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Abstract
We study existence and multiplicity of radial ground states for the scalar curvature equation

�u + K (|x |) u
n+2
n−2 = 0, x ∈ R

n, n > 2,

when the function K : R+ → R
+ is bounded above and below by two positive constants, i.e.

0 < K ≤ K (r) ≤ K for every r > 0, it is decreasing in (0, 1) and increasing in (1,+∞).
Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a
large number of bubble tower solutions if K is a sufficiently small perturbation of a positive
constant. Our main purpose is to improve such a result by considering a non-perturbative
situation: we are able to prove multiplicity assuming that the ratio K/K is smaller than some
computable values.
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1 Introduction

This paper is devoted to the study of existence and multiplicity of positive solutions for the
scalar curvature equation

�u + K (|x |) u
n+2
n−2 = 0, (1.1)

where x ∈ R
n , n > 2, and K is a reciprocally symmetric, bounded, positive, continuous

function,C1 for r = |x | > 0. The main purpose is to ensure the multiplicity of positive entire
solutions which decay at infinity like |x |2−n (i.e. fast decay solutions), when

K decreases in (0, 1) and K increases in (1,∞). (1.2)

According to [3, Theorem 1], [5, Theorem 2], we know that assumption (1.2) guarantees that
each solution of (1.1) is radially symmetric about the origin.
Therefore, it is not restrictive to concentrate on radial solutions of (1.1), by considering the
equivalent singular O.D.E.

(u′ rn−1)′ + K (r) rn−1 u
n+2
n−2 = 0, r ∈ (0,∞), (1.3)

where “ ′ ” denotes the differentiation with respect to r=|x |, and, with a slight abuse of
notation, u(r) = u(x).
The solutions of (1.3) can be classified according to their asymptotic behaviour at zero and at
infinity.More precisely, a solutionu(r)of (1.3) is called regular ifu(0) = d andu′(0) = 0 and
itwill be denoted byu(r; d), and singular if limr→0u(r) = ±∞; similarly,u(r) is a fast decay
solution if limr→∞u(r)rn−2 = c, and a slow decay solution if limr→∞u(r)rn−2 = ±∞.
Moreover, we say that u(r) is a ground state (G.S.) if it is a positive regular solution of
(1.3) such that limr→∞ u(r) = 0; we say that u(r) is a singular ground state (S.G.S.)
if it is a positive singular solution of (1.3), which is defined for any r > 0 and satisfies
limr→∞ u(r) = 0. It is easy to show that G.S. and S.G.S. are decreasing, see Remark 2.5.

Equation (1.1) and its generalizations have attracted the attention of several different
authors giving rise to a huge literature on the topic, both for its intrinsic mathematical interest
and for its relevance in application. In fact, Eq. (1.1) is known as scalar curvature equation
since the existence ofG.S.with f.d. is equivalent to the existence of ametric inRn conformally
equivalent to theEuclideanmetric andwhichhas scalar curvature K , see, for example, [6,9,14]
for more details.

Furthermore, Eq. (1.1) finds application in astrophysics for particular type of K : a sig-
nificant example is given by the Matukuma equation where u represents the gravitational
potential in a globular cluster (cf., among others, [1,11,40]). Finally, it can be used to study
the stationary states for a nonlinear Schrodinger equation in quantum mechanic and for a
reaction diffusion equation in chemistry. In most of the applications, positivity is crucial and
the fast decay is needed to deal with physically relevant solutions.

In the 1980s, it was realized that the Pohozaev function P(r) = ∫ r
0 K ′(s)sn−1ds plays a

key role in determining the structure of positive solutions of (1.3). NoG.S. with fast decay can
exist if P(r) has constant sign, so, in particular, when K is monotone (but non-constant), see
[14,26,28,32]; while there are many different existence results when P(r) changes sign. The
situation is simpler if P(r) is positive for r small and negative for r large, in particular when
K (r) has a maximum, see, for example, [6,7,11,28,29,38,39]. More in detail, the existence
of a radial G.S. with fast decay was proved requiring that

K (r) = A0r δ0 + A1r δ1 as r → 0, K (r) = B0r−η0 + B1r−η1 as r → ∞, (1.4)
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where A0, B0, δ0, η0 are positive constants, δ1 > δ0, η1 > η0, see [11,28,38,39]. Results
are also available when δ0 = η0 = 0 and Ai , Bi , δ1, η1 are positive, see, for example,
[6,7,29,39]. We emphasize that under assumption (1.4) a complete classification of both
regular [27,37,40] and singular solutions [13] is available, and the uniqueness of radial G.S.
with fast decay is guaranteed whenever the unique critical point of K is a maximum. More
precisely, if K (r) satisfies (1.4) with Ai , Bi , δi , ηi ≥ 0, and r K ′/K is decreasing, then there
is a unique d∗ > 0 such that u(r; d) is a G.S. with slow decay if 0 < d < d∗, it is a G.S.
with fast decay if d = d∗ and it has a positive zero if d > d∗, see in particular [27,37,40]
concerning the uniqueness of d∗. Furthermore, there are uncountably many radial S.G.S.
with slow decay and uncountably many radial S.G.S. with fast decay. Nowadays, also nodal
solutions are classified [13,31], and many results have been extended to a p-Laplace context
[17,18,24].We remark that the presence of a localmaximumallows existence andmultiplicity
of non-radial positive solutions of (1.1), cf. [33] and [35], respectively.

However, there is a striking difference in the structure of radial positive solutions between
the case in which K admits a unique maximum and the case in which it admits a unique
minimum. As observed above, in the former (and easier) case we could have a unique G.S.
with fast decay of (1.3), and a complete classification of the solutions. In the latter (and
more complicated) situation, we range from a large number of G.S. with fast decay to non-
existence results, see, for example, [6] for non-existence, [6,7] for existence, and [1,20,21]
for both multiplicity and non-existence results in the case where K is an unbounded function
satisfying K (r) ∼ r δ as r → 0 and K (r) ∼ rη as r → +∞, with δ < 0 < η. Partial
structure results have been achieved, cf. [20].

Similarly, for K (r) varying between two positive constants the situation is delicate and
quite complicated: non-existence results as well as existence of non-radial solutions for (1.1)
can be achieved, cf. [7, Theorem 0.4] and [4], respectively.

In the 1990s, it was noticed that multiplicity results could be produced requiring several
sign changes in the Pohozaev function, namely asking the function K to have many critical
points, under the additional assumption that K is either a regular or a singular perturbation
of a constant, i.e.

K (|x |) = 1 + εk(|x |), 0 < k(|x |) < 1, (1.5)

K (|x |) = k(|x |ε), k(|x |) bounded, (1.6)

see [2,25]. Some further results in this direction are contained in [8,36].
Chen and Lin in [9] noticed that if K (|x |) has a critical point, but it is a minimum,

uniqueness of the G.S. might be lost. They considered K (|x |) as in (1.5) and assume the
following

(K0) K (r) = K
( 1

r

)
for any 0 < r ≤ 1;

(K1) K ′(r) ≤ 0 for any r ∈ (0, 1), but K ′(r) 
≡ 0 ;
(K2)

K (r) = K (0) − Arl + h(r) where

A > 0, 0 < l <
n − 2

2
, lim

r→0
|h(r)|r−l + |h′(r)|r−l+1 = 0.

Theorem A [9, Theorem 1.1] Assume that K satisfies (1.5) and (K0)–(K1)–(K2), then for
any � ∈ N there exists a ε� > 0 such that for every ε ∈ (0, ε�) Eq. (1.3) admits at least � G.S.

with fast decay u1, . . . , u�, where the function u j (r)r
n−2
2 has j local maxima and ( j − 1)

local minima.
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Lin and Liu [30] obtained a similar result, again in a perturbative setting for K of the
form (1.5), removing the technical symmetry assumption (K0), but requiring condition (K2)

with a more restrictive smallness assumption on the parameter l. The same conclusion as in
Theorem A was also obtained in [15] for K of the form (1.6), just requiring that K has a
(possibly degenerate) positiveminimum.As far as we are aware, [9,15,30] are the only papers
obtaining multiplicity of G.S. with fast decay for (1.3) with a unique positive minimum of
K .

The main purpose of this article is to extend the perturbative result of [9] to a non-
perturbative situation. To this aim, we give a new argument to reprove Theorem A which
furnishes a precise estimate on how small ε� should be, and we show that ε� need not be too
small.

Theorem 1.1 All the constants ε� in Theorem A can be explicitly computed. In particular,
we can find the following approximations from below:

n ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8
3 2 0.910 0.584 0.429 0.339 0.280 0.238 0.207
4 1 0.5 0.333 0.25 0.2 0.166 0.142 0.125
5 0.666 0.347 0.235 0.178 0.143 0.119 0.103 0.090
6 0.5 0.266 0.182 0.138 0.111 0.093 0.080 0.070

(1.7)

Moreover, the explicit expression of the first two constants is

ε1 = 2

n − 2
, ε2 = 2

n

[(
n

n − 2

) n−2
2 − 1

]−1

, (1.8)

and ε3 solves the equation

[
X q(ε3) + W(ε3)

] 2
q = X 2(ε3) + 2

q
W(ε3),

where

X (ε3) =
(

q

2(ε3 + 1)

) 1
q−2

, W(ε3) = 1 + 1

ε3

(
1 − q

2

)
, q = 2n

n − 2
.

Finally, if the dimension is n = 4, we have ε� = 1

�
for every positive integer �.

We wish to remark that conditions (K1) and (K2) are crucial to obtain multiplicity results,
but they can be weakened or overlooked when dealing with the existence of at least a G.S.
with fast decay. Condition (K0) is a technical requirement which greatly simplifies the proof.
The possibility of removing such a condition will be the object of forthcoming investigations.

As a first step in our analysis we also obtain the following existence result which does not
require any integral or asymptotic condition.

Theorem 1.2 Assume that K satisfies (K0) and (1.5) with 0 < ε ≤ ε1 := 2
n−2 , then Eq. (1.3)

admits at least a G.S. with fast decay.

The symmetric condition (K0) allows to overcome the Pohozaev obstruction; furthermore
the smallness condition is again quantitative and not of perturbative nature.

We emphasize that with a standard rescaling argument we can address Eq. (1.1) with more
general bounded functions K . Indeed, let v(r) be a solution of (1.3) where K satisfies 0 <
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K ≤ K (r) ≤ K < ∞, then u(r) = K (n−2)/4v(r) solves (u′ rn−1)′ + K (r) rn−1 u
n+2
n−2 = 0,

whereK (r) := K −1K (r) can be written in the form (1.5) with ε = K/K − 1. So, we have
the following.

Remark 1.3 Let 0 < K ≤ K (r) ≤ K < ∞ for any r ≥ 0, then Theorems A and 1.2 keep on
holding, simply by replacing the condition 0 < ε < ε� with K/K < 1 + ε�.

Theorems 1.1, 1.2 and Remark 1.3 can be trivially generalized to embrace the slightly
more general case of

�u + rσ [1 + εk(|x |)]uq(σ )−1 = 0, where q(σ ) = 2 n+σ
n−2 , (1.9)

and σ > −2. Notice that in this case we cannot apply directly [5, Theorem 2], so G.S. need
not be radial.

Anyway, restricting to consider just radial G.S, we can reduce Eq. (1.9) to

(u′rn−1)′ + rn−1+σ [1 + εk(|x |)]uq(σ )−1 = 0. (1.10)

Then, we can prove a slightly more general version of Theorem A which has not appeared
in literature previously, as far as we are aware.

Corollary 1.4 Theorem A continues to hold for Eq. (1.10)when 0 < k(|x |) < 1. Furthermore,
we can reprove Theorems 1.2 and 1.1 as well. We stress that in the equations defining ε j

we must replace q = q(0) by q(σ ). Consequently, all the values in the table 1.7 have to be
slightly modified. In particular, we find

ε1 = q − 2

2
= 2 + σ

n − 2
, (1.11)

ε2 = q − 2

q

[(q

2

) 2
q−2 − 1

]−1

= 2 + σ

n + σ

[(
n + σ

n − 2

) n−2
2+σ − 1

]−1

. (1.12)

To conclude this incomplete review of the vast literature on the problem, we wish to draw
to the reader’s attention the interesting paper [35], where Wei and Yan prove that if K (|x |)
has a positive maximum there are infinitely many non-radial G.S. This result, together with
[9,15] and the present article, seems to suggest that the bubble tower phenomenon occurs in
the presence of a critical point of K (|x |), and it is made up by radial solutions if the critical
point is a minimum and by non-radial ones if it is a maximum.

Ours proofs are developed through basic tools of phase plane analysis after passing from
(1.3) to the two-dimensional dynamical system (2.2), via Fowler transformation. The problem
of existence ofG.S.with fast decay is then translated into a problemof existence of homoclinic
trajectories. Following the outline of [9], we perform a shooting argument, within system
(2.2), from the origin towards the isocline ẋ = 0. The results are then obtained by combining
some barrier sets constructed in Section 3 and an asymptotic result borrowed from [9,10].

The paper is organized as follows. In Sect. 2, we introduce the Fowler transformation and
we give some preliminary results. In Sect. 3, we sketch the geometrical construction onwhich
the proof of our main results developed in Sect. 4 is based. In Sect. 5, we compute explicitly
the values of the constants ε�. In Appendix, we reprove [10, Theorem 1.6] for completeness.
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2 Fowler transformation and invariant manifolds

Let us introduce a classical change of variable, known as Fowler transformation, to convert
Eq. (1.3) into a two-dimensional dynamical system. More precisely, by setting

x(t) = u(r)rα, y(t) = αu(r)rα + u′(r)rα+1,

α = n−2
2 , r = et , K(t) = K (et ) (2.1)

we can rewrite (1.3) as the following system:
(

ẋ
ẏ

)

=
(

0 1
α2 0

)(
x
y

)

+
(

0
−K(t) xq−1

)

, (2.2)

where “ · ” denotes the differentiation with respect to t , and q = 2n
n−2 .

Remark 2.1 If we start from (1.10), we obtain system (2.2) again, but the power q is different,
i.e. q(σ ) = 2 n+σ

n−2 .

We collect here some notations that will be in force throughout the whole paper. Let
Q ∈ R

2, we denote by φ(t; τ, Q) the trajectory of (2.2) which is in Q at t = τ . We denote
by u(r; d) the regular solution of (1.3) such that u(0; d) = d > 0 and u′(0; d) = 0, and
by φ(t, d) = (x(t, d), y(t, d)) the corresponding trajectory of (2.2). The origin is a critical
point for (2.2) and the linearization of (2.2) at the origin has constant positive and negative
eigenvalues, i.e. ±α, so the origin is a saddle. Moreover, from [12, §13.4], we see that the
non-autonomous system (2.2) admits unstable and stable leaves, i.e.

W u(τ ) := {Q | limt→−∞ φ(t; τ, Q) = (0, 0)},
W s(τ ) := {Q | limt→∞ φ(t; τ, Q) = (0, 0)}. (2.3)

Namely, W u(τ ) and W s(τ ) are C1 immersed one-dimensional manifolds.
Another way to construct W u(τ ) is to add the extra variable z = e
 t , where 
 > 0,

so that the system (2.2) can be rewritten as the equivalent autonomous three-dimensional
system

⎛

⎝
ẋ
ẏ
ż

⎞

⎠ =
⎛

⎝
0 1 0
α2 0 0
0 0 


⎞

⎠

⎛

⎝
x
y
z

⎞

⎠+
⎛

⎜
⎝

0

−K
(
ln(z)



)
xq−1

0

⎞

⎟
⎠ . (2.4)

It can be shown that if (2.4) is smooth, it admits a two-dimensional unstable manifoldWu

and that

W u(τ ) = {Q ∈ R
2 | (Q, z(τ )) ∈ Wu}.

This allows us to define W u(−∞) = {Q ∈ R
2 | (Q, 0) ∈ Wu}, which is the unstable

manifold of the frozen autonomous system where K ≡ K(0).
Since the flow of (2.2) is ruled by its linear part close to the origin, according to [22,25]

and [12, §13.4], we easily deduce the following properties of the unstable and stable leaves,
respectively.

Remark 2.2 Assume that K ∈ C1 and it is bounded. Then,

u(r; d) is a regular solution ⇐⇒ φ(τ0, d) = Q ∈ W u(τ0).

Moreover, W u(τ ) is tangent in the origin to the line y = αx , for any τ ∈ R, and it depends
smoothly on τ , i.e., let L be a segment which intersects W u(τ0) transversally in a point
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Q(τ0), then there is a neighbourhood I of τ0 such that W u(τ ) intersects L in a point Q(τ )

for any τ ∈ I , and Q(τ ) ∈ C1.
Furthermore, if (2.4) is smooth for z = 0 too (e.g. if (K2) holds and 0 < 
 < l), the

smoothness property of W u(τ ) is extended to τ0 = −∞, i.e. to the system (2.4) restricted to
z = 0, see [23, §2.2] for more details.

Similarly, fast decay solutions correspond to trajectories of W s(τ ).

Remark 2.3 Assume thatK ∈ C1 and it is bounded. Let φ(t; τ0, Q) be the trajectory of (2.2)
corresponding to the solution u of (1.3). Then,

u(r) is a fast decay solution ⇐⇒ φ(τ0; τ0, Q) = Q ∈ W s(τ0).

Moreover, W s(τ ) is tangent in the origin to the line y = −αx , for any τ ∈ R, and it depends
smoothly on τ .

We stress that the manifold W u(τ ) (as well as W s(τ )) is divided by the origin in two
connected components: one which leaves the origin and enters x > 0, and the other that
enters x < 0. Since we are just interested in positive solutions, abusing the notation, we let
W u(τ ) and W s(τ ) stand for the branches of the leaves which depart from the origin and enter
in x > 0.

Remark 2.4 Assume that K ∈ C1 and it is bounded. Fix τ ∈ R, and let Q(d) ∈ W u(τ ) be
such that φ(τ, d) = Q(d), for every d ≥ 0. Then, the function Q : [0,+∞) → W u(τ ) is a
smooth (bijective) parametrization of W u(τ ) and Q(0) = (0, 0).

We refer to [13, Lemma 2.10] for the proof of Remark 2.4. Let us also notice that, in a
similar way, the stable leave W s(τ ) can be parametrized directly by c := limr→∞u(r)rn−2.

Remark 2.5 Any regular solution u(r; d) is decreasing until its first zero; so Ground States
are monotone decreasing.

For an easy proof of the remark, we refer to [32, Lemma 3.7].
Assumption (K0) guarantees that K is even, i.e. K(−t) = K(t) for any t ∈ R. Hence, if
φ(t, d) = (x(t), y(t)) solves (2.2) and y(0) = 0, then x(t) is even and y(t) is odd. Thus, we
get the following.

Remark 2.6 Assume (K0). If φ(t, d) is such that x(t, d) > 0 for t ≤ 0, and y(0, d) = 0,
then u(r; d) is a monotone decreasing G.S. with fast decay.

To illustrate the main ideas of the proofs of Theorem 1.2 and Theorem A, we enumerate
some results which will be proved in Sect. 4.

Taking into account that the origin is a critical point and that W u(τ ) is tangent in the origin
to the line y = αx , we easily deduce that x(t, d) is strictly increasing and, consequently,
y(t, d) is strictly positive for t in a neighbourhood of −∞, for any d > 0.
For any � ∈ N, � ≥ 1 we define the sets

I� := {d > 0 | y(t, d) has at least � zeroes for t ∈ R}. (2.5)

We denote by T1(d) and T�(d), respectively, the first and the �th zero of y(t, d) = ẋ(t, d),
i.e.

T1(d) := min{t ∈ R | y(t, d) = 0}, R1(d) := eT1(d),

T�(d) := min{t > T�−1(d) | y(t, d) = 0}, R�(d) := eT�(d).
(2.6)
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Remark 2.7 Assume (1.5) and 0 < ε ≤ ε1. Then, there is D1 > 0 such that R1(d) > 1 for
every d ∈ (0, D1).

This Remark is proved in Section 4 as an easy consequence of Remark 4.3.
In Sect. 4 (Lemma 4.4) and inAppendix, we reprove for completeness the following result,

which is a consequence of [9,10].

Proposition 2.8 [10, Theorem 1.6], [9, Lemma 2.2] Assume (K1) and (K2). Then, for any
fixed � ∈ N, � ≥ 1, and for any ρ > 0 there is d� ∈ I� such that R�(d�) < ρ.

Under very mild conditions, we can show the continuity of R1(d).

Proposition 2.9 Assume (1.5) with 0 < ε ≤ ε1, then I1 = (0,+∞) and R1(d) is continuous
in I1. Furthermore, limd→+∞ R1(d) = 0 and limd→0 R1(d) = +∞.

Proposition 2.9 is restated in a dynamical context and proved in Sect. 4 as Lemma 4.9. From
Proposition 2.9, we find d∗

1 > 0 such that R1(d∗
1 ) = 1; hence, if (K0) holds, φ(t, d∗

1 ) is
a homoclinic trajectory for (2.2) such that x(t, d) is positive and increasing for t ≤ 0 and
positive and decreasing for t ≥ 0. Then, Theorem 1.2 immediately follows from Remark 2.6.

To prove the continuity of R j (d) for j ≥ 2, we need to require (K1) and to develop
an articulated barrier argument which guarantees that the flow φ(t, d) intersects the x-axis
transversally.

Proposition 2.10 Assume (K1) and (1.5) with 0 < ε ≤ ε�, where ε� is the computable
constant given by Lemma 3.7 below. If R j (d) ≤ 1, then R j is continuous for any j = 1, . . . , �.

Let us sketch the proof of Theorem A, see Sect. 4 for a full fledged argument. Fix � ∈
N, assume (K0)–(K1)–(K2) and (1.5) with 0 < ε < ε�. According to Proposition 2.8,
Remark 2.7 and Proposition 2.10, for any j = 1, . . . , � there is at least a value d∗

j ∈ I j

such that R j (d∗
j ) = 1. Hence, from Remark 2.6 we immediately infer that φ(t, d∗

j ) is a
homoclinic trajectory for (2.2) such that x(t, d∗

j ) is positive for any t ∈ R and y(t, d∗
j ) has

exactly (2 j − 1) zeroes. This would complete the proof of Theorem A.
We emphasize that, in this paper as well as in [9], the simplicity of the zeros of y(t, d)

is crucial to obtain the continuity of the function R j , i.e. Proposition 2.10. The contribution
here with respect to [9] lies in the fact that the perturbative result in [9] gives no information
on the actual size of the values ε j and no clue on how to compute them.

3 Some geometrical constructions: meaning of "1 and definition of "�

Define

H(x, y, t) := y2

2
− α2 x2

2
+ K(t)

xq

q
, with q := 2n

n − 2
. (3.1)

If we evaluate H along a solution (x(t), y(t)) of (2.2), we obtain the associated Pohozaev
type energy H(x(t), y(t), t), whose derivative with respect to t satisfies

d

dt
H(x(t), y(t), t) = x(t)q

q

dK(t)

dt
. (3.2)

We immediately observe that if (K1) holds, then the function H is decreasing along the
trajectories defined on negative values of t .
Moreover, if u(r; d) is a regular solution, then the corresponding trajectory φ(t, d) satisfies
limt→−∞H(φ(t, d), t) = 0, since H(0, 0, t) ≡ 0. So, we easily get the following lemma.
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Lemma 3.1 Assume (K1). Then, H(x(t, d), y(t, d), t) < 0 for any t ≤ 0 and d > 0.

Let us now consider the frozen autonomous system (2.2) defined by setting K(t) ≡ 1+ c
for any t ∈ R, for a certain constant c ≥ 0, i.e.

(
ẋ
ẏ

)

=
(

0 1
α2 0

)(
x
y

)

+
(

0
−(c + 1) xq−1

)

. (3.3)

We introduce the corresponding energy function

Hc(x, y) := y2

2
+ Gc(x), where Gc(x) = −α2 x2

2
+ (1 + c)

xq

q
. (3.4)

Notice that if (x(t), y(t)) is a solution of (2.2), then

d

dt
Hc(x(t), y(t)) = y(t)x(t)q−1 (1 + c − K(t)) . (3.5)

System (3.3) admits a homoclinic orbit

�c = {(x, y) | Hc(x, y) = 0, x > 0}. (3.6)

Lemma 3.2 Assume (1.5) and (K1). Then, the trajectory φ(t, d) of system (2.2) belongs to
the region enclosed by �0 for every t ≤ 0 and d > 0. In particular, x(t, d) > 0 for any t ≤ 0.

Proof Assumption (1.5) ensures that K(t) ≥ 1 for every t ≤ 0. Thus, combining definitions
(3.1) and (3.4) with Lemma 3.1, we immediately deduce that

H0(x(t, d), y(t, d)) ≤ H(x(t, d), y(t, d), t) < 0, ∀t ≤ 0.

��
Remark 3.3 The homoclinic orbit �c1 belongs to the region enclosed by �c2 , whenever c1 >

c2.

System (3.3) admits a unique critical point P∗(c) = (P∗
x (c), 0) such that P∗

x (c) > 0, i.e.

P∗
x (c) =

(
α2

c + 1

) 1
q−2

=
(

(n − 2)2

4(c + 1)

) n−2
4

. (3.7)

Remark 3.4 Set Gmin
c := Gc(P∗

x (c)), the minimum of Gc in the interval [0,+∞). Fix g ∈
(Gmin

c , 0); then the equation Gc(x) = g admits exactly two positive solutions x1,c(g) and
x2,c(g) such that 0 < x1,c(g) < P∗

x (c) < x2,c(g). We denote by A1(c) the unique positive
solution of the equation Gc(x) = 0, i.e.

A1(c) := x2,c(0) =
(

α2q

2(c + 1)

) 1
q−2

=
(q

2

) 1
q−2

P∗
x (c) =

(
(n − 2)n

4(c + 1)

) n−2
4

. (3.8)

Remark 3.5 The functions x1,c(g) and x2,c(g) are, respectively, decreasing and increasing
functions with respect to the energy g ∈ (Gmin

c , 0]. In particular, A1(c) = (A1(c), 0) is the
right extremal of �c.

We set ε1 = q−2
2 = 2

n−2 = 1
α
, so that, from (3.7) and (3.8), we find

A1(ε1) = P∗
x (0),

P∗
x (0) ≤ A1(ε) ⇐⇒ 0 < ε ≤ ε1.

(3.9)
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Fig. 1 The construction of the path γ consisting of the sets A j

We are now going to define a spiral-like path γ inside the region bounded by�0, cf. Fig. 1.
The path γ will rotate several times around the points P∗(ε) and P∗(0) provided that ε is
sufficiently small, as described in Lemma 3.7 below. Such a path will allow to locate the
solutions of the non-autonomous system (2.2) satisfying (x(t), y(t)) → (0, 0) as t → −∞,
cf. Fig. 2 and Lemma 4.6 below.
We emphasize that the spiral-like path γ depends on ε, but we leave this dependence unsaid
for simplicity. The path γ is made up by the level curves of Hε in the half-plane {y ≥ 0} and
by the level curves of H0 in the half-plane {y ≤ 0}. The continuity of the path is guaranteed
by the proper choice of the levels.

Let us introduce the curve

A1 := {(x, y) | Hε(x, y) = 0, x > 0, y ≥ 0} = �ε ∩ {(x, y) | y ≥ 0}, (3.10)

joining the origin to the point A1(ε) = (A1(ε), 0). We set

H1 := H0(A1) = Hε(A1) − ε

q
Aq
1 = − ε

q
Aq
1 . (3.11)

Then, for any 0 < ε ≤ ε1 we define

A2 = {(x, y) | H0(x, y) = H1, x > 0, y ≤ 0} , (3.12)

and A2 = (A2, 0) as the left extremal of A2, i.e. A2 = x1,0(H1).

Remark 3.6 For any 0 ≤ ε ≤ ε1, the functions A1 = A1(ε) and H1 = H1(ε) are both
continuous and decreasing, while A2 = A2(ε) is continuous and increasing. Furthermore,
A2 belongs to the region enclosed by �ε .

Proof The properties of A1(ε) and H1(ε) follow from (3.8) and (3.11). Since H1(ε) is
decreasing, from Remark 3.5 we find that A2(ε) = x1,0(H1(ε)) is increasing. ��
Since P∗

x (ε) is descreasing, we deduce that P∗
x − A2 is a continuous decreasing function

satisfying

P∗
x (0) − A2(0) = P∗

x (0) > 0, P∗
x (ε1) − A2(ε1) = P∗

x (ε1) − P∗
x (0) < 0,
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which guarantees the existence of ε2 ∈ (0, ε1) such that

A2(ε2) = P∗
x (ε2). (3.13)

(We will show in Sect. 5 how to compute ε2). Now, assume 0 < ε < ε2, so that A2 < P∗
x (ε):

taking into account (3.11), we set

H2 := Hε(A2) = H0(A2) + ε

q
Aq
2 = − ε

q
(Aq

1 − Aq
2) < 0.

We define
A3 = {(x, y) | Hε(x, y) = H2, x > 0, y ≥ 0} , (3.14)

and A3 = (A3, 0) as the right extremal of A3. In particular, A3 = x2,ε(H2). Combining
Remarks 3.5 and 3.6, we deduce that H2(ε) and, consequently, A3(ε) are both continuous
and decreasing for ε ∈ (0, ε2]. Moreover, from (3.13) and (3.9), we deduce that A3(ε2) =
P∗

x (ε2) < P∗
x (0) and limε→0 A3(ε) = x2,0(0) = A1(0) > P∗

x (0), which ensures the
existence of ε3 ∈ (0, ε2) such that

A3(ε3) = P∗
x (0). (3.15)

For ε < ε3 we have A3 > P∗
x (0), and we can construct the set

A4 = {(x, y) | H0(x, y) = H3, x > 0, y ≤ 0} ,

whereH3 := H0(A3) = Hε(A3)− ε
q Aq

3 = H2 − ε
q Aq

3 = − ε
q (Aq

1 − Aq
2 + Aq

3) < 0. Finally,
we locate the point A4 = (A4, 0) as the left extremal ofA4, so that A4 = x1,0(H3). Iterating
such a procedure, we have the following lemma which summarizes the situation, see Fig. 1.

Lemma 3.7 There exists a decreasing sequence of positive values (ε�)�∈N with the following
property: for every ε < ε�, we can construct the sets A1, . . . ,A� as follows:

A2i+1 = {(x, y) | Hε(x, y) = H2i , x > 0 , y ≥ 0} ,

A2i+2 = {(x, y) | H0(x, y) = H2i+1, x > 0 , y ≤ 0} ,
(i ∈ N)

where H0 = 0,

H j = ε

q

j∑

i=1

(−1)i Aq
i , (3.16)

with A2i+1 = x2,ε(H2i ), A2i+2 = x1,0(H2i+1). Moreover,

A2 < · · · < A2i < A2i+2 < · · · < P∗
x (ε) < P∗

x (0) <

< · · · < A2i+3 < A2i+1 < · · · < A1. (3.17)

We can glue together the sets A1, . . . ,A� and draw a spiral-like path γ which rotates around
the points P∗(ε) and P∗(0).

Finally, if we choose a critical value ε = ε�, we can construct the sets A1, . . . ,A� using
the definitions above, with the only difference that A� = P∗

x (0) if � is odd and A� = P∗
x (ε�)

if � is even.
The function A j = A j (ε) is continuous and decreasing if j is odd, while it is increasing

when j is even; H j = H j (ε) is continuous and decreasing, and H j+2 < H j .

Remark 3.8 Note that H2 j+1 = H0(A2 j+1) and H2 j = Hε(A2 j+1), which implies that
A2i+1 = x2,0(H2i+1) and A2i+2 = x1,ε(H2i+2). Finally, observe that γ ⊆ �ε ⊂ �0.

The computation of the values ε� is postponed to Sect. 5.
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4 Proofs

In the previous section, we have constructed the path γ gluing together trajectories of the
autonomous systems (3.3). Now, we turn to consider the non-autonomous problem (2.2). The
first step is to locate the initial branch of the unstable manifold W u(τ ): this will be enough
to prove Theorem 1.2. Then, to obtain the multiplicity result, Theorem A, we will use the set
γ to control the behaviour of the solutions of (2.2) for t ≤ 0.

Having in mind (3.4) and (3.8), we define

B1 = {(x, y) | H0(x, y) = 0, x > 0, y > 0} ⊂ �0,

L1 = {(x, 0) | A1(ε) ≤ x ≤ A1(0)} ,

E1 = {(x, y) | H0(x, y) ≤ 0 ≤ Hε(x, y), x ≥ 0, y ≥ 0}.
(4.1)

Notice that E1 is the set enclosed by �0 and �ε in the half-plane {y ≥ 0}.
We aim to prove the following.

Lemma 4.1 Assume (1.5) with 0 < ε ≤ ε1. Then, for any τ ∈ R there is ξ1(τ ) = (ξ1(τ ), 0)
such that ξ1(τ ) ∈ [W u(τ ) ∩ L1] and the connected branch W̃ u(τ ) of the manifold W u(τ )

between the origin and ξ1(τ ) lies in E1.

In order to prove Lemma 4.1, we need the following result.

Lemma 4.2 Assume (1.5), then the flow of (2.2) on A1 and B1 points towards the interior of
E1. Assume also 0 < ε ≤ ε1, then the flow of (2.2) on L1 points towards the exterior of E1

for any t ∈ R. In particular, if Q ∈ L1, then ẏ(t; t, Q) < 0.

Proof From (3.5) and (1.5), we get

d

dt
H0(x(t), y(t)) < 0 <

d

dt
Hε(x(t), y(t)), (4.2)

for every solution (x(t), y(t)) of (2.2) with x(t) > 0, y(t) > 0. This proves the first assertion
of the lemma.
Assumenow0 < ε ≤ ε1 and consider a solution (x(t), y(t))of (2.2)with (x(t0), y(t0)) ∈ L1.
Thus, from (1.5) and (3.8) we get

K(t0) x(t0)
q−2 > A1(ε)

q−2 = α2q

2(ε + 1)
≥ α2q

2(ε1 + 1)
= α2,

which implies

ẏ(t0) = x(t0)
(
α2 − K(t0) x(t0)

q−2) < 0.

This completes the proof of the lemma. ��
Proof of Lemma 4.1 We just sketch the proof inspired by Ważewski’s principle; we refer to
[16, Theorem 3.3], see also [19, Lemma 3.5], [23, Lemma 6.3] for more details.
Fix τ ∈ R. We claim that L1 ∩ W u(τ ) 
= ∅. Consider Q ∈ L1 \ W u(τ ). Taking into account
Lemma 4.2 and the absence of invariant sets in the interior of E1, we define T (Q) as the
value in (−∞, τ ] such that φ(t; τ, Q) ∈ E1 for every t ∈ (T (Q), τ ) and φ(T (Q); τ, Q) ∈
(A1 ∪ B1). Combining (4.2) with the continuity of the flow, it is easy to check that the sets

LA := {Q ∈ L1 | φ(T (Q); τ, Q) ∈ A1},
LB := {Q ∈ L1 | φ(T (Q); τ, Q) ∈ B1}
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are open. Furthermore, observe that (A1(ε), 0) ∈ LA and (A1(0), 0) ∈ LB; from a
connection argument, it follows that there is ξ1(τ ) ∈ L1, ξ1(τ ) /∈ LA ∪ LB. Then,
according to Lemma 4.2, we easily deduce that φ(t; τ, ξ1(τ )) ∈ E1 for any t < τ , and
limt→−∞φ(t; τ, ξ1(τ )) = (0, 0). Therefore, ξ1(τ ) ∈ W u(τ ), which proves the claim.

Consider a continuous path σ : [0, 1] → R joining A1 and B1 with σ(0) ∈ A1 and
σ(1) ∈ B1.We could adopt the argument above, with L1 replaced by σ , to prove the existence
of s ∈ (0, 1) such that σ(s) ∈ W u(τ ). Then, applying Lemma 4 in [34] we conclude that the
set W u(τ ) defined as in (2.3) contains a compact connected set W̃ u(τ ) which contains the
origin, ξ1(τ ) ∈ L1 and such that W̃ u(τ ) ⊂ E1. Furthermore, using the classical results in
[12, § 13.4], we see that W̃ u(τ ) and W u(τ ) are indeed one-dimensional immersed manifolds,
see also [23, Lemma 6.5]. ��

Combining the previous results with Remark 2.4, we can state the following.

Remark 4.3 Assume (1.5) with 0 < ε ≤ ε1, fix τ ∈ R and let d∗(τ ) > 0 be such that
φ(τ, d∗(τ )) = ξ1(τ ), then φ(τ, d) ∈ W̃ u(τ ) for any d ≤ d∗(τ ). In fact, the map φ(τ, ·) :
[0, d∗(τ )] → E1 is a smooth parametrization of W̃ u(τ ). Furthermore, by construction,
φ(t, d) ∈ W̃ u(t) ⊂ E1 for any t ≤ τ and any 0 < d ≤ d∗(τ ).

According to definition (2.6), we notice that T1(d∗(τ )) = τ , whence T1(d) > 0 for any
d < D1 = d∗(0). Thus, Remark 2.7 immediately follows.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Setting τ = 0 and applying Lemma 4.1 and Remark 4.3, we see that
φ(t, d∗(0)) ∈ E1 for any t < 0. In addition, x(t, d∗(0)) > 0 and y(t, d∗(0)) > 0 for t < 0,
and y(0, d∗(0)) = 0. Thanks to assumption (K0), we can apply Remark 2.6 to deduce that
u(r; d∗(0)) is a G.S. with fast decay and x(t, d∗(0)) has a unique critical point which is a
positive maximum. ��
Lemma 4.4 [10, Theorem 1.6], [9, Lemma 2.2] Assume conditions (K1)–(K2) and fix ρ ∈
(0, 1). For any positive integer �, there is d� such that x(t, d�) > 0 and y(t, d�) has at least
� non-degenerate zeroes for t < ln(ρ).

As a consequence, T�(d�) < ln(ρ) < 0.

Notice that the last assertion gives Proposition 2.8. The proof of Lemma 4.4 is far from
being trivial, and it is reproved in Appendix for completeness, following the original idea of
[10, Theorem 1.6]. In fact, from Proposition 2.8 we easily get the existence of a trajectory
of (2.2) having the whole set �ε as α-limit set. We emphasize that if l ≥ n−2

2 in (K2) such a
trajectory does not exist, see [10, Theorem 1.1].

We are now interested in showing the continuity of the maps T�(d) and R�(d), defined
in (2.6), since this property is crucial to prove Theorem A, as observed in the final part of
Sect. 2.

Lemma 4.5 Let D > 0 be such that y(t, D) has at least � zeroes for t ∈ R, so that T�(D) is
well defined. Assume that ẏ(T�(D)) 
= 0, then the functions T�(d) and R�(d), introduced in
(2.6), are continuous in d = D.

Proof Fix τ < T�(D). According to Remark 2.4, we set Q(D) = φ(τ, D) ∈ W u(τ ).
Notice that y(T�(D); τ, Q(D)) = 0 and ẏ(T�(D); τ, Q(D)) 
= 0. We assume that
ẏ(T�(D); τ, Q(D)) > 0 (i.e. � even); the case ẏ(T�(D); τ, Q(D)) < 0 (� odd) is analo-
gous. Then, for every small �t ∈ (0, T�(D) − τ) we can find c > 0 such that

y(T�(D) − �t; τ, Q(D)) < −c < 0 < c < y(T�(D) + �t; τ, Q(D)),
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Fig. 2 The sets F1 and L1; F2 and L2; F3 and L3, respectively

and ẏ(t; τ, Q(D)) > 0 for any t ∈ [T�(D)−�t, T�(D)+�t]. Using continuous dependence
on initial data, we can choose σ > 0 such that ‖φ(t; τ, Q(D))−φ(t; τ, Q)‖ < c, whenever
‖Q − Q(D)‖ < σ for every t ∈ [τ, T�(D) + �t]. From Remark 2.4, for any σ > 0 we can
find δ > 0 with the following property: if |d − D| < δ, then ‖Q(d) − Q(D)‖ < σ , where
Q(d) := φ(τ, d) ∈ W u(τ ). Summing up, if |d − D| < δ we get

y(T�(D) − �t; τ, Q(d)) < 0 < y(T�(D) + �t; τ, Q(d))

and we can assume ẏ(t; τ, Q(d)) > 0 for any t ∈ [T�(D) − �t, T�(D) + �t], too. Hence,
T�(d) is uniquely defined and |T�(D) − T�(d)| < �t holds. This concludes the proof. ��

We emphasize that the transversality assumption in Lemma 4.5 is not just a technical
condition: the continuity of T�(d) and R�(d) might indeed be lost removing this condition.

In order to prove the continuity of Tj (d), we introduce some useful notation.
Let B0 = (B0, 0) = �0 ∩ {(x, 0) | x > 0}, i.e. B0 = A1(0). Assume 0 < ε < ε�;

from Lemma 3.7 we can construct the sets A j for j ∈ {1, . . . , �}. Let Fj be the bounded set
enclosed by A j and the line y = 0 (see Fig. 2), i.e.

F2i+1 = {(x, y) | Hε(x, y) ≤ H2i , y ≥ 0, x ≥ 0},
F2i+2 = {(x, y) | H0(x, y) ≤ H2i+1, y ≤ 0, x ≥ 0}. (i ∈ N)

Define

L2i+1 := {(x, 0) | A2i+1 < x < B0},
L2i+2 := {(x, 0) | 0 < x < A2i+2}. (i ∈ N)

Following the procedure developed in the proof of Lemma 4.2, from (3.5), (3.7) and
(3.17), we easily get the following result which is crucial to prove the continuity of T�(d) in
its whole domain.

Lemma 4.6 Assume (1.5) with 0 < ε ≤ ε�, where ε� is the computable constant given by
Lemma 3.7; then the flow of (2.2) on A j points towards the exterior of Fj for every j ∈
{1, . . . , �}. Moreover, the flow of (2.2) on L j points towards y > 0 if j is even, respectively,
towards y < 0 if j is odd.

Now we are in a position to obtain the continuity of Tj (d).

Lemma 4.7 Assume (K1) and (1.5)with 0 < ε ≤ ε�. Then, the functions Tj (d), j = 1, . . . , �,
are continuous in their domains, provided that Tj (d) ≤ 0.
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Proof Let us fix j ∈ {1 . . . , �}. Let d > 0 be such that Tj (d) is well defined and Tj (d) ≤ 0
holds. Then, the solution φ(·, d) intersects the x-axis at Tj (d) in the point ξ j (Tj (d)) =
φ(Tj (d), d). By Lemma 4.6, the solution φ(·, d) is driven by the spiral γ around the points
P∗(ε) and P∗(0) remaining inside the set �0 in (−∞, 0) (cf. Lemma 3.2) and, finally,
ξ j (Tj (d)) ∈ L j with ẏ(Tj (d), d) 
= 0. Then, by Lemma 4.5 the continuity of Tj in d
follows. ��
Remark 4.8 Notice that Proposition 2.10 follows from Lemma 4.7.

We state the following result, which is a translation of Proposition 2.9.

Lemma 4.9 Assume (1.5) with 0 < ε ≤ ε1. Then, T1(d) is continuous for any d > 0 and

lim
d→0

T1(d) = +∞, lim
d→+∞ T1(d) = −∞, (4.3)

Proof Combining Lemmas 4.2 and 4.5 with the absence of invariant sets in the interior of
E1, we see that the function T1(d) is well defined for any d > 0 and it is continuous. From
Remark 4.3, we know that for any τ ∈ R there is d∗(τ ) > 0 such that T1(d∗(τ )) = τ , hence
T1(·) : (0,+∞) → R is surjective. According to Remark 2.4, we can parametrize W̃ u(τ ) by
Q̃u(d) so that Q̃u(0) = (0, 0) and Q̃u(d∗(τ )) = ξ1(τ ). Hence, from Remark 4.3 it easily
follows that T1(d) → +∞ as d → 0.

Observe now that d∗(τ ) → +∞ as τ → −∞. In fact, by Remark 2.5 u′(r , d∗(τ )) < 0
for any 0 < r < eτ , which, combined with (2.1) and (3.9), leads to

d∗(τ ) > u(eτ , d∗(τ )) > P∗
x (ε)e−ατ → +∞ as τ → −∞.

Recalling that T1(d∗(τ )) = τ , we see that there is dk ↗ +∞ such that T1(dk) → −∞.
This is what is actually needed for the argument of this paper. However, we show that
T1(d) → −∞ as d → +∞.

Assume by contradiction that there are M > 0 and d̃m ↗ +∞ such that T1(d̃m) > −M for
any m. Then, for any m we can choose k such that dk ≤ d̃m < dk+1; we can assume without
loss of generality that T1(dk) < −M −1, T1(dk+1) < −M −1, while T1(d̃m) > −M . Let us
fix τk = 1 + max{T1(dk); T1(dk+1)} and denote by W̆ u(τk) the branch of W u(τk) between
the origin and Q̃u(dk+1). Following W̆ u(τk) from the origin towards Q̃u(dk+1), we meet
Q̃u(dk) and then Q̃u(d̃m). Hence, W̆ u(τk) enters the set E1 defined in (4.1), it crosses the x
positive semi-axis until it gets to Q̃u(dk)which lies in y < 0 < x , then it bends and gets back
to Q̃u(d̃m) ∈ E1, then it bends again and gets to Q̃u(dk+1) which lies again in y < 0 < x .
But this is in contradiction with Remark 2.2, since W̆ u(τk) is C1 close to the corresponding
branch of W u(−∞). In fact, we can find a segment transversal to W u(−∞) which has a
tangency point with W̆ u(τk). ��

Now Theorem A easily follows from Lemmas 4.4 and 4.7.

Proof of TheoremA Let us fix � ≥ 2, 0 < ε ≤ ε� and j ∈ {1, 2, . . . , �}. Let us define
Î j := {d > 0 | Tj (d) < 0}.

Obviously, Î j is a subset of I j defined in (2.5). Since Tj (d) is continuous when it is negative
(cf. Lemma 4.7), it is easy to see that Î j is open. Furthermore, there is a1 > 0 such that
Î j ⊂ Î1 ⊂ (a1,+∞), cf. (4.3). From Lemma 4.4, we know that Î j 
= ∅. Hence, we can find
an interval (a j , b j ) ⊂ Î j such that a j /∈ Î j , and a j ≥ a1 > 0. Notice that b j can be +∞,
and, in fact, b1 = +∞.
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We claim that Tj (a j ) = 0 for any j ∈ {1, 2, . . . , �}. In fact, let us consider a sequence
dk ↘ a j . Since Tj is continuous, limk→∞ Tj (dk) = Tj (a j ) ≤ 0. But, if Tj (a j ) < 0 then
a j ∈ Î j , which is a contradiction. Therefore, Tj (a j ) = 0 and the claim is proved.

Then, it follows that x(t, a j ) is positive, and y(t, a j ) has exactly j zeroes for t ≤ 0, so
Theorem A follows from Remark 2.6. ��

5 Computation of "�’s. Proof of Theorem 1.1

In this section, we provide a procedure in order to obtain the values ε� presented in Theo-
rem 1.1. Let us recall that the explicit formula for ε1, cf. (1.8) and (1.11), has been already
deduced from Eq. (3.9).

We begin by giving an algorithm which allows to compute explicitly the values of ε� for
Eq. (1.9) for any � and any dimension n. In particular, when σ = 0, i.e. (1.3) is considered,
we obtain the table (1.7). However, these values are not expressed by close formulas.

Then, we obtain an explicit formula for ε2 in Proposition 5.3, while ε3 is given as a
solution of an algebraic equation in Proposition 5.4. Finally, in Proposition 5.5 we prove the
surprisingly simple formula for the n = 4 and σ = 0 case: ε� = 1/�.

As illustrated in Sect. 3, in order to control the behaviour of the solutions of system (2.2)
converging to the origin as t → −∞, we need to construct a spiral-like path γ . This curve
is built by gluing together branches of different level curves of the energy functions Hε and
H0 introduced in (3.4).

The first branch of γ is defined when 0 < ε ≤ ε1, and is made up by the 0-level curveA1

of Hε , see (3.10), which connects the origin O and the point A1(ε) = (A1(ε), 0) defined in
(3.8); we set H1 = H0(A1(ε)) as in (3.11).
The second branch exists for 0 < ε ≤ ε2 (defined just below) and it is made up byA2 which
is part of the H1-level curve of H0, see (3.12): it connects A1(ε) and A2(ε) = (A2(ε), 0).
We denote by ε2 > 0 the unique value such that A2(ε2) = P∗

x (ε2), so that A2(ε) < P∗
x (ε)

iff 0 < ε < ε2, and we set H2 = Hε(A2). Then, the third branch exists for 0 < ε ≤ ε3 and
it is made up by A3 which is part of the H2-level curve of Hε , see (3.14): it connects A2(ε)

and A3(ε) = (A3(ε), 0). Then, ε3 > 0 is the unique value such that A3(ε3) = P∗
x (0), so that

A3(ε) > P∗
x (0) iff 0 < ε < ε3, and we set H3 = H0(A3).

So the iterative scheme to calculate the extremal x-coordinates Ai is obtained via
Lemma 3.7 and Remark 3.8, by setting A0 = 0, and

A2i+1 = x2,ε(H2i ) = x2,0(H2i+1), A2i+2 = x1,0(H2i+1) = x1,ε(H2i+2), (5.1)

which, combined with formula (5.5), allows us to determine Ai+1 from the previous term
Ai , with a recursive procedure.

According to Lemma 3.7 and Remark 3.8, the procedure to draw γ for a certain value ε

can be summarized by the following algorithm:
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Multiplicity of ground states for the scalar curvature equation

0. Set H0 = 0, j = 1;
1. If j is odd:
1a. Set A j = {(x, y) ∈ R

2 | Hε(x, y) = H j−1, y ≥ 0};
1b. Find A j = x2,ε(H j−1);
1c. If A j > P∗

x (0)
Draw A j as a subset of γ ;
Set H j = H0(A j , 0);

else
γ consists of the previously drawn branches; ⇒ END

2. If j is even:
2a. Set A j = {(x, y) ∈ R

2 | H0(x, y) = H j−1 , y ≤ 0};
2b. Find A j = x1,0(H j−1);
2c. If A j < P∗

x (ε)

Draw A j as a subset of γ ;
Set H j = Hε(A j , 0);

else
γ consists of the previously drawn branches; ⇒ END

3. Increase j to j + 1;
4. Go to 1.

The critical value ε� is the only value which satisfies the identities

A� = P∗
x (0) if � is odd, A� = P∗

x (ε�) if � is even. (5.2)

Formula (5.2), combined with the explicit expression (3.7) of P∗
x , allows us to calculate all

the values ε� with a simple shooting argument. In particular, through a rigorous computer-
assisted computation we obtain the table (1.7), which provides approximations from below
of the values ε�.

Recalling that we are treating Eq. (1.1) with K as in (1.5), we can observe that the values
ε� are not so small!

Remember thatGc is defined in (3.4); furthermore x1,c(g) and x2,c(g) are the non-negative
zeroes of the equation in x , Gc(x) = g and they are, respectively, decreasing and increasing
with respect to g, see Remark 3.5.

Let Rc : [Gmin
c , 0] → [0, 1] be the continuous function defined by

Rc(g) = x1,c(g)

x2,c(g)
if g ∈ (Gmin

c , 0), Rc(0) = 0, Rc(G
min
c ) = 1. (5.3)

Remark 5.1 The function Rc is strictly decreasing.

Let us evaluate ε2: the stating point is (3.13), i.e. A2(ε2) = P∗
x (ε2). Then, from (3.7) and

(3.8), we get

A2(ε2) = P∗
x (ε2) =

(
α2

ε2 + 1

) 1
q−2

= A1(ε2)

(
2

q

) 1
q−2

.

According to (5.3) and recalling that A1 = x2,0(H1) and A2 = x1,0(H1), the previous
condition is equivalent to ask for
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� := R0(H1) =
(
2

q

) 1
q−2

. (5.4)

Definition (5.3) enables us to express x1,c and x2,c as functions of Rc.

Lemma 5.2 Consider R ∈ (0, 1) and g ∈ (Gmin
c , 0) such that Rc(g) = R. Then, we get

x2,c(g) =
(

α2q

2(c + 1)
· 1 − R2

1 − Rq

) 1
q−2

, x1,c(g) = R x2,c(g).

Proof From Gc(x1,c(g)) = Gc(x2,c(g)) = g, we deduce that

c + 1

q

([x2,c(g)]q − [x1,c(g)]q) = α2

2

([x2,c(g)]2 − [x1,c(g)]2) . (5.5)

Then, substituting x1,c(g) = R x2,c(g), we easily complete the proof. ��
We are now in the position to calculate explicitly the critical value ε2, proving (1.12) and

its restriction (1.8) to the σ = 0 case.

Proposition 5.3 The critical value ε2 for (1.9) is given by the following formula

ε2 = q − 2

q

[(q

2

) 2
q−2 − 1

]−1

, (5.6)

which equals ε2 = 2
n

[(
n

n−2

) n−2
2 − 1

]−1

for (1.3), i.e. when σ = 0 and q = 2n
n−2 .

Proof From (3.8) and Lemma 5.2 with R = � and c = 0, we obtain

(
α2q

2(ε2 + 1)

) 1
q−2

= A1(ε2) =
(

α2q

2
· 1 − �2

1 − �q

) 1
q−2

,

whence
1

ε2 + 1
= 1 − �2

1 − �q
. (5.7)

From (5.4) and (5.7), since �q−2 = 2
q , we get

ε2 = 1 − �q

1 − �2 − 1 = �2(�q−2 − 1)

�2 − 1
= q − 2

q

[(q

2

) 2
q−2 − 1

]−1

.

��
Let us now proceed with the estimate of ε3, starting from A3(ε3) = P∗

x (0).

Proposition 5.4 The critical value ε3 is the unique solution of the following equation:

[
X q(ε3) + W(ε3)

] 2
q = X 2(ε3) + 2

q
W(ε3), (5.8)

where X (ε3) =
(

q

2(ε3 + 1)

) 1
q−2

, W(ε3) = 1 + 1

ε3

(
1 − q

2

)
, (5.9)

provided that X q(ε3) + W(ε3) > 0.
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Proof From (3.16) we have Gε(A3) = H2 = − ε
q (Aq

1 − Aq
2). Thus, according to (3.4), we

immediately infer that

Aq
2 = Aq

1 + 1 + ε

ε
Aq
3 − qα2

2ε
A2
3. (5.10)

Similarly, from (3.16) we find G0(A2) = H1 = − ε
q Aq

1 , hence

A2
2 = 2

qα2 (Aq
2 + εAq

1), A2 > 0. (5.11)

Substituting the expression of A2 given by (5.10) into (5.11), we obtain

[

Aq
1 + 1 + ε

ε
Aq
3 − qα2

2ε
A2
3

] 2
q

= 2

qα2

[

(ε + 1)

(

Aq
1 + 1

ε
Aq
3

)

− qα2

2ε
A2
3

]

.

Since A3 = A3(ε3) = Px (0), see (3.7), and A1 is given by (3.8) we get

[(
q

2(ε3 + 1)

) q
q−2 + 1 + 1

ε3

(
1 − q

2

)
] 2

q

= 2

q

[

(ε3 + 1)

(
q

2(ε3 + 1)

) q
q−2 + 1 + 1

ε3

(
1 − q

2

)
]

,

which coincides with Eq. (5.8). The uniqueness of the solution of this equation is guaranteed
provided that A2(ε3) > 0, which is equivalent to X q(ε3) + W(ε3) > 0. ��
Proposition 5.5 Consider (1.3), i.e. (1.9) with σ = 0, and set n = 4. Then, ε� = 1

�
for any

� ≥ 1.

Proof According to (2.1) and (3.1), we know thatα = 1, q = 4. Consequently, (5.5) becomes

x1,c(g)2 + x2,c(g)2 = 2

c + 1
.

Hence, from (5.1) we obtain the following identities

A2
2i+1 + A2

2i+2 = 2, A2
2i + A2

2i+1 = 2

ε + 1
.

Starting from A0 = 0, we can prove by induction that

A2i =
√

2 εi

1 + ε
, A2i+1 =

√
2(1 − εi)

1 + ε
.

Combining (5.2) with (3.7), we note that if � = 2î + 1 is odd,

A� = A2î+1 =
√
2(1 − ε� î)

1 + ε�

=
√
2 − (� − 1)ε�

1 + ε�

= 1 = P∗
x (0),

whence it follows ε� = 1

�
. Conversely, if � = 2î is even, one has

A� = A2î =
√

2 ε� î

1 + ε�

=
√

�ε�

1 + ε�

=
√

1

1 + ε�

= P∗
x (ε�),

which implies ε� = 1

�
. This completes the proof. ��
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A Proof of Lemma 4.4

In this Appendix, we reprove Lemma 4.4, and so Proposition 2.8, in order to be more self-
contained. We recall that this result has been already proved in [10, Theorem 1.6] by Chen
and Lin and restated in [9, Lemma 2.2]. However, their clever proof is far from being trivial,
and the argument is even more difficult to be read due to the presence of some misprints.
For this reason and for completeness, we reprove it here in a slightly more general version,
following the outline of the original idea, but performing some changes in certain points to
make it more coherent with the dynamical ideas of the present article.

In this Appendix, we consider equation

(u′rn−1)′ + rn−1+σ K (|x |)uq(σ )−1 = 0, where q(σ ) = 2
n + σ

n − 2
, (A.1)

and K is a positive C1 function. Our aim consists in proving the following result.

Proposition A.1 Consider Eq. (A.1), and assume both (K1) and (K2). Then, for any fixed
� ∈ N, and for any ρ > 0 there is d� ∈ I� such that R�(d�) < ρ.

Taking into account the standard rescaling argument exhibited to prove Remark 1.3, without
loss of generality, from now on we will restrict ourselves to the case

K (r) = 1 + χk(r), 0 ≤ k(r) ≤ 1, ∀ r ∈ [0, 1], (A.2)

where χ > 0 is a fixed constant, which need not be small. In particular, Eq. (A.1) reduces to
Eq. (1.9).

Let u(r) = u(r; d) be a solution of (1.9), and let φ(t, d) = φ(t) = (x(t), y(t)) be the
corresponding trajectory of (2.2). According to (3.2),H(φ(t), t) is decreasing for t ≤ 0, and,
consequently, as in Lemma 3.1, H(φ(t), t) is non-positive for t ≤ 0, and u(r) and x(t) are
positive for r ≤ 1 and t ≤ 0, respectively. From the monotonicity assumption on K , we
immediately observe that 1 ≤ K(t) ≤ 1 + χ , for t ≤ 0. Thus, according to Lemma 3.2, we
deduce that φ(t) belongs to the region enclosed by �0 for t ≤ 0, and, consequently, φ(t, d)

is bounded for t ≤ 0, uniformly in d; in fact 0 < x(t) ≤ A1(0), see (3.8).
Furthermore, from (2.2), it is easy to check that ẏ(t) > 0 as long as 0 < x(t) < P∗

x (χ) ≤
P∗

x (χ k(et )) for t ≤ 0, see (3.7). Let us choose ζ0 = P∗
x (χ)/2 > 0.

Lemma A.2 Fix ζ < ζ0; there exist the sequences di , T̄ i
1 and T̄ i

2 with T̄ i
1 < T̄ i

2 , di ↗ +∞,
T̄ i
2 ↘ −∞ such that the trajectory φ i (t) = (xi (t), yi (t)) of (2.2) corresponding to ui (r) =

u(r; di ) satisfies the following property: xi (t) < ζ for t < T̄ i
1 , x i (T̄ i

1 ) = ζ , x i (t) > ζ for
T̄ i
1 < t < T̄ i

2 , and xi (T̄ i
2 ) = ζ .

Proof To prove this lemma, we use an argument different from [10, Theorem 1.6]. Let us
observe that the level curve �χ defined in (3.6) intersects the line x = ζ in two points
Q∞

± = (ζ,±Y ∞), where Y ∞ > 0. Let

L := {(ζ,−Y ) | Y ∞/2 < Y < 2Y ∞} ,
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and notice that the flow of the autonomous system (2.2), where K(t) ≡ K (0) = 1 + χ

is transversal on L , since ζ < ζ0. Furthermore, �χ is the graph of a homoclinic trajectory
ψτ (t) of such a system, and for any τ ∈ R we may assume that ψτ (τ ) = Q∞− , due to the
t-translation invariance of the autonomous system. From Remark 2.2, we see that there is τ ∗
such that the unstable leaf W u(τ ) of the original non-autonomous system (2.2) intersects the
line L in a point Q(τ ) for any τ ≤ τ ∗. Furthermore, Q(τ ) → Q∞− as τ → −∞.

Let us consider the trajectory ψτ (t) = φ̄(t; τ, Q∞− ) of the frozen autonomous system
(2.2) where K(t) ≡ 1 + χ for τ ≤ τ ∗, and the corresponding regular solution ū(r; d̄(τ ))

of (A.1), with K (r) ≡ 1 + χ . Similarly, let φ(t; τ, Q(τ )) be a trajectory of the original
non-autonomous system (2.2), and let u(r; d(τ )) be the corresponding regular solution of
(A.1) with the original K (r). Using continuous dependence on parameters, we see that
φ(t; τ, Q(τ )) is close toψτ (t) if t ≤ τ and τ ≤ τ ∗, with a possibly larger |τ ∗|. According to
[20, Remark 2.5], we notice that d̄(τ ) → +∞ as τ → −∞, which implies that d(τ ) → +∞
as τ → −∞, see also the proof of Lemma 4.9. The claim immediately follows by extracting
the sequence di = d(T̄ i

2 ) which satisfies the required monotonicity properties. ��
Fix ζ < ζ0 so that the existence of the sequences di , T̄ i

1 , T̄ i
2 is guaranteed by Lemma

A.2. Let ui (r) = u(r; di ), and let φ i (t) = (xi (t), yi (t)) be the corresponding trajectory of
(2.2).

Lemma A.3 For any M > 0, there are r0 and i0 such that ui (r0) ≥ M for any i ≥ i0.

Proof From now on, we follow quite closely the ideas of [10]. Assume, by contradiction,
that the lemma is false; then there exists M > 0 with the following property: for any r0 > 0,
there is a subsequence, still denoted by ui , such that ui (r0) < M for any i .

Fix δ > 0 small enough to satisfy

β = 2
(α

l
− 1
)

− δ

α − δ
> 0 and δ < α − l, (A.3)

where the constant l ∈ (0, α) is given by assumption (K2). We set ζ̃ = ζ̃ (δ) =
min

[(
2δα−δ2

K (0)

) 1
q−2 ; ζ

]

, so that from (2.2) we find

ẍ i (t) = ẏi (t) > (α − δ)2xi (t), for any 0 < x < ζ̃ , t ≤ 0. (A.4)

Taking into account (K2), we choose r0 so small that Mr (n−2)/2
0 < ζ̃/2, and

− 3
l A

2
rl−1 ≤ K ′(r) ≤ − l A

2
rl−1, ∀r ∈ (0, r0). (A.5)

Set T0 = ln(r0) < 0. Recalling that T̄ i
2 ↘ −∞, we can find i0 ∈ N such that T̄ i

1 < T̄ i
2 < T0

for any i ≥ i0. Without loss of generality, we now restrict ourselves to consider the sequence
ui with i ≥ i0. Thus,

xi (T0) = ui (r0)r
(n−2)/2
0 < Mr (n−2)/2

0 < ζ̃/2. (A.6)

According to Lemma A.2, we define

T̄ i = max{t ∈ [T̄ i
2 ; T0) | xi (t) ≥ ζ̃ }, (A.7)

so that xi (t) < ζ̃ when T̄ i < t < T0, hence (A.4) holds and ẍ i (t) > 0 in this interval. So,
we have two cases: either ẋ i (t) < 0 for any T̄ i < t < T0, or xi (t) has a local minimum at
t = T ∈ (T̄ i , T0).
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Case 1) Assume ẋi (t) < 0 for any T̄ i < t < T0.
Let Eδ(x, y) = y2 − (α − δ)2x2. According to (2.2), we deduce that

Ėδ(xi (t), yi (t)) = 2ẋ i (t)
(

ẏi (t) − (α − δ)2xi (t)
)

. (A.8)

From (A.4), we see that Eδ(xi (t), yi (t)) is strictly decreasing if T̄ i < t < T0. Hence,
Eδ(φ

i (t)) > Eδ(φ
i (T0)) for any T̄ i < t < T0, so that from (2.2) we find

[ẋ i (t)]2 = [yi (t)]2 > (α − δ)2[(xi (t))2 − (xi (T0))
2]. (A.9)

Since xi (t) is decreasing, the right hand side of (A.9) is positive in (T̄ i , T0), hence

−ẋ i (t)

(α − δ)
√

(xi (t))2 − (xi (T0))2
> 1 (A.10)

for any T̄ i < t < T0. Integrating, we get

T0 − T̄ i <
1

α − δ

∫ xi (T0)

xi (T̄ i )

−dx
√

x2 − [xi (T0)]2
= 1

α − δ

∫ ζ̃ /xi (T0)

1

dz√
z2 − 1

= 1

α − δ

[
ln(z +

√
z2 − 1)

]ζ̃ /xi (T0)

1
≤ 1

α − δ
ln

(
2ζ̃

xi (T0)

)

.

(A.11)

At this point, we need assumption (K2) to estimate T̄ i from above. Since xi (T̄ i ) = ζ̃ , cf.
(A.7), and xi (T0) < ζ̃ /2, cf. (A.6), there is T̃ ∈ (T̄ i , T0) such that xi (T̃ ) = ζ̃ /2. Furthermore,
yi (t) is bounded, so there is c > 0 such that T̃ − T̄ i > c ζ̃ . Actually, it might be shown that
T̃ − T̄ i > ln(2)/α as a consequence of the negativity of H(φ i (t), t) for t ≤ 0 and using
some Gronwall estimates. Thus, from (3.1) and (3.2) we find

− α2

2
[xi (T0)]2 ≤ H(φ i (T0), T0) = H(φ i (T̄ i ), T̄ i ) +

∫ T0

T̄ i
K̇(t)

[xi (t)]q

q
dt . (A.12)

Then, recalling that H(φ i (t), t) and K̇(t) are non-positive and xi (t) decreases when t ∈
[T̄ i , T0], from (K2) and (A.5), we obtain

|xi (T0)|2 ≥ 2

α2

∫ T̃

T̄ i
|K̇(t)| |x

i (t)|q
q

dt ≥ ζ̃ q

qα2 2q−1

∫ T̃

T̄ i
|K̇(t)|dt

≥ l A

qα22q
ζ̃ qelT̄ i

(T̃ − T̄ i ) > c21elT̄ i
ζ̃ q+1,

(A.13)

where c1 = 1
α

√
l Ac
q2q . Hence, by (A.6)

MeαT0 > ui (r0)e
αT0 = xi (T0) > c1e

lT̄ i
2 ζ̃

q+1
2 , (A.14)

which implies
l

2
T̄ i < αT0 + ln

(
M

c1

)

− q + 1

2
ln(ζ̃ ). (A.15)

Plugging the second inequality of (A.14) in (A.11), we get

T0 <
(q − 1)

2(α − δ) ln
(
1
ζ̃

) +
(

1 − l

2(α − δ)

)

T̄ i + c2, (A.16)
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where c2 = ln(2)−ln(c1)
α−δ

. Then, from (A.16) and (A.15) we find

T0 <
(q − 1)

2(α − δ)
ln

(
1

ζ̃

)

+

+ 2

l

(

1 − l

2(α − δ)

)[

αT0 + ln

(
M

c1

)

+ q + 1

2
ln

(
1

ζ̃

)]

+ c2.

(A.17)

From the choice of δ in (A.3), 2αl

(
1 − l

2(α−δ)

)
− 1 = 2

(
α
l − 1

)− δ
α−δ

= β > 0, then there

are c3 > 0, c4 > 0 such that (A.17) can be written as follows

− βT0 < c3 ln

(
1

ζ̃

)

+ c4 ln

(
M

c1

)

+ c2. (A.18)

Since ζ̃ > 0 and M > 0 are fixed, we can let T0 go to −∞, obtaining a contradiction with
(A.18), and the lemma in Case 1 is proved.
Case 2) Assume that there is T ∈ (T̄ i , T0) such that ẋ i (t) < 0 for T̄ i ≤ t < T and
ẋi (t) > 0 for T < t ≤ T0.
Repeating the argument of Case 1 for T̄ i ≤ t < T , we go through (A.9) and (A.10) and we
find

T − T̄ i <
1

α − δ
ln

(
2ζ̃

xi (T )

)

. (A.19)

Now we estimate T0 − T with analogous techniques. In particular, from (A.4) and (A.8) we
see that Eδ(xi (t), yi (t)) is strictly increasing if T < t < T0. Hence, Eδ(φ

i (t)) > Eδ(φ
i (T ))

for any T < t < T0, and, consequently,

[ẋ i (t)]2 = [yi (t)]2 > (α − δ)2[(xi (t))2 − (xi (T ))2]. (A.20)

Since ẋ i (t) > 0, the right hand side of (A.20) is positive in (T , T0), hence

ẋ i (t)

(α − δ)
√

(xi (t))2 − (xi (T ))2
> 1, ∀t ∈ (T , T0).

Integrating, we get

T0 − T <
1

α − δ

∫ xi (T0)

xi (T )

dx
√

x2 − [xi (T )]2 = 1

α − δ

∫ xi (T0)/xi (T )

1

dz√
z2 − 1

=

= 1

α − δ

[
ln(z +

√
z2 − 1)

]xi (T0)/xi (T )

1
≤ 1

α − δ
ln

(
2xi (T0)

xi (T )

)

.

(A.21)

Combining (A.19) with (A.21), we conclude that

T0 − T̄ i <
1

α − δ
ln

(
2ζ̃

xi (T )

)

+ 1

α − δ
ln

(
2xi (T0)

xi (T )

)

. (A.22)

Moreover, notice that (A.12) and (A.13) keep on holding by replacing T0 with T . In particular,
according to (A.6), the following inequalities hold:

xi (T ) > c1e
lT̄ i
2 ζ̃

q+1
2 , xi (T0) < MeαT0 ,

which, plugged in (A.22), lead to

T0 − T̄ i <
αT0

α − δ
− l T̄ i

α − δ
+ q

α − δ
ln

(
1

ζ̃

)

+ ln M

α − δ
+ 2c2.
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Hence, there are c̃3 > 0 and c̃4 > 0 such that
(

−1 + l

α − δ

)

T̄ i <
δ

α − δ
T0 + c̃3 ln

(
1

ζ̃

)

+ c̃4 ln M + 2c2.

Taking into account that T0 < 0, we finally infer that
(

−1 + l

α − δ

)

T̄ i < c̃3 ln

(
1

ζ̃

)

+ c̃4 ln M + 2c2, (A.23)

where
(
−1 + l

α−δ

)
< 0 by (A.3). Since ζ̃ > 0 and M > 0 are fixed, while T̄ i < T0 is

arbitrarily small, we can let T0 and, consequently, T̄ i go to −∞, obtaining a contradiction
with (A.23). This proves Case 2. ��
Nowwe are ready to state the result proved in [10, Theorem 1.6] from which Proposition A.1
and Lemma 4.4 follow.

Proposition A.4 Consider Eq. (A.1) under the condition (A.2), and assume both (K1) and
(K2). Then, there is a singular solution u∞(r) such that lim infr→0 u∞(r)rα = 0 and
lim supr→0 u∞(r)rα = A1(χ).

Proof Since ui (r) < A1(0)r−α and there is c > 0 such that |u′i (r)| < cr−(α+1) for any
0 ≤ r < 1, it follows that, up to subsequences, ui (r) converges uniformly in any compact
interval of (0, 1] to a function, say u∞(r), together with its derivative. Notice that u∞(r) is a
solution of (A.1); furthermore, from Lemma A.3 we know that limr→0u∞(r) = +∞, so u∞
is singular. Let φ∞(t) = (x∞(t), y∞(t)) be the trajectory of (2.2) corresponding to u∞(r).

Using (3.2) and Lebesgue convergence theorem for any t ≤ 0, we find

H(φ∞(t), t) = lim
i→+∞H(φ i (t), t)

= lim
i→+∞

∫ t

−∞
K̇(s)

[xi (s)]q

q
ds =

∫ t

−∞
K̇(s)

[x∞(s)]q

q
ds.

Since K̇(t) [x∞(t)]q
q ∈ L1((−∞, 0]), we see that limt→−∞H(φ∞(t), t) = 0. Being u∞(r) a

singular solution, we conclude that x∞(t) 
→ (0, 0) as t → −∞, so x∞ has the whole �χ

as α-limit set, and the proposition follows. ��
Proof of Proposition A.1 Proposition A.1 now follows immediately from Proposition A.4
recalling that ui (r) = u(r; di ) → u∞(r) uniformly in any compact subset of (0, 1]. For
any fixed ρ > 0 and � ∈ N we can find ρ� < ρ such that φ∞(t) intersects the x-axis at least
� times in the interval (ln ρ�, ln ρ). So, the same property holds for φ i (t), when the index i
is sufficiently large; hence, for any � we find φ i�(t) = φ(t, di� ) such that R�(di� ) < ρ.

We refer to [9], in particular [9, Lemma 2.2], for more details. ��

References

1. Alarcón, S., Quaas, A.: Large number of fast decay ground states to Matukuma-type equations. J. Differ.
Equ. 248, 866–892 (2010)

2. Battelli, F., Johnson, R.: On positive solutions of the scalar curvature equation when the curvature has
variable sign. Nonlinear Anal. 47, 1029–1037 (2001)

3. Bianchi, G.: Non-existence and symmetry of solutions to the scalar curvature equation. Commun. Partial
Differ. Equ. 21, 229–234 (1996)

123



Multiplicity of ground states for the scalar curvature equation

4. Bianchi, G.: The scalar curvature equation on R
n and Sn . Adv. Differ. Equ. 1, 857–880 (1996)

5. Bianchi, G.: Non-existence of positive solutions to semilinear elliptic equations onRn orRn+ through the
method of moving planes. Commun. Partial Differ. Equ. 22, 1671–1690 (1997)

6. Bianchi, G., Egnell, H.: An ODE approach to the equation �u + K u
n+2
n−2 = 0, in R

n . Math. Z. 210,
137–166 (1992)

7. Bianchi, G., Egnell, H.: A variational approach to the equation �u + K u
n+2
n−2 = 0 in R

n . Arch. Ration.
Mech. Anal. 122, 159–182 (1993)

8. Cao, D., Noussair, E., Yan, S.: On the scalar curvature equation −�u = (1+ εK )u(N+2)/(N−2) in RN .
Calc. Var. Partial Differ. Equ. 15, 403–419 (2002)

9. Chen, C.C., Lin, C.S.: Blowing up with infinite energy of conformal metrics on Sn . Commun. Partial
Differ. Equ. 24, 785–799 (1999)

10. Chen, C.C., Lin, C.S.: On the asymptotic symmetry of singular solutions of the scalar curvature equations.
Math. Ann. 313, 229–245 (1999)

11. Cheng, K.S., Chern, J.L.: Existence of positive entire solutions of some semilinear elliptic equations. J.
Differ. Equ. 98, 169–180 (1992)

12. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. Mc Graw Hill, New York
(1955)

13. Dalbono, F., Franca, M.: Nodal solutions for supercritical Laplace equations. Commun. Math. Phys. 347,
875–901 (2016)

14. Ding, W.Y., Ni, W.M.: On the elliptic equation �u + K u
n+2
n−2 = 0 and related topics. Duke Math. J. 52,

485–506 (1985)
15. Flores, I., Franca,M.:Multiplicity results for the scalar curvature equation. J. Differ. Equ. 259, 4327–4355

(2015)
16. Franca, M.: Non-autonomous quasilinear elliptic equations and Ważewski’s principle. Topol. Methods

Nonlinear Anal. 23, 213–238 (2004)
17. Franca, M.: Structure theorems for positive radial solutions of the generalized scalar curvature equation.

Funkc. Ekvacioj 52, 343–369 (2009)
18. Franca, M.: Fowler transformation and radial solutions for quasilinear elliptic equations. Part 2: nonlin-

earities of mixed type. Ann. Mat. Pura Appl. 189, 67–94 (2010)
19. Franca, M.: Radial ground states and singular ground states for a spatial-dependent p-Laplace equation.

J. Differ. Equ. 248, 2629–2656 (2010)
20. Franca, M.: Positive solutions for semilinear elliptic equations: two simple models with several bifurca-

tions. J. Dyn. Differ. Equ. 23, 573–611 (2011)
21. Franca, M.: Positive solutions of semilinear elliptic equations: a dynamical approach. Differ. Integr. Equ.

26, 505–554 (2013)
22. Franca, M., Johnson, R.: Ground states and singular ground states for quasilinear partial differential

equations with critical exponent in the perturbative case. Adv. Nonlinear Stud. 4, 93–120 (2004)
23. Franca, M., Sfecci, A.: Entire solutions of superlinear problems with indefinite weights and Hardy poten-

tials. J. Dyn. Differ. Equ. 30, 1081–1118 (2018)
24. García-Huidobro,M.,Manasevich,R.,Yarur, C.:On the structure of positive radial solutions to an equation

containing p-Laplacian with weights. J. Differ. Equ. 223, 51–95 (2006)
25. Johnson, R., Pan,X.B., Yi, Y.F.: TheMelnikovmethod and elliptic equationwith critical exponent. Indiana

Math. J. 43, 1045–1077 (1994)
26. Kawano, N., Ni, W.M., Yotsutani, S.: A generalized Pohozaev identity and its applications. J. Math. Soc.

Jpn. 42, 541–564 (1990)
27. Kawano, N., Yanagida, E., Yotsutani, S.: Structure theorems for positive radial solutions to �u +

K (|x |)u p = 0 in Rn . Funkcial. Ekvac. 36, 557–579 (1993)
28. Li, Y., Ni, W.M.: On conformal scalar curvature equations in R

n . Duke Math. J. 57, 895–924 (1988)

29. Lin, C.S., Lin, S.S.: Positive radial solutions for �u + K u
n+2
n−2 = 0 in Rn and related topics. Appl. Anal.

38, 121–159 (1990)
30. Lin, L.S., Liu, Z.L.: Multi-bump solutions and multi-tower solutions for equations on Rn . J. Funct. Anal.

257, 485–505 (2009)
31. Naito,Y.:Bounded solutionswith prescribed numbers of zeros for theEmden-Fowler differential equation.

Hiroshima Math. J. 24, 177–220 (1994)

32. Ni, W.M.: On the elliptic equation �u + K u
n+2
n−2 = 0, its generalizations, and applications in geometry.

Indiana Univ. Math. J. 31, 493–529 (1982)
33. Noussair, E.S., Yan, S.: The scalar curvature equation on RN . Nonlinear Anal. 45, 483–514 (2001)

123



F. Dalbono et al.

34. Papini, D., Zanolin, F.: On the periodic boundary value problem and chaotic-like dynamics for nonlinear
Hill’s equations. Adv. Nonlinear Stud. 4, 71–91 (2004)

35. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on S
N . J. Funct.

Anal. 258, 3048–3081 (2010)
36. Yan, S.: Concentration of solutions for the scalar curvature equation on RN . J. Differ. Equ. 163, 239–264

(2000)
37. Yanagida, E., Yotsutani, S.: Classification of the structure of positive radial solutions to�u + K (|x |)u p =

0 in Rn . Arch. Ration. Mech. Anal. 124, 239–259 (1993)
38. Yanagida, E., Yotsutani, S.: Existence of nodal fast-decay solutions to �u + K (|x |)|u|p−1u = 0 in R

n .
Nonlinear Anal. 22, 1005–1015 (1994)

39. Yanagida, E., Yotsutani, S.: Existence of positive radial solutions to �u + K (|x |)u p = 0 in Rn . J. Differ.
Equ. 115, 477–502 (1995)

40. Yanagida, E., Yotsutani, S.: Global structure of positive solutions to equations of Matukuma type. Arch.
Ration. Mech. Anal. 134, 199–226 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Multiplicity of ground states for the scalar curvature equation
	Abstract
	1 Introduction
	2 Fowler transformation and invariant manifolds
	3 Some geometrical constructions: meaning of ε1 and definition of εell
	4 Proofs
	5 Computation of εell's. Proof of Theorem 1.1
	Acknowledgements
	A Proof of Lemma 4.4
	References




