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Abstract

target genes was also studied.

Background: We aimed to evaluate the phenotype, function, and microRNA (miRNA)17-92 cluster expression in
WWOVE2 T-cell subsets and the correlation with immune response in rheumatoid arthritis (RA) patients.

Methods: Peripheral blood from 10 early RA untreated patients and 10 healthy donors (HD) was obtained.
Polyclonal VWWoV&2 T-cell lines were generated and analysed by flow cytometry. Analysis of miRNA17-92
cluster expression was performed by real-time polymerase chain reaction (RT-PCR), and expression of mRNA

Results: A remarkable change in the distribution of VW9V&2 T-cell functional subsets was observed in the

peripheral blood of RA patients compared with HD, with an expansion of effector subsets and reduction of
naive cells which was accompanied by modifications in proinflammatory cytokine expression. VWWoVo2 T cells
with a Tgm (effector memory) phenotype and producing proinflammatory cytokines were correlated with
disease activity score (DAS28). The comparison of miRNA expression among Vy9V&2 T-cell subsets from RA
patients and HD showed a lower level of miR-106a-5p and miR-20a-5p, and a higher level of miR-21a-5p,
among W9V2 Ty cells, and a lower level of miR-19b-3p among Vy9V2 Ty (central memory) cells was also
found. These differentially expressed miRNAs correlated with higher levels of expression of interleukin (IL)-8,

IL-6, and PDCD4 genes.

Conclusions: Our results provide evidence for a role of miR-106a, miR-19-3p, MiR-20a, and miR-21a in the
regulation of Vy9vd2 T-cell function in RA patients and suggest the possibility that the miRNA17-92 family
and WOV&2 T cells contribute to the pathogenesis of RA.
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Background

MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs)
of around 22 nucleotides in length which play significant
roles in regulating gene expression [1, 2]. The miRNA17—
92 family is a well-known miRNA cluster involved in
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health and disease [3] which has long been considered
only for its oncogenic role, being in fact known as the first
‘oncomir’ [4]. Several studies have demonstrated a role for
this cluster in normal development, immune disease, car-
diovascular disease, and many age-related conditions [4].
The cluster is able to maintain a homeostatic setting
under physiological conditions essential for the control of
inflammatory reactions. Therefore, abnormal expres-
sion of this miRNA has been related to several im-
mune disease such as rheumatoid arthritis (RA), and
altered miRNA production/expression has been in-
volved in RA pathogenesis [5].
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The miRNA17-92 cluster appears as a key factor in
the inflammatory pathways activated during RA in syn-
ovial cells. It has been widely recognized that an abnor-
mal activation of CD4" lymphocytes producing
proinflammatory cytokines (i.e. interleukin (IL)-8, IL-6,
IL-17, and tumour necrosis factor (TNF)-«) has a role in
RA [6-8], but current studies have also shown that y6 T
lymphocytes promote the onset and progression of RA
[9]. RA patients show an imbalance between effector
subsets (T helper (Th)1, Th17, and y8 T cells) and regu-
latory T (Treg) cells which likely determines an alter-
ation of homeostasis and favouring a proinflammatory
environment [10].

miRNA-mediated RNA interference is emerging as a
crucial mechanism in the control of differentiation
and function of several lymphocyte subsets, such as
y8 T cells, but their specific roles remain to be
addressed.

Although the differentiation into various -effector
subsets and functions of T lymphocytes have been ex-
tensively studied, the molecular mechanisms of the
differentiation of T-cell subsets and the acquisition of ef-
fector function are not completely understood.

We were aimed to evaluate phenotype, effector func-
tions, and miRNA17-92 expression in Vy9V82 T cells of
RA patients compared with healthy donors (HD).

Methods

Patients

Heparinized peripheral blood from 10 RA patients (age
40 (range 28-50) years, two female, eight male) and 10
HD (age 43 (27-51) years, three female, seven male) was
obtained for this study. Patients fulfilled the 1987 criteria
of the American College of Rheumatology (ACR) for
RA. All the patients, classified as having an early RA
(ERA; disease duration 1.7 years (range 5 months to
2 years), were disease-modifying anti-rheumatic drug
(DMARD; methotrexate, leflunomide)-naive and had not
received prednisone or equivalent for at least 2 weeks
before blood collection. Eight out of the 10 patients were
anti-citrullinated protein antibody (ACPA)-positive. In-
creased levels of erythrocyte sedimentation rate (30.4 +
15.7 mm/h) and C-reactive protein (0.69 + 1.2 mg/dl)
were also found in all patients. The study was approved
by the Ethical Committee of the University Hospital in
Palermo where the patients were recruited. Informed
consent was signed by all participants.

y6 T cell identification
Peripheral blood mononuclear cells (PBMC) were ob-
tained by density gradient centrifugation using Ficoll-
Hypaque (Pharmacia Biotech, Uppsala, Sweden).

Fc receptor blocking was performed with human
immunoglobulin (Sigma; 3 pg/ml final concentration)
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followed by surface staining with different fluorochrome-
conjugated antibodies to study the phenotype and the
cytokine production by Vy9Va2 T cells.

The following fluorescein isothiocyanate (FITC)-,
phycoerythrin (PE)-, PE-Cy5-, PE-Cy7-, allophycocyanin
(APC)-, and APC-Cy7-conjugated anti-human monoclo-
nal antibodies (mAbs) were used to characterise the
Vy9Ve2 T-cell population: live/dead-FITC, anti-CD45-
APCH7 (clone2D1), anti-CD3-PECy7 (clone SK7),
anti-TCRV&2-PE (clone B6), anti-CD27-APC (clone
MT271), and anti-CD45RA peridinin chlorophyll protein
(PerCP)-Cy5.5 (clone HI100). Expression of surface
markers was determined by flow cytometry on a FACS-
Canto II Flow Cytometer with the use of FlowJo soft-
ware (BD Biosciences).

For the intracellular cytokine assay, PBMC (10°/ml)
were stimulated with ionomycin (Sigma, St. Louis, MO,
USA; 1 pg/ml final concentration) and phorbolmyristate
acetate (PMA; Sigma; 150 ng/ml final concentration).
Cells were cultured in a humidified incubator at 37 °C
with 5% CO, for 6 h in the presence of 5 pg/ml Brefeldin
A (Sigma, St. Louis, MO, USA). Following incubation,
PBMC were harvested, washed in phosphate-buffered sa-
line (PBS) containing 1% fetal calf serum (FCS) and 0.1%
sodium azide, and then stained as follows: live/dead-FITC,
anti-CD45-APCH7 (clone 2D1), anti-CD3-PECy7 (clone
SK7), anti-TCRV&2-PE (clone B6), in incubation buffer
(PBS, 1% FCS, 0.1% sodium azide) for 30 min at 4 °C.

Subsequently, PBMC were washed, fixed, and perme-
abilized (Cytofix/Cytoperm Kit, BD Pharmingen) according
to the manufacturer’s instructions and stained for intracel-
lular cytokines with conjugated anti-IFN-y-APC (clone
25723.11), anti-IL-8-APC (cloneE8N1), and anti-IL-6-APC
(clone MQ2-13A5) mAbs. Isotype-matched control mAbs
were used. All mAbs were obtained from BD (San Jose,
CA, USA) except IL-8 (from Biolegend, San Diego, CA,
USA). Cells were washed, fixed in 1% paraformaldehyde,
and at least 1x10° lymphocytes were acquired using a
FACSCanto II Flow Cytometer (BD Biosciences) after gat-
ing by forward (FSC) and side scatter (SSC) plots. FACS
plots were analysed using FlowJo software (version 6.1.1;
Tree Star, Ashland, OR, USA). Negative controls were ob-
tained by staining PBMC in the absence of any stimulation.
Cut-off values for a positive response were pre-determined
to be in excess of 0.01% responsive cells. Results below this
value were considered negative and set to zero [11]. Values
found using isotype control mAbs were subtracted in all
the samples analysed. The gating strategy used for the
phenotype distribution of Vy9V82 T cells and for the evalu-
ation of the intracellular cytokine content was made start-
ing with the initial lymphocyte gate (SSC vs FSC), followed
by gating on single cells, live/dead cells vs CD45, CD3 vs
VyoVé2 T cells, followed by further surface or intracellular
molecules.
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Generation of y6 T-cell lines

Polyclonal Vy9V&2 T-cell lines were generated by first
enriching PBMC using a yd T-cell isolation kit (Miltenyi
Biotec, Bergisch Gladbach, Germany), followed by sort-
ing single Vy9V82 T cells through a FACSAria I Cell
Sorter (BD Biosciences) with specific mAbs. Sorted cells
at the concentration of 2 x 10* were then cultured into
each well of round-bottomed plates, containing 2 x 10*
irradiated (40 Gy from a caesium source) allogeneic
PBMC, plus zoledronic acid (2 pM) and 200 U/ml re-
combinant IL-2 (Proleukin, Novartis Pharma) [12].
Growing T-cell lines were expanded in 200 U/ml IL-2
and re-stimulated every 3 days. Cells were collected after
2 weeks and sorted according to their phenotype into
four different subsets: naive (T, CD45RATCD27%),
central memory (Tcy; CD45RA™CD27%), effector mem-
ory (Tgas CD45RA™CD277), and terminally differenti-
ated effector memory (Tgpra; CD45RATCD277).

RNA purification and miRNA expression analysis

For analysis of miRNA17-92 among total VyoVé2 T
cells and the different cell subsets, total RNA containing
miRNA was purified using an miRNeasy mini-kit (Qia-
gen). miRNA labelling, hybridization, scanning, and ex-
pression profiling was performed using miRCURY LNA
microarray service (Exiqon).

Real-time polymerase chain reaction (RT-PCR) analysis of
the whole population of Vy9Vé2 T cells

Total RNA was extracted from y8 T-cell lines derived
from RA patients and HD with the miRNeasy Mini Kit
(Qiagen) isolation kit according to the manufacturer’s in-
structions. The quality of RNA was accessed with a Nano-
Drop 1000 Spectrophotometer V3.7 (Thermo Scientific).
The obtained RNA was subsequently used as a template
for cDNA generation. For this purpose, a reverse tran-
scription reaction was performed with miScript II RT Kit
(Qiagen; 300 ng of RNA per reaction) following the manu-
facturer’s protocol. The resulting cDNA was used to con-
duct an RT-PCR reaction with miScript SYBR Green PCR
Kit (Qiagen) applying primers specific for hsa-miR-
21a-5p, hsa-miRNA-hsa-miR-19a-3p, hsa-miR-19b-3p,
hsa-miR-20a-5p, and hsa-miR-106a-5p (commercially
available from QIAGEN) in a Rotor-Gene Q system. The
expression level of RNU6 was used as an endogenous
control.

RT-PCR was also performed to evaluate IL-8, IL-6, and
programmed cell death 4 (PDCD4) mRNA using the com-
mercially available Illustra RNAspin Mini Isolation Kit
(GE Healthcare, Little Chalfont, Buckinghamshire, UK)
according to the manufacturer’s instructions. For quantita-
tive TagMan RT-PCR, master mix and TagMan gene
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expression  assays for GAPDH  (glyceraldehyde
3-phosphate dehydrogenase, Hs99999905_m1) control
and target genes were obtained from Applied Biosystems.
Samples were run in duplicate using the Step-One
Real-Time PCR system (Applied Biosystems, Foster City,
CA, USA). Relative changes in gene expression between
paired patients before and after treatment were deter-
mined using the AAC; method. Levels of the target tran-
script were normalized to a GAPDH endogenous control
constantly expressed in both groups (ACy). For AAC,
values, additional subtractions were performed between
untreated and treated samples AC, values. Final values
were expressed as fold of induction (FOI).

Statistical analysis

miRNA microarray data were analysed by miRCURY LNA
microarray service (Exiqon). Data were normalized using
the non-parametric regression method, LOESS. Unsuper-
vised two-way clustering of miRNAs and samples was per-
formed on log, (Hy3/Hyb5) ratios (with each sample versus
the common reference pool) to produce a heat map. Heat
map expression data were displayed using Gene-E software
developed by Joshua Gould (http://www.broadinstitute.org/
cancer/software/GENE-E). Hierarchical clustering using
one minus Pearson’s correlation was applied to samples
and genes/miRNAs. Global or relative map colours were
applied using the minimum and maximum values in the
data. Network analysis to identify miRNA targets using
gene and miRNA expression data was performed using
MIR@NT@N [13].

Obtained C; values were used to calculate expression
levels of tested miRNAs with the 2**“ method in two
groups, each composed of HD and RA patients. To assess
the statistical significance of observed differences, inde-
pendent student ¢ tests and Mann Whitney tests were per-
formed on all groups and p values *p <0.05, **p<0.01,
and ***p <0.001 were considered as significant, very sig-
nificant, and extremely significant, respectively.

The normal distribution of the data was assessed by a
Shapiro-Wilk normality test. Analysis of variance
(ANOVA) was performed as part of the data analysis, and
these data are reported as a heat map.

Results

Skewed distribution of circulating Vy9Vé2 T cells in RA
patients

Although the mean frequency of peripheral blood
VY9Vo2 T cells was similar in RA patients and HD (Fig.
la), a remarkable change in their phenotype distribution
was observed. Tpyra and Tcy cells were the major
Vy9V2 T-cell subset in the peripheral blood of RA pa-
tients, while Tpave and Tcpy cells were the dominant
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populations in HD; other Vy9Vd2 T-cell subsets were
poorly represented in both patients and controls (Fig.
1b). Moreover, we found a statistically significant de-
crease in T . and an increase in Tgyra cells when RA
patients were compared with HD (Fig. 1b). Most not-
ably, in RA patients the DAS28 activity scores was dir-
ectly correlated with the percentage of VyoVé2 T cells
with a Tgypra phenotype (Fig. 1c) and expressing the
proinflammatory cytokines interferon (IFN)-y, IL-6, and
IL-8 (Fig. 1d).

We then analysed the ability of Vy9V82 T cells to pro-
duce proinflammatory cytokines, such as IFN-y, IL-6,
and IL-8, by intracellular FACS analysis ex vivo and after
short-term in-vitro stimulation with ionomycin and
PMA. The left hand panels in Fig. 2 show the gating
strategy used to select VY9V2 T cells and the sequential
gating on lymphocytes, single live cells, live/dead cells/
CD45" and CD3" cells vs Vy9V62 T cells. Figure 2a and
b show representative intracellular FACS analysis of
Vyovo2 T cells producing IEN-y, IL-6, and IL-8 in one
representative RA patient ex vivo and after ionomycin
and PMA stimulation, while Fig. 2c and d show a repre-
sentative HD ex vivo and after ionomycin and PMA
stimulation.

Figure 2e shows that the percentage of VyoVo2 T-cell
response for the production of total proinflammatory

cytokines (IFN-y, IL-6, and IL-8) in RA patients was
significantly elevated compared with HD. Figure 2f and
g show the cumulative mean percentage of each
cytokine-producing Vy9V&2 T cells in 10 RA patients
and 10 HD ex vivo and after stimulation with ionomycin
and PMA, respectively.

Expression of miRNA17-92 in Vy9Vé2 T-cell subsets
VY9Ve2 T-cell lines were obtained from RA patients
and HD after two weeks of in-vitro culture and were
used either as a total population or were further sorted
into different naive, memory, and effector subsets for
miRNA17-92 expression analysis. Figure 3 shows the
heat map of the miRNA expression profile for five RA
patients and five HD. When comparing the groups
within ‘group’ using a one-way ANOVA, five miRNAs
were found to be differentially expressed using a cut-off
p value < 0.05.

miRNA levels were evaluated as the fold increase or
decrease comparing RA patients with HD in the four
subsets of Vy9V82 T cells, where they displayed different
expression levels: Tgy; cells showed lower levels of
miR-106a-5p and miR-20a-5p and higher level of
miR-21a-5p, while significantly lower levels of miR-19
were found in Tcy and Tepgra cells (Fig. 4a). Figure 4a
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and b show cumulative data from 10 RA patients and 10
HD in the different subsets (Fig. 4a) and in the total
Vy9V82 T-cell population (Fig. 4b), respectively. We did
not find any significant differences in miRNA expression
in the T subset from RA patients and HD. All the
other tested miRNAs did not show any significant
modulation in all the samples studied (data not shown).
The same trend of miRNA expression in selected subsets
was also detected when analysing the total Vy9Vvé2
T-cell population, indicating that the expression of these
miRNAs could represent a specific signature of the
whole Vy9V62 T lymphocyte compartment (Fig. 4b).

To further assess the accuracy of the miRNA signature
of VyoV62 T-cell lines as a determinant to discriminate
between RA patients and HD, receiver operating charac-
teristic (ROC) curves and cross-over plots were pro-
duced. As shown in Fig. 5a, the different miRNAs
distinguish RA patients from HD, with the best accuracy
for miR-106a (area under the curve (AUC) 0.95, p<
0.030, with 91.04% and 93.55% sensitivity and specificity,
respectively).

Correlation of miRNA expression with cytokine and cell
survival gene expression

Several miRNAs play a role in the regulation of cytokine
gene expression and on the regulation of genes that are
involved in cell survival. Therefore, we analysed if the
different miRNA profiles found in patients with RA
could be correlated with the expression of genes in-
volved in the modulation of the immune response.

The comparison of the mRNA levels of the inflamma-
tory cytokines IL-6, IL-8, and PDCD4 gene between RA
patients and HD showed statistical significance in terms
of fold increase in RA patients (Fig. 6a). Since IL-17
plays a (controversial) role in the pathogenesis of RA
[14], we also evaluated IL-17 mRNA levels among yd T
cells, but we found that IL-17 mRNA levels were un-
detectable in y§ T cells from RA patients and HD (data
not shown). Therefore, and considering the important
role of miR-106a, miR-19a-3p, and miR-20a-5pin target-
ing IL-8 and IL-6 genes and the well-known
over-expression of IL-6 and IL-8 in RA synovial tissue,
we correlated the expression of IL-6, IL-8, and PDCD4
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mRNA with these miRNAs and also with miR-19b-3p
and miR-21a-5p that were found to be statistically sig-
nificant in RA patients. Lower levels of miR-106a ex-
pression correlated with high levels of IL-8 mRNA in
RA patients compared with controls (Fig. 6b), and lower
levels of miR-19a-3p correlated with high levels of ex-
pression of IL-6 mRNA. An inverse correlation between
the expression of miR-21a and the anti-apoptotic gene
PDCD4 was also found in RA patients compared with
HD (Fig. 6b). We did not find any significant correlation
of the above cytokines and PDCD4 gene expression
when comparing miR-19b-3p and miR-20a-5p (data not
shown). Overall, these data highlight the role of miRNA
in patients with RA in the production of inflammatory
cytokines, and on the ability of VyoVd2 T cells to sur-
vive and display a potentially pathological role.

Discussion

The role of miRNA17-92 has been evaluated in different
human immune cells such as B, T, and natural killer
(NK) lymphocytes, macrophages, and dendritic cells, but
its role in yd T cells is not well understood. The aim of
the present study was to investigate the different expres-
sion of members of the miRNA17-92 family among
VyoVd2 T-cell subsets from healthy donors and patients
with RA [15]. We found lower levels of miR-106a,

miR-19a, miR-19b, and miR-20a expression, and a
higher level of miR-21a expression in RA patients com-
pared with HD, either in the different subsets or in the
total Y0 T-cell population.

VyoV82 T-cell subsets are characterized by distinct
migratory routes and display different functional proper-
ties depending on the microenvironment due to their
high plasticity [16—18].

The role of Vy9V82 T cells has been investigated
under physiological and pathological conditions such as
infections, autoimmunity, or cancer. Therefore, we
aimed to evaluate the role of the miRNA17-92 cluster
on Vy9Va&2 T-cell functions in RA patients to uncover a
biosignature of disease. The analysis of the phenotypic
distribution and functional properties of y§ T cells
showed remarkable changes in RA patients. In fact,
Temra and Ty cells were the predominant Vyova2
T-cell subsets in the peripheral blood of RA patients and
these cells represented a relevant source of proinflam-
matory cytokines.

The comparison between the levels of proinflamma-
tory cytokines and Vy9V&2 T cells with the Tgygra
phenotype correlated with the severity of the disease.

Different miRNA17-92 levels were expressed both in
the total population and in the different subsets of the
Vy9V2 T-cell population.
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Five out of 19 miRNAs displayed a large magnitude of
change in RA patients. Therefore, to evaluate if the ex-
pression levels of these miRNAs could be considered as
biomarkers of disease, we studied the accuracy by ROC
curve analysis. The results demonstrated that the best
performance was found for miR-106a, followed by
miR-20a, miR-19a, miR-19b, and miR-21a.

Therefore, we correlated the IL-8 mRNA expression
with miR-106, and IL6 mRNA levels with miR-19a levels
to find direct evidence of the modulation of these two
proinflammatory cytokines and their role in the contri-
bution to inflammation and joint damage. Accordingly,
lower levels of miR-19 in our RA patients correlated
with the increase in IL-6, and this was in agreement with
a previous study showing that treatment with IL-6 but
not with TNF-a led to down-regulation of miRNA19 ex-
pression [19]. In-vitro studies have demonstrated that
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IL-8 is a direct target of miR-106a, and an miR-106a in-
hibitor increases its production [20]. In the absence of
miR-106a, fibroblast-like synoviocytes (FLS) from RA
patients produce more IL-6 and IL-8, which contribute
to inflammation and joint damage.

We have found that the lower levels of miR-106a,
miR-20a, and miR-19 were accompanied by higher levels
of miR-21a in RA patients.

We have found an inverse correlation of miR-21a
levels with PDCD4 mRNA levels. The elevated levels
of miR-21 could induce T-cell proliferation by nega-
tively regulating PDCD4 gene expression [21], as ob-
served in our RA patients, by causing the sustained
production of proinflammatory cytokines by cells that
upregulate the PDCD4 gene, which is correlated with
a high survival rate. Since aberrant expression of
miR-21 is related to increased susceptibility to
immune-inflammatory disorders, an adequate expres-
sion of miR-21 might be critical for regulating normal
immune responses. Evidence is now accumulating to
support the therapeutic potential of miR-21 in
autoimmune disorders.

Finally, the wupregulation of miR-21 could be
sustained by the contextual downregulation of
miR-20a that could contribute to the lack of an
anti-inflammatory property [22].

It has been demonstrated that higher levels of
miR-21a occurs in all types of solid tumours, and
additional studies showed elevated miR-21 expression
also in leukaemias [23]. Interestingly, high levels of
miR-21 may not only characterise cancer cells but
also represent a common feature of cell stress as
demonstrated by Xu et al. on the correlation between
inflammation and cancer [24].

We do not know if the reduced expression of
miR-20a could contribute to the lack of anti-inflam-
matory responses. miR-20a represses ASK1, a member
of the kinase family that is activated in response to
several stress signals, including lipopolysaccharide
(LPS) or TNF-a. Activated ASK1, in turn, generates
the production of reactive oxygen species (ROS) by a
NADPH oxidase 4 (Nox4)-dependent mechanism, and
consequently by decreasing the capacity of FLS to se-
crete IL-6 or matrix metalloproteinase (MMP)-3 [25].

Therefore, the decrease or increase in the tested
miRNAs could impact at different stages of RA, with
the production of proinflammatory cytokines and the
maintenance of cells due to their high survival rate

because of the negative regulation of PDCD4
altogether contributing to inflammation in RA
patients.

It has been demonstrated that overexpression of
miR-20a in human naive CD4" T-helper cells inhibits
TCR-mediated signalling and CD69 expression, and
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determines the decrease in production of cytokines
such as IL-6 and IL-8 [22]. Therefore, we speculate
that miR-20a could also be implicated in the control
of proinflammatory cytokine production by y§ T

Conclusions
Our results provide evidence for a role of miR-106a,
miR-19a-b, miR-20a, and miR-21a in the regulation of
Vy9Vo2 T-cell functions in RA patients and suggest the
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Fig. 6 Expression of interleukin IL-6, IL-8, and programmed cell death 4 (PDCD4) mRNA by Vy9Vo2 T cells in rheumatoid arthritis (RA) patients
and healthy donors (HD). a Comparison of IL-6, IL-8, and PDCD4 mRNA expression in Vy9V&2 T cells between HD (black column) and RA patients
(grey column). *p < 0.05, **p < 0.01, ***p < 0.001. b Correlation between miRNA expression and IL-6, IL-8 and PDCD4 mRNA expression
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could be involved and contribute to the pathogenesis of
RA. This study has the limitation of a low number of pa-
tients studied, and hence the role of y8 T cells should be
investigated in a larger cohort of patients, including ana-
lysis of y§ T cells at the site of disease. Moreover, add-
itional miRNA silencing experimental approaches are
needed to prove the role of these miRNAs in the regula-
tion of Vy9Vvo2 T cells [26].
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