (dnc′n − dnc

′
n−1)ϕn−1 +

(cn+1d
′
n+1 − cnd

′
n+1)ϕn+1

)

,

which reduces to [C,D]ϕn = ϕn by fixing cn = c0, c
′
n = c′0, ∀n > 0 and dnd′n =

n
αδ−βγ , ∀n ≥ 0. Consequently, we also have [D†, C†]ψn = ψn, ∀n ≥ 0. We observe

that H = Y †X can be written in terms of the operators C,D as

H = − 1

(αδ − βγ)2
(

δγC2 + αβD2 − (αδ + βγ)CD + αδ11
)

.

Having factorized H and H†, it is natural to consider now their Susy partners
Hsusy = XY † and H†

susy = Y X†. Using formula (6) and Y †ϕn = c′n ϕn + d′n+1 ϕn+1

we deduce that
Hsusyϕn = B′

n−1ϕn−1 + Anϕn +Bn+1ϕn+1, (10)

where

An = cn c′n + dn+1 d
′
n+1, B′

n−1 = dn c′n, Bn+1 = cn+1 d
′
n+1. (11)
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Of course, (10) implies that Hsusy is (ϕ, ψ)-tridiagonal:

〈ψn, Hsusyϕm〉 = Bnδn,m+1 + Anδn,m +B′
nδn,m−1,

which coincides with (2), with (an, bn, b
′
n) replaced by (An, Bn, B

′
n). Hence, Lemma

2 implies that H†
susy is (ψ, ϕ)-tridiagonal, and we can easily check that

H†
susyψn = Bnψn−1 + Anψn +B′

nψn+1, (12)

which coincides with formula (4) with the above replacement.

Remark 3 If X and Y are lowering operators, we have cn = c′n = 0, and we find
an = dnd′n, An = dn+1d

′
n+1 = an+1, bn = b′n = Bn = B′

n = 0. Hence

Hϕn = anϕn, H†ψn = anψn, Hsusyϕn = an+1ϕn, H†
susyψn = an+1ψn,

as expected. In this case, Fϕ and Fψ are eigenstates of H and Hsusy, and of H† and
H†
susy, respectively.

II.2 Diagonalization of the Hamiltonians and consequences

As we have already noticed, if H is (ϕ, ψ)-tridiagonal, then Fϕ is not a set of eigen-
states of H . However, we can use its vectors to look for these eigenstates, at least
if Fϕ is a basis for H, which is what we will assume here. This implies that its
biorthogonal set Fψ is a basis as well, [15].

Let Φn be an eigenstate of H , with eigenvalue En:

HΦn = EnΦn. (13)

Of course, in general, En is also unknown. We expand Φn in terms of Fϕ, and we use
its biorthogonality with Fψ. Hence we have

Φn =
∑

k

c
(n)
k ϕk, c

(n)
k = 〈ψk,Φn〉 . (14)

Now, assuming that H
∑

k c
(n)
k ϕk =

∑

k c
(n)
k Hϕk, which is true, for instance, if H is

bounded or under some closability condition on H , and using (3) and the biorthogo-
nalities of Fψ and Fϕ, we deduce the following relation between the coefficients:

c
(n)
l En = c

(n)
l−1bl + c

(n)
l al + c

(n)
l+1b

′
l, (15)

where c
(n)
−1 = 0. In complete analogy we can look for eigenstates of H† using Fψ: let

ηn be the eigenstate of H† corresponding to the eigenvalue En:

H†ηn = Enηn.
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We expand ηn in terms of Fψ:

ηn =
∑

k

d
(n)
k ψk, d

(n)
k = 〈ϕk, ηn〉 . (16)

Now, if H†∑
k d

(n)
k ψk =

∑

k d
(n)
k H†ψk, we deduce the following relation, quite similar

to that in (15):

d
(n)
l En = d

(n)
l−1b

′
l−1 + d

(n)
l al + d

(n)
l+1bl+1, (17)

where, obviously, we have set d
(n)
−1 = 0. A comparison between this formula and (15)

shows that, if bl = b′l−1, once c
(n)
l is computed, then d

(n)
l can be easily deduced by

taking d
(n)
l = c

(n)
l .

Remark 4 Notice that, if bl = b′l−1, formula (2) becomes 〈ψn, Hϕm〉 = bnδn,m+1 +
anδn,m + bn+1δn,m−1, which is, if ϕn = ψn, the starting point of the analysis proposed
in [1].

The coefficients c
(n)
l and d

(n)
l satisfy some summation formulas which are deduced

in the following Proposition.

Proposition 4 The coefficients c
(n)
l and d

(n)
l satisfy the equation

∑

k

c
(n)
k d

(m)
k = 〈Φn, ηm〉 = δn,m, (18)

where the last equality holds if each eigenvalue of H has multiplicity one and if the
normalizations of Φn and ηn are chosen in such a way that 〈Φn, ηn〉 = 1.

Also, if FΦ = {Φn} and Fη = {ηn} are D-quasi bases, then

∑

n

c
(n)
k d

(n)
l = δk,l, (19)

Proof: First of all, using the resolution of the identity in D given by (1) we have

∑

k

c
(n)
k d

(m)
k =

∑

k

〈Φn, ψk〉 〈ϕk, ηm〉 = 〈Φn, ηm〉 .

The fact that 〈Φn, ηm〉 = 0 if n 6= m, at least if the multiplicity of En is one, is well
known.

Equation (19) can be proved as follows:

∑

n

c
(n)
k d

(n)
l =

∑

n

〈ϕl, ηn〉 〈Φn, ψk〉 = 〈ϕl, ψk〉 = δk,l,

7



where we have used the hypothesis that FΦ = {Φn} and Fη = {ηn} are D-quasi bases
and that ϕl, ψk ∈ D. The last equality follows from the biorthogonality of Fϕ and
Fψ.

✷

Defining next the following quantities

p
(n)
l =

c
(n)
l

c
(n)
0

, q
(n)
l =

d
(n)
l

d
(n)
0

, (20)

we observe that

p
(n)
−1 = q

(n)
−1 = 0, p

(n)
0 = q

(n)
0 = 1, ∀n ≥ 0. (21)

Formulas (15) and (17) can be rewritten as the following recurrence equations:

p
(n)
l+1 =

1

b′l

(

p
(n)
l (En − al)− p

(n)
l−1bl

)

(22)

and

q
(n)
l+1 =

1

bl+1

(

q
(n)
l (En − al)− q

(n)
l−1b

′
l−1

)

(23)

which produce, in principle, the sequences {p(n)l } and {q(n)l }, and {c(n)l } and {d(n)l }
from (20) as a consequence, using (21). Of course, En must be known in order to
compute explicitly these coefficients. This is what happens in some situations, as the
examples in the next section show.

We conclude this section adapting these results, and formulas (22) and (23) in
particular, to the Susy partners ofH andH†. We recall that they are both tridiagonal.
In particular, Hsusy is (ϕ, ψ)-tridiagonal, and H†

susy is (ψ, ϕ)-tridiagonal. Also, we
have already noticed that one can go from (H,H†) to (Hsusy, H

†
susy) simply replacing

(an, bn, b
′
n) with (An, Bn, B

′
n). Hence, starting with the following eigenvalue equations,

HsusyΦ̃n = EnΦ̃n, H†
susyη̃n = En η̃n, (24)

and expanding Φ̃n and η̃n as follows,

Φ̃n =
∑

k

c̃
(n)
k ϕk, η̃n =

∑

k

d̃
(n)
k ψk, c̃

(n)
k =

〈

ψk, Φ̃n

〉

, d̃
(n)
k = 〈ϕk, η̃n〉 ,

the following counterparts of (22) and (23) can be found:

P
(n)
l+1 =

1

B′
l

(

P
(n)
l (En −Al)− P

(n)
l−1Bl

)

(25)

and

Q
(n)
l+1 =

1

Bl+1

(

Q
(n)
l (En − Al)−Q

(n)
l−1B

′
l−1

)

. (26)
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Here we have introduced the normalized coefficients

P
(n)
l =

c̃
(n)
l

c̃
(n)
0

, Q
(n)
l =

d̃
(n)
l

d̃
(n)
0

, (27)

which obey, in particular,

P
(n)
−1 = Q

(n)
−1 = 0, P

(n)
0 = Q

(n)
0 = 1, ∀n ≥ 0. (28)

Of course, c̃
(n)
k and d̃

(n)
k satisfy the analogous of Proposition 4. In particular, for

instance, if FΦ̃ = {Φ̃n} and Fη̃ = {η̃n} are D-quasi bases, then
∑

n c̃
(n)
k d̃

(n)
l = δk,l.

III Examples

This section is devoted to the analysis of some examples of our general framework. In
particular, in Section III.1 we propose a rather general method to produce general non
self-adjoint tridiagonal matrices. In Section III.2 we analyse in all details a shifted
harmonic oscillator, with particular attention to the three terms relations previously
introduced.

III.1 A shifted quantum well

Let H0 = p2 + V (x), where p = −i d
dx

is the momentum operator and V (x) is the
potential which is zero for x ∈ [0, π], and infinite outside this region. H0 is therefore
the self-adjoint Hamiltonian of a particle of mass m = 1

2
in an infinitely deep square-

well potential. It is well known that

H0 en(x) = Enen(x), En = (n+ 1)2, en(x) =

√

2

π
sin((n+ 1)x), (29)

where x ∈ [0, π] and n = 0, 1, 2, 3, . . .. In [16] it is shown how H0, as well as the
Hamiltonians of many other physical systems, can be factorized. First we introduce
the number operator N̂ defined on the vectors en(x), which all together form an o.n.
basis for H = L2(0, π): N̂en = nen, n ≥ 0. Of course N̂ is not bounded and it is not
invertible. However, N̂ + 11 is invertible, and (N̂ + 11)−1 is bounded. Following [16]
we define the following operators:

M̂+ = cos(x)(N̂ +11)+sin(x)
d

dx
, M̂− =

(

cos(x)(N̂ + 11)− sin(x)
d

dx

)

(N̂ +11)−1N̂.

They are ladder operators since they satisfy

M̂+en = (n+ 1)en+1, M̂−en = nen−1,

9



where we put e−1 = 0. Hence it is possible to see thatH0en = M̂−M̂+en: Furthermore,
we cal also check that

M̂
†
+en = M̂−en, M̂

†
−en = M̂+en, [M̂−, M̂+]en = (2N̂ + 11)en

for all n. Now, let us consider the following shifted version of the ladder operators
M̂±: B = M̂+ + α11, A = M̂− + β11, α, β ∈ C, and the related shifted Hamiltonian
h = BA. It is easy to check that h is (e, e)-tridiagonal:

hen = αnen−1 + (n2 + αβ)en + β(n+ 1)en+1, (30)

which coincides with (3) taking b′n−1 = αn, bn+1 = β(n+1) and αn = n2 +αβ. Now,
since Aen = βen + nen−1 and B = αen + (n + 1)en+1, the coefficients in (6) and (7)
are cn = β, c′n = α, dn = d′n = n and the identities in (11) are satisfied.

As for the other Hamiltonians connected to h, it is easy to check that for h†,
which is clearly (e, e)-tridiagonal in view of Lemma 2 (as an explicit computation
also shows), coincides with h but with α replaced by β and viceversa. As for their
Susy partners, we have, for instance

hsusy = AB = [A,B] + h = h+ (2N̂ + 11),

since [A,B] = [M̂− + β11, M̂+ + α11] = [M̂−, M̂+] = (2N̂ + 11). It follows that

hsusyen = αnen−1 + ((n+ 1)2 + αβ)en + β(n+ 1)en+1,

which shows that An = an+1, Bn = bn and B′
n = b′n.

Remark:– It is clear that the same approach can be extended to all systems
whose self-adjoint Hamiltonian can be factorized in terms of ladder operators, as
those included in [16]. Once we have an H̃0 = H̃

†
0 = Q†Q, with eigenstates fn and

eigenvalues En, H̃0fn = Enfn, shifting Q and Q† with two different complex quantities,
Q → Q + β11 and Q† → Q† + α11, with α possibly different from β, the non self-
adjoint operator h̃ = (Q† +α11)(Q+ β11) is (f, f)-tridiagonal, with obvious notation.
What is not easy, or possible, in general, is to make use of the recurrence relation
(22) to deduce the eigenstates of h̃, since its eigenvalues are not known a priori. In
the next example and in Section IV we will discuss an example where this is not so,
and the recurrence relations can be efficiently used to deduce the eigenvectors of the
analogous of h̃.

III.2 The shifted harmonic oscillator

This model has been discussed by several authors, in slightly different forms, mainly
in the context of pseudo-hermitian (or PT) quantum mechanics, [3, 4]. Some useful
references are [17, 18, 19, 20, 21, 22].

Let c be a lowering operator on H satisfying the canonical commutation relation
[c, c†] = 11. Of course, this equality must be understood on a suitable dense subspace
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of H, since c and c† are unbounded. For instance, if c = 1√
2

(

x+ d
dx

)

, the Hilbert

space is H = L2(R) and the dense set can be identified with S(R), the set of the fast
decreasing test functions. If we introduce the vacuum of c, that is a (normalized)

vector e0 ∈ H satisfying ce0 = 0, we can act on it with powers of c†: en = (c†)n√
n!
e0.

The resulting vectors, {en}, form an o.n. basis of H, which is all made by functions
of S(R) if c is represented as above. These vectors are eigenstates of H0 = c†c:
H0en = nen, n = 0, 1, 2, . . ..

Let us now define a = c+α11 and b = c†+β11, for some α, β ∈ C, with α 6= β. These
operators areD-pseudo bosonic, [6, 19, 20], where, using the coordinate representation
for c and c†, D can be identified with S(R). In particular, for instance, [a, b]f = f

for all f ∈ D. If we now call H = ba = H0 + (αc† + βc) + αβ11, we find that

Hen = (n+ αβ)en + α
√
n + 1en+1 + β

√
nen−1, (31)

so that 〈en, Hem〉 = (n + αβ)δn,m + α
√
nδn,m+1 + β

√
n+ 1δn,m−1. We see that H is

(e, e)-tridiagonal, like H†. Incidentally, we also observe that H† coincides with H ,
but with (α, β) replaced by (β, α).

Now, since cen =
√
n en−1 and c

†en =
√
n+ 1 en+1, we see that aen = (c+α11)en =

αen +
√
n en−1, while ben = (c† + β11)en = βen +

√
n+ 1 en+1, so that X = a and

Y † = b only if the following identifications hold:

cn = α, c′n = β, dn = d′n =
√
n. (32)

Therefore, since formula (31) implies that bn = α
√
n, an = n+αβ and b′n = β

√
n+ 1,

the equalities in (8) are satisfied. It is clear that, in the present example, the com-
mutation relation in (9) simplifies: [X, Y †]en = [a, b]en = en, for all n = 0, 1, 2, 3, . . ..

As for Hsusy = ab, we easily see that

Hsusyen = ([a, b] +H)en = (H + 11)en = (n+ 1 + αβ)en + α
√
n+ 1en+1 + β

√
nen−1,

which coincides with (31) expect that n + αβ is now replaced by n + 1 + αβ. We
observe that An = an+1, Bn = bn and B′

n = b′n, and that

H†
susyen = (n + 1 + αβ)en + α

√
nen−1 + β

√
n+ 1en+1.

It is now interesting to discuss the role of (22) and (23) in this example. This is
particularly simple here since we know that the eigenvalues of H and H† are just
En = n, for all n = 0, 1, 2, . . ..

Let us first take n = 0, and look for the ground state of H = ba: HΦ0 = 0.
Such an eigenstate can be easily found, simply by looking at the vacuum of a. Of
course, aΦ0 = 0 if and only if cΦ0 = −αΦ0. This means that Φ0 is (proportional to)
a standard coherent state, [23, 24, 25, 26], with parameter −α:

Φ0 = NΦe
−αc†+αce0 = NΦe

− |α|2

2

∞
∑

k=0

(−α)k√
k!

ek, (33)
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where NΦ is a normalization factor which is usually taken equal to one for standard
coherent states, [23].

In a similar way we could find the ground state of H†. However, the easier way
to find η0 is just to recall the above cited symmetry between H and H†. Hence η0 is,
a part the normalization, nothing but Φ0 with α replaced by β:

η0 = Nηe
−βc†+βce0 = Nηe

− |β|2

2

∞
∑

k=0

(−β)k√
k!

ek. (34)

A connection between NΦ and Nη can be found by requiring that 〈Φ0, η0〉 = 1:

NΦNη = e
1

2
(|α|2+|β|2+αβ).

We want to show now that the same expansions as in (33) and (34) can be obtained
by means of (22) and (23). We start specializing (22) to n = 0 and to our particular
value of the coefficients:

p
(0)
l+1 =

−1

β
√
l + 1

(

p
(0)
l (l + αβ) + p

(0)
l−1α

√
l
)

,

with, as usual, p
(0)
−1 = 0 and p

(0)
0 = 1. It is simple now to find the general solution of

this recurrence relation: p
(0)
k = (−α)k√

k!
, so that c

(0)
k = (−α)k√

k!
c
(0)
0 , for all k = 0, 1, 2, . . ..

Hence, formula (14) produces

Φ0 =
∑

k

c
(0)
k ek = c

(0)
0

∑

k

(−α)k√
k!

ek,

which coincides with (33), upon identifying c
(0)
0 with NΦe

− |α|2

2 .
Using now (23), in the same way we recover η0 in (34). This is because we find

q
(0)
k = (−β)k√

k!
.

Notice that, in this simple example, we can also make use of the factorization
H = Y †X to get the same results. In fact, the ground Φ0 can be obtained as the
vacuum of X,XΦ0 = 0 (and similarly η0 as the ground of Y ). Expanding Φ0 as

Φ0 =
∑

k≥0

c
(0)
k ϕk, c

(0)
k = 〈ψk,Φ0〉 ,

and using the biorthogonality conditions between Fϕ and Fψ we have

0 = 〈ψk, XΦ0〉 = ckc
(0)
k + dk+1c

(0)
k+1 = αc

(0)
k +

√
k + 1c

(0)
k+1,

and as before the solution is c
(0)
k = (−α)k√

k!
c
(0)
0 , and therefore p

(0)
k = (−α)k√

k!
.

We now generalize these results to the higher energetic levels, n > 0, and show
that the eigenstates of H can be completely determined again by using relation (22).
First, for pedagogical reason, we discuss the case n = 1 and then we extend the
results.

12



The eigenstates of H are given by ([6], p. 148)

Φn =
1√
n!
bnΦ0 (35)

where Φ0 is as in (33). It is easy to verify that

bnek =

n
∑

i=0

[(

n

i

)

βn−ipk(i)

]

ek+i (36)

where pk(i) =
√
k + 1

√
k + 2 . . .

√
k + i if i ≥ 1 and 0 if i = 0. Therefore

Φn =
1√
n!
NΦe

− |α|2

2

∞
∑

k=0

(−α)k√
k!

n
∑

i=0

[(

n

i

)

βn−ipk(i)

]

ek+i, (37)

The first “excited” state will be

Φ1 = NΦe
− |α|2

2

∞
∑

k=0

(−α)k√
k!

[k + (−α)β] ek, (38)

This result can also be recovered by starting from the recurrence relation (22),
which looks now as follows:

p
(1)
l+1 =

1

β
√
l + 1

(

p
(1)
l (1− (l + αβ))− p

(1)
l−1α

√
l
)

(39)

with p
(1)
−1 = 0 and p

(1)
0 = 1. It is easy to show that

c
(1)
l =

c
(1)
0

β

∞
∑

l=0

(−α)l√
l!

[l + (−α)β] (40)

which allows to retrieve (38) provided that c
(1)
0 = βNΦe

− |α|2

2 .
For arbitrary n > 1 it is possible to write Φn as

Φn =
1√
n!
NΦe

− |α|2

2

∞
∑

k=0

(−α)k√
k!

n
∑

j=0

[(

n

j

)

[(−α)β]n−jj!
(

k

j

)]

ek (41)

and show that the recurrence relation yields the same result provided that

c
(n)
0 =

βn√
n!
NΦe

− |α|2

2 (42)

Using the symmetry between H and H† it is easy to see that the “excited” states
of H† are given by ([6], p. 148)

ηn =
1√
n!
(a†)nη0 =

1√
n!
Nηe

− |β|2

2

∞
∑

k=0

(−β)k√
k!

n
∑

j=0

[(

n

j

)

[(−β)α]n−jj!
(

k

j

)]

ek (43)
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and this is the same result one gets starting from the recurrence relation (23), a part
for a normalization factor.

A similar analysis can be repeated also for the Susy partners of H and H†. Of
course, since in the present situation Hsusy = H + 11 and H†

susy = H† + 11, the

eigenstates in (24) coincides with those without the tilde: Φ̃n = Φn and η̃n = ηn,
while the eigenvalues obey the relation En = En + 1 = n + 1. If we now adopt
(25) and (26), with E0 = 1, we recover again the correct eigenstates, a part for the
normalization, which must be chosen with care.

Remark 5 This example can be generalized by introducing a sort of double trans-
lation. More explicitly, we can consider, as starting points, two D-pseudo bosonic
operators a and b, [a, b]f = f for all f ∈ D, and the related (already) non self-adjoint
Hamiltonian H = ba: H 6= H†. Its eigenvalues are En = n, n = 0, 1, 2, 3, . . ., while
its eigenvectors are those in (35). H† has the same eigenvalues of H, while its eigen-
states are those in (43). If we now introduce two complex parameters γ and δ, and
two new operators A = a + γ11 and B = b + δ11, it is clear that [A,B]f = f for all
f ∈ D. Moreover, in general, A 6= B†. It is easy to check that Ĥ = BA is (Φ, η)-
tridiagonal, and therefore, see Lemma 2, Ĥ† is (η,Φ)-tridiagonal. What we have
discussed above can be essentially repeated, with minor changes, for Ĥ, Ĥ†, and for
their Susy-partners. In particular, if the operators a and b are related to two bosonic
operators c and c† as above, a = c + α11 and b = c† + β11, it is clear that A = c and
B = c† if α = −γ and β = −δ. In this case, H0 = Ĥ = Ĥ†. When these equalities
(or one of them) are not satisfied, the same results as in this section hold true with
(α, β) replaced by (α + γ, β + δ).

IV Extended settings

In this section we consider a slightly different form of the Hamiltonian which is not
now tridiagonal in the sense of (2), but whose matrix elements in two biorthogonal
bases can still be written as a sum of three contributions. All the hypothesis of
completeness, closability and domain invariance assumed in the previous sections are
maintained, if not specified differently.

Definition 5 H is called (ϕ, ψ)h-tridiagonal, with h > 0, if three sequences of com-
plex numbers exist, {bn}, {an} and {b′n}, such that

〈ψn, Hϕm〉 = bnδn,m+h + anδn,m + b′nδn,m−h, (44)

for all n,m = 0, 1, 2, 3, . . .. Furthermore, H is called eh-tridiagonal if H is (e, e)h-
tridiagonal.

Of course, if h = 1 we return to the situation considered in Section II. Hence, to
make the situation interesting, in this section we assume h > 1

14



Using (44) and completeness of Fϕ and Fψ, we deduce the natural extensions of
(3) and (4):

Hϕm = b′m−hϕm−h + amϕm + bm+hϕm+h, (45)

H†ψm = b′m ψm+h + am ψm + bm ψm−h, (46)

with the clear conditions that bj = 0 for j < h and b′j = 0 for j < 0. It is straight-
forward to factorize H and H† by introducing the operator Xh on Lϕ and Yh on Lψ,
defined as

Xhϕn = cnϕn + dnϕn−h, Yhψn = c′nψn + d′nψn−h, ∀n ≥ 0, (47)

with dj = d′j = 0, j < h. It can be easily checked that Hϕn = Y
†
hXhϕn and H†ψn =

X
†
hYhψn by putting

an = cn c′n + dn d′n, b′n−h = dn c
′
n−h, bn+h = cn d

′
n+h, (48)

and that in general

[Xh, Y
†
h ]ϕn =

(

dn+hd
′
n+h − dnd′n

)

ϕn + dn
(

c′n − c′n−h
)

ϕn−h + d′n+h (cn+h − cn)ϕn+h.
(49)

To find a suitable recurrence formula for the determination of the eigenstates of
H and H†, we adopt the same strategy used in Section II.2. In particular, if Φn, ηn
are an eigenstates of H and H†, HΦn = EnΦn, H†ηn = Ēnηn, and we expand Φn
and ηn as in (14) and (16), we obtain the following recurrence formulas:

c
(n)
l En = c

(n)
l−hbl + c

(n)
l al + c

(n)
l+hb

′
l, (50)

d
(n)
l En = d

(n)
l−hb

′
l−h + d

(n)
l al + d

(n)
l+hbl+h, (51)

with c
(n)
j , d

(n)
j = 0, j < h, j 6= 0, and the related

p
(n)
l+h =

1

b′l

(

p
(n)
l (En − al)− p

(n)
l−hbl

)

, (52)

q
(n)
l+h =

1

bl+h

(

q
(n)
l (En − al)− q

(n)
l−hb

′
l−h

)

, (53)

where the coefficients p
(n)
j , q

(n)
j are defined as in (20) with p

(n)
j = q

(n)
j = 0, j < h

with the exceptions p
(n)
0 = q

(n)
0 = 1.

IV.1 A squeezed Hamiltonian

Despite the general (ϕ, ψ)h-tridiagonal settings seems to be a straightforward ex-
tension of the (ϕ, ψ)-tridiagonal case, some relevant Hamiltonians in physics can be
related to them, giving rise to states having interesting features. In the following
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we consider an Hamiltonian from which a (bi)-squeezed state can be obtained by
applying our recurrence procedure, [10].

Suppose that there exist two pseudo-bosonic operators a, b satisfying the commu-
tation rules [a, b] = 11 in D, dense subspace of H. As usual, we suppose that D is
invariant under the action of a, b, and their adjoints. Following [6] we have

aϕn =
√
nϕn−1, bϕn =

√
n+ 1ϕn+1, (54)

b†ψn =
√
nψn−1, a†ψn =

√
n + 1ψn+1. (55)

Next we introduce the squeezing-like operators, labelled by the complex variable z =
reiθ, r > 0:

S(z)f =
∑

k≥0

1

k!

(

z

2
b2 − z

2
a2
)k

f, T (z)f =
∑

k≥0

1

k!

(

z

2
(a†)2 − z

2
(b†)2

)k

f, (56)

for all f ∈ D, which under our assumptions converge strongly in D to e
1

2
zb2− 1

2
z̄a2

and to e
1

2
z(a†)2− 1

2
z̄(b†)2 respectively, see [10]. We can now introduce the operators

A = S(z)aT †(z), B = T (z)bS†(z) which reduces to

A = cosh(r)a+ eiθ sinh(r)b, B = cosh(r)b+ e−iθ sinh(r)a, (57)

see [10]. They look like D-pseudo bosonic operators too, because they satisfy [A,B] =
11 in D.

We now define the Hamiltonian

H = BA = µ(z)ba + λ(z)a2 + λ(z)b2 + sinh(r)211, (58)

where µ(z) = cosh(2r), λ(z) = e−iθ cosh(r) sinh(r). Of courseH is (ϕ, ψ)2 tridiagonal,
because, using the raising and lowering conditions (54)-(55), we have

〈ψn, Hϕm〉 = bnδn,m+2 + anδn,m + b′nδn,m−2, (59)

with

an = nµ(z) + sinh(r)2, bn = λ(z)
√

n(n− 1), b′n = λ(z)
√

(n + 1)(n+ 2), (60)

for all n ≥ 0.
The eigenvalues of H are clearly En = n. Hence, the ground Φ0 of H satisfies

HΦ0 = 0. To find the expressions for Φ0 we expand it as

Φ0 =
∑

k≥0

c
(0)
k ϕk, c

(0)
k = 〈ψk,Φ0〉 ,

and we can find the coefficients c
(0)
k by means of (50) and (52). In particular, we have

p
(0)
k+2 =

1

b′k

(

−akp(0)k − bkp
(0)
k−2

)

, (61)
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with the initial conditions p
(0)
−2 = p

(0)
−1 = p

(0)
1 = 0 and p

(0)
0 = 1. This recurrence formula

admits the solution

p
(0)
2k =

(−eiθ tanh(r)
2

)k
√

(2k)!

k!
, p

(0)
2k+1 = 0, ∀k ≥ 0, (62)

so that we have

Φ0 = c
(0)
0

∑

k≥0

(−eiθ tanh(r)
2

)k
√

(2k)!

k!
φ2k.

Looking for the ground η0 of H† we obtain in a similar way

η0 = d
(0)
0

∑

k≥0

(−eiθ tanh(r)
2

)k
√

(2k)!

k!
ψ2k.

We notice that Φ0 and η0 are (proportional) to the bi-squeezed states, [10]. In par-

ticular, choosing a normalization in such a way that c
(0)
0 = d

(0)
0 = e−

1

2
log(cosh(r)), we

get 〈η0,Φ0〉 = 1.
Of course, we can also use the factorization H = Y †X to recover the same results,

and recovering Φ0 as the vacuum of X (XΦ0 = 0). In this case the condition (48)
with (60) is satisfied by choosing

cn = c′n =
√
n + 1 sinh(r), dn = d′n = e−iθ

√
n cosh(r),

and to retrieve Φ0 we require that

〈ψk, XΦ0〉 = ckc
(0)
k + dk+2c

(0)
k+2 = 0, ∀k ≥ 0.

This implies that the coefficients p
(0)
k satisfy the recurrence formula

p
(0)
k+2 = −eiθ tanh(r)

√

k + 1

k + 2
p
(0)
k ,

which again is satisfied by (62). The advantage of using the factorization H = Y †X
relies in the fact that we can recover an easier recurrence formula which uses a
relationship between two consecutive even coefficients p

(0)
j only, instead of using the

recurrence formula (61), where three terms are involved.
Of course, once we have retrieved the ground states of H and H†, we can easily

find the ground states of their Susy partners. In fact, as we have

Hsusy = AB = µ(z)ba + λ(z)a2 + λ(z)b2 + cosh(r)211 = H + 11,

the ground states Φ̃0, η̃0 of Hsusy and H†
susy coincide with Φ0, η0, respectively, but

with eigenvalues 1. This is not very different from what we have deduced in Section
III.1.
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V Conclusions

In this paper we have considered non self-adjoint tridiagonal Hamiltonians and their
Susy partners, and discussed the possibility to factorize them using operators which
may, or may not, be pseudo-bosonic. Three-terms recurrence relations have been
deduced and have been used in the construction of the eigenstates of the Hamiltonians
involved in our analysis. Within the framework proposed here we have considered a
shifted harmonic oscillator, and a shifted infinitely deep square well.

Furthermore, we have extended our results to (ϕ, ψ)h-tridiagonal matrices, and we
have shown how this extension, if h = 2, is connected with squeezed and bi-squeezed
states.
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