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 Finding the locations of departments or machines in a workspace is classified as a Facility Layout 
Problem. Good placement of departments has a relevant influence on manufacturing costs, work 
in process, lead times and production efficiency. This paper analyses the problem of allocating 
departments with restrictions in terms of unequal area and rectangular shape within a facility, in 
order to minimize the sum of material handling costs taking into account the satisfaction of the 
aspect ratio requested. In particular, we propose for the first time a Firefly Algorithm based on 
the slicing structure encoding. The proposed method was tested comparing the results obtained 
from other authors on the same literature instance. The results confirm the effectiveness of the 
Firefly Algorithm in solving the Facility Layout Problem by generating the best solutions with 
respect to those provided by previous researches. 
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1. Introduction 

Facility layout problems (FLPs) deal with finding the locations of departments in a given area in order 
to minimize the sum of material handling costs. In Unequal Area FLPs (UA-FLPs) each department has 
a different length and width and the departments should be totally placed in the given layout area without 
overlapping. Layout problems are known to be complex and are generally NP-Hard (Garey & Johnson, 
1979) and as a consequence, a tremendous amount of research has been carried out in this area during 
the last decades. In particular, several heuristic and meta-heuristic algorithms have been developed in 
order to find optimal solutions in a reasonable computational time. Researchers have developed different 
meta-heuristics methodologies such as Firefly Algorithm (Tavakkoli-Moghaddam et al., 2015; Sonmez 
& Baray, 2013), Simulated Annealing (Şahin et al., 2010), Tabu Search (McKendall & Jaramillo, 
2006;  Scholz et al., 2009), Genetic Algorithm (Palomo-Romero et al., 2017; Aiello et al., 2013), 
Harmony search (Chang & Ku, 2013; Kang &Chae, 2017) and Ant Colony (Komarudin & Wong, 
2010;  Ulutas & Kulturel-Konak, 2012). Although abundant literature for solving the FLP by using the 
above-mentioned solution methodologies exists, to the best of our knowledge, the Firefly Algorithm (FA) 
based upon the slicing structure encoding is not implemented on unequal area FLPs. The FA is one of 
the newly introduced non-traditional optimization techniques (Yang, 2010). This algorithm allows us to 
obtain optimal solutions and it is adequate to solve hard combinatorial optimization problems. In 
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particular, the FA is a population-based optimization approach which aims at finding the optimum value 
of the given objective function. The population consists of a certain number of fireflies, each one is 
typified by its light intensity, which represents one solution of the objective function. To obtain the 
optimal solution, the fireflies should move in the direction of the most attractive ones and the new 
position is calculated based on the different light intensity. In most articles about layout problems, the 
main objective is to minimize a function related to the total material handling cost, however, to be more 
realistic, we have also considered more than a single aspect. This article presents a Firefly Algorithm to 
minimize the sum of the material handling costs maintaining the satisfaction of the department’s aspect 
ratio requested. There are two main formulations for unequal area facility layout problems: the Flexible 
Bay Structure (FBS) and the more recent slicing tree representation. In the FBS formulation (Tate & 
Smith, 1995; Konak et al., 2006), the assignment of departments generates columns or bays with different 
widths and number of departments. The width of a bay is automatically corrected according to the number 
of departments contained. The main advantage of the FBS is that the bays can be easily transformed in 
aisles helping designers to convert the model into a real facility. However, the FBS divides the floor only 
in one direction (vertically or horizontally). The slicing structure represents an alternative layout 
fractionation (Tam, 1992) in which an initial rectangular is divided either in horizontal or vertical 
direction and the procedure is recursively applied to the submatrices generated until the whole area is 
fully represented by rows or columns (Scholz et al., 2010; Aiello et al., 2012). In this paper, in order to 
explore a wider space of solutions, we propose to solve the facility layout problem by using a Firefly 
algorithm encoded by a slicing structure. The remainder of this article is organized as follows. The slicing 
structure and the firefly optimization procedure is formulated in Section 2. Section 3 provides an 
explanation of the computational models that are used in our proposed method by means of a numerical 
example. In Section 4, the methodology is discussed and the obtained results are analysed through a 
benchmarking procedure and a performance analysis. Finally, concluding remarks and future works are 
presented in Section 5. 

2. Slicing layout generation and firefly optimization procedures 
 
2.1 Random layout generation 
 
The proposed FA is based on the referenced slicing structure, where a solution is represented by an n x 
m matrix E, called location matrix, which contains information about the relative locations of the 
departments on the floor. In our representation, in order to obtain a uniform encoding scheme, only 
quadratic matrices (n = m) are considered. Consequently, given N departments, the rank (r) of the 
corresponding location matrix is determined as the ceiling function of the square root of N:  

ݎ = ඃ√ܰඇ. (1) 
 

The number of elements in the matrix is thus greater or equal to the number of departments. In this case, 
Dummy departments (D= r2- N) with the null area are introduced. These Dummy departments have null 
material fluxes from/to other departments and are indexed as zero. The demonstration steps of the 
generation of the random layouts based on the slicing structure are reported below using an illustrative 
example of 20 departments. 

The first step of the proposed optimization procedure consists in randomly generating an initial vector 
 corresponding to the first firefly. This firefly contains a set of random numbers equal to the 

sum of the departments and the dummy departments  (j = D+N) belonging to the range [0-1].  
This procedure is reported in the following example, in which there are 20 departments and 5 dummy 
facilities. 

 

 1,1 1,... jA a a

A 0.259 0.142 0.276 0.226 0.107 0.282 0.154 0.166 0.663 0.702 0.474 0.433 0.771 0.370 0.832 0.744 0.777 0.755 0.321 0.319 0.522 0.825 0.534 0.877 0.351 



G. La Scalia et al.  / International Journal of Industrial Engineering Computations 10 (2019) 3  

When r2 >N, the dummy departments D are assigned to the smaller values of the string and they are 
substituted by 0 values in the same position. 

 
The second step consists in the creation of a vector  in which the random numbers other than 
zero of the A vector are ordered (k=20). 

 

The third step substitutes at each element b1,k of the vector B, a number in the range between 1 to 20 and 
these numbers are inserted in a vector ܥ = (ܿଵ,ଵ …	ܿ௜,௞) (k=20) in which their position corresponds to the 
ones reported in the main vector A, excluding the dummy departments from this procedure: 

 
The fourth step generates a vector 

 
(j=25) obtained from the A vector, in which, except the 

0 values, each random value is substituted by the value c1,k.  

 

In the fifth step, the D vector is reshaped in a quadratic matrix E= ൭
ଵ݁ଵ ⋯ ݁ଵ௥
⋮ ⋮ ⋮
݁௥ଵ … ݁௥௥

൱

  
where r is the rank of the E matrix (r=5). 

In this matrix, the slicing structure is applied and the corresponding layout is generated. 

 

 

 

Fig. 1. Location matrix, slicing structure and the corresponding layout 

The proposed algorithm generates random values 0 or 1 where 0 indicates a sequence of horizontal–
vertical cuts, whereas 1 a sequence of vertical-horizontal cuts. Considering every possible alternative for 
the decomposition, the maximum number of cuts in which the matrix can be divided, is calculated by the 
equation reported in Aiello et al., (2012).  

In the sixth step, the objective function can be calculated in terms of Material Handling Cost (MHC) and 
a control on the Aspect Ratio Satisfaction (ARS) is effectuated (section 2.3). Layouts are considered 
feasible only if the condition ∏ܴܵܣ ≠ 0 is reached. 

 0.259 0 0.276 0 0 0.282 0 0 0.663 0.702 0.474 0.433 0.771 0.370 0.832 0.744 0.777 0.755 0.321 0.319 0.522 0.825 0.534 0.877 0.351A

 1,1 1,... kB b b

 0.259 0.276 0.283 0.319 0.321 0.352 0.370 0.433 0.474 0.522 0.534 0.663 0.702 0.744 0.755 0.772 0.777 0.825 0.832 0.877B 

 1 2 3 15 14 20 9 7 6 16 18 4 5 11 13 8 12 17 10 19C 

 1,1 1,... jD d d

 1 0 2 0 0 3 0 0 15 14 20 9 7 6 16 18 4 5 11 13 8 12 17 10 19D 

1 0 2 0 0
3 0 0 15 14
20 9 7 6 16
18 4 5 11 13
8 12 17 10 19

E

 
 
 
 
 
 
 
 

1 2 

3 9 15 14 

20 7 6 16 

4 11 13 

18 12 5 10 19 

8 17 
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The whole procedure starts from 2,000 iterations and it is reiterated until a population of at least ten 
feasible solutions is obtained. Each feasible layout represents a firefly and the optimization procedure is 
reported in the section below. Moreover, the software memorizes the sequence of the cuts used to 
generate the layouts. 

2.2. Firefly optimization procedure 

In the FA, the variation of the light intensity and attractiveness are main concerns. This attractiveness is 
determined by brightness, which is associated to the objective function. After generating an initial 
number of fireflies or solutions of the problem, the light intensity of firefly is updated. Assuming the 
absorption coefficient γ, the light intensity of firefly varies depending on the square of the distance d, 
as in the following equation:  

ܮ = ଴݁ିఊௗܮ
మ , (2) 

where L0 denotes the light intensity of the source. The attractiveness of fireflies is proportional to their 
light intensity L. Thus, Eq. (3) is given, in order to describe the attractiveness. 

ߚ = ଴݁ିఊௗߚ
మ , (3) 

where β0 is the attractiveness at d = 0.  The distance between any two fireflies pi and pj is taken as the 
Euclidean distance. Considering each firefly as a sequence of D+N departments, the distance between 
two fireflies can be formulated as follows:  

݀௜௝ = ฮ݌௜ − ௝ฮ݌ = ඩ෍൫݌௜,௞ − ௝,௞൯݌
ଶ

஽ାே

௞ୀଵ

. 

 

(4) 

The i-th firefly is attracted by another brighter firefly j. The movement of the firefly from one position 
to another is expressed by the following equation:  
 
௜௡௘௪݌ = ௜௢௟ௗ݌ + ௝݌൫ߚ − ௜௢௟ௗ൯݌ +  (5)   ߝߙ

 
in which 0.2=ߙ and ߝ is a random number in the range [0,1]. The parameter γ has a crucial effect on the 
convergence speed of the algorithm. The value of this parameter depends on the problem which needs 
optimization. Typically, its value ranges from 0.1 to 10 (Yang, 2010). The FA is controlled by three 
parameters: the randomization parameter, the attractiveness, and the absorption coefficient. By adjusting 
these parameters, we can obtain good results from an optimization problem. The flowchart of the FA is 
shown in Fig. 2.  
 
In the first step the vectors corresponding to the feasible layouts (fireflies) are sorted on 

the basis of the
 
objective function and afterwards the matrix F = ൭

ܽଵଵ ⋯ ܽଵ௝
⋮ ⋮ ⋮
ܽ௭ଵ … ܽ௭௝

൱ is built, in which for 

the example considered j=25 and z as the number of feasible layouts. The first line corresponds to the 
firefly with the minimum material handling cost and it is considered as a “Firefly Queen” (FQ) of the 
initial population. 
In the second step the distance of each firefly from the best (FQ) is calculated using Eq. (4). 
In the third step the position of fireflies is updated by putting the distance and the intensity values in Eq. 
(5). 

 1,1 1,... jA a a
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In the fourth step the software creates a matrix G= ൭
ܽଵଵ ⋯ ܽଵ௝
⋮ ⋮ ⋮
௭ଵ݌ … ௭௝݌

൱  

 
which memorizes the new values obtained by applying Eq. (5). In order to maintain the FQ, the first line 
of the G matrix is calculated using ߝ = 0	and the same cut sequence of the first population.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Flow chart of FA optimization procedure 

 

 

1 - Index and sort the 
feasible population 

	

2 – Determine the distance of 
each firefly from the “queen” 
	

3 – Update the firefly position 
on the basis of pinew 

	

4 – Create G (firefly updated) 
matrix obtained applying 

equation 5 
	

5 - Calculate the objective 
function for each line of G and 

the corresponding ARS 
	

6 – Calculate the I matrix in 
which the lines are sorted on 

the basis of the objective 
function 

	

Stop 
condition End 

YES	NO	
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The fifth step computes the objective function for each line of the G matrix and the corresponding ARS.  

Finally, in the sixth step a matrix I= ቌ
݅ଵଵ ⋯ ݅ଵ௝
⋮ ⋮ ⋮
݅ଶ௭ଵ … ݅ଶ௭௝

ቍ sorted on the basis of the objective function, is 

created. The first line represents the new FQ that can or cannot coincide with the old one.  
The software memorizes the sequence of the cuts and the procedure is repeated from step 2 until the stop 
condition (maximum number of iteration) is reached. 
 
2.3 Objective function 
 
In the proposed approach, the objective function (FO) is the minimization of the material handling cost: 

(ܱܨ)	݊݅ܯ = ෍෍൫ ௜݂௝ܿ௜௝൯݀௜௝
௝௜

, (6) 

where fij is the material flow between the departments i and j, cij is the unit cost (the cost to move one 
unit load one distance from department i to department j) and dij is the distance between the centres of 
departments using the Manhattan distance. For each department, a specific aspect ratio is required, for 
instance in order to optimize the location of the machines inside. Let h and w be the two dimensions of 
the rectangle, the aspect ratio of the department j is defined as: 
 

௝ߛ =
,൛ℎ௝ݔܽ݉ ௝ൟݓ
݉݅݊൛ℎ௝, ௝ൟݓ

	. 
(7) 

 

The degree of the aspect ratio satisfaction linearly decreases from an optimal to a minimum value if it is 
included in a given range, otherwise it drastically drops to zero (unfeasible layout). The simplest shape 
of such score function is given in (Aiello et al., 2006) where the upper limit was modified according to 
the instance of Armur and Buffa (1963) in which the maximum value of the range is 4. Moreover, in our 
approach a specific aspect ratio function could be associated to each department in order to consider the 
real industrial cases in which the aspect ratio requested could not be the same for all the departments, 
due to their different uses. 
 
3. Numerical example 
 
In this section the solution of unequal area FLPs is given following the layout solution representation and 
the layout arrangement procedure described in section 2. In order to validate the proposed algorithm, we 
consider the instance from Armour and Buffa (1963) to undertake experiments and comparisons. The 
authors give a specification of the problem set, departmental areas, product flows between departments 
and material handling costs respectively in tables 1, 2 ,3 and 4.  
 
Table 1  
Specification of the problem set 

Problem name Floor space dimension Department requirements Data reference 

AB20 30.0 x 20.0 ARS max=4 Armour and Buffa, 1963 

 

Table 2  
Department areas 

Department 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Areas 27 18 27 18 18 18 9 9 9 24 60 42 18 24 27 75 64 41 27 45 
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Table 3  
Product flows between departments 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 0 120 80 0 0 0 0 0 0 40 80 0 0 80 0 0 0 0 0 0 
2 120 0 80 1,630 30 0 930 0 80 90 0 0 0 0 0 0 0 0 460 0 
3 80 80 0 0 0 130 0 0 210 260 0 0 0 870 0 0 0 0 910 0 
4 0 1,630 0 0 60 380 500 0 130 0 0 70 0 0 0 0 0 100 1,050 0 
5 0 30 0 60 0 0 150 90 0 60 0 0 0 0 90 0 0 0 0 0 
6 0 0 130 380 0 0 410 0 0 0 0 30 0 0 0 0 0 70 0 0 
7 0 930 0 500 150 410 0 1,600 0 110 0 0 0 60 0 0 0 110 0 250 
8 0 0 0 0 90 0 1,600 0 0 0 0 0 40 0 0 0 0 0 500 2,230 
9 0 80 210 130 0 0 0 0 0 0 0 0 0 500 0 0 500 0 0 0 

10 40 90 260 0 60 0 110 0 0 0 30 800 0 1,240 160 0 0 0 350 0 
11 80 0 0 0 0 0 0 0 0 30 0 150 0 200 80 1,500 350 90 0 0 
12 0 0 0 70 0 30 0 0 0 800 150 0 0 0 110 0 1,000 0 560 0 
13 0 0 0 0 0 0 0 40 0 0 0 0 0 500 40 500 0 40 0 0 
14 80 0 870 0 0 0 60 0 500 1,240 200 0 500 0 650 0 0 60 0 0 
15 0 0 0 0 90 0 0 0 0 160 80 110 40 650 0 0 350 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 1,500 0 500 0 0 0 1,000 0 0 0 
17 0 0 0 0 0 0 0 0 500 0 350 1,000 0 0 350 1,000 0 0 500 0 
18 0 0 0 100 0 70 110 0 0 0 90 0 0 60 0 0 0 0 320 0 
19 0 460 910 1,050 0 0 0 500 0 350 0 560 0 0 0 0 500 320 0 0 
20 0 0 0 0 0 0 250 2,230 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
 

Table 4  
Material handling costs 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 0 0.015 0.015 0 0 0 0 0 0 0.026 0.014 0 0 0.015 0 0 0 0 0 0 
2 0.015 0 0.012 0.015 0.026 0 0.015 0 0.015 0.015 0 0 0 0 0 0 0 0 0.015 0 
3 0.015 0.012 0 0 0 0.017 0 0 0.015 0.015 0 0 0 0.015 0 0 0 0 0.015 0 
4 0 0.015 0 0 0.018 0.015 0.015 0 0.018 0 0 0.020 0 0 0 0 0 0.015 0.015 0 
5 0 0.026 0 0.018 0 0 0.015 0.015 0 0.026 0 0 0 0 0.015 0 0 0 0 0 
6 0 0 0.017 0.015 0 0 0.015 0 0 0 0 0.015 0 0 0 0 0 0.015 0 0 
7 0 0.015 0 0.015 0.015 0.015 0 0.015 0 0.017 0 0 0 0.016 0 0 0 0.015 0 0.015 
8 0 0 0 0 0.015 0 0.015 0 0 0 0 0 0.015 0 0 0 0 0 0.015 0.015 
9 0 0.015 0.015 0.018 0 0 0 0 0 0 0 0 0 0.015 0 0 0.015 0 0 0 

10 0.026 0.015 0.015 0 0.026 0 0.017 0 0 0 0.012 0.015 0 0.015 0.012 0 0 0 0.015 0 
11 0.014 0 0 0 0 0 0 0 0 0.012 0 0.015 0 0.015 0.012 0.015 0 0 0.015 0 
12 0 0 0 0.020 0 0.015 0 0 0 0.015 0.015 0 0 0 0.015 0 0.015 0 0.015 0 
13 0 0 0  0 0 0 0 0.015 0 0 0 0 0 0.016 0.026 0.012 0 0 0 0 
14 0.015 0 0.015 0 0 0 0.016 0 0.015 0.015 0.015 0 0.016 0 0.015 0 0 0.015 0 0 
15 0 0 0 0 0.015 0 0 0 0 0.012 0.012 0.015 0.026 0.015 0 0 0.015 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0.012 0 0 0 0.012 0 0 0 
17 0 0 0 0 0 0 0 0 0.015 0 0 0.015 0 0 0.015 0.012 0 0 0.015 0 
18 0 0 0 0.015 0 0.015 0.015 0 0 0 0 0 0 0.015 0 0 0 0 0.015 0 
19 0 0.015 0.015 0.015 0 0 0 0.015 0 0.015 0.015 0.015 0 0 0 0 0.015 0.015 0 0 
20 0 0 0 0 0 0 0.015 0.015 0 0 0 0 0 0 0 0 0 0 0 0 
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The algorithm is coded using Matlab software and simulations were conducted on an INTEL Core i7 (3.2 
GHz) workstation with 16 Gb RAM. Table 5 shows the obtained non- dominated (Pareto) solutions in 
terms of objective function and ARS calculated as the mean value of the ARS of each department.  
 
Table 5  
Summary of the best solutions obtained 

B vector Material Handling cost ARS 

20-1-6-5-8-7-18-11-4-2-3-19-10-14-9-17-12-16-15-13 3228.89 0.7662 

11-20-6-18-16-17-9-5-15-8-7-1-2-4-13-12-19-14-3-10 3391.90 0.8821 

11-16-17-20-6-18-9-5-15-8-7-1-2-12-4-13-19-3-14-10 3410.62 0.8861 

11-16-17-20-18-6-9-8-7-5-14-15-13-3-1-4-10-2-12-19 3525.49 0.9294 

 

The block layouts of the optimal solutions generated by means of the proposed algorithm are reported in 
the figures below (Fig. 3). The layout reported to the left shows the position of the departments, whereas 
the one on the right highlights the ASR of each department. A scale of grey was used to differentiate the 
value of the aspect ratio. In particular, the lighter is the grey scale the nearest is the aspect ratio to the 
optimal value (ARS=1.5).  
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Fig. 3. Block layouts corresponding to the optimal solutions obtained 
 
4. Benchmarking procedure and performance analysis 
 
To evaluate the performance of the proposed approach, the results obtained were compared to the results 
achieved in the previous studies. In particular, three different approaches are used for the comparison: 
metaheuristic, mathematical programming and hybrid approaches (Kang & Chae, 2017). The overall 
comparison between the best solution obtained in this research and the best-known best solution provided 
by the previous studies are reported in table 6. It shows that the present approach is quite robust in terms 
of solution quality: it determined the best-known solution in terms of reduction of material handling cost 
maintaining a good degree of aspect ratio satisfaction. In particular, the comparison has been made in 
terms of a percentage reduction of the material handling cost obtained in Armour and Buffa (1963). 
 
Table 6  
Comparison of results in terms of reduction of Material handling Cost 

Problem 
name 

Sholz et 
al., 2009 

Komarundin 
&Wong 2010 

Kulturen 
Konak 
&Konak 
2011 

Gongalves 
& Resende 
2015 

Chang& 
Ku 2013 

Kang& 
Chae 2017 

FA 
approach 

AB20 -33.54% -36.75% -32.12% -36.13% -34.47% -36.92% -58.93% 

 
The proposed algorithm outperforms the previous best solution reported in figure 4 (Kang& Chae, 2017). 
Moreover, calculating the ARS for the layout obtained by Kang & Chae (2017) it is possible to notice 
that the proposed approach allows to obtain a layout with the best aspect ratio (0.76). Using the figure 
reported by the authors, the ARS of the layout has been calculated with the function adopted in this 
approach and its value is approximately 0.70. 
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Fig. 4. Best layout obtained by Kang and Chae (2017) 
 
Additionally, the evolution of Pareto-front obtained by taking into account the objective function and the 
aspect ratio has been determined. In particular, the non-dominated layout (i.e. the Pareto front) has been 
extracted in five different phases of the evolution procedure (namely 1000, 1500, 2000, 2500, 3000 
iterations) as reported in figure 5. The results show that in the initial steps of the evolution, the Pareto 
fronts are very close and they could even overlap with each other. As the population evolves, however, 
better solutions are generated and the frontier moves to the upper right corner, in a more evident manner.  

 

 
 

Fig. 5. Evolution progress of the Pareto front 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.00023 0.00025 0.00027 0.00029 0.00031 0.00033

AS
PE

CT
 R

AT
IO

 S
AT

IS
FA

TI
ON

1/Material Handlig Cost

Evolution of the Pareto Frontier

1000

1500

2000

2500

3000



G. La Scalia et al.  / International Journal of Industrial Engineering Computations 10 (2019) 11

5. Conclusions 
 
The UA-FLP is a NP-hard optimization problem, which still involves designers and researchers in finding 
efficient and feasible solutions as the recent literature confirms. The development of innovative solution 
procedure is nowadays frequently considered in order to improve the effectiveness of the traditional 
approaches. This study has been conducted to propose an advanced method based on the firefly algorithm 
to solve the plant layout problems encountered in the industrial context. The problem is perceived in 
association with its multi-dimensional aspects, taking into account both material handling costs and 
department shapes. The benefits of the proposed method have emerged in the comparison with referenced 
results. Computational results show, in fact, that the proposed algorithm is robust because it determines 
the best-known solution to the problem set presented. Further improvements of the proposed 
methodology will include the comparison of the results obtained using more instances and the analysis 
of the effects of different parameters of the FA on the final solution for measuring the performance of 
the proposed approach on UA-FLPs. Moreover, the development of a methodology to treat the decision 
process considering the uncertainty related to the material flows between departments could be 
investigated using the fuzzy theory. 
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