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Abstract—Nowadays, interactive multimedia systems are part of
everyday life. The most common way to interact and control
these devices is through remote controls or some sort of touch
panel. In recent years, due to the introduction of reliable low-cost
Kinect-like sensing technology, more and more attention has been
dedicated to touchless interfaces. A Kinect-like devices can be
positioned on top of a multimedia system, detect a person in front
of the system and process skeletal data, optionally with RGBd
data, to determine user gestures. The gestures of the person can
then be used to control, for example, a media device. Even though
there is a lot of interest in this area, currently, no consumer system
is using this type of interaction probably due to the inherent
difficulties in processing raw data coming from Kinect cameras
to detect the user intentions. In this work, we considered the
use of neural networks using as input only the Kinect skeletal
data for the task of user intention classification. We compared
different deep networks and analyzed their outputs.

Keywords–Multimedia system interaction; gesture recognition;
neural networks.

I. INTRODUCTION
In 2010, when Microsoft introduced Kinect, this new

device was intended to change the way people play games and
how they experience entertainment. However, the potential of
the device was immediately clear and applications in different
fields leveraging the sensing technology of Kinect have been
explored. This is what Microsoft called the ”Kinect Effect” [1].
From the early days of introduction to current days several
scientific papers reported possible applications in disparate
fields. For example in 2011, in [2], a study on the potential
of Kinect in education was published. The author states that
the use of Kinect can create unprecedented opportunity to
enhance classroom interaction, to improve teachers ability to
present and manipulate multimedia and multimodal materials
and much more.

Interactive media control using gesture was also imme-
diately perceived as a viable application. In [3], the authors
propose probably the first system using a Kinect to interact
with multimedia content. They defined gestures to activate
controls on a media device and used the depth image to detect
and track the hand and gestures. Gestures were defined in terms
of distance variances along the 3D axes.

Multimedia presentation systems using a gesture based
interface could also be used as information provision systems.
In [4], the authors developed a platform to develop interactive
systems based on depth image streams and demonstrated its
potential in a museum application. The importance of touchless

gestural systems has been deeply stressed also in [5] where the
authors report a case study on an information provision system
in a University campus using Kinect-like devices.

In addition to media and entertainment, these sensors can
also be used in very specific professional fields. For example,
another interesting use of gestural interaction has been recently
introduced in [6] where the authors reported the use of Kinect
and gesture recognition to give interactive presentations in a
more effective manner compared to a traditional pointer, mouse
or keyboard. In other cases, touchless interaction is mandatory
as the user cannot touch any device for different reasons. For
example in [7], gesture recognition and Kinect have been used
for touchless visualization of hepatic anatomical models in
surgery.

However, while it is rather easy to collect a significant
amount of sensors observations, the great challenge is to
properly recognize meaningful patterns in the raw data that
can be ascribed to user actions and intentions [8] [9]. Only
in simple cases skeletal data or RGBd is sufficient to detect
actions with little processing. In many cases quite complex pro-
cessing is needed to detect user intentions. Machine learning
approaches are then exploited to process gestural data. These
approaches rely on definition, extraction and analysis of the
features most useful to detect the human intention. For example
in [10], a simple gesture recognition system based on Kinect
skeletal data is proposed. Based on joints information a low-
dimensional feature is defined and used for action classification
with a support vector machine. The authors claim they can
discriminate between 10 different basic actions using 3 seconds
sequences at 30fps.

The variable time duration of a gesture performed by
different users can also pose significant difficulties. In [11] to
cope with different duration of the actions without explicitly
use dynamic time warping techniques the authors proposed to
model action as the output of a sequence of atomic Linear
Time-Invariant (LTI) systems. The sequence of LTI systems
generating the action is modeled as a Markov chain, where a
Hidden Markov Model (HMM) is used to model the transition
from one atomic LTI system to another. LTI systems are
modeled in terms of Hankel matrices.

To cope with this increasing complexity and to discriminate
between several actions across different users The use of
neural networks has recently been explored. For example in
[7] the authors use a deep convolutional neural network to
recognize various hand gesture. In particular they used a deep
network architecture consisting of two convolutional layer,
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each followed by pooling, and three fully connected layers.
The input of the network is a 32x32 segmented and filtered
depth image coming from Kinect. The final output is the
gesture detected.

Among the existing gestures recognition modules it is also
possible to mention the works in [12]-[13]. Some of them
suggest heuristics of processing according to specific situations
[14] or for identification of the viewed person [15]. Many
other techniques for skeleton based action recognition have
been proposed in recent years and their description is out of
the scope of this paper. The interested reader can refer to [16]
for a complete survey.

In this paper we adopted neural networks to process sensed
3D position of human skeleton joints to recognize some ges-
tures that a person can perform to interact with a multimedia
system. The neural network can be trained offline and, once
trained, it processes only the 3D position of joints leading to
very fast processing. The joints position were extracted with a
Microsoft Kinect v2. RGBd image stream was not processed.

The paper is organized as follows: in Section II, we briefly
introduce two popular architectures of neural networks and
their advantages with respect to conventional machine learning
approaches. In Section III, we describe the proposed action
recognition approach and the pre-processing operations we
performed on the sensed data. Some experimental results, com-
paring our approach with different network architectures and
pre-processing strategies are reported in Section IV. Finally,
Section V contains some conclusions and a discussion on
future directions of the work.

II. NEURAL NETWORKS FOR TOUCHLESS
MULTIMEDIA SYSTEMS INTERACTION

The conventional machine learning techniques have shown
a set of drawbacks in the processing of raw data from Kinect-
like sensors. The pattern recognition approaches, typically,
require careful engineering and domain expertise to design
feature extraction transforming data in discriminant and sig-
nificant feature vectors [17].

On the other hand, deep-learning methods usually em-
ploy a set of non-linear modules that automatically extract
a set of features from the input data and transfer them to
the next module [17]. The weights of the layers involved
in data processing are learned directly from data, enabling
the discovery of intricate structures in high-dimensional data,
regardless of their domain (science, business, etc.). Assuming
that an adequate amount of training data is available, very
complex functions can be learned combining these modules:
the resulting networks are often very sensitive to minute details
and insensitive to large irrelevant variations.

A. MLP Multilayer Perceptron
A Multi-Layer Perceptron (MLP) is a feedforward network

that maps sets of input data onto a set of appropriate outputs;
it consists of at least three layers - an input layer, a hidden
layer, and an output layer - of fully connected nodes in a
directed graph. Except for the input nodes, each node is a
neuron (or processing element) with a nonlinear activation
function - usually a sigmoid, or the hyperbolic tangent, chosen
to model the bioelectrical behaviour of biological neurons
in a natural brain. Learning occurs through backpropagation

algorithm that modifies connections weights to minimize the
difference between the actual network output and the expected
result on training data.

B. LSTM
Long Short Term Memory networks (LSTM) have been

designed by Hochreiter and Schmidhuber [18]. The key feature
of LSTMs is the “cell state” that is propagated from a cell to
another. State modifications are regulated by three structures
called gates, composed out of a sigmoid neural net layer and
a pointwise multiplication operation.

The first gate, called “forget gate layer”, considers both
the input xt and the output from the previous step ht−1, and
returns values between 0 and 1, describing how much of each
component of the old cell state Ct−1 should be left unaltered:
if the output is 0, no modification is made; if the output is
one, the component is completely replaced.

New information to be stored in the state is processed
afterward. The second sigmoid layer, called the input gate
layer, decides which values will be updated. Next, a tanh
layer creates a vector of new candidate values, C̃t, that could
be added to the state.

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

To perform a state update, Ct−1 is first multiplied by the
output of the forget gate ft, and the result is added to the
pointwise multiplication of the input gate output it and C̃t.

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Finally, the output ht can be generated. First, a sigmoid
is applied, taking into account both ht−1 and xt; its output
is then multiplied by a constrained version of Ct, so that we
only send to output the parts we are interested in.

III. ACTION DETECTION THROUGH
CLASSIFICATION

To interact with a multimedia system, we assumed that the
user performs an action and our system detect and classify the
action that is mapped to some functions of the system. The set
of actions that we want to detect and classify are the following
Hello with the right hand, Hello with the left hand, Stop with
the right hand, Stop with the left hand, Come Here with the
left hand, Come Here with the right hand, Pass right hand,
Pass left hand. At runtime, Kinect continuously acquire data
and the classification system should detect actions triggering
the corresponding function on the multimedia system The data
acquired from Kinect consists of an RGBd dense image stream
and a sequence of joint 3D positions. In our approach, we do
not use RGBd stream. Nevertheless, we have to pre-process
in some way, both spatially and temporally, the sequence of
joint positions to let the neural networks coherently process
the data.
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Kinect estimates the 3D position of 25 joints however
not all of them are necessary to recognize simple actions
and unnecessary joints information can introduce noise in the
system. The joints that have been selected as significant for
the problem at hand are the following:

• Left Hand

• Left Wrist

• Left Elbow

• Left Shoulder

• Right Shoulder

• Right Elbow

• Right Wrist

• Right Hand

• Lower Spine

• Middle Spine

• Neck

• Head

Two examples of the acquisition of depth image and
skeleton points are shown in Figure 1. On the left, there
is the segmented silhouette while on the right are plot the
corresponding points. Kinect cameras can acquire data up to
30 fps but, since we consider that human actions useful to
control a multimedia system are quite slow and we don’t need
a very dense classification of the actions being performed,
we down-sampled the data to 2 Hz. Experiments confirmed
that this frequency is adequate to capture human actions. We
need also to define the duration of the time window to use to
capture information and associate the label. In fact, to increase
robustness and reduce false positive we consider an action as a
sequence of joint positions and not as a single instant snapshot.
The simplest, and in many cases adequate, approach consists
of defining a fixed time window that contains the development
of a typical action. This size is a matter of experience and it
depends on the data and on the task. In our case, we considered
multiple duration of the time window containing the action and
run several experiments on our dataset to understand how to
make a reasonable choice. The data in the time window is then
used to analyze the occurring action.

To cope with the temporal nature of the problem a sliding
window approach has been adopted. As time goes on a new
sample is added to the sequence of samples to be classified
and the oldest is discarded.

To implement the neural network architectures and perform
the tests, we used Keras library [19]. Keras is a high-level
Python neural networks library, capable of running on top of
two of the most important libraries for numerical computation
used for deep learning: TensorFlow [20] and Theano [21]. The
use of higher level libraries, like Keras, allows developers and
data scientists to rapidly produce and test prototypes, while
relaying most implementation details to the chosen lower level
library.

Details on the neural networks implementation and testing
are given in the next section.

(a) Depth Capture for Hello (b) Skeleton for Hello

(c) Depth Capture for Stop (d) Skeleton for Stop

Figure 1. Example of acquisition of poses with depth image and the
extracted skeleton position

(a) Sample 1 (hello) (b) Sample 2 (hello)

(c) Sample 1 (wide) (d) Sample 2 (wide)

Figure 2. Plot of x,y coordinated of Left Hand while repeating the action
Hello

IV. EXPERIMENTAL RESULTS

The dataset we used to demonstrate our approach is com-
posed by a set of action samples. Each action sample is a
matrix representing a single gesture made by a person. These
samples were generated from CSV files created with Kinect for
Windows SDK 2.0, containing 3D coordinates of the selected
skeletal joint listed in previous section (a total of 12 · 3 = 36
columns).

The number of rows depends on the time interval used
for recording. The CSV files were later imported in a Python
script to down sample to 2 Hz and segment time window of
different duration containing the actions. We also normalized
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the values in [-1, 1], because we are more interested in the
differences between the frames and not the absolute value of
the joints position. Some examples of the recordings are shown
in Figure 2. The left plot is referred to a person, while on the
right the plot is referred to a second person.

The experiments were conducted using different learning
architecture. Different network topologies have been used
during the training phase to evaluate whether the training
process is stable with respect to different training settings. The
dataset has been divided in two parts. Four fifths have been
used for the training set while the remaining one fifth has been
used as test set.

The results reported have been obtained restarting the
training multiple times and varying the value of the batch size
and averaging the obtained results. Restarting the training is
equivalent to use multiple nets and compare their results after
the training. Varying the batch size the number of samples
that are processed before upgrading the weights of the net
is changed. A larger value of the batch size can reduce the
noise in the gradient descendent algorithm, that is the base of
the backpropagation algorithm and converges quickly towards
the minimum. On the other hand, a lower value of the batch
size tends to generate a larger noise in the gradient descent
algorithm and can help to escape from local minima.

The classification performance is evaluated comparing the
label of the sample in the ground truth and the label chosen by
the neural network. The value of the True Positive (TP) counts
the number of samples that have been correctly classified. False
Positive (FP) is the number of times a wrong label has been
assigned to a sample. False Negative (FN) is the number of
samples that have not been correctly classified. The values of
True Negative (TN) is referred to the wrong labels that have
not been assigned to a sample. For these experiments it has
always been set to zero. The accuracy is then defined as:

Acc =
TP + TN

TP + TN + FP + FN

Precision and recall are instead defined as:

Prec =
TP

TP + FP
Rec =

TP

TP + FN

The harmonic mean of precision and recall is called F1-
score:

F1 = 2× Prec×Rec

Prec+Rec

The F1 metric can be calculated with different modalities.
A modality is “micro” calculate the metric globally by count-
ing the total true positives, false negatives and false positives.
A “macro” modality calculates the metric for each label, and
find their unweighted mean. This does not take label imbalance
into account. The last is “weighted”: the metric is calculated
for each label, and find their average, weighted by support (the
number of true instances for each label). This last modality
takes into account the label imbalance; it can result in an F-
score that is not between precision and recall.

Once defined the performance metrics, we ran several
experiments to understand the behaviour of two neural network
architecture, MLP and LSTM, on the problem at hand. The
first experiment involved an MLP network. Figure 3 shows the

values of precision, recall, accuracy and F1 parameters varying
the number of hidden layers in the network. The performance
does not have an increasing tendency with the number of
layers. An increased number of layers does not imply a better
performance. It seems that a reduced number of layers provides
a better performance. A reason for this trend could be related to
the relatively small number of examples used for the training.
The values of accuracy, precision and recall are quite similar
for two, three or four layers. The precision drops for four
layers. Furthermore, the weighted F1 shows a better value
for two layers. Changing the duration of the time window
used to represent each action did not affected significantly the
performance of the network.

A comparison between the MLP and a network with Long
Short Term Memory has been carried on. A first LSTM
network with two layers has been created with a layer of
one hundred units and a full connected layer with nine out
units. A second net with three layers has been tested adding an
intermediate LSTM layer with forty units. A further network
with four layers, formed adding a layer with seventy units
between the first and the second layers has also been tested.
The three networks correspond in the horizontal axis to the
values 2, 3 and 4.

In the case of LSTM networks, we noticed a significant
variation of performance depending on the duration of the
time window used to represent the actions. Figure 4 shows
the performance for network trained with samples having a
time span equal to 2.5 sec. The values are very high both for
precision and recall. The averaged value of F1 confirms this
trend. Increasing the time span of the samples to be classified
performance degraded abruptly. The result for samples with a
time span of 5 secs are shown in Figure 5. In this case the
results are clearly worse than in the previous case. The best
F1 measure is 0.49 when the number of layers is equal to 2.
An increased number of layers does not help the performance
and in some case, both precision and recall are very low.
Considering a larger time span (7.5 sec) results are slightly
better (see Figure 6). A higher number of layers helps to
increase the performance although the obtained results are still
worse than the case when a shorter time span to represent
actions is used.

According to our experiments, the best solution consists of
considering a time span of 2.5 sec and an LSTM network. The
LSTM network showed the best performance also with a not
too deep network obtaining a F1 score of 0.904. Although an
increased number of layers provides a better result probably
the architecture with only two layers is already adequate for
home and consumer practical applications of gesture controlled
multimedia systems.

V. CONCLUSIONS
A pre-processing scheme and a few deep neural architec-

tures have been tested for the detection of a set of simple
actions to be used in multimedia systems control and inter-
action. Based on the experiments on an internal dataset both
deep neural networks performed well. Most of the samples
obtained from the Kinect camera were correctly classified.
However, the experiments showed that the LSTM network,
even with a very small number of layers, performs better than
the considered MLP network. Moreover, the results in terms
of accuracy suggest that this simple approach can be usefully
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(a) Precision (b) Recall (c) Accuracy (d) F1 weighted

Figure 3. Comparison of the performances of MLP net vs the number of network layers

(a) Precision (b) Recall (c) Accuracy (d) F1 weighted

Figure 4. Comparison of the performances vs number layers of LSTM network with time frame 2.5 sec

(a) Precision (b) Recall (c) Accuracy (d) F1 weighted

Figure 5. Comparison of the performances vs number layers of LSTM network with time frame 5.0 sec

(a) Precision (b) Recall (c) Accuracy (d) F1 weighted

Figure 6. Comparison of the performances vs number layers of LSTM network with time frame 7.5 sec

adopted to interpret user intention and control a multimedia
system.

In the future, we plan to extend our experiments to more
challenging datasets and compare the results obtained process-
ing Kinect sensed skeleton data with results obtained with
approaches based on standard RGB cameras. In fact, even
tough results with Kinect-like cameras are very promising, it
is still not clear if similar performance can be obtained with
traditional cameras.

A study on the set of actions a user is more likely to learn
and perform (without embarrassment) to control the system
and the best mapping of these actions to functions of the
system is also on the way.
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