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Abstract: The development of e↵ective nanosystems for drug delivery represents a key challenge
for the improvement of most current anticancer therapies. Recent progress in the understanding of
structure and function of extracellular vesicles (EVs)—specialized membrane-bound nanocarriers for
intercellular communication—suggests that they might also serve as optimal delivery systems of
therapeutics. In addition to carrying proteins, lipids, DNA and di↵erent forms of RNAs, EVs can
be engineered to deliver specific bioactive molecules to target cells. Exploitation of their molecular
composition and physical properties, together with improvement in bio-techniques to modify their
content are critical issues to target them to specific cells/tissues/organs. Here, we will discuss the
current developments in the field of animal and plant-derived EVs toward their potential use for
delivery of therapeutic agents in di↵erent pathological conditions, with a special focus on cancer.

Keywords: drug delivery; liposomes; extracellular vesicles; target therapies; plant-derived
extracellular vesicles

1. Introduction

In the last decade, we have assisted to significant advances in the field of nanomedicine, in particular
in the innovative area called theranostic. Theranostic exploits nanostructured systems containing drugs
for therapeutic purposes and natural nanoparticles for diagnostic purposes [1,2].

Many pathological conditions, including chronic inflammatory disorders and cancers, often require
prolonged drug administration to patients, resulting in high cumulative doses and significant side e↵ects.
For most drugs currently in use, therapeutic activity is determined by the attainment of a su�cient
concentration in their target cell, tissue or organ. However, the distribution of the therapeutic agent in
the organism depends not only on the route of administration but also on its chemical and physical
characteristics as well as the anatomical and physiopathological characteristics of the target areas.
In general, the drug is distributed more or less extensively at the systemic level with consequent
secondary toxic e↵ects.

For all these reasons, several e↵orts are being made to minimize local and systemic toxicity
of pre-existing drugs, widely used in clinical practice, and to increase tumor selectivity. Therefore,
nanotechnologies applied to medicine, ranging from the medical use of nanomaterials to the formulation
of new drug delivery systems, have a tremendous potential [3].

In this context, researchers, in particular in the oncologic field, are currently focusing on
the development of drug delivery systems to target tissues with the aim of (i) reducing toxicity;

Int. J. Mol. Sci. 2019, 20, 1848; doi:10.3390/ijms20081848 www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2019, 20, 1848 2 of 18

(ii) circumscribing the biological e↵ect on a certain type of cells; and (iii) preserving their
therapeutic activity.

Tumor tissues have peculiar pathophysiological characteristics that can be exploited for
transmission and selective release of drugs, such as enhanced permeability and retention that allows
the accumulation of nanoparticles [4,5]; moreover, since cancer cells often express or overexpress
specific membrane receptors, nanoparticle surface can be modified to optimize targeting properties [6].

A recent review explored the use of engineered exosomes in musculoskeletal disorders,
highlighting possible new applications in regenerative medicine for osteoporosis and osteoarthritis,
for the regulation of the immune system in inflammatory-dependent bone diseases, as well as in
the treatment of tumors such as osteosarcomas, chondrosarcomas or bone metastases, although the
application of exosomes in these tumors is still in the early stages [7].

To date, the delivery systems applied in drug targeting are different in terms of composition, structure,
and drug release rate. They include polymer-based microparticulate systems, phospholipid-based vesicular
systems (liposomes), micelles, multifunctional dendritic polymers, liquid crystals, nanocapsules,
and nanospheres [8,9]. In particular, since the advent of liposomes as drug delivery vehicles, several
drugs commonly used in the clinics have been encapsulated to reduce their toxicity. Although the use
of these delivery systems has shown numerous pre-clinical advantages [10], an important question
concerning the accumulation of these particles in certain organs remains to be solved. In fact, depending
on the nanoparticles used, their accumulation was observed in organs such as the brain, lung, liver,
and kidneys, resulting in local toxicity.

Here, we will discuss briefly the most relevant approaches for drug delivery, highlighting the critical
issues that often do not allow their clinical use. We will then focus on a new and promising approach
based on extracellular vesicles (EVs), small lipoproteic structures released in the extracellular space by
all cell types, under both physiological and pathological conditions. Among EVs, those released by
human mesenchymal stem cells and plant-derived EVs may represent the most promising approaches
for the development of new drug delivery systems in the near future.

2. Old and New Opportunities for Drug Delivery

2.1. Liposomes

Among the systems of drug delivery, those lipid-based are the most studied so far [9]. In particular,
liposomes have been experimentally used as drug delivery vehicles since 1970 [11,12]. Liposomes are
hollow microspheres typically composed of various types of phospholipids organized in fluid bilayers.
The interest for liposomes is related to their membrane (consisting of cholesterol and phospholipids),
whose structure and composition resemble the plasma membrane of recipient human cells. Currently,
several biotechnological companies employ liposomes for numerous fields of application, including
antibiotics, anticancer, and gene therapy [13].

While lipophilic drugs are usually encapsulated inside the lipid bilayer, some hydrophilic drugs may
be solubilized within the aqueous core of the liposome. Liposome characteristics such as composition
and size can be modified according to the di↵erent compounds to shuttle or to decrease the rate of
liposome degradation and control the release of their content. It is also possible to increase the a�nity of
the liposomes for a given tissue by modifying their composition. In order to obtain a functionalization
of the formulation, particular membrane proteins can be incorporated into the membrane of the
liposome. These techniques, as well as the functionalization of the system, typically allow reduced
natural degradation with subsequently increased stability.

Several studies have analyzed the systemic use of these lipid structures for the delivery of small
therapeutics, including DNA, antisense oligonucleotides, and siRNA [14]. The promising results
obtained have opened the possibility to develop liposome-based systems for gene therapy both ex-vivo
and in vivo; however, toxic e↵ects together with their rapid clearance represent main disadvantages,
requiring further investigations before their clinical use [15].
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Thus, liposomal doxorubicin has been largely studied to increase the therapeutic index in both
solid and hematologic cancers [16]. In fact, lower rates of myelosuppression, cardiotoxicity, and alopecia
have been reported compared with conventional doxorubicin [17]. However, the physical stability
of the suspensions has been largely debated since liposomes are subjected to oxidative degradation.
Moreover, the chemical activity of the encapsulated drug is frequently lost, based on the percentage
of cholesterol, nature of the phospholipids, size and chemical-physical characteristics of the carried
compound. Although liposome modifications to reduce drug loss have been developed, side e↵ects
have still been frequently observed.

2.2. Extracellular Vesicles

Scientific research, in particular in the biomedical field, has long been interested in the mechanisms
that regulate the communication among cells, since it is well known that they need to continuously
exchange information with the surrounding environment to perform their functions. In the past,
however, the studies were focused to understand the direct cell-cell interactions or the modality by
which individual molecules, released by cells, a↵ect nearby or even distant cells. What had previously
been recognized as a secretion mechanism by which cells eliminate their waste [18] is now considered
a very important cell-cell communication mechanism that attracts the interest of researchers from
many disciplines, having given rise to a vibrant scientific community, named International Society for
Extracellular Vesicles (ISEV).

EVs generally indicate lipoproteic vesicles that are released into the extracellular space [19],
i.e., exosomes, ectosomes, apoptotic and necrotic bodies. They di↵er in their origin, composition,
and size, thus representing a very heterogeneous population that mainly depends on the state of the cell
of origin. Although specific features have been proposed for each EV subpopulation, the identification of
specific markers of each subgroup is still debated and under investigation. In particular, the possibility
to distinguish exosomes from ectosomes is still largely debated [20].

Recently, the minimal requirements for studies on EVs (MISEV) have been published with the
participation of a large part of the scientific community in the field [21], representing an update of the
guidelines for working with EVs.

Exosomes are cup-shaped vesicles of 30–150 nm, released by all cell types, that originate when
a multivesicular body (MVB) fuses with the plasma membrane, releasing exosomes in the extracellular
space [22,23], while ectosomes are shed directly from the plasma membrane. Their size and composition
overlaps with those of exosomes, although ectosomes include larger vesicles, up to 1 µm. However,
given the lack of specific markers for each category of vesicles, the scientific community is currently
oriented towards distinguishing and indicating EVs based on size (small, medium or large), density
(low, medium or high), positivity to certain markers and the state of the cells from which they
originate [21].

EVs carry complex cellular messages, mediated by proteins, lipids and nucleic acids, which are
selectively packaged inside the vesicles and transported outside the producing cell. Thanks to Web-based
resources such as ExoCarta, EVpedia, and Vesiclepedia [24,25], we are today aware of the content of
EVs released from multiple species ranging from protozoa to human.

Although the intracellular origin of these vesicles as well as their content are widely described
in the literature, the mechanism by which some macromolecules are selectively packaged within the
vesicles has not been fully elucidated yet; therefore, it is not surprising that many recent studies are
aimed at identifying the mechanism that controls the sorting of specific miRNAs. Santangelo et al. [26]
described the RNA binding protein SYNCRIP (synaptotagmin-binding cytoplasmic RNA-interacting
protein) as responsible for the hepatocyte miRNA sorting in exosomes by direct binding; specifically,
they found that this binding occurs through a short sequence named hEXO motif. Wani et al. [27]
reported that miR-2909 is packaged in tumor exosomes by a specific 30-end post-transcriptional
modification of the miRNA. It is expected that further studies of molecule sorting mechanisms will
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improve the development of strategies for exosomal content modification in order to develop better
drug delivery vehicles.

The specific EV content reflects that of the cell of origin and determines the vesicle biological e↵ect.
In fact, EVs interact with target cells triggering in them phenotypic changes. For these reasons EVs are
now considered as leading actors of intercellular communication, mediating both physiological as well
as pathological responses [28,29].

EVs can be internalized by classic endocytic mechanisms but also by fusion with the plasma
membrane. Alternatively, EVs can trigger intracellular pathways in target cells by ligand-receptor
interactions or EV membrane proteins can be cut o↵ by proteases and the resulting fragments act as
ligands for cell surface receptors [18,30,31].

A better understanding of the surface molecules of the EVs as well as the possibility of modifying
them is the basis of several studies, which will be discussed later, aimed at developing EVs as vehicles
for targeted therapy.

3. EVs as Drug Delivery Vehicles: Source, Loading, and Targeting

EVs represent an opportunity for the research community to transform cellular structures into
new forms of treatment for various diseases, exploiting what nature already o↵ers: systems that
deliver biological messages addressed to other cells of the organism. The goal of researchers is to
convert the biological messages into therapeutic ones. To face this challenge, various aspects of EV
research must be taken into consideration; these aspects, preceded by a deeper understanding of EV
biology as well as the improvement of biotechnology techniques, will be discussed in the following
subparagraphs and can be summarized as follows: the choice of EV cellular source, isolation methods,
loading, and engineering approaches for e�cient drug targeting (Figure 1).

 
Figure 1. Aspects to be considered for the use of Extracellular Vesicles as drug delivery systems.

3.1. EV Cellular Source for Theranostics Approach

A number of studies have suggested that the ability of EVs to deliver chemotherapeutic compounds
di↵er depending on the producer cell. A multitude of parameters need to be considered in order to
choose the most appropriate cellular system to produce EVs for therapeutic purposes. Immunogenicity,
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yield, horizontal gene transfer and ability to be genetically manipulated for cell targeting are the EV
properties that need to consider for the potential clinical applications.

Interestingly, most of the cells incubated with chemotherapeutic compounds or nucleic acids are
able to package these molecules into EVs that can be subsequently collected and used for di↵erent
purposes. For example, dendritic cells (DC) have been used in several experimental settings as EV
donor cells due to their low immunogenicity profile. EVs released from Indoleamine 2,3-dioxygenase
(IDO)-expressing DCs have been demonstrated to be immunosuppressive and anti-inflammatory,
and are able to reverse arthritis in a murine model of collagen-induced disease [32]. Li and coll.
reported that statin-induced immature dendritic cells secrete tolerogenic EVs, which are involved in
the suppression of immune responses in a rat model of experimental autoimmune myasthenia gravis.
Authors speculated that animals treated with statin-EVs showed increased numbers of Foxp3+ cells
in the thymus thus maintaining immunologic tolerance [33]. Using a similar model of myasthenia,
Yin and coll. showed, in mice, that exosomes from microRNA-146a overexpressing DCs inhibited the
progress of the disease by shifting the T helper cell immunophenotype from Th1/Th17 to Th2/Treg
in spleen [34]. As discussed in the next section, the group of Alvarez–Erviti was able to engineer
dendritic cells to produce exosomes displaying on their surface the neuron-specific RVG (Rabies Virus
Glycoprotein) peptide [35]; DCs were loaded with siRNA against �-secretase or ↵-Synuclein and the
released EVs, systemically injected in a transgenic mouse model, were shown to localize in brain
regions pathologically a↵ected by Parkinson’s disease and more importantly to significantly decrease
the level of endogenous mouse ↵-Synuclein [36]. Another cell type that has been often used to produce
EVs for possible therapeutic intervention is the macrophage. EVs from macrophages have shown
a biological e↵ect on disease model even without a specific drug loading. For example, in a model of
axonal regeneration, EVs with functional NADPH (Nicotinamide Adenine Dinucleotide Phosphate)
oxidase 2 complexes were released from macrophages and transferred into damaged axons where they
oxidized and inactivated PTEN (Phosphatase and Tensin Homolog), stimulating Akt signaling and
regenerative outgrowth [37]. Macrophages loaded with catalase, or transfected with catalase-encoded
plasmid can release EVs containing the enzyme. Administration of these vesicles, through intranasal
injection, allowed EVs to traverse the blood–brain barrier and be incorporated in neurons, astrocytes,
and brain microvessel endothelial cells. This treatment ameliorated symptoms in a mouse model of
PD [38,39]. Authors hypothesized that the encapsulation of catalase into EVs may protect the enzyme
from degradation and reduce immunogenicity, thus improving therapeutic e�cacy. In a similar model
of Parkinson, Zhao and colleagues showed that genetically modified macrophages expressing the
glial-derived neurotrophic factor (GDNF) produce EVs containing the growth factor. Treatment of
mice with these vesicles slowed the progression of the disease [40].

Mesenchymal stem cells (MSCs) have received great interest as functional sources of EVs for
drug delivery in the treatment of several disorders, due to their ability to repair tissues and to their
immunomodulatory properties. Most of the recent literature on the capability of MSCs to contribute
to tissue repair seems to suggest that their beneficial e↵ects in clinical settings are not due to the
replacement of impaired and diseased cells but to the biological activity of their “secretome” and in
particular of EVs. In 2010, a seminal paper of Lai and coll. showed that in a myocardial I/R injury,
MSC- derived EVs exert strong protective e↵ects on heart tissues [41]. Other groups then attributed
the underlying mechanisms to the transfer of 20 S proteasome [42], cardiomyocyte autophagy [43] or
more recently to modification of the polarization status of macrophages via shuttling of miR-182 [44].
MSC-derived EVs were also found to participate in brain functional recovery after di↵erent types of
injury. Systemic administration of EVs derived from MSCs was shown to exert therapeutic e↵ects after
brain injury [45,46]. Zhang and coll. showed that intravenous delivery of MSC-derived EVs improves
functional recovery and promotes neuroplasticity in young adult male rats subjected to a controlled
cortical impact [47].

A major challenge in the choice of cellular sources for EV production is availability and possibility
for scaling up when primary cells are used or risk for horizontal gene transfer when EVs are recovered
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from immortalized or tumor cells. A possible alternative has been recently suggested by the group of Le
that demonstrated the feasibility in the use of human red blood cells to produce EVs for RNA therapies.
Red blood cells belonging to O group are accessible in large quantities in the blood bank and there is
no risk of horizontal gene transfer since erythrocytes do not contain DNA. Authors demonstrated that
a large amount of red cells EVs can be isolated and electroporated with antisense oligonucleotides
directed to miR-125b-2, or Cas9 mRNA and gRNA targeting the miR125b-2 human locus [48]. In all
cases, the engineered EVs were able to inhibit both in vitro and in vivo leukemia and breast cancer
cells growth. In the following paragraphs, we will discuss how the EVs can be isolated, loaded with
drugs and siRNAs and targeted to recipient cells.

3.2. Isolation Methods

The technologies for EV isolation as well as their further development are critical for future
applications of EVs as drug delivery vehicles; moreover, approaches that enable large-scale isolation are
clearly required. In fact, the methods used for vesicle isolation determines the sample yield, its purity,
and its future application.

To date, the choice of methods used for purification of the vesicles is based on the starting material
and on the downstream use of isolated vesicles. The current gold standard for vesicles isolated from
cell culture media and some biological fluids is the use of di↵erential centrifugations to remove cells
and large cell debris, followed by ultracentrifugation to precipitate EVs [49,50]. In particular, the first
centrifugation, at low speed, is required to pellet cells and eliminates cell debris; then, the supernatant
is centrifuged at increasingly higher speeds to pellet larger vesicles. Finally, the resulting supernatant
is ultracentrifuged to pellet small EVs. The ultracentrifugation step is critical and is often repeated
twice in order to wash and further purify the EV pellet.

One of the disadvantages of this approach, thinking about the future clinical use of the EVs,
is the contamination of the isolated sample by proteins and lipoproteins that are di�cult to eliminate.
The combination of ultracentrifugation with a density gradient is often used to remove contaminants
from the EV preparation.

The need to isolate EVs from samples of reduced volume has led many companies to develop
methodologies based on precipitation by polymers. The use of these methods, although very useful for
small size samples, is still debated since the presence of polymers often interferes with sample analysis.

The detailed description of the protein component of the EVs has allowed the identification of
those that today we consider the EV markers, i.e., the proteins present both on the surface and inside the
vesicles, that allow their characterization upon isolation. Likewise, the study of the proteomic profiles
of the EVs is useful in order to determine those markers that specifically identify EVs from one cell
type compared to others. The recognition of the EVs on the base of their protein component underlies
the development of methods of isolation through immunocapture [51,52]; specifically, this approach
aims to isolate the EVs by using antibodies directed against surface proteins [53]. This method can also
be used in combination with those described above. Although this approach can be applied either to
isolate all EVs or to purify certain vesicle subtypes, to date this method is di�cult to use in the case of
large volume samples required in the clinical setting.

Other EV isolation techniques that have been developed are based on size exclusion
chromatography (SEC) [54,55] and ultrafiltration; these two approaches, which can also be combined,
are used to purify EVs based on their size. The use of a chromatographic approach for EV isolation has
proved beneficial in the elimination of contaminants such as proteins and lipoproteins [56], allowing
accurate analysis of the sample. The method has also been standardized for the isolation of EVs
from complex samples, such as biological fluids (plasma, serum, and urine), thus supporting the
possible clinical use of SEC [57,58]. Lastly, ultrafiltration represents a suitable approach for rapid EV
purification from large volume samples. This technique involves the use of membranes with specific
pore size [59,60] that can be decided according to the size of the vesicles to be purified, and that,
when combined with SEC, allows a high degree of purification [61]. The possibility that part of the
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EVs is lost due to adherence to the membranes used or that the vesicles may be damaged during the
process are factors requiring consideration for EV manufacturing and scale-up purposes.

3.3. Drug Loading Methods

The simplest method of drug loading is incubation of hydrophobic drugs with EVs. They can pass
through the lipid bilayer and be incorporated, as demonstrated with curcumin [62]. Although improved
e�cacy compared to the free drug has been demonstrated both in vitro and in vivo, e.g., for paclitaxel
and withaferin A by Munagala et al. [63], the main drawbacks, that limit clinical development, are the
ine�cient loading capacity and the fact that this strategy is generally limited to hydrophobic compounds.

Several groups have investigated active methods such as sonication, transfection of donor cells,
electroporation, extrusion, and direct chemical conjugation. Kim et al. [64] have employed sonication
to load macrophage-derived EVs with paclitaxel, bypassing the P-glycoprotein-mediated e✏ux of
paclitaxel and thus overcoming drug resistance in MDR1+ (Multidrug Resistance Protein 1) MDCK
(Madin-Darby Canine Kidney) cells. During co-sonication of exosomes and drugs, the mechanical shear
force from the sonicator’s probe deforms the lipid bilayer of the EV membrane, allowing drug entry by
di↵usion. Apparently, the EV membrane deformation does not significantly a↵ect the proteo-lipid
content of the EV membrane, the membrane integrity being restored within an hour [64]. We transfected
donor cells to generate targeted EVs able to deliver Imatinib or BCR-ABL siRNA to CML cells in
order to overcome pharmacological resistance, showing that modified EVs, containing IL3-Lamp2B
and loaded with Imatinib, are able to specifically target tumor cells in vivo, causing a reduction in
tumor size [65]. Furthermore, we found that modified EVs are able to deliver functional BCR-ABL
siRNA to Imatinib-resistant CML cells. Another group treated SR4987 mesenchymal stromal donor
cells with a low dose of paclitaxel for 24 h. After 48 h culture, the paclitaxel-loaded EVs isolated from
the medium showed anti-proliferative activities against human CFPAC-1 pancreatic cells in vitro [66].
Electroporation of EVs in the presence of doxorubicin was employed to deliver the antitumor agent
to a mouse tumor both in vitro and in vivo [67]. The authors found that electroporation of EVs
were successful in e�cient delivery of doxorubicin. The rationale for the electroporation method is
described in paragraph 3.4 below. Two di↵erent extrusion approaches have been investigated: in the
first, EVs are mixed with the drug of interest and loaded into a syringe-based lipid extruder with
porous membranes [68]; in the second approach, cells undergo serial extrusion through polycarbonate
membrane filters with decreasing pore sizes, yielding vesicles whose size and protein composition
resembles that of EVs; the vesicles are subsequently incubated with the drug of choice [69]. An advantage
of the latter method is the high yield of EVs produced, while the passive drug loading has the
low-e�ciency problem discussed above. Direct drug conjugation to the EV membrane has been
achieved by click chemistry, i.e., copper-catalyzed azide alkyne cycloaddition that forms a triazole
linkage [70]. Thus, conjugation of azide-fluor 545 to EVs chemically modified with alkyne groups was
reported by Smyth et al. [71]. Interestingly, this approach did not result in changes in the size of EVs
nor in the extent of EVs associated with recipient cells, which are potential advantages with respect to
other loading methods.

3.4. siRNA Loading Methods

Delivery of therapeutic siRNA is particularly challenging due to its size, which can obstacle passive
di↵usion, and to its susceptibility to RNAse-mediated degradation. In this regard, the protection
o↵ered by the EV membrane and the capacity to accommodate macromolecules is a big advantage for
EV-mediated siRNA delivery. Electroporation is considered one of the best loading methods for siRNA.
This technique creates small pores in the EV membrane when an electrical field is applied in the presence
of a conductive solution, resulting in the formation of temporary pores in the EV membrane that allows
siRNA present in the solution to penetrate inside the EV. Electroporation leads to superior loading
of siRNA over chemical transfection [72] and has been demonstrated to be successful with in vivo
models [35]. Didiot et al. [73] employed simple co-incubation of siRNAs with EVs. EVs loaded with
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siRNA targeting Htt mRNA mediated a dose-dependent silencing of Htt mRNA and protein in primary
cortical neurons, a cell type di�cult to transfect. El-Andaloussi et al. described a protocol for e�cient
EV-mediated delivery of siRNA in vitro and in vivo that highlights the critical step of the process [74].
Recently, an arrestin domain containing protein 1 [ARRDC1]-mediated microvesicles (ARMMs), a type
of membrane-shed ectosomes discovered in Qian Lu’s lab, were reported to selectively and e�ciently
recruit, package and biologically deliver active siRNAs into recipient cells, thus identifying ARMMs as
a versatile platform for intracellular delivery of macromolecules [75].

3.5. EV Engineering Approaches for E�cient Drug Targeting

One of the challenges of the drug delivery systems is to optimize their targeting properties in
order to release the therapeutic compounds only to a specific area of our body, thus decreasing the
amounts to be administered and avoiding systemic toxicity [4,5].

Increasing evidence demonstrated that EVs possess such advantage since it is possible to engineer
EV-producing cells. Ohno and colleagues [76] transfected the EV donor cell line HEK293 with pDisplay
encoding the transmembrane domain of platelet-derived growth factor receptor fused to a peptide that
specifically binds to EGFR (Epidermal Growth Factor Receptor). The EVs released from the engineered
HEK293 cells were used to e�ciently deliver the let-7a miRNA to EGFR+ breast cancer cells, causing
tumor growth inhibition.

To enhance the display of targeting peptides on EV surface, several groups have developed
engineered vectors containing the gene for a well-characterized protein of the exosomal membrane,
such as the lysosomal-associated membrane protein 2B (Lamp2b), fused with the targeting peptides.
Cells transfected with the engineered vectors released EVs displaying the targeting peptides on their
surface [35,65,77,78]. This approach was first used by Alvarez-Erviti [35] to produce EVs displaying
the neuron-specific RVG peptide on their surface; through this approach, the author demonstrated
the brain-targeting capability of the engineered EVs that delivered stable siRNA after systemic
administration in mice. Wang and colleagues [77] used this system to obtain EVs containing the
anti-fibrotic miR-29 with the rabies viral glycoprotein peptide to increase the vesicle uptake by the
kidney that expresses the acetylcholine receptor.

Through a similar approach, we developed EVs with IL3 on their surface to vehicle the
anti-leukemic drug Imatinib and siRNA to leukemic blasts overexpressing IL3-R [65]. More recently,
Limoni et al. [78] developed engineered EVs to deliver siRNA to HER2+ breast cancer cells.

In addition to engineering EV-producing cells, several groups are working on EV membrane
functionalization techniques. Considering the future clinical application of EVs, these approaches
become very important since they should lead to modifications to already isolated EVs rather than to
changes in the cell of origin.

Recent studies have reported EV functionalization approaches by EV membrane covalent
modification. Ja et al. developed EVs with imaging and therapeutics properties by loading them
with paramagnetic iron oxide nanoparticles and curcumin [79]; the glioma-targeting capability of the
vesicles was increased by adding the neuropilin-1-targeted peptide to the exosome membrane by click
chemistry. Other EV membrane functionalization approaches consist of cationic lipid and pH-sensitive
fusogenic peptide (GALA) conjugation to improve EV cellular uptake and cytosolic release [80].

Recently, Pi and colleagues [81] demonstrated how, through RNA nanotechnology approach,
it is possible to increase the specificity of EVs for target cancer cells. To this aim, they developed
cholesterol-conjugated RNA aptamers harboring a specific targeting domain for cancer cells; these RNA
nanoparticles were conjugated with EVs by incubation at 37 �C. They showed that the EVs conjugated
with RNA nanoparticles harboring EGFR aptamer, loaded with survivin siRNA, were able to inhibit
breast cancer growth in mice.

Although all these approaches for the ex vivo modification of EVs are promising, many aspects
need to be considered in order to ensure the stability and the integrity of EVs during the
functionalization process.
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3.6. Spathasomes and Possibility to Vehicle Therapeutic Materials Directly into the Nucleus

Our knowledge on intracellular routes and the subcellular fate of EV content upon internalization
remains scarce [82]. We have recently described a novel subcellular structure, composed of late
endosomes that penetrate into type II nuclear envelope invaginations (NEI), that shuttles EV-associated
proteins and nucleic acids to the nucleus of host cells [83]. A tripartite protein complex, named VOR,
formed by the ER-localized vesicle-associated membrane protein (VAMP)-associated protein A
(VAP-A), the cytoplasmic oxysterol-binding protein (OSBP)-related protein 3 (ORP3) and late
endosome-associated small GTPase Rab7, orchestrates the entry and retention of EV-containing
late endosomes in NEI and the subsequent nuclear delivery of EV-derived cargo proteins and nucleic
acids [83,84]. Since this double-organelle structure often appears by fluorescence microscopy as
a sword in its scabbard, we named it spathasome from the Greek/Latin words “spathi/spatha” for sword.
The entry of late endosomes into NEI is selective because Rab5+ early endosomes and Golgi apparatus
were excluded and mitochondria seemed to remain at the border or entry of the NEI [83]. On the
cytoplasmic side, we also observed microtubules that allow the movement of late endosomes therein.
Silencing of VAP-A or ORP3 abrogated the association of Rab7+ late endosomes with NEI as well
as the transport of endocytosed EV-derived components to the nucleoplasm of recipient cells [84].
The biological relevance of this novel nuclear structure as an intermediate compartment involved in
nuclear transfer of EV components was further demonstrated by transcriptomic analysis of MSCs
incubated with melanoma-derived EVs in the presence or absence of importazole, a molecule that
specifically inhibits the function of importin �1 by altering its interaction with Ran-GTP, and hence
nuclear import [83]. Although further studies are needed to clarify the relevance of this novel pathway,
we can envision the potential of this mechanism to deliver engineered EVs directly into the nuclear
compartment of host cells, for example transporting in the nucleus of cancer cells chemotherapeutics
that exert their antitumor activity specifically at the nuclear level.

3.7. Route of Administration, Biodistribution and Immunological Aspects of Therapeutic EVs

Besides considering all the aspects discussed above, to employ EVs as drug delivery systems
other aspects concerning the route of administration, the biodistribution of vesicles and their clearance
as well as the immunological response by the host to these EVs must be taken into consideration [85].
In vivo experiments on animal models shed light on the possibility to e�ciently inject EVs via several
routes: subcutaneous, intravenous, intraperitoneal, oral or intranasal. To date, most studies were
performed by injecting EVs intravenously or intraperitoneally to allow vesicles to reach internal organs
distant from the site of injection. The intravenous route was preferred to deliver EV-therapeutic cargoes
in breast and liver tumor xenografts [67,76] and in cardiac injury models [86,87]. The intraperitoneal
administration was described to study the e↵ect of MSC exosomes on an experimental model of
bronchopulmonary dysplasia [88] or to increase the bioavailability of natural substance, such as
curcumin [62]. Intranasal administration of EVs was largely used for brain targeting in order to
cross the blood–brain barrier [89–92]. In 2011, this route was used to deliver exosome-encapsulated
curcumin into the brain [92]. Very recently, Thomi et al. observed that mesenchymal stem cells that
were administered intranasally reduced neuroinflammation in a rat perinatal brain injury model [89].
Although oral administration of EVs might be the most appropriate system, few studies have been
done until now and mainly focused on the oral administration of milk- or plant-EVs [93,94]. The choice
of the route of administration influences the biodistribution of the vesicles that can be monitored
in vivo through the conjugation with lipophilic trackers such as PKH, DiD or DiR and the use of
bioimaging technologies. The distribution kinetics of vesicles is usually analyzed within 48 h of
administration, although in many studies the organs are harvested within 24 h [85]. For example,
the intravenous injection of HEK293T-derived vesicles leads to their accumulation in liver, spleen, lungs
and kidneys [95], while they accumulate in the gastrointestinal tracts and pancreas upon intraperitoneal
administration [96]. Through the same approach it is also possible to determine vesicle clearance,
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a critical topic to consider for the clinical use of the vesicles. Some studies showed that vesicles are
rapidly cleared from the blood circulation after intravenous injection [97,98].

Although one of the advantages of using EVs, instead of synthetic nanoparticles, is their low
immunogenicity, a current limit to their clinical application is due to their immunostimulatory
or immunosuppressive e↵ects, which derive from the complex molecular content of the vesicles;
some studies are therefore focused on optimizing the EV surface to decrease the unwanted reactions [99].
This point is critical for the further clinical application of EVs.

4. Plant-Derived Vesicles

In the past, studies on EVs have mainly focused on vesicles of animal cell origin, but in recent years
there has been an increased interest in vesicles introduced daily with our diet, including milk [63,93,100]
and vegetables [101]. These vesicles have attracted widespread attention for therapeutic applications
because of their lack of toxicity, for the possibility of large-scale production, their intrinsic properties as
well as the possibility to vehicle other compounds, such as drugs or small RNA molecules.

One of the first evidence of the existence of exosome-like vesicles in plants came in 2009 from
Regente and colleagues [102], which observed small vesicles with a diameter of 50–200 nm in sunflower
seeds. Later, many studies focused on a deep characterization of the vesicles and of their bioactive content
to better understand their intrinsic properties and possible biotechnological applications. Zhang’s
group isolated vesicles from many plant species such as grape [103], grapefruit [104], ginger [105],
and broccoli [106], showing that from all these plant species it is possible, by ultracentrifugation, to isolate
vesicles with a specific proteomic, lipidomic and transcriptomic profile. In addition, these edible
plant-derived vesicles were found to have anti-inflammatory properties. Grape exosome-like
nanoparticles (GELNs) were taken up by intestinal stem cells triggering cell proliferation; these vesicles
were also able to protect mice from dextran sulfate sodium (DSS)-induced colitis [103]. Similarly,
grapefruit-derived nanovesicles (GDNs) targeted intestinal macrophages, leading to anti-inflammatory
e↵ects [104].

Recently, our research group isolated vesicles from citrus-limon juice, with sizes and cargo
attributable to exosome-like nanoparticles; we also showed that these vesicles are able to inhibit
tumor cell growth by inducing TRAIL (Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing
Ligand)-mediated cell death without a↵ecting normal cells [107].

The possibility of using edible plant-derived vesicles for the loading of other compounds, of vegetal
or synthetic origin, for therapeutic purposes appears very promising. For example, grapefruit vesicles
loaded with methotrexate and administered to mice with acute colitis had a greater therapeutic index
than methotrexate alone [104]. The same grapefruit vesicles were used for the intranasal administration
of a specific microRNA, miR-17, leading to the reduction of brain tumor growth in mice [108].

Even in the case of plant vesicles, although these represent a promising opportunity in the future
of drug delivery, especially for the possibility of producing them in large quantities and at low cost,
the engineering techniques require improvement.

In Table 1, we have summarized the experimental studies on the use of animal and plant EV for
therapeutic purposes.
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Table 1. Experimental studies on the use of animal and plant EVs for therapeutic purposes.

EV Source EV Loading and
Engineering Approaches Functional E↵ects References

Dendritic cells (DCs)
• Cell transfection
• Electroporation

• DCs were engineered to express the exosomal membrane protein Lamp2b fused with the
neuron-specific RVG peptide; EVs were loaded with exogenous siRNA and their
administration in mice lead to the downregulation of BACE1, a therapeutic target in
Alzheimer’s disease [35].

• RVG-exosomes were loaded with ↵-Synuclein siRNA; their administration in mice lead to
the reduction of protein aggregates [36].

[35,36]

Macrophages

• Cell transfection
• Sonication
• Electroporation

• Intranasal administration of EVs containing catalase ameliorated symptoms in a mouse
model of PD 38.

• Macrophages expressing the glial-derived neurotrophic factor (GDNF) produce EVs
containing the growth factor; treatment of mice with these vesicles slowed the progression
of the disease [35].

• Kim et al. [64] have employed sonication to load macrophage-derived EVs with paclitaxel,
bypassing the P-glycoprotein-mediated e✏ux of paclitaxel and thus overcoming drug
resistance in MDR1+MDCK cells.

• We developed EVs with IL3 on their surface to vehicle the anti-leukemic drug Imatinib and
siRNA to leukemic blasts overexpressing IL3-R [65].

• Limoni et al. [78] developed engineered EVs to deliver siRNA to HER2+ breast cancer cells.

[38,40,64,65,78]

MSCs
• Incubation of EV-producer

cells with the drug
• Paclitaxel-loaded EVs isolated from the medium showed anti-proliferative activities against

human pancreatic cells in vitro [66]. [66]

Red blood cells • Electroporation
• Red cells EVs, electroporated with antisense oligonucleotides directed to miR-125b-2,

or Cas9 mRNA were able to inhibit both in vitro and in vivo leukemia and breast cancer
cells growth [48].

[48]

Plants
• Incubation of plant EVs

with the drug or therapeutic
nucleic acids

• Grapefruit vesicles loaded with methotrexate and administered to mice with acute colitis
had a greater therapeutic index than methotrexate alone [104].

• Grapefruit vesicles were used for the intranasal administration of miR-17 leading to the
reduction of brain tumor growth in mice [108].

[104,108]
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5. Conclusions

The attention of many researchers today is not only aimed at the development of new therapies but
also at improving the e↵ectiveness of those already used in the clinics. For this reason, many studies are
focused on the development of new drug delivery systems that are able (i) to increase the bioavailability
of the therapeutic molecules and (ii) to deliver these directly to the target site.

The discovery that EVs, physiologically released by cells of animal and plant origin, are natural
vehicles of cellular messages that are able to interact with other cells, has increased the interest
of researchers in the field and studies are now aimed at better investigating if they may represent
an opportunity as delivery systems.

Although the results produced so far are encouraging, particularly those with MSC-derived
EVs and represent a promising approach in the field of drug delivery, many challenges remain to
be addressed. In particular, the low-production scale together with the high-production costs due
to the sophisticated technologies required, represent limits to their clinical application. In addition,
the regulatory aspects of the clinical use of EVs have not yet been defined. The great interest of the
community towards the topic is shown by the fact that during the last annual meeting of the International
Society of EVs (ISEV, Barcelona 2018), a special session was held to discuss manufacturing license vs.
market authorization, regulatory aspects of EVs to reach the clinic, and EVs as medicinal product.

In our opinion, the in-depth characterization of isolated vesicles and their content, together
with the standardization of isolation processes, are the most relevant steps required for the clinical
application of these biological shuttles.
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