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Simple Summary: Copy number variations (CNVs) are important sources of variation in 

mammalian species. In this study, we used a single nucleotide polymorphisms (SNP) array to detect 

CNVs in Braque Français, type Pyrénées dogs (BRA). Results overlapped moderately in comparison 

with previous studies on CNVs in dogs, leading to the identification of 16 novel CNVRs. Several 

genes were annotated in the CNV regions (CNVRs) detected, some of which related to muscle 

structure development. This breed is known to be excellent upland game birds dogs. The selection 

for such hunting behavior could have driven the presence of these genes into the CNVRs. Copy 

number variations may be of interest to study associations between genomic and phenotypic 

variation. 

Abstract: Copy number variants (CNVs) are an important source of genetic variation 

complementary to single nucleotide polymorphisms (SNPs). Only few studies have been conducted 

in dogs on CNVs derived from high-density SNP array data, and many canine breeds still remain 

uncharacterized, e.g., the Braque Français, type Pyrénées breed (BRA). Therefore, in an effort to 

more comprehensively investigate the canine genome for CNVs, we used a high-density SNP array 

(170 K) to discover CNVs in BRA. The CNV regions (CNVRs) were identified through the merging 

of two different CNVRs datasets, obtained separately from SNP data using the PennCNV and SVS 

software. A total of 45 stringent CNVRs, ranging from 3.5 kb to 458,716 kb in length were detected 

in 26 dog samples. Results overlapped moderately in comparison with previous studies on CNVs 

in dogs, leading to the identification of 16 novel CNVRs. A total of 159 genes were annotated in the 

CNVRs detected with stringent quality criteria in particular high classification stringency and false 

discovery rate correction. The gene ontology enrichment analysis provided information on 

biological processes and cellular components related to muscle structure development and muscle 

cell differentiation. Considering that BRA is a breed used for speed in hunting and retrieval, for the 

ability to find feathered game, and for pointing, we can hypothesize that selection for such hunting 

behavior could have driven, at least in part, the presence of these genes into the CNVRs. 

Keywords: copy number variation (CNV), canine high-density SNP array; Braque Français type 

Pyrénées dogs  
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1. Introduction 

The domestication of modern dogs started approximately 15,000 years ago [1] and has resulted 

in an extraordinary amount of variation in canine forms and functions, through the creation of 

divergent breeds. Dogs, with their great biological diversity, are very suitable model animals to 

address studies of population genetics, phenotypic variation and diseases, many of which are similar 

to human diseases [2]. With the completion of the assembly of the canine genome, high-throughput 

sequencing and genotyping technologies offered a great potential to increase our understanding of 

the genomic basis of canid variation. Single nucleotide polymorphism (SNP) data have been used to 

investigate patterns of genetic variation within and between breeds, examine relatedness among 

breeds, and identify selection signatures [3]. In addition to SNPs, there are other components of the 

canine genomic variation, such as copy number variations (CNVs). These are important sources of 

genetic and phenotypic variation in mammalian species. Copy number variations have been 

identified in the human genome [4] and in the genomes of several livestock species, e.g., cattle [5,6], 

sheep [7], and pigs [8]. A number of studies have been conducted also in dogs [2,9–11], and some 

have shown the usefulness of the CanineHD array in CNV detection [12]. However, several canine 

breeds still remain uncharacterized, since their CNV distribution in the genome has not yet been 

analyzed, as for example the Braque Français, type Pyrénées breed (BRA). Individuals of BRA are a 

smart, agile, and friendly dogs originally developed for tracking, hunting, and retrieving feathered 

game. Very little is known with certainty about the origin of BRA, as this breed was developed before 

written records of dog breeding began to be kept [13,14]. This breed is known to be excellent upland 

game bird dogs which are especially skilled at hunting woodcocks (Figure 1). In an effort to more 

comprehensively investigate the canine genome for CNVs, we used a high-density SNP array (170 K) 

to detect known and novel CNVs in Braque Français, type Pyrénées dogs. 

 

Figure 1. Example of Braque Français, type Pyrénées breed. 

2. Materials and Methods  

2.1. Sampling and Genotyping 

Blood samples were collected from 48 individuals (27 females, 21 males). Genotyping was 

performed with the Illumina CanineHD BeadChip. The genomic positions of the SNPs on the 

chromosomes were obtained from the CanFam3.1 genome sequence assembly. After excluding SNPs 

which were unmapped or mapped to sex chromosomes, a total of 167,183 markers were used. The 

samples were provided by “ENCI” (Ente Nazionale Cinofilia Italiana), the institution that officially 

manages data for all dog breeds registered in Italy. Therefore, no ethical approval was required. 

2.2. CNV and CNVR Detection 
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Copy number variations were detected from High Density SNP data using the algorithms 

implemented by PennCNV and in the Copy Number Analysis Module (CNAM) of the SVS 8.7.0 

software (Golden Helix, Bozeman, MT, USA). These algorithms have been developed for CNV 

analysis from SNP array data [6,15,16]. The PennCNV incorporates multiple factors, including the 

log R ratio (LRR), B Allele Frequency (BAF), the marker distance, and the population frequency of 

the B allele (PFB). The LRR and BAF values for each SNP were obtained with the GenomeStudio 2.0 

software (Illumina Inc., San Diego, CA, USA). The PFB file was calculated with PennCNV based on 

the BAF value for each marker in each individual. PennCNV integrates a computational approach by 

applying a regression model to the GC content to reduce waviness. Copy number variations were 

also detected using the Hidden Marckov Model parameter file. The quality of the final dataset was 

assessed with the criteria: a logR ratio standard deviation (LRR_SD) < 0.30, BAF drift < 0.01, and 

waviness factor (WF value) >0.05 or <−0.05 for each sample. To reduce the possible false CNV calls, 

we also considered only those CNVs that contained three or more consecutive SNPs. The Copy 

Number Analysis Module (CNAM) implemented in the SVS 8.7.0 software was also used for CNVs 

identification. The following options in CNAM were chosen: univariate outlier removal; maximum 

number of 100 segments per 10,000 markers; minimum markers per segment 3; 2000 permutations 

per pair with a p value cutoff of 0.005. Individuals that had −0.05 > WF > 0.05 were also excluded”. 

For more details on the quality criteria used to detect CNVs with the two algorithms, see Di Gerlando 

et al. [6]. Copy number variation regions (CNVRs) were determined by aggregating the overlapping 

CNVs identified across all samples [4]. Overlapping regions were calculated using BEDTools [17] and 

considering only those presented in at least two samples. The CNVRs obtained from both PennCNV 

and SVS were determined by intersecting the datasets and inferring the overlapping CNVRs using 

the approach described by Wain et al. [18], which identifies CNVRs that fully overlap. 

2.3. Gene Contents and Functional Annotation 

The gene content of CNVRs was assessed based on CanFam 3.1 in the Genome Data Viewer 

genome browser from the US National Center for Biotechnology Information (NCBI) database 

(https://www.ncbi.nlm.nih.gov/genome/gdv/browser/?context=genome&acc=GCF_000002285.3). 

The g:GOSt tool from g:Profiler (https://biit.cs.ut.ee/gprofiler/index.cgi) was used for Gene Ontology 

(GO), while pathway analysis was based on the Kyoto Encyclopedia of Gene and Genomes (KEGG) 

database of annotations. Results were corrected for multiple testing using g:False Discovery Rate 

(https://biit.cs.ut.ee/gprofiler/gost).  

3. Results and Discussion 

3.1. CNV and CNVR Detection 

After stringent quality filters, genome-wide CNV analysis was conducted on the remaining 26 

BRA samples. In this way we filtered out most of the potentially noisy data that would have reduced 

the reliability of the called CNVs [19]. However, the final number of BRA samples was higher 

compared with the number used in a previous study of CNV discovery in several dog breeds [12]. 

Using PennCNV, a total of 1047 CNVs (Supplementary Materials Table S1: CNVs_Penn, Figure 2) 

were detected, with an average length of 107.123 kb and average number of 40.3 CNVs per sample. 

The CNAM univariate segmentation of SVS identified 1638 (Supplementary Table S1: CNVs_SVS, 

Figure 2) with an average length of 110.41 kb and the average number of 63 CNVs per sample. The 

frequency of CNVs in the population for PennCNV ranged from 0.96 × 10−3 and 0.015, and for CNAM-

SVS ranged from 0.61× 10−3 and 0.013. The ratio between duplications and deletions was of 1:4 and 

1:136 for PennCNV and CNAM-SVS, respectively. By aggregating the overlapping CNVs from 

PennCNV, a total of 181 CNVRs (Supplementary Materials Table S1: CNVRs_Penn) were identified. 

The total autosomal CNVRs coverage was 15.75 Mb, which corresponds to 0.7% of the canine 

autosomal genome. The CNVs identified with SVS were aggregated into 280 CNVRs (Supplementary 

Table S1: CNVR_SVS), covering 24.11 Mb, which corresponds to 1.1% of the canine autosomal 
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genome. The differences in the numbers of CNVs and CNVRs detected by the two algorithms were 

probably attributable to the identification of longer CNVs with the univariate SVS approach [19]. 

Intersecting the two CNVR datasets (from PennCNV and SVS software) a total of 45 CNVRs 

(Supplementary Materials Table S1: CNVR_Penn_vs_SVS), distributed on the 38 autosomes, were 

obtained. The CNVRs from PennCNV that did not fully overlap with SVS results were excluded, and 

vice versa. This strategy, where the final list of stringent CNVRs was obtained from both algorithms, 

has been recommended previously in order to reduce the false discovery rate [20]. Among the 

stringent CNVRs, 42 CNVRs were defined as deletions, and only three as loss/gain, meaning that 

both deletions and duplications were observed. The length of these CNVRs ranged from 3.5 kb to 

458.716 kb with an average size of 87.92 kb. In particular, 49% CNVRs were smaller than 50 kb, 18% 

were in the range of 50–100 kb, and 33% were larger than 100 kb. Different values were reported by 

Molin et al. [12] who, by using the CanineHD array in 26 dog breeds, found the highest CNVRs 

proportion (64%) in the size-range 100 kb–1 Mb. 

 

Figure 2. Genomic distribution of copy number variations (CNVs) in Braque Français, type Pyrénées 

breed. The points in black showed the CNVs identified with PennCNV, whereas in red are reported 

the CNV identified with Copy Number Analysis Module-SVS. 

3.2. Comparison with Published CNVRs 

For a correct interpretation, our results were compared with canine CNVRs from the available 

literature. To this end, we converted the 45 CNVRs’ map positions to the previous version of canine 

genome (CamFam 2.0). When comparing CNVRs in BRA to the previously identified CNVRs in dogs, 

we found almost 64% (29/45) of overlapping regions (Table 1 and Figure 3). The highest number of 

overlapping CNVRs (27/45) was found in the study of Axelsson et al. [21], in which CNV detection 

was performed using whole-genome re-sequencing. Only one CNVR, CNVR36 on chromosome 27, 

was detected in all previous considered studies [10–12,21]. Five CNVRs overlapped with those 

reported by Nicholas et al. [10]. Our results revealed 16 novel CNVRs: since the present study had 

been conducted on a dog breed never analyzed for CNVs previously, the possibility of identifying 

new and breed-specific CNVRs was high. The presence of breed-specific CNVRs have been also 

described in other studies on dogs [11,12]. These single-breed CNVRs are of particular interest if they 
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are fixed or with an increased frequency in the breed, since they could be involved in breed specific 

characteristics [12]. Unfortunately, in our study, as well as in other previous works [11,12], no fixed 

single breed CNVRs were detected, and therefore these are most often not involved in breed specific 

characteristics. However, considering the numerous examples on the involvement of CNVs in 

shaping the phenotype in dogs [22], these results emphasize the necessity to discover novel CNVs in 

uncharacterized breeds. This is especially true for the canine species, where the study of CNV has 

received less attention compared to livestock species [5–8]. 

Table 1. List of copy number variation regions (CNVRs) detected in this study that overlapped with 

those reported in the literature. The symbol * shows the overlapping between studies. 

CNVRs Chromosomes 
Start Position 

(bp) 

End Position 

(bp) 

Nicholas et al. 

(2011) 

Berglund et al. 

(2012)  

Axelsson et al. 

(2013)  

Molin et al. 

(2014)  

1 chr1 11,200,412 11,215,077   *  

4 chr4 33,991,898 34,067,769   *  

5 chr6 39,482,383 39,941,098   *  

6 chr6 40,137,436 40,261,501   *  

9 chr7 790,325 836,217   *  

10 chr7 846,445 871,741   *  

12 chr9 615,993 795,784   *  

13 chr9 660,066 909,141   *  

14 chr9 916,372 997,748   *  

17 chr10 16,943,758 1,705,5639   *  

18 chr10 17,172,641 1,728,4700   *  

20 chr10 18,100,399 18,220,792 *  *  

25 chr14 853,721 1,000,647   *  

26 chr15 8,373,335 8,384,052   *  

27 chr16 383,954 442,252   *  

28 chr17 749,155 818,590   *  

29 chr17 39,880,141 3,990,5486   *  

30 chr18 25,644,344 25,740,090   *  

32 chr23 52,156,177 5,215,9756 *  *  

33 chr25 48,611,803 48,662,322   *  

34 chr25 50,314,369 50,482,865   *  

35 chr27 2,869,179 2,886,074   *  

36 chr27 25,695,551 2,581,0881 * * * * 

37 chr28 40,299,547 40,325,378   *  

38 chr28 40,715,077 40,730,141   *  

40 chr30 39,280,736 39,318,243   *  

42 chr36 13,722,385 13,742,102 *    

43 chr37 30,065,232 30,112,232   *  

44 chr38 4,831,886 4,885,582 *       

 

Figure 3. Comparison between identified CNVs in this and other studies. 

3.3. CNVR Gene Content and Functional Annotations  
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From our final list, 37 CNVRs overlap with 159 annotated genes (Supplementary Materials Table 

S1: Genes). Some of these genes are associated with well-known phenotypes in dogs. The Sox8 gene, 

such as the Sox8 gene, which is involved in sex determination [23]. The SLC38A2 gene has been 

described to be potentially involved in hypoxia adaptation, from a study on high-altitude adaptation 

in Tibetan mastiffs [24]. The MYOG gene is an important myogenic regulatory factor necessary for 

myocyte differentiation and the development of functional skeletal muscle [25,26]. In a dog study on 

chronic exposure to stress, Luo et al. [27] indicated that the ADORA gene might be important in 

explaining the stress-tolerance variation. Kyoto Encyclopedia of Gene and Genomes (KEGG) 

annotations showed that endocrine resistance, Notch signaling pathway, and the Wnt signal pathway 

were significantly enriched. The detected genes encompass a wide spectrum of biological processes 

and cellular components. The most significant biological processes were muscle structure 

development (GO:0061061), muscle cell differentiation (GO:0042692), and striated muscle cell 

differentiation (GO:0051146). The significant cellular component was filamentous actin (GO:0031941). 

These are interesting results considering that BRA is a dog breed used for tracking, hunting, pointing 

and retrieving feathered game [14]. These are strong dogs, adequately muscled but without 

heaviness. We can hypothesize that selection for such hunting behavior, for which particular 

anatomical features are required, could have shaped, at least in part, the genetic background of this 

breed and, consequently, the frequency/presence of the detected CNVRs in these genes. 

4. Conclusions 

At present, limited knowledge is available on CNVs detected from HD array in dogs. This is the 

first CNV study in the Braque Français, type Pyrénées dog breed. The use of the CanineHD SNP array 

data and of two different algorithms for the identification of CNVs makes our results very robust and 

with low probability of false positives. Our results emphasize the necessity to discover novel CNVs 

in uncharacterized breeds. Additionally, as high density SNP array data are becoming increasingly 

available, CNVs combined with SNPs may be of interest to study associations between genomic and 

phenotypic variation. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Table S1: List of CNVs, 

CNVRs and annotated genes identified in Braque Français, type Pyrénées dog. CNVs and CNVRs identified 

with PennCNV software (CNVs_Penn and CNVRs_Penn, respectively), CNVs and CNVRs identified with SVS 

software (CNVs_SVS and CNVRs_SVS, respectively), common CNVRs obtained from PennCNV and CNAM-

SVS (CNVR_Penn_vs_SVS), and Genes identified in CNVRs (Genes). 
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