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We consider the entanglement of orthogonal generalized Bernoulli states in two separate single-mode high-
Q cavities. The expectation values and the correlations of the electric field in the cavities are obtained. We then
define, in each cavity, a dichotomic operator expressible in terms of the field states which can be, in principle,
experimentally measured by a probe atom that “reads” the field. Using the quantum correlations of couples of
these operators, we construct a Bell’s inequality which is shown to be violated for a wide range of the degree
of entanglement and which can be tested in a simple way. Thus the cavity fields directly show quantum
nonlocal properties. A scheme is also sketched to generate entangled orthogonal generalized Bernoulli states in
the two separate cavities.
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I. INTRODUCTION

Quantum entanglement of spatially separate systems is at
the origin of nonlocal behavior �1–3�. Bell’s inequalities
�4,5� show in fact that, if the degree of entanglement is large
enough, quantum correlations are incompatible with the ones
due to the so-called local hidden variable theories. Experi-
mental evidence supports quantum theory, as was first shown
by Aspect et al. �6,7� using entangled traveling photons and
more recently by Moehring et al. �8� using a hybrid atom-
photon entanglement.

In the context of cavity quantum electrodynamics
�CQED�, several schemes, based on typical atom-cavity in-
teractions, have been proposed for the production, in two
separate single-mode cavities, of entangled number states of
the kind a�1112�+b�0102� �9�, or a�1102�+b�0112� �10–13�,
where 0 j ,1 j �j=1,2� indicates the number of photons in the
cavity j and �a�2+ �b�2=1. In spite of this, there are few pro-
posals to test Bell’s inequalities for such entangled cavity
fields and an experimental test has not yet been made. One of
these proposals exploits an indirect method, the entangle-
ment to be brought to light being transferred to probe atoms,
for which Bell’s inequality is tested in terms of atomic pseu-
dospin operators �14�. In this case, one finds that atomic
nonlocality stands from the initial nonlocality of the cavity
photon system. Another proposal consists in a direct nonlo-
cality test for entangled cavity fields �15� in which Bell’s
inequality to be tested is formed with parity field operators
�16,17�. Within this test, classical driving fields are coupled
with the two cavities where a nonlocal state has been already
prepared. A couple of independent two-level atoms is then
sent through the cavities and each atom off-resonantly inter-
acts with the respective cavity field. After going out of the
cavities, the atomic states are conditionally measured and

Bell’s inequality can be tested by the joint probabilities of
the two-level atoms being both in their excited or ground
state.

The aim of this paper is to propose a direct test of Bell’s
inequality for entangled fields in two spatially separate
single-mode cavities using appropriate measurable cavity
field operators simply implementable by the usual resonant
atom-cavity interactions. It is of particular relevance to aim
at getting entanglement between electromagnetic field states
having mesoscopic characteristics, since in such a condition
the classical-quantum border may be investigated. To this
end, as well as in the context of our procedure, it is strategic
to start up with entangled two-cavities electromagnetic fields
exhibiting a nonzero mean field in each cavity and resulting
from the passage of few resonant two-level atoms through
both cavities. The reason is that, for such states, one expects
to find out correlations between the nonzero fields of the two
cavities. Quantum states of the electromagnetic field which
satisfy these requirements are, for example, the binomial
states �18,19�. In this paper, we consider the entangled state
of two separate single-mode cavities both filled with a “gen-
eralized Bernoulli state” �GBS�, which is a particular case of
a one-excitation generalized binomial state �18�, briefly dis-
cussing a possible way to realize it experimentally. We study
the expectation values and the correlations of the electric
field for this entangled two-cavities state, finding, as ex-
pected, nonzero values. In such a condition, it is useful to
define, in each cavity, a dichotomic operator �eigenvalues
±1� expressible in terms of the cavity field states and experi-
mentally measurable, in principle, with the help of a resonant
probe atom. We then construct a Bell’s inequality involving
the correlations that are established between these dichoto-
mic operators, discussing whether and how it may be vio-
lated by the entanglement injected into the two-cavities sys-
tem. We moreover suggest a simple test of this Bell’s
inequality violation.

This paper is organized as follows. In Sec. II, we intro-
duce the entanglement of GBSs in two separate cavities; in
Sec. III, we study the expectation values and the correlations
of the electric field for this entangled state; in Sec. IV, we
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introduce the dichotomic cavity operator by which we prove
the violation of Bell’s inequality, suggesting a simple experi-
mental test, too; in Sec. V, we suggest a way to generate
entangled GBSs in two separate high-Q single-mode cavities
and we briefly discuss the potential experimental errors in-
volved in this scheme; in Sec. VI, we summarize our con-
clusions.

II. ENTANGLEMENT OF ORTHOGONAL GENERALIZED
BERNOULLI STATES

The single-mode binomial state of the electromagnetic
field was introduced by Stoler et al. �18� and its principal
properties are reported in the literature �18,20�. Here we are
interested in the particular “generalized binomial state” �18�
where two consecutive number states have the same relative
phase �, defined as

�N,p,�� � �
n=0

N 	
N

n
�pn�1 − p�N−n�1/2

ein��n� , �1�

where N is the maximum number of photons of the field, p
� �0,1� is the probability of a single photon occurrence, � is
the mean phase �20�, and � N

n
�=N! / ��N−n�!n!� is the Newton

binomial. This state is clearly normalized. Some useful prop-
erties of the binomial state of Eq. �1� are given in Appendix
A, where in particular we prove the orthogonality condition
for two binomial states with the same N. More in detail, we
find that two binomial states �N , p ,�� and �N ,1− p ,�+��
satisfy the condition given in Eq. �A3� and they are orthogo-
nal. In the particular case N=1, the generalized binomial
state �1, p ,����p ,�� is called the “generalized Bernoulli
state” �GBS� �18�.

Let us now suppose that two identical separate single-
mode cavities, namely 1 and 2, are prepared in an entangled
state of the form

��� = N���p1,�1�1�1 − p2,� + �2�2

+ ��1 − p1,� + �1�1�p2,�2�2� , �2�

where � is real, N� is a normalization constant, and the state
�pj ,� j� j �j=1,2� indicates that the cavity j is in a GBS with
probability of a single photon occurrence pj and mean phase
� j. The GBSs relating to the same cavity of Eq. �2� satisfy
the orthogonality condition given in Eq. �A3�, so the state
��� of Eq. �2� represents an entanglement of orthogonal
GBSs in two spatially separate cavities and the normalization
constant is

N� = 1/
1 + ���2. �3�

Using the property given in Eq. �A2�, we observe that, for
limit values of p1 , p2, the entangled state of Eq. �2� becomes

���p1=p2=1 = N���1102� + �ei��2−�1��0112�� , �4a�

���p1=1,p2=0 = N���1112� − �e−i��1+�2��0102�� �4b�

that is, the entanglement of GBSs reduces to the entangle-
ment of number states �0�, �1�.

In the following, we shall consider the entangled orthogo-
nal GBSs of Eq. �2� as the injected state in the two cavities
and we shall study, in this state, expectation values and cor-
relations of the electric field and Bell’s inequality violations.

III. EXPECTATION VALUES AND CORRELATIONS OF
THE ELECTRIC FIELD

In this section, we proceed to calculate both the expecta-
tion value of the electric field in the GBS of a single cavity
and the correlations of the electric fields in the entangled
GBSs of the two cavities defined in Eq. �2�. We analyze the
dependence of the correlations on the values of the system
variables. Since we are considering single-mode electromag-
netic fields of frequency � inside cavities of volume V, the
quantized electric field inside each cavity j �j=1,2�, at the

time tj =0, can be written as Ê j�zj�=� jÊj�zj�, where �20�

Êj�zj� =
4���

V
�aj + aj

†�sin�kzj� . �5�

To obtain simple quantitative results, from now on we shall
consider the electric field defined in Eq. �5� at the time tj
=0 in the center of the cavity, where sin�kzj�=1.

We first calculate the matrix elements in the cavity j of Êj
in the basis of the two orthogonal GBSs �pj ,� j� �state 1� and
�1− pj ,�+� j� �state 2�. Using Eqs. �5� and �A1�, we obtain

�Êj�11 = − �Êj�22 = 2
4���pj�1 − pj�
V

cos � j ,

�Êj�12 =
4���

V
��2pj − 1�cos � j − i sin � j� . �6�

The diagonal matrix element �Êj�11 represents the expecta-
tion value of the electric field in the GBS �pj ,� j� and in
general it differs from zero.

Using Eq. �6�, we now calculate the expectation value of
the electric field in each cavity j for the entangled GBSs of

Eq. �2�, given by �Êj������Êj���. At the time tj =0 and in
the center of the cavity, we find

�Êj�� = 2�− 1� j−1
4���pj�1 − pj�
V

1 − ���2

1 + ���2
cos � j . �7�

It is immediate to note that, when the entanglement is non-
maximal, that is, for ����1, and when p1 , p2�0, 1 and
�1 ,�2� ±� /2, the expectation value of the electric field of
Eq. �7� differs from zero. On the other hand, for p1 , p2
=0 ,1, i.e., when the entanglement is between number states,
as given in Eqs. �4�, we find that the expectation value of the
electric field in each cavity is always equal to zero for any
value of �. From Eq. �7� we also obtain that, if ���=1, i.e., if
the entanglement of Eq. �2� is maximal, the mean electric
field in each cavity vanishes, as is expected. The correlation
function of the electric fields in the two cavities is given by

�Ê1Ê2��, and using Eqs. �2� and �5� we obtain
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�Ê1Ê2�� =
8���

V
� �

1 + ���2
�f�p1,p2�cos �1 cos �2

+ sin �1 sin �2� − h�p1,p2�cos �1 cos �2� ,

�8�

where we have set

f�p1,p2� � �2p1 − 1��2p2 − 1� , �9a�

h�p1,p2� � 2
p1p2�1 − p1��1 − p2� . �9b�

A quantitative indication of the electric field correlations is
given by the covariance

C�Ê1,Ê2� = �Ê1Ê2�� − �Ê1���Ê2��. �10�

From Eqs. �7� and �8�, we find that the covariance for the
entangled state of Eq. �2� is

C�Ê1,Ê2� =
8���

V
� �

1 + ���2
�f�p1,p2�cos �1 cos �2

+ sin �1 sin �2� − 	1 − 
1 − ���2

1 + ���2�
2�

� h�p1,p2�cos �1 cos �2� . �11�

C�Ê1 , Ê2� is in general different from zero, and it vanishes
when �=0, ±	, i.e., when the entangled state ��� of Eq. �2�
becomes a simple product of two uncorrelated GBSs.

We now consider the covariance of Eq. �11� for some
particular values of the system variables. For �= ±1 and p1
= p2=1/2 we have

C�=±1;p1=p2=1/2�Ê1,Ê2� = −
4���

V
cos��1 ± �2� �12�

which shows the importance of the values of the phase angle
relations �1±�2. In fact, if �1±�2=� /2, the covariance of
Eq. �12� vanishes; if instead �1±�2=0, the covariance of Eq.
�12� would be equal to the maximum value −4��� /V.

The electric field covariance for maximally entangled
number states of the form given in Eqs. �4� is obtained by
setting �= ±1, with p1= p2=1 or p1=1, p2=0 in Eq. �11�.
Then we find

C�=±1;p1=p2=1�Ê1,Ê2� = ±
4���

V
cos��1 − �2� , �13a�

C�=±1;p1=1,p2=0�Ê1,Ê2� = 

4���

V
cos��1 + �2� .

�13b�

From Eqs. �13� it results that the electric field covariances for
the maximally entangled number states of Eqs. �4� differ
from zero and they have the same absolute value of that of
Eq. �12�, relating to the entangled GBSs of Eq. �2�.

So, the electric fields in two separate cavities prepared in
an entangled state of the form given in Eqs. �2� and �4� are

correlated. However, since the cavity electric fields are not
easily measurable �21�, we cannot acquire any direct infor-
mation about nonlocality by the electric field correlations.
Thus, it appears to be necessary to introduce a measurable
cavity operator to test the nonlocality of entangled cavity
fields.

IV. BELL’S INEQUALITY

In view of the previous considerations, in this section we
shall approach the problem of nonlocality for entangled
fields in two spatially separate cavities, by examining
whether it is possible to test the property of nonlocality di-
rectly for the entangled cavity field state of Eq. �2�. For this
purpose, we shall utilize the Clauser-Horne-Shimony-Holt
�CHSH� form of Bell’s inequality �3,5�, which states that
according to any local hidden variable theory, the correla-
tions of two dichotomic observables A1�a1�, A2�a2� relative
to two correlated subsystems 1, 2, characterized by the pa-
rameters a1 ,a2 and whose measurement can have only two
possible outcomes labeled ±1, must satisfy the following in-
equality:

SB � ��A1�a1�A2�a2�� − �A1�a1�A2�a2���� + ��A1�a1��A2�a2��

+ �A1�a1��A2�a2���� � 2, �14�

where SB is called Bell’s function.

A. Dichotomic field operator

To test the CHSH form of Bell’s inequality defined in Eq.
�14� for the cavity field entanglement of Eq. �2�, one must
choose the appropriate operator which corresponds to the
observable to be measured.

Let us first consider one single-mode cavity. Utilizing the
GBS �p ,�� and the orthogonal GBS �1− p ,�+��, we intro-

duce the dichotomic operator F̂p���, acting on the field mode
and characterized by the field parameters p ,�, defined as

F̂p��� � �p,���p,�� − �1 − p,� + ���1 − p,� + �� . �15�

This operator has eigenvalues ±1 for any values of the pa-
rameters p ,�, and its corresponding expression in the Fock
space basis is

F̂p��� = �2p − 1���1��1� − �0��0�� + 2
p�1 − p��ei��1��0�

+ e−i��0��1�� . �16�

We shall test Bell’s inequality of Eq. �14� using the operators

F̂p���, for each cavity, with different phases � but with the

same p. The matrix representation of F̂p����, in the basis
Bp,�= ��p ,�� , �1− p ,�+��� of two orthogonal GBSs, is

F̂p���� = 
F11 F12

F12
* − F11

� , �17�

where, using Eqs. �16� and �A1�, the matrix elements
F11,F12 have the explicit expressions

F11 = �p,��F̂p�����p,�� = 1 − 8p�1 − p�sin2���� − ��/2� ,
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F12 = �p,��F̂p�����1 − p,� + �� = 2
p�1 − p��2�1

− 2p�sin2���� − ��/2� + i sin��� − ��� . �18�

The matrix of Eq. �17� has clearly eigenvalues ±1, in fact,

�2 = F11
2 + �F12�2 = 1 ⇒ � = ± 1. �19�

The corresponding eigenstates �p ,��� , �1− p ,�+��� of the

operator F̂p���� of Eq. �17�, expressed in the basis Bp,�,
become

�1,p,��� =
1

NF
	�F12��1,p,��

+
�1 − F11��F12�

F12
�1,1 − p,� + ��� ,

�1,1 − p,� + ��� =
1

NF
	 �F11 − 1��F12�

F12
* �1,p,��

+ �F12��1,1 − p,� + ��� , �20�

where the normalization constant NF is given by

NF = 
�F12�2 + �1 − F11�2. �21�

In Sec. IV C we will show that the operator F̂p��� defined
in Eq. �15�, with p fixed and for different values of �, is an
observable, i.e., its eigenvalues are experimentally measur-
able.

B. Bell’s inequality violation

Let us consider the entangled GBSs introduced in Eq. �2�
and for the sake of simplicity set

p1 = p2 = p, �1 = �2 = � . �22�

With this choice, the entangled state of Eq. �2� takes the form

��� = N���p,��1�1 − p,� + ��2 + ��1 − p,� + ��1�p,��2� ,

�23�

where � is real and N�=1/
1+ ���2. The choice of Eq. �22�
allows us to simplify the expressions, which enables us to
have the results in a more readable form but without loss of
generality.

Substituting the observables Aj�aj� of Eq. �14� with the

dichotomic operators F̂p
�j��� j� �j=1,2 now indicates the cav-

ity j� defined in Eq. �15�, with a value of the probability of
single photon occurrence p fixed and equal to that appearing
in the entangled state given in Eq. �23�, Bell’s inequality of
Eq. �14� can be written as

SB = ��F̂p
�1���1�F̂p

�2���2�� − �F̂p
�1���1�F̂p

�2���2����

+ ��F̂p
�1���1��F̂p

�2���2�� + �F̂p
�1���1��F̂p

�2���2���� � 2. �24�

The quantum correlations appearing in Eq. �24� are given by

�F̂p
�1���1�F̂p

�2���2�� = ���F̂p
�1���1�F̂p

�2���2���� , �25�

where ��� is the entanglement of GBSs of Eq. �23�.

Using Eqs. �18�, �23�, and �25�, the correlation function

�F̂p
�1���1�F̂p

�2���2�� is given by

�F̂p
�1���1�F̂p

�2���2��

= − 1 + 8p�1 − p��sin2 �1 − �

2
+ sin2 �2 − �

2

− 8p�1 − p�sin2 �1 − �

2
sin2 �2 − �

2

+
�

1 + ���2	4�1 − 2p�2 sin2 �1 − �

2
sin2 �2 − �

2

+ sin��1 − ��sin��2 − ���� . �26�

It depends on the probability of single photon occurrence p,
on the phase angle � characteristic of the GBSs of the en-
tanglement ���, on the phase angles � j of the cavity opera-

tors F̂p
�j��� j�, and on the parameter of entanglement �. We

also note that all arguments of the trigonometric functions of
Eq. �26� are shifted by the same angle −�, so the angle � can
be arbitrarily fixed. Now we shall look for a set of values of
the parameters p ,�1 ,�2 ,�1� ,�2� ,� such that a violation of
Bell’s inequality of Eq. �24� occurs, i.e., SB
2.

We begin by looking for the value of p which maximizes
Bell’s function SB. As SB is formed by correlations of the
kind �26�, all having the same dependence on p, we simply
set the partial derivative relating to p of the correlation func-
tions appearing in Eq. �24� equal to zero. We have

�SB

�p
= �1 − 2p�f�p,�1,�2,�1�,�2�,�� = 0, �27�

where f�p ,�1 ,�2 ,�1� ,�2� ,�� is a nonsingular function of the
system variables. So, from Eq. �27�, we obtain

p = 1/2. �28�

It is possible to see that this value of p corresponds to a
maximum of Bell’s function SB. For this value p=1/2, set-

ting F̂1/2
�j� �� j�� F̂�j��� j� for simplicity, the correlation function

of Eq. �26� becomes

�F̂�1���1�F̂�2���2�� =
2�

1 + ���2
sin��1 − ��sin��2 − ��

− cos��1 − ��cos��2 − �� . �29�

At this point, it is useful to consider the degree of entangle-
ment of the state ��� of Eq. �23�, defined as �22�

G�E� = G�E������ �
2���

1 + ���2
. �30�

G�E� is invariant with respect to the substitution ���→1/ ���,
equal to zero for ���=0, +	 and equal to one �maximum
value� for ���=1. Using the expression of the correlation
function given in Eq. �29� and the definition of G�E� of Eq.
�30�, Bell’s function of Eq. �24� can be written as
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SB = �G�E� sin��1 − ���sin��2 − �� − sin��2� − ���

± cos��1 − ���cos��2 − �� − cos��2� − ����

+ �G�E� sin��1� − ���sin��2 − �� + sin��2� − ���

± cos��1� − ���cos��2 − �� + cos��2� − ���� , �31�

where the signs � correspond to � negative or positive, re-
spectively. We show that, with p=1/2 and appropriate
choices of the phase angles �1 ,�2 ,�1� ,�2�, Bell’s function of
Eq. �31� is greater than 2, SB
2, and Bell’s inequality of Eq.
�24� is violated for a wide range of the degree of entangle-
ment G�E�. We give here the particular case where the largest
possible quantum-mechanical violation of Bell’s inequality
occurs �maximal violation�. In Appendix B, we give another
interesting particular case.

1. Maximal violation

We choose the following values of the phase angles:

�1 = �, �2 = � + �/4,

�1� = � + �/2, �2� = � + 3�/4. �32�

This is the standard choice of the angles for spin-1
2 objects to

obtain the maximal violation of Bell’s inequality of the kind
�14� �2,3,14�, where the separation between two consecutive
angles is � /4.

Substituting the values of the angles of Eq. �32� in Eq.
�31�, Bell’s function SB turns out to be

SB = 
2�1 + G�E�� . �33�

Using Eq. �33�, we obtain that Bell’s inequality given in Eq.
�24� is violated, i.e., SB
2, for those values of the degree of
entanglement G�E� inside the interval

Gmin
�E� � G�E� � 1, with Gmin

�E� = 
2 − 1 � 0.41, �34�

where Gmin
�E� is obtained by SB=2. The graph of Bell’s func-

tion SB of Eq. �33� is plotted in Fig. 1. For G�E�=1, Bell’s
function SB of Eq. �33� takes its maximum value

SB�G�E� = 1� = SB
max = 2
2 � 2.8284. �35�

It is possible to prove �2� that this is the maximal violation of
Bell’s inequality.

C. Test of Bell’s inequality

In this section, we propose a simple scheme for testing
Bell’s inequality violation shown in Sec. IV B. This test
gives, in principle, a direct experimental demonstration of
nonlocality for the entangled GBSs in two separate cavities
given in Eq. �23�. We show that this test permits us to mea-
sure in a simple way, for a single cavity, the eigenvalues �±1�
of the cavity operator F̂p���, by a resonant two-level probe
atom which “reads” the cavity field. This result is obtained
by associating the outcome of the final atomic state measure-

ment with a given eigenvalue of the operator F̂p���. We first
describe the dynamics of the resonant atom-cavity interac-
tion.

Let �↑� and �↓� be, respectively, the excited and ground
state of the probe atom with transition frequency resonant
with the cavity field mode �. The dynamics of the resonant
atom-cavity interaction is governed by the usual Jaynes-
Cummings �JC� Hamiltonian �23�

HJC =
1

2
���z + ��a†a + i�g��+a − �−a†� , �36�

where g is the atom-field coupling constant, a and a† are the
field annihilation and creation operators, and �z ,�+ ,�− are
the pseudospin atomic operators

�z = �↑��↑ � − �↓��↓ �, �+ = �↑��↓ �, �− = �↓��↑ � .

The Jaynes-Cummings Hamiltonian of Eq. �36� generates the
transitions �10,24�

�↑n� → cos�g
n + 1t��↑n� − sin�g
n + 1t��↓n + 1� ,

�↓n� → cos�g
nt��↓n� + sin�g
nt��↑n − 1� , �37�

where n is the number of photons inside the cavity. We ig-
nore atomic and field dissipations during the atom-field in-
teraction, which is a good approximation for such systems
constituted by Rydberg atoms and high-Q cavities �21�.

The experimental measurement scheme is shown in Fig.
2. A two-level probe atom is initially prepared in the ground

FIG. 1. Maximal violation. Bell’s function SB vs G�E� with the
conditions of Eq. �32� and p=1/2. Gmin

�E� =
2−1. For G�E�=1, we

obtain the maximal violation SB
max=2
2.

FIG. 2. Experimental scheme for measuring the dichotomic field

operator F̂p��� in a cavity. The atom-cavity interaction time is TP

=� /2g, where g is the coupling constant.
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state �↓� and interacts on resonance with the cavity field for a
time given by

TP = �/2g , �38�

where g is the atom-field coupling constant. At this point of
the sequence, utilizing the Jaynes-Cummings evolutions
�37�, we find the following atom-field transitions:

�↓��p,��→
TP

�0��
1 − p�↓� + ei�
p�↑�� ,

�↓��1 − p,� + ��→
TP

�0��
p�↓� − ei�
1 − p�↑�� , �39�

where �p ,�� , �1− p ,�+�� are the eigenstates of the operator

F̂p��� �see Eq. �15��. Observing Eqs. �39�, we note that a
measurement of the atomic state after the interaction with the
cavity does not allow us to distinguish the two initial eigen-

states of F̂p���.
To obtain this, after going out of the cavity, we let the

atom cross an opportunely set Ramsey zone where, interact-
ing with a classical microwave field, it undergoes the trans-
formations

�↑� → �↑�u � cos��/2��↑� − ei� sin��/2��↓� ,

�↓� → �↓�u � e−i� sin��/2��↑� + cos��/2��↓� , �40�

where the versor u is

u � �− sin � cos �,− sin � sin �,cos �� . �41�

The angle �� �0,�� is the so-called “Ramsey pulse.” The
values of � ,� are fixed by adjusting the classical Ramsey
field amplitude and the interaction time to obtain

cos��/2� = 
p, sin��/2� = 
1 − p; � = − � , �42�

where the values of p ,� are equal to those of the operator

F̂p��� to be measured. Using Eqs. �40� together with Eqs.
�42�, after the Ramsey zone interaction, we find that the total
atom-cavity states of Eqs. �39� undergo the following evolu-
tions:

�↓��p,�� → �0�ei��↑� , �43a�

�↓��1 − p,� + �� → �0��↓� . �43b�

At the end of the experimental sequence of Fig. 2, the atomic
state is measured by field ionization detectors. From the final
atom-field states of Eqs. �43� and from the definition of

F̂p��� given in Eq. �15�, we immediately obtain that �i� the
measurement of the excited atomic state �↑� corresponds to

the eigenvalue +1 of F̂p���; �ii� the measurement of the
ground atomic state �↓� corresponds to the eigenvalue −1 of

F̂p���. It must be noted from Eqs. �43� that, at the end of the
sequence, the cavity field state is always in the vacuum state.

Utilizing these results and those of Sec. IV B, we see that
an experimental test of the CHSH form of Bell’s inequality
of Eq. �24�, for the entangled GBSs in two spatially separate
cavities of Eq. �23�, requires the following steps:

�i� The generation of the entangled GBSs given in Eq.
�23�, with p=1/2 and an arbitrarily fixed �.

�ii� The resonant interaction of two two-level probe atoms
with their respective cavity and with a successive Ramsey
zone, according to the scheme of Fig. 2. The Ramsey zone
interaction is set so as to have a � /2-pulse and the values of
the angles � j desired �see Eq. �42��, given, for example, by
the choice of Eq. �32�.

�iii� The simultaneous measurement of atomic states, each
one corresponding to a given eigenvalue of the dichotomic

operator F̂1/2
�j� �� j�, as it was found in Eqs. �43�. The simulta-

neity of the measurements ensures that the events are “space-
like” separate, so as to close the locality loophole �25�.

After repeating this sequence many times, it is possible to

obtain the correlations �F̂1/2
�1� ��1�F̂1/2

�2� ��2�� for the desired val-
ues of the angles �1 ,�2 by statistical averages and then to
test Bell’s inequality of Eq. �24�. A brief discussion on the
typical experimental parameters involved in this measure-
ment scheme is given in Sec. VI.

V. SKETCH OF A SCHEME TO GENERATE ENTANGLED
GENERALIZED BERNOULLI STATES IN SEPARATE

CAVITIES

As stressed at the end of the previous section, testing
Bell’s inequality violation requires, as a first step, the gen-
eration of entangled GBSs of Eq. �2� in the two separate
single-mode cavities. In this section, following standard pro-
cedures currently implemented in the laboratory to produce
assigned states of the electromagnetic fields inside a cavity
�21,26�, we sketch the main steps of a scheme, shown in Fig.
3, aimed at generating in principle our target entangled state.

Let us consider a couple of identical two-level Rydberg
atoms initially in the entangled state

��� = N���↑1↓2� + ��↓1↑2�� , �44�

where � is real and N�=1/
1+ ���2 is a normalization con-
stant, which can be prepared using, for example, the scheme
suggested by Gerry �14�, and let us also consider two iden-
tical high-Q single-mode cavities each in the vacuum state
�01� , �02�. Each atom of the entangled atomic state of Eq. �44�
crosses a Ramsey zone Rj �j=1,2�, where it undergoes the
transformations given in Eqs. �40�. If we set, for each atom j,

FIG. 3. Experimental scheme for the generation of entangled
orthogonal GBSs in two separate cavities.
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cos�� j/2� � 
pj, sin�� j/2� � 
1 − pj; � j = − � j ,

�45�

where p1 , p2 are two arbitrary real numbers inside the inter-
val �0, 1�, the transformations of Eqs. �40� can be written as

�↑ j� → �↑�uj
� 
pj�↑ j� − e−i�j
1 − pj�↓ j� ,

�↓ j� → �↓�uj
� ei�j
1 − pj�↑ j� + 
pj�↓ j� . �46�

The total atom-cavity state after the Ramsey zones is

���0��tot = N���↑�u1
�↓�u2

+ ��↓�u1
�↑�u2

��0102� . �47�

Now, the atoms resonantly interact with their respective cavi-
ties for a time T such that

gT = �/2. �48�

Since the two subsystems 1 and 2 are independent, we can
utilize the usual Jaynes-Cummings evolutions given in Eqs.
�37� for each subsystem j, so that at the time T the state of
Eq. �47� becomes

���T��tot = N���p1,�1�1�1 − p2,� + �2�2

+ ��1 − p1,� + �1�1�p2,�2�2��↓1↓2� , �49�

where we have omitted the unimportant global phase factor
ei��−�1−�2� and we have used the notation of Eq. �A1� for the
GBSs. After the interaction, the total atom-cavity state of Eq.
�49� describes both atoms in their ground state and the cavity
field state in the pure entangled state

��� = N���p1,�1�1�1 − p2,� + �2�2

+ ��1 − p1,� + �1�1�p2,�2�2� �50�

which represents the entanglement of two orthogonal GBSs
of the form defined in Eq. �2�. By adjusting appropriately the
settings of the Ramsey zones, the values of pj and � j can be
arbitrarily changed �see Eq. �45��.

Although we shall not enter into the details of the experi-
mental feasibility of the proposed generation scheme, we
shall give here a brief valuation of some potential errors
involved in such a scheme. A necessary condition required
by our generation scheme is that the atoms interact with the
cavities for a given period of time. This can be obtained by
the selection of a well determinate atomic velocity. Any ex-
perimental error �v in the atomic velocity v induces an error
�T in the atom-cavity interaction time T given by

�T = �L�
1

v
�� �

L�v
v2 = T

�v
v

, �51�

where L is the cavity length. From Eq. �51� we find that the
velocity relative error �v /v must satisfy the condition

�T

T
�

�v
v

� 1 �52�

in order that the time relative error �T /T may be negligible.
In current laboratory experiments, it is possible to select a
given atomic velocity with a relative error �10−2 or less
�26,27�, so that, from Eq. �52�, �T /T is of the same order.

Another aspect we have excluded is the atomic or photon
decay during the atom-cavity interactions. This assumption
can be held if

�at,�cav 
 T , �53�

where �at ,�cav are, respectively, the atomic and photon mean
lifetimes and T is the interaction time. For Rydberg atomic
levels and microwave superconducting cavities with quality
factor Q�108–1010, we have �at�10−5–10−2 s and �cav
�10−4–10−1 s. Since typical atom-cavity field interaction
times are T�10−5–10−4 s, the required condition of Eq. �53�
can be satisfied �21�. Moreover, the typical mean lifetimes of
the Rydberg atomic levels �at must be such that the atoms do
not decay during the entire sequence of the scheme and the
photon mean lifetimes �cav must be long enough to permit
cavity fields not to decay before they interact with probe
atoms �21,26,28�, so as to allow the successive Bell’s in-
equality test �see Sec. IV C�.

VI. CONCLUSION

In this paper, we considered two spatially separate single-
mode cavities where an electromagnetic field has been in-
jected in an entangled state of two orthogonal generalized
Bernoulli states �GBS�. We then studied the expectation val-
ues and the correlations of the electric fields of these two
cavities, finding that they are in general different from zero.
The existence of such correlations between the two cavities
indicates that the fields are nonlocal in this system. The cav-
ity electric fields, and so their correlations, are, however, not
directly measurable.

To examine the nonlocal feature of the electromagnetic
fields in the two cavities, we have introduced, for each cav-

ity, a dichotomic operator F̂p��� with eigenvalues ±1 acting
on the field states and in principle measurable. Using the
quantum correlations of couples of these operators with dif-
ferent values of � and with the same p, we have constructed
the CHSH form of Bell’s inequality finding that, for oppor-
tune choices of the system variables, this Bell’s inequality is
violated for a wide range of the degree of entanglement.
Quantum nonlocality is thus directly shown by the cavity
fields in the entanglement of GBSs in two separate cavities.
This remarkable feature of such an entangled state is one of
our main results.

We have also proposed a simple test of this Bell’s inequal-
ity violation which exploits a couple of two-level probe at-
oms each interacting resonantly with the respective cavity
and successively with an opportune Ramsey zone for an as-
signed time. Appropriate Ramsey zone settings, i.e., pulse
and relative phase of the atomic states, allow the uncondi-

tional measurement of the cavity operator F̂p���. Our result
is that, if each probe atom is initially in the ground state and
its final state is detected at the end of the sequence, the
measurement of the excited or ground state is equivalent to
the eigenvalue +1 or −1 of the cavity operator, respectively.
So, our Bell’s inequality test requires �i� the repeated prepa-
ration of entangled orthogonal GBSs in two separate single-
mode cavities, �ii� the use of two independent probe atoms,
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each of them following the above experimental sequence
with the desired settings of Ramsey zone, and �iii� the simul-
taneous measurement of the final atomic states, which is
equivalent to the measurement of the eigenvalues of the in-
troduced cavity operators. The cavity operator correlations
can then be obtained by statistical averages of the eigenval-
ues products. This Bell’s inequality test is nonconditional
and it requires that the atoms resonantly interact with the
cavities for an assigned time. The main result found in this
paper is that, with our procedure, it is possible to obtain in a
simple way a direct verification of Bell’s inequality violation
for the cavity electromagnetic fields. We wish to emphasize
that our test is immune to the typical experimental errors on
the desired interaction time �26,27�. In the experimental con-
text of the Bell’s inequality test, another important parameter
to be considered is the atomic state detector efficiency � that
we have supposed as ideal for simplicity. Had we incorpo-
rated detector efficiencies in the correlation functions, then
the CHSH form of Bell’s inequality would not have been
violated for values of � less than �t=2/ �
2+1��0.8284 for
maximally entangled states of a bipartite system �5,25�.
However, also in this case, it is always possible to test the
CHSH form of Bell’s inequality with the “fair sampling”
hypothesis that the subensemble of detected events �detected
atoms� represents the whole ensemble. So, the results just
rely on the detected events but the probabilistic nature of
atomic detection leaves “open” the detection loophole �8,25�.
Only for detector efficiencies greater than �t can the detec-
tion loophole be closed.

We conclude that, at this time, the experimental develop-
ments seem to be rather promising for the possibility of
implementing our measurement scheme, so as to allow the
realization of the first direct test of Bell’s inequality for en-
tangled fields in two spatially separate cavities.

APPENDIX A: BINOMIAL STATES.
DEFINITION AND SOME PROPERTIES

In Sec. II we have given the definition of the particular
generalized binomial state �N , p ,��. In this paper, we con-
sider the particular case of generalized binomial states with
N=1, i.e., the so-called “generalized Bernoulli state” �GBS�
�18�, whose explicit expression is

�p,�� = 
1 − p�0� + ei�
p�1� , �A1�

as it is readily obtained by Eq. �1�. We now give some prop-
erties of the generalized binomial state �N , p ,��, defined in
Eq. �1�, which will be useful in this paper.

�i� In the limits p=0,1, the binomial state of Eq. �1� be-
comes

lim
p→0

�N,p,�� = �0�, lim
p→1

�N,p,�� = �N� . �A2�

�ii� Two binomial states of the kind given in Eq. �1�,
�N , p ,��, �N , p� ,���, with the same maximum number of
photons N, are orthogonal if and only if

p� = 1 − p and �� = �2m + 1�� + �, m � Z . �A3�

As far as we know, this orthogonality property has not been
reported in the literature yet, so we give here the proof.

The scalar product of two binomial states �N , p ,�� and
�N , p� ,���, of the form defined in Eq. �1�, is given by

�N,p,��N,p�,��� = �
n=0

N 
N

n
��pp��n/2

� ��1 − p��1 − p����N−n�/2ein���−��.

�A4�

Substituting the equalities of Eq. �A3� in Eq. �A4�, we obtain

�N,p,��N,1 − p,� + �� = �p�1 − p��N/2�
n=0

N 
N

n
�ein�

= �p�1 − p��N/2�ei� + 1�N = 0,

�A5�

where we have used the binomial theorem of Newton and the
equality ei�=−1. This proves that the conditions of Eq. �A3�
are sufficient. The conditions of Eq. �A3� are also necessary.
In fact, the scalar product of Eq. �A4� can be written

�N,p,��N,p�,��� = �
n=0

N 
N

n
��ei���−��
pp��n

� �
�1 − p��1 − p���N−n.

Utilizing the usual binomial theorem of Newton, we obtain

�N,p,��N,p�,��� = �ei���−��
pp� + 
�1 − p��1 − p���N

�A6�

and setting this equation equal to zero, it must be

ei���−��
pp� + 
�1 − p��1 − p�� = 0. �A7�

Since the square roots are real and non-negative, from Eq.
�A7� we have

ei���−�� = − 1 ⇔ �� − � = �2m + 1��, m � Z . �A8�

FIG. 4. Bell’s function SB vs G�E� with the conditions of Eq.
�B1� together with p=1/2. Gmin

�E� =1/3.
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So, Eq. �A7� becomes


pp� = 
�1 − p��1 − p�� ⇒ pp� = 1 − p − p� + pp�

⇒ p� = 1 − p . �A9�

From the results of Eqs. �A8� and �A9�, we see that the
orthogonality condition of Eq. �A3� is proved.

APPENDIX B: ANOTHER BELL’S INEQUALITY
VIOLATION

We give here another case of violation of the CHSH form
of Bell’s inequality given in Eq. �24� for the entangled GBSs
of Eq. �23�. In this case, the interval of values of the degree
of entanglement where a Bell’s inequality violation occurs is
the widest obtainable.

Let us choose the following values for the phase angles of
Eq. �31�:

�1 = �2 = �, �1� = � + �/3,

�2� = �� − 2�/3 if � is positive

� + 2�/3 if � is negative.
� �B1�

With this set of values of the angles, Bell’s function SB of Eq.
�31� becomes

SB =
7

4
+

3

4
G�E�. �B2�

Using Eq. �B2�, we find that Bell’s inequality of Eq. �24� is
violated, i.e., SB
2, for those values of the degree of en-
tanglement G�E� inside the interval

Gmin
�E� � G�E� � 1 with Gmin

�E� = 1/3 = 0 . 3̄. �B3�

The value of Gmin
�E� is clearly obtained by the condition SB

=2. This interval of values of G�E�, for which Bell’s inequal-
ity is violated, is the widest we found. In Fig. 4, we plot the
graph of Bell’s function SB of Eq. �B2� versus the degree of
entanglement G�E�, for the choices given in Eq. �B1�. The
maximum violation value of SB is obtained when G�E�=1,
i.e., when the state �23� is maximally entangled, and it is

SB�G�E� = 1� = 5/2 = 2.5. �B4�
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