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Abstract

The present paper proposes a new interface constitutive model based on the non-
associative damage mechanics and frictional plasticity. The model is developed
in a thermodynamically consistent framework, with three independent damage
variables. The non associative �ow rules drive the concurrent evolution of the
three damage variables. The interface model provides two independent values
for the mode I fracture energy and the mode II fracture energy and it is able to
accurately reproduce arbitrary mixed mode fracture conditions. The model can
also take into account the presence of frictional e�ects both at the fully debonded
zones and at the partially debonded ones. The experimental tests developed
by Benzeggagh and Kenane with seven di�erent mixed mode ratios have been
numerically simulated with a unique set of constitutive parameters. The split
shear torsion, for the evaluation of the mode III delamination toughness, has
been analysed by a three-dimensional numerical simulation.

Keywords: Damage, Delamination, Fracture, Mixed mode, Interface model,
Friction.

1. Introduction

In the last decade, Cohesive Zone Models (CZMs) have assumed a consid-
erable rule for the analysis of fracture mechanic problems for its capability to
reproduce fracture and delamination phenomena in the framework of rational
constitutive modelling. Since the pioneering work of Dugdale and Barenblatt
[11, 3] CZMs represent a powerful alternative to the linear elastic fracture me-
chanics theory. Moreover, CZMs have a relatively simple numerical implemen-
tation by means of interface models, which accurately reproduces fracture and
delamination processes, provided that proper cohesive laws are established.

Recently, special attention has been focused on the assessment of the consis-
tency of existing interface constitutive models under mixed mode delamination
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condition, especially from the thermodynamics point of view. In Dimitri et al
[10] four constitutive models are analysed in order to evaluate their response un-
der mixed mode debonding conditions and whether they are consistent in terms
of stress and energy dissipation. In [10] it is shown that the CZMs proposed in
[21, 16, 6] may produce physically inconsistent results, whereas responses of the
model proposed by van den Bosch [36] results to be coherent with experimental
evidences. Conversely, such model is not based on a potential function and it is
not developed in order to comply with thermodynamics principles. Moreover,
in [36] an unloading law, di�erent than the loading one, is not explicitly de�ned
and energy dissipation cannot be evaluated. In that model two independent
laws are de�ned, respectively for the tangential traction component and for the
normal one and, as already stated in [23], symmetry requirement of the tan-
gent sti�ness matrix is not satis�ed. Recently, a new promising framework for
the formulation of interface cohesive models for mixed mode delamination with
variable mode-ratio has been presented in [8].

In [10] a thermodynamically consistent model, de�ned as evolution of the
van den Bosch et al model [36], but based on a Helmholtz free energy func-
tional has been proposed. The same form of the tangential and normal traction
components proposed in [36] are rigorously derived by applying the Coleman
and Noll [7] procedure through de�nition of four independent scalar damage
variables.

In [21] potential-based models and non-potential-based models are analysed
for mixed mode separation loading paths and under over-closure conditions.
The non-physical behaviour of the Xu-Needleman model [37] emerges, with
negative dissipation or repulsive normal traction in mixed mode delamination
conditions, when fracture energy in mode II is assumed greater than fracture
energy in mode I. The behaviour of some traction separation laws under mixed
mode delamination condition is analysed also in [34, 24].

In [33] a thermodynamically consistent cohesive frictional model with di�er-
ent mode I and mode II fracture energies is presented. The model is de�ned
by a single scalar damage variable and the authors argue that the dissipation
performed by the modelled damaging phenomenon, which is equal to the sep-
aration work, in pure mode I (GI) and in pure mode II (GII) are coincident,
that is GI = GII . Moreover, the authors ascribe only to the frictional e�ects
the greater value of mode II fracture energy GII with respect to GI , experimen-
tally observed. Such e�ects are increased by considering, at the mesoscale level,
the geometry of the interface in the form of a periodic arrangement of distinct
inclined planes. The thermodynamic consistency of the well known potential
based model proposed by Park, Paulino and Roesler in [25] is investigated in
[34].

The contribution of frictional behaviour to the the mode II dissipation energy
has been analysed under increasing cycling load in [32] by the cohesive-frictional
interface model proposed in [29, 30] for small displacements and in [28] for large
displacement analysis. An improved model has been presented in [31] with two
independent values of the fracture energies under pure mode I and pure mode
II delamination conditions. Such a model is de�ned by a damage activation
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condition which depend on the separation displacement components. The ana-
lytical solution of the mode II fracture energy in the 4ENF test with frictional
e�ects has been proposed in [27]. The frictional behaviour has been modelled
in [13] through an elastic-plastic interface model in a multi-scale computational
strategy for the analysis of masonry structures. In [35] the frictional tractions
are coupled to the cohesive tractions of the potential based model proposed in
[25] for the homogenization of the debonding of the particle reinforced compos-
ites, and in [2] the coupled cohesive frictional-contact model is integrated for
the prediction of the dynamic fracture under compression.

The models listed above are just a largely incomplete description of the
huge amount of contributions describing interface constitutive relations. The
interested readers can refer to [8, 25, 33] for an in-depth review of contributions
on the subject. Recently, the general trend in modelling interface laws is the
development of such relations in the proper constitutive framework. Initially,
simple traction-separation displacement relations were proposed. Then, it was
considered rational to de�ne these relations by introducing a potential function
and, more recently, by considering the very dissipative nature of the cohesive
interface with path dependent response. A speci�c attention has been posed to
the thermodynamic consistency of the interface constitutive relations, especially
for model with di�erent values of the fracture energy in mode I, mode II and
mixed mode debonding conditions. In the present paper a new thermodynami-
cally consistent CZM is developed in the framework of non-associative damage
mechanics with one scalar damage variable for each displacement jump compo-
nent. It is based on a Helmholtz free energy, which play the role of potential
not only for the traction components but also for the three damage variables
and for the other internal variables.

The proposed model cannot be de�ned, in general terms, superior to the
multitude of available models, even if it can reproduce quite accurately many
experimental tests, but rather it gives a new light to the theoretical framework
of the interface constitutive models. In fact, it allows to model independent
damage activation conditions for some di�erent debonding conditions (mode I,
mode II or mixed mode) and the non-associative �ow rule drives the concurrent
evolution of the three damage variables and the concurrent degradation of all
the traction components.

The presented model produces independent works of separation in pure mode
I and pure mode II delamination conditions and it can also take into account the
frictional e�ects with a smooth transition, from the initial elastic behaviour of
the sound material, up to the fully debonded behaviour with frictional residual
strength. The cohesive-frictional behaviour is based on the same mesoscale
interpretation of the scalar damage variable, previously proposed in [29, 1].
Traction components, damage evolution and the relevant constitutive equations
are derived by following the classical Coleman and Noll procedure [7] and the
model satis�es the second thermodynamic law by proving that dissipation is
non-negative for any loading path.
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2. The non-associative damage model model

Let us consider two solids occupying the bounded domains Ω+ and Ω−. The
two bodies are mutually bonded or in cohesive contact on the common surface Γ.
On the overall system Ω = Ω+∪Ω−∪Γ ⊂ IR3 are applied external tractions t on
the free boundary Γt and imposed displacement ū on the constrained boundary
surface Γu, as represented in Fig.1a. The hypotheses of homogeneous material
and small strain are assumed. The interface constitutive model is developed
with reference to a zero thickness interface, whose kinematic behaviour is repre-
sented in Fig. 1b by the separation displacement between the two bonded solid
domains. The interface constitutive model is de�ned in a local reference frame
with axes e1 and e2 tangent to the surface Γ and normal axis e3 ≡ n. The
displacement jump across the interface is de�ned by means of the kinematic
variable [[u]] = u+ −u−, where u+and u−are the displacement vectors, respec-
tively, on the positive side and on the negative side of the internal surface Γ, as
shown in Fig. 1b. The positive side Γ+ is de�ned with respect to the orientation
of the outward normal vector e3 ≡ n to the interface surface.

In interface formulation, the displacement jump is a strain measure and it can
be decomposed in the two tangential components u1 = [[u]] ·e1 and u2 = [[u]] ·e2,
and the normal component un ≡ u3 = [[u]] · e3, with reference to the interface
surface.

The interface equilibrium condition is represented by the following relation
[[t]] = t+ − t− = 0, where t+ and t−are the traction vectors, respectively, on
the positive side and on the negative one, as represented in Fig. 1b; for sake of
simplicity tractions are de�ned as t := t+ = −t− and displacement jumps are
de�ned as u := [[u]].
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Figure 1: a) The two solids bonded on the common internal surface Γ. b) An element of the
internal surface Γ with the local reference frame axes e1, e2, e3 ≡ n and representation of
the tractions t

+ on surface Γ+ and t
− on surface Γ−. c) The components of the separation

displacement are represented on the deformed con�guration of the RSE.

In the damage mechanics framework the Representative Surface Element
(RSE) of interface, whose size is assumed small compared to the structural sizes
and su�ciently large compared to the material inhomogeneities, is considered
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and the relevant average damage variable ω is generally de�ned (see [20]) as the
ratio between the area dAd of the debonded fraction of RSE and the whole RSE
area dA; that is

ω =
dAd

dA
. (1)

In Fig. 2 a partially cracked Representative Surface Element of the interface Γ,
connecting two solid domains Ω+ and Ω−, is depicted in both the reference and
in the deformed con�guration.

The interface constitutive model is developed in the same phenomenological
framework proposed in [29, 31], where the damage variable is also considered as
a discriminant parameter which governs the transition form the initial elastic
behaviour, of the sound interface, to the residual frictional behaviour, of the
fully delaminated interface. The behaviour of the partially cracked interface is
developed adopting a mixture rule, at the sub-scale where the two fractions are
respectively: the cracked fraction with a frictional behaviour and traction tf ,
whose area is ω dΓ; the sound fraction of RSE, whose area is (1 − ω)dΓ, with
a cohesive elastic behaviour and traction tc. In the following, the index c is
used for the cohesive fraction variables and index f for variables of the frictional
portion.

��

��

d  �f

n≡e3

e1

e2

��

��

d  �f d  �c

tf tc

t

uf d  �c
uc

a) b)

Figure 2: Partially cracked Representative Surface Element of interface Γ

Since the present approach is based on a mixture theory with two fractions,
it is allowed to de�ne speci�c displacement jump vectors uf and uc for each
fraction.

The behaviour in the cohesive (or sound) fraction is assumed as purely elastic
and the relevant elastic deformation is measured by the following variable

δce = uc. (2)

The cracked fraction is modelled as elastic-plastic with null strength for
tensile normal traction. As pointed out in [29, 31], the elastic deformation of
the frictional part can be regarded as the elastic deformation of asperities and
it is de�ned as

δfe = uf − δfp − δfd. (3)
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where δfp is its plastic component and δfd is a detachment displacement (see
[29] for more details). The interface deformation components of the cracked
fraction ωdΓ of the representative surface element dΓ are graphically represented
in the Figures 3 a, d. The elastic deformation δfe (Fig.3b) models the elastic
and reversible deformation of asperities. The plastic deformation δfp (Fig.3c)
models the displacement jump caused by the irreversible sliding of asperities,
which evolves when the limit frictional strength is attained, producing plastic
dissipation energy. Detachment displacement δfd (Fig.3d) is considered in order
to model the opening separation displacement, with null traction in the cracked
fraction and null energy dissipation.
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Figure 3: Representation of elastic, plastic and detachment deformation components of the
cracked fraction ωdΓ of a Representative Surface Element of interface Γ

From a kinematical point of view, normal component of elastic displacement
and normal detachment component cannot be active at the same time and the
following complementarity relations hold

δfen ≤ 0, δfdn ≥ 0, δfen δfdn = 0, δfet δfdn = 0. (4)

The above relations state that the frictional elastic components of interface de-
formation (δfet and δfen ) are null in case of full separation with positive normal
detachment displacement (δfdn > 0). In the previous equations, state variables
and con�guration variables have been introduced and the discontinuity displace-
ment vectors uc and uf de�ne the deformed con�gurations of the two fractions.
The two discontinuity displacement vectors are only formally distinguished one
from another. In fact, as represented in Fig. 2b, the deformed con�gurations
of the two fractions are not described independently from each other in the
mesoscale constitutive modelling; on the contrary, the pointwise kinematic con-
�guration is uniquely de�ned by means of the separation displacement u and
the following internal compatibility condition is assumed

u = uc = uf (5)
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2.1. Thermodynamic framework

The behaviour of interfaces depends on the separation mode, with di�er-
ent values of strength, in terms of maximum traction, and di�erent values of
fracture energy for the opening separation mode and for the sliding separation
one. Such a phenomenon is well known in literature and several contributions
have been proposed [21, 25, 10, 36, 33] and a cohesive zone model with two
independent fracture energy values in mode I and in mode II has been devel-
oped, in a consistent thermodynamic approach, by the same authors in [31], for
a two-dimensional interface.

The interface constitutive model proposed in the present paper is developed
in the rigorous thermodynamic framework of the non-associative damage me-
chanics. The model is able to produces independent fracture energy values in
pure mode I and in pure mode II delamination mode and it also allows to model
the residual frictional strength of the fully debonded interface and the transition
from the initial elastic behaviour to the residual frictional one. The proposed
interface constitutive model represents an alternative and original interpretation
of the model proposed in [31], which is a two-dimensional constitutive model
with a single scalar damage variable. On the contrary, the proposed formulation
provides a three-dimensional constitutive model and it requires three indepen-
dent damage variables ωi with i = 1, 2, 3, one for each traction component ti.
This choice can appear in contrast with the classic geometric interpretation of
the interface damage variable de�ned in Eq.(1) (see [20]). Namely, a scalar
variable which governs uniformly the degradation of the three components of
the mutual tractions acting between the two connected surfaces. Moreover, at
the full debonding condition (ω = 1), and excluding possible frictional traction,
all traction components have to be null and this condition can be particularly
di�cult to be veri�ed for non scalar damage models. But the proposed non-
associative damage model intrinsically produces the same increment for all the
damage variables, for any debonding condition.

The cohesive-frictional model is developed in a rigorous thermodynamic
framework and it is based on the following Helmholtz free energy function

ψ =W c
el +W f

el +Ψin(ξ) (6)

whereW c
el is the elastic-damage strain energy of the cohesive fraction,W f

el is the
elastic-damage strain energy of the frictional fraction and Ψin(ξ) is the internal
energy, function of the scalar kinematic internal variable ξ. The elastic strain
energies of the two fractions are de�ned as

W c
el =

3∑
i=1

1

2
(1− ωi)K

c
i δ

ce
i

2 (7)

W f
el =

3∑
i=1

1

2
ωiK

f
i δ

fe
i

2
. (8)

The elastic strain energy of the frictional fraction in Eq.(8) does not distinguish
between compressive and tensile normal traction. The presence of frictional
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traction with tensile normal component is precluded by the kinematic comple-
mentary conditions of unilateral frictional contact in Eq.(4).

If the interface behaviour is assumed isotropic in the plane e1, e2 tangent to
the surface Γ, the elastic sti�ness, strength and fracture energy are equal in the
two tangent direction e1 and e2 and therefore

� Kc
1 = Kc

2 = Kc
t are the elastic tangent sti�ness parameters of the cohesive

fraction;

� Kc
3 = Kc

n is the elastic normal sti�ness parameter of the cohesive fraction;

� Kf
1 = Kf

2 = Kf
t are elastic tangent sti�ness parameters of the frictional

behaviour;

� Kf
3 = Kf

n is the elastic normal sti�ness parameter of the frictional be-
haviour.

The constitutive parameters Kf
i measure the elastic sti�ness of the asper-

ities of the cracked fraction and are therefore related to the residual frictional
behaviour of the damaged interface, so the frictional elastic sti�nesses have to
be smaller than the cohesive ones, at least for the tangential components, that
is Kf

i < Kc
i with i = 1, 2 and Kf

3 ≤ Kc
3 (see [29] for more details).

The proposed CZM can be framed in the class of intrinsic interface formu-
lations, which model an initial elastic behaviour, and the elastic sti�ness pa-
rameters Kc

i and Kf
i can be regarded as penalty parameters for the evaluation

of the interface traction components before the damage activation condition is
attained in the cohesive fraction, or the frictional sliding condition is attained
in the relevant fraction. The development of the proposed CZM in the class
of extrinsic formulations, with initial rigid behaviour to avoid the unphysical
use of penalty terms, can be approached by the discontinuous Galerkin method,
as proposed in [15, 22, 14]. Nevertheless, the development of the extrinsic for-
mulation of the proposed model requires a further investigation, which is not
deepened in the present paper.

In order to develop suitable evolution equations for damage and plasticity
variables, thermodynamic consistency, in the form of the second principle, can
be enforced by the Clausius-Duhem inequality, which gives an explicit form for
the non-negative mechanical energy dissipation density:

D = t · u̇− ψ̇ ≥ 0. (9)

The rate of Helmholtz free energy can be derived from Eqs.(6-8) as follows

ψ̇ =
3∑

i=1

(
∂ψ

∂δcei
δ̇cei +

∂ψ

∂δfei
δ̇fei +

∂ψ

∂ωi
ω̇i

)
+
∂ψ

∂ξ
ξ̇

=
3∑

i=1

(
tci δ̇

ce
i + tfi δ̇

fe
i − Yiω̇i

)
− χξ̇. (10)
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where:

Yi := − ∂ψ

∂ωi
=

1

2
Kc

i δ
ce
i

2 − 1

2
Kf

1 δ
fe
i

2
(11)

tci :=
∂ψ

∂δcei
= (1− ωi)K

c
i δ

ce
i (12)

tfi :=
∂ψ

∂δfei
= ωiK

f
i δ

fe
i (13)

χ(ξ) := −∂ψin

∂ξ
. (14)

In Eqs.(11)-(14) Yi are the energy release rates, that are the conjugated variables

of damage variables ωi; t
c
i and t

f
i are the cohesive traction and the frictional trac-

tion components, acting respectively on the cohesive fraction and on the cracked
one; χ(ξ) is the internal static variable, which governs softening/hardening phe-
nomenon in the damage activation function. The rate of elastic deformations
can be obtained from Eqs.(2), (3) and (5) and written in the following form:

δ̇sei = u̇i and δ̇
fe
i = u̇− δ̇fpi − δ̇fdi . By substitution of Eqs. (10)-(14) and of rate

of elastic deformations in Eq.(9), dissipation becomes

D =

3∑
i=1

[(
ti − tci − tfi

)
u̇i + tfi δ̇

fp
i + Yiω̇i

]
+ χξ̇, (15)

whereas the opening displacement jump δfd is active only under null traction
conditions and it does not produces any dissipation.

An elastic loading step is characterized by null increment of plastic defor-
mation and damage, that is ω̇i = 0, δ̇fpi = 0 for i = 1, 2, 3 ξ̇ = 0; so the
dissipation D vanishes and the rate elastic deformations of the two fractions are
δ̇cei = δ̇cei = u̇i and dissipation can be written as follows

D =
3∑

i=1

(
ti − tci − tfi

)
· u̇i = 0. (16)

Since Eq.(16) has to be veri�ed for any elastic loading step u̇, the classic
internal balance condition is obtained:

ti = tci + tfi , (17)

which states interface traction given as the sum of frictional and cohesive con-
tributions; internal equilibrium equation (17) is strongly satis�ed in interface
element and it is postulated to hold for any material state, and not only under
elastic behaviour. Two-dimensional �nite elements which pointwise satisfy equi-
librium equations are proposed in [26]. Moreover, the overall interface elastic
traction-displacement relation can be obtained by substituting of Eqs.(12) and
(13) in Eq.(17) and it is given as

ti = (1− ωi)K
c
i δ

ce
i + ωiK

f
i δ

fe
i (18)
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2.2. Damage activation and evolution laws

The constitutive model is de�ned in the framework of non-associative dam-
age theory, with damage evolution governed by the following yield function ϕd
and damage potential function Ωd

ϕd (Yi, χ) := a1Y1 + a2Y2 + a3Y3 − Y0 − χ (ξ) ≤ 0 (19)

Ωd (Yi, χ) := Y1 + Y2 + Y3 − χ (ξ) , (20)

with 0 < ai ≤ 1. (21)

where ai with i = 1, 2, 3 are constitutive parameters; under the hypothesis of
isotropic behaviour on the tangential plane (e1,e2) the two corresponding pa-
rameter are assumed to be equal a1 = a2. Y0/a1 = Y0/a2 > 0 and Y0/a3 > 0 are
initial yielding threshold respectively in pure mode II debonding condition and
in pure mode I condition. The damage variables evolves only when the damage
activation function is veri�ed as equality, that is ϕd = 0, and the increments of
damage variables and internal variable are governed by the following �ow rules
and loading unloading conditions

ω̇i =
∂Ωd

∂Yi
λ̇d = λ̇d, (22)

ξ̇ = −∂Ωd

∂χ
λ̇d = λ̇d, (23)

λ̇d ≥ 0, ϕdλ̇d = 0, ϕ̇dλ̇d = 0, (24)

with λ̇d non-negative scalar multiplier. Although the damage model is based on
three independent damage variables ωi with i = 1, 2, 3, the �ow rules in Eqs.(24a,
b) produce equal damage increments and the proposed model is equivalent to an
isotropic model (i.e. ω1 = ω2 = ω3 = ω). Nevertheless, the formal use of three
independent damage variables allows us to de�ne the three relevant conjugated
thermodynamic forces, the energy release rates de�ned in Eq.(11), which govern
the activation of damage in Eq.(19). The values of the constitutive parameters
a1 = a2 and a3 allow us to control the damaging condition and the relevant
fracture energy independently for each delamination mode.

2.3. Frictional plastic activation and evolution laws

Activation and evolution of frictional plastic deformation components δfp is
developed by the same approach proposed in [29, 31], which is de�ned in the
framework of non-associative plasticity theory, and it is governed by the classical
Mohr-Coulomb yield function

ϕp :=

√
tf1

2
+ tf2

2
+ cf t

f
3 ≤ 0. (25)

and by means of the following plastic potential

Ωp :=

√
tf1

2
+ tf2

2
+ cd t

f
3 , (26)
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where cf ≥ cd are the frictional and the dilatancy coe�cients respectively. The
plastic �ow rules and loading/unloading conditions are

δ̇fp1 =
∂Ωp

∂tf1
λ̇p =

tf1√
tf1

2
+ tf2

2
λ̇p, (27)

δ̇fp2 =
∂Ωp

∂tf2
λ̇p =

tf2√
tf1

2
+ tf2

2
λ̇p, (28)

δ̇fp3 =
∂Ωp

∂tf3
λ̇p = cdλ̇p, (29)

λ̇p ≥ 0, ϕpλ̇p = 0, ϕ̇pλ̇p = 0. (30)

Finally, in order to prevent tensile frictional traction (tf3 > 0), once the plas-

tic correction produces a positive normal elastic frictional deformation (δfe3 > 0),
the detachment deformation is assigned as δfd = uf −δfp, so that the frictional

elastic deformation in Eq.(3) is identically null (δfe = 0) and the kinematic
conditions in Eq.(4) are ful�lled.

2.4. Thermodynamic consistency

The second principle of thermodynamics requires positive dissipation for
any damaging or plastic loading step. When only damage activation function
is attained, that is ϕd = 0 and ϕp < 0, damage evolves without any plastic

increment (ω̇i = ξ̇ = λ̇d > 0, δ̇fpi = 0, i = 1, 2, 3) and, by substitution in
Eq.(15) and assuming that the internal equilibrium condition in Eq.(17) holds,
the relevant damage dissipation rate is

Dd =
3∑

i=1

Yiω̇i − χξ̇ ≥
3∑

i=1

aiYiλ̇d − χλ̇d = Y0λ̇d ≥ 0. (31)

where the Equations (19)-(24) have been considered. Equation (31) shows pos-
itiveness of dissipation rate for any increment of damage.

For loading steps with only plastic activation (ϕd < 0 and ϕp = 0) damage
increment is null and plastic increments are given by Eqs.(30). The relevant
rate dissipation is given by substitution of Eqs.(25), (26) and (30) in Eq.(9),
that is

Dp = tf ·δ̇
fp

=

(√
tf1

2
+ tf2

2
+ cd t

f
3

)
λ̇p >

(√
tf1

2
+ tf2

2
+ cf t

f
3

)
λ̇p = 0, (32)

which shows positive dissipation for any plastic increment.
The total rate dissipation, for a general loading step, is the sum of the plastic

contribution and of the damaging one

D = Dp +Dd ≥ 0 (33)
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which is null for any elastic loading step and is positive for any increment of
damage or for any increment of the plastic components, satisfying the second
thermodynamic law.

The cohesive model is completed by the softening law, which governs the
evolution of the static internal variable, and the initial yielding threshold Y0
in the damage activation function in Eq.(19). In the case of linear softening
behaviour the static internal variable is

χ (ξ) := Y0

[
((1− ξ) + c ξ)

−2 − 1
]

(34)

where c < 1 is the ratio between limit elastic separation displacement and fully
debonding separation displacement. That is c = ue/uf where: ue is the limit
elastic separation displacement and uf is the separation displacement at the fully
debonding condition. Di�erent softening laws can be considered; for instance a
logarithmic cohesive law has been proposed in [5].

2.5. Constitutive parameters

The proposed non-associative damage model is based on a set of constitutive
parameters some of which are not independent. The yield function in Eq.(19) is
de�ned by the constitutive parameters a1 = a2 = at, a3 = an and Y0 but only
two of them are independent each other.

In accordance with experimental data, only the case of mode II fracture
energy greater then the mode I value (GII > GI) is analysed by assuming
the following constitutive parameters of damage activation function in Eq.(19):
at < 1, an = 1. Moreover, the constitutive parameter Y0 is de�ned as well as
proposed in [29], namely Y0 = 1/2 Ks

3u
2
e.

The proposed interface cohesive zone model produces bilinear response in
the traction separation displacement diagram for pure mode I and pure mode II
debonding condition, as shown in Fig. 4. In the pure mode I debonding condi-
tion the limit elastic displacement is ūeI = ue, the fully debonding displacement

is ūfI = uf and the maximum normal traction is t̄I = Kc
3u

e. In the pure mode II
debonding condition, under null normal traction component t3 = 0, limit elas-
tic displacement ūeII , fully debonding displacement ūfII and maximum tangential
traction t̄II , respectively are

ūeII = b ue

ūfII = b uf

t̄II = b Ks
1ue

(35)

where b =
√
Ks

3/atK
s
1 .

In Fig.4 the qualitative response of the interface subjected to the monotonic
loading path is depicted in terms of traction vs separation displacement for
the two limit cases of pure mode I and pure mode II and for a mixed mode
delamination condition. In Fig.4 it is also plotted the qualitative response of
the interface subjected to the monotonic tangential loading path, under constant
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Figure 4: Qualitative response of the CZM for mode I, mode II and mixed mode delamination
condition, under monotonic loading path, in terms of traction and separation displacement.

compressive normal traction (t3 < 0), showing the e�ect of frictional behaviour
in the decohesion process and the residual tangential frictional traction tr1 =
−cf t3. Finally, the mode I fracture energy is

GI =
1

2
Ks

3 ū
e
I ū

f
I =

1

2
Ks

3ueuf (36)

and the mode II fracture energy is

GII =
1

2
ks1ū

e
II ū

f
II = GI/at > GI (37)

The mixed mode fracture energy Gmx is GI ≤ Gmx ≤ GII and the constitutive
parameter at is the ratio between mode I and mode II fracture energies at =
GI/GII < 1, for the assumed value an = 0.

Several experimental investigations con�rm that fracture energy in mixed
mode debonding condition gradually increases from the pure mode I value GI

to the pure mode II value GII . Such a result is reported by Benzeggagh and
Kenane in [4], who measured the fracture energy of a unidirectional glass/epoxy
composite for six di�erent mixed mode conditions, by the mixed mode bending
apparatus developed by Crews and Reeder in [9]. In [4] the pure mode I fracture
energy has also been measured by a set of double cantilever beam (DCB) tests
and the pure mode II fracture energy has been measured by a set of End Loaded
Split (ELS) tests.

3. Numerical simulations

3.1. Benzeggagh and Kenane experimental tests

The proposed interface CZM has been implemented in the �nite element
code FEAP [38] and, in order to validate its e�ectiveness, the delamination
experimental tests developed by Benzeggagh and Kenane [4] have been numer-
ically simulated with a unique set of constitutive parameters. The material
used for the specimen tested in [4] was a E-glass �bres reinforced composite
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with epoxy resin, and it can be modelled as an orthotropic elastic material. All
specimens were monitored with strain gauge and acoustic emission transducer
for the damage initiation detection. The acoustic emission transducer have also
been used in [19] for ultrasonic inspection and detection of debonding defects
between CFRP-reinforcement and concrete. In order to obtain the same elastic
sti�ness between numerical simulations and experimental data, the longitudinal
elastic moduli and the tangential ones assumed for the numerical simulations
have been reduced of 25%, with respect to the experimental values reported in
[4]. These di�erent values could be due the di�erence between the tensile and
�exural elastic moduli of composite materials. In fact elastic moduli are usually
evaluated in uniaxial tensile tests whereas the delamination tests involve the
�exural behaviour.

The total fracture resistance obtained from the experimental test in [4] in
pure mode I delamination condition is GIR = 0.429± 0.042N/mm and in pure
mode II delamination condition is GIIR = 2.905± 0.244N/mm.

In [4] several tests have been developed for each mixed mode ratio GII/GT ,
with some di�erent values of pre-existing crack a0, but the results of the exper-
imental tests are plotted in terms of force vs displacement only for one value of
initial crack a0.

The numerical simulations proposed in the present paper have been per-
formed with the same values of initial crack a0 of the specimens whose results
are plotted in [4] in terms of force and displacement. The specimen domain
has been discretized by use of nine-node two-dimensional �nite elements with
orthotropic linear elastic material, under plane strain conditions. The delami-
nation surface has been discretized by use of six-nodes interface �nite elements.

The numerical solutions of the non-linear loading steps are performed by
Newton-Rapson iterative method and by use of unsymmetric solver. The load-
ing condition is de�ned in terms of imposed displacement with increments of
∆u = 0.1mm and the convergence tolerance is �xed as tol = 10−10 in terms
of deformation energy ratio between the current iteration step and the �rst
iteration step.

Geometry and sizes of the mode I, mode II and mixed mode delamination
tests are, respectively represented in the Figures 5a, b, c. The mixed mode ratio
is de�ned as a function of the distance d in the mixed mode bending apparatus
developed by Crews and Reeder in [9] and represented in Fig.5c. The values
of distance d and relevant values of the mixed mode ratio considered for the
numerical simulations are collected in the following Table 1. The numerical
simulations of the MMB tests have been performed by discretization of the end
notched specimen and of the loading beam. The loading beam has been consti-
tutively modelled with a much sti�er linear elastic material than the specimen.
The two loading points between specimen and loading beam have been mutually
connected through master slave multi-freedom constrains.

The set of constitutive parameters of the proposed interface constitutive
model adopted for all the numerical simulations are collected in Table 2.

In Fig.6 numerical and experimental results of the DCB test are compared
to the analytical solution based on the Beam and Fracture Mechanics (BFM)
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theories (see [12]) in terms of opening displacement u vs applied load P . The
delamination curves of the DCB test, plotted in Fig.6 and obtained with the
mode I experimental value of fracture energy GI = 0.429N/mm, show a very
good agreement between the analytical solution and the numerical one, expect
that in the initial elastic branch; motivations of the di�erences between ana-
lytical and numerical solutions have already been analysed in [31]. Although
the analytical and numerical solutions obtained with the experimental value
GI = 0.429N/mm are in mutual agreement, they cannot reproduce the rele-
vant experimental curve with good accuracy, showing a lower strength. The
mode I experimental value of fracture energy GI = 0.429N/mm would seem
underestimated for the experimental delamination curve obtained in [4]. There-
fore, in order to obtain the best �tting between numerical and experimental
results (see Fig.6), the mode I fracture energy considered in the numerical sim-
ulations is GI = 0.833N/mm, which is greater than the total fracture resistance
GIR = 0.429± 0.042N/mm, experimentally evaluated in [4].

Distance d 90 mm 60 mm 50 mm 40 mm 30 mm
mixed mode ratio GII/GT 28% 43% 53% 72% 91%

Table 1: Values of distance d and corresponding mixed mode ratio of MMB experimental tests
and numerical simulations

Cohesive Parameters
Normal elastic sti�ness Kc

n = 1 666.6N/mm3

Tangential elastic sti�ness Kc
t = 500 000N/mm3

Constitutive parameter an = 1
Constitutive parameter at = 0.286786
Mode I elastic displ. ūeI = ue = 0.001mm

Mode I debonding displ. ūfI = uf = 1mm
Tensile strength t̄I = 1.666N/mm2

Mode II elastic displ. ūeII = 1.091 · 10−4mm

Mode II debonding displ. ūfII = 0.1091mm
Shear strength t̄II = 54.5N/mm2

Mode I Fracture energy GI = 0.8333N/mm
Mode II Fracture energy GII = 2.90576N/mm

Frictional Parameters

Normal elastic sti�ness Kf
n = 1 666.6N/mm3

Tangential elastic sti�ness Kf
t = 25 000N/mm3

Frictional coe�cient cf = tan 35◦ ≈ 0.7
Dilatancy coe�cient cd = 0

Table 2: Constitutive parameters used for the numerical simulations.
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Figure 5: Sizes and geometry of specimen for the three di�erent delamination conditions: a)
DCB test for pure mode I delamination; b) ELS test for pure mode II delamination; c) MMB
test for the mixed mode delamination.
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Figure 6: Results of the DCB test in terms of applied load P vs opening displacement u of:
experimental test, numerical simulations with two di�erent fracture energies and the relevant
analytical BFM solutions.
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The results of the numerical solutions of the pure mode I DCB test and the
results of the mixed mode bending numerical simulations, all of which performed
with the interface constitutive parameters collected in Table 2, are compared to
the relevant experimental results in terms of applied force P vs displacement u
in the Fig.7.

Finally, the results of the pure mode II delamination test ELS, represented
in Fig. 5c, are plotted in Fig.8a, in terms of applied force P and displacement
u, and compared to the results of the ELS experimental test developed by
Benzeggagh and Kenane in [4].

The proposed cohesive-frictional constitutive formulation is able to model
also the transition from the initial cohesive behaviour, of the virgin material,
to the residual frictional one of the fully debonded interface. Therefore the
presence of frictional e�ects between the delamination surfaces can be e�ectively
analysed. The frictional phenomenon can develop only in the ELS test, due to
the compressive state of stress between the two delaminated surfaces, and the
results of the delamination test with a frictional coe�cient cf = tan (35°) ≈ 0.7
are compared to the frictionless results and to the experimental results in Fig.
8, showing a small e�ect for the ELS test in terms of peak load level. In order
to clarify the frictional behaviour modelled by the proposed formulation, two
unloading-reloading cycles have been numerically simulated after the post-peak
drop related to the full delamination. In the frictionless response (cf = 0) the
unloading curves coincide to the reloading ones, without any frictional energy
dissipation. On the contrary, the frictional behaviour can be observed in the
numerical solution with frictional coe�cient (cf ≈ 0.7), where the unloading-
reloading cycles produce two frictional dissipation cycles with unloading paths
di�erent than the reloading ones. The detail of the two unloading-reloading
cycles is plotted in Fig.8b.

The two Figs 7 and 8a show that the proposed non associative damage
model (NADM) can reproduce with good accuracy, with of a unique set of
constitutive parameters, several delamination tests with a full range of modal
ratio 0 ≤ GII/GTot ≤ 1. Figure 9 plots the total fracture energies obtained
by the proposed model for the full range of modal ratio 0 ≤ GII/GTot ≤ 1,
compared to the relevant experimental values obtained in [4]. The averages
of experimental data, for each value of the modal ratio, are connected by the
dotted line with an almost linear variation. On the contrary, the proposed
NADM produces a non-linear variation of the total fracture energy with the
modal ratio.

The maps of normal stress σxx obtained by the DCB test, by the �ve MMB
tests and by the ELS test (with frictionless interface) are plotted in the Figures
10 a, g. The maps of tangential stress σxy obtained by the DCB test, for the
�ve MMB tests and for the ELS test (with frictionless interface) are plotted in
the Figs. 11 a, g. The maps of normal and tangential stresses have been plotted
at the loading step corresponding to the imposed displacement u = 10mm for
all the numerical analyses. Figures 10 b, f and the Figs. 11 b, f show also the
�nite element discretization of the loading beam of the MMB apparatus and the
position of loading points between specimen and loading bar.
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Figure 7: Results of experimental tests and numerical simulations of the DCB test and mixed
mode delamination tests in terms of applied load P vs opening displacement u.
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Figure 8: Results of experimental test and numerical simulations of the ELS test, in terms
of applied load P and opening displacement u. Results of numerical simulations are with
frictionless interface (cf = 0) and with frictional interface (cf = tan (35°) ≈ 0.7): a) complete
numerical responses; b) detail of the two unloading-reloading cycles of the two numerical
simulations, showing the e�ect of the friction.
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Figure 9: Total fracture energies GTot obtained by the NADM for the full range of modal ratio
0 ≤ GII/GT ≤ 1, compared to the relevant experimental values. The averages of experimental
values, for each value of the modal ratio, are connected by the dotted line.

The three-dimensional numerical simulation of the DCB test for pure mode I
delamination condition has been also performed by use of twenty-seven node La-
grangian brick elements with quadratic shape functions and elastic orthotropic
constitutive model for the bulk. The delamination surface has been modelled
with eighteen node interface elements, with quadratic interpolation functions
and with the constitutive model proposed in the present paper. The domain
is discretized by 1500 brick elements, 225 interface elements and 15708 nodes.
The results of the three-dimensional numerical simulation are represented in the
Fig.12 in terms of opening displacement vs applied force and the results are com-
pared to the responses obtained by the two-dimensional analyses under plane
stress and plane strain conditions, with the relevant analytical solutions based
on the beam theory and elastic-fracture mechanics theory (BFM). The maps
of normal stress σxx obtained by the three-dimensional numerical simulation,
for the imposed displacements u = 10mm and u = 20mm, are plotted respec-
tively in the Figs.13 a, b. The evolution of the damage variable ω = ωi on the
surface Γ of the interface is represented in Fig.14 in the undeformed con�gura-
tion of the lower lamina at several loading steps, corresponding to the following
imposed displacement: u = 2, 4, 6, 8, 10, 12, 14mm. The maps of damage
show a not uniform delamination front along the sample width (x3direction),
nevertheless the three-dimensional response does not di�er signi�cantly from
the two-dimensional responses, as shown in Fig.12 in terms of applied force and
opening displacement. The tree-dimensional analysis is therefore not fully nec-
essary for the analysis of the DBC test, but it is useful to con�rm the robustness
and the correct implementation of the proposed model.
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Figure 10: Maps of normal stress σxx obtained for the DCB test, for the �ve MMB tests and
for the ELS test (with frictionless interface), at the loading step corresponding to the imposed
displacement u = 10mm. 20
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Figure 11: Maps of tangential stress σxy obtained for the DCB test, for the �ve MMB tests
and for the ELS test (with frictionless interface), at the loading step corresponding to the
imposed displacement u = 10mm. 21



0 4 8 12 16 20

Displacement u [mm]

0

20

40

60

80

100

F
o
rc
e
P
[N
]

Figure 12: Results of the DCB test in terms of applied load P vs opening displacement u
of: experimental test, two-dimensional and three-dimensional numerical simulations and the
analytical BFM solutions.

3.2. Split shear torsion test

The last numerical simulation regards a quite interesting problem of fracture
mechanics, the split shear torsion (SST) test, which has been used in [18, 17]
for the experimental evaluation of the mode III delamination toughness. The
specimens subjected to SST test were obtained from a panel of unidirectional
26 ply IM7/977-3 with nominal thickness of 2h = 3.3 mm. The specimens were
manufactured with an initial delamination area, with the two ends bonded to
rectangular steel load tabs, one of which was �xed against rotations and trans-
lations and the second one was free only to translate vertically. The schematic
representations of the SST test with the tangential splitting displacement U and
sizes of specimens tested in [18, 17] is shown in Fig.15.

In the papers [18, 17] three di�erent values of initial delamination lengths,
measured as distance between middle axis of loading tabs and the delamina-
tion front, have been tested showing a considerable dependence of the critical
toughness from the initial delamination length. In the present numerical simu-
lation, only the �rst delamination length a = 31.8mm is considered. The two
loading tabs have not been discretized in the numerical simulation, the speci-
men has been discretized starting from the middle axis of the loading tabs and
the two ends of the two delaminated arms have been constrained. In order to
take into account the additional sti�ness produced by the loading tabs and to
numerically obtain the same sti�ness of the experimental data, the initial de-
lamination length has been corrected to the following value ac = 29.3mm ̸= a.
The bulk of the specimens has been modelled as elastic and orthotropic with
the same constitutive parameter reported in [18]. The specimen has been dis-
cretized with 2000 twenty-seven node brick elements, with 400 eighteen node
interface elements and with 21730 nodes.
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Figure 13: Maps of normal stress σxx obtained for the three-dimensional DCB test, at the
loading step corresponding to the following imposed displacement: a) u = 10mm, b) u =
20mm.
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Figure 14: Maps of damage on the surface Γ of the interface, obtained for the three dimensional
analysis of DCB test, at seven di�erent loading steps corresponding to the following imposed
displacements: a) u = 2mm, b) u = 4mm, c) u = 6mm, d) u = 8mm, e) u = 10mm, f)
u = 12mm, g) u = 14mm
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Figure 15: SST test: a) Schematic representation of the SST loading test; b) mesh of the
numerical simulation with the boundary conditions.

The apparent mode III delamination toughness obtained in [18] as results of
the SST experimental tests ranges from 0.7N/mm to 0.9N/mm. The proposed
interface constitutive model, with isotropic behaviour on the tangential plane
cannot distinguish between mode II and mode III fracture energy, so for this
simulation the mode II fracture toughness has been �xed as GII = 0.8587N/mm
and the interface cohesive parameters are: Kc

n = Kc
t = 50000N/mm3, at = 0.25,

ue = 0.00031, uf = 0.0277. The frictional behaviour is not relevant for this prob-
lem. The results of the numerical simulation of SST loading test are compared
to the experimental data in Fig.16 in terms of loading force P vs imposed dis-
placement U , showing a good matching in the loading branch. The numerical
unloading path, as result of an elastic-damage behaviour, is a straight branch up
to the unloading condition with null load P = 0 and null displacement U = 0,
whereas the experimental unloading path shows a more complex nonlinear be-
haviour with residual displacement at the null load condition. This results can
be probably caught by considering the interlocking e�ects between the delami-
nated surface in a �nite displacement framework, but it is not analysed in the
present paper. The SST mode III delamination test, as well known in literature,
does not produce uniform stress �elds at the delamination front and two di�er-
ent delamination modes can be envisaged. In [18, 17] the Energy Release Rate
(ERR) for pure mode II and pure mode III delamination conditions have been
considered for the SST test, showing that the mode II ERR is negligible except
that near the free edges, and the mode III ERR is maximum at the centre of
the delamination front. Moreover, the delamination starts at the centre of the
specimen. This result is con�rmed by proposed non-associative interface model
as can be observed in the two maps of interface damage plotted in the Figs. 17a,
b, obtained respectively at the loading step U = 0.35mm and at the loading
step U = 0.65mm. These results, plotted in the deformed con�guration with
ampli�ed displacements, show that, at the initial stage, the maximum damage
is at the specimen centre and it decreases at the free edges. At the maximum
loading condition two peaks of damage emerge at the free edges, produced by
the mode II e�ects, as observed in [18, 17].

25



0 0.2 0.4 0.6 0.8

Displacement u [mm]

0

400

800

1200

1600

F
o
rc
e
P
[N
]

Figure 16: Graphic of numerical simulation results of the SST loading test in terms of in terms
of loading force P vs imposed displacement. The results are compared to the experimental
data.
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Figure 17: Maps of interface damage for two loading steps of the SST test: a) U = 0.35mm;
b) U = 0.65mm.
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4. Conclusions

The paper proposes an interface uni�ed constitutive framework for mod-
elling cohesive behaviour of the sound interface and for modelling the residual
frictional behaviour the debonded interface. The model is based on three in-
dependent damage variables and is developed in a consistent thermodynamic
framework. The constitutive model is de�ned through the Helmholtz free en-
ergy, the damage activation function and a non-associative dissipation function.
The evolution rules are derived in the context of dissipative mechanics with in-
ternal variables and produce the same evolution of the three damage variables.

The present paper proposes a new theoretical framework of the interface con-
stitutive models, which allows to model independent damage activation condi-
tions for some di�erent debonding conditions (mode I, mode II or mixed mode).
The non-associative �ow rules drive the concurrent evolution of the three dam-
age variables and the concurrent degradation of all the traction components in
a thermodynamically consistent formulation.

The proposed CZM assumes an isotropic behaviour on the tangential plane
and produces two independent fracture energies, GI in pure mode I debonding
condition and GII in pure mode II debonding one. GI and GII are minimum
and maximum values of the work-of-separation for any proportional loading
path. The model can also evaluates the presence of frictional tractions both
at the fully debonded zones and at the partially debonded ones. The proposed
model is able to accurately reproduce, with a unique set of few constitutive
parameters, the mechanical response of delamination problems for any mixed
mode ratio: pure opening mode, pure sliding mode, mixed mode debonding
conditions and closing conditions with the relevant frictional e�ects.

In order to validate the proposed CZM, model all the experimental tests
performed by Benzeggagh and Kenane in [4] have been numerically simulated
with a unique set of constitutive parameters. The numerical and experimental
results are compared in terms force and displacement, showing good agreement
for very di�erent test conditions. Finally, the results of 3D numerical simulation
of the SST test for the evaluation of the mode III fracture toughness are proposed
showing good agreement both in terms of loading-displacement diagram and in
terms of damage evolution on the delamination surface.
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