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Trust is a critical issue in human–robot interactions: as robotic systems gain

complexity, it becomes crucial for them to be able to blend into our society by

maximizing their acceptability and reliability. Various studies have examined

how trust is attributed by people to robots, but fewer have investigated the

opposite scenario, where a robot is the trustor and a human is the trustee.

The ability for an agent to evaluate the trustworthiness of its sources of infor-

mation is particularly useful in joint task situations where people and robots

must collaborate to reach shared goals. We propose an artificial cognitive archi-

tecture based on the developmental robotics paradigm that can estimate the

trustworthiness of its human interactors for the purpose of decision making.

This is accomplished using Theory of Mind (ToM), the psychological ability

to assign to others beliefs and intentions that can differ from one’s owns. Our

work is focused on a humanoid robot cognitive architecture that integrates a

probabilistic ToM and trust model supported by an episodic memory system.

We tested our architecture on an established developmental psychological

experiment, achieving the same results obtained by children, thus demonstrat-

ing a new method to enhance the quality of human and robot collaborations.

This article is part of the theme issue ‘From social brains to social robots:

applying neurocognitive insights to human–robot interaction’.
1. Introduction
The technological revolution taking place in the fields of robotics and artificial intel-

ligence seems to indicate a future shift in our human-centred social paradigm

towards a greater inclusion of artificial cognitive agents in our everyday environ-

ments. This means that collaborative scenarios between humans and robots will

become more frequent and will have a deeper impact on everyday life. In this setting,

research regarding trust in human–robot interactions (HRI) assumes a major impor-

tance in order to ensure the highest quality of the interaction itself, as trust directly

affects the willingness of people to accept information produced by a robot and to

cooperate with it. Many studies have already explored trust that humans give to

robots and how this can be enhanced by tuning both the design and the behaviour

of the machine, but not so much research has focused on the opposite scenario, that is

the trust that artificial agents can assign to people. Despite this, the latter is a critical

factor in joint tasks where humans and robots depend on each other’s effort to

achieve a shared goal: whereas a robot can fail, so can a person. For an artificial

agent to know when to trust or distrust somebody and adapt its plans to this

prediction can make all the difference in the success or failure of the task.

Our work is centred on the design and development of an artificial cognitive

architecture for a humanoid autonomous robot that incorporates trust, theory of

mind (ToM) and episodic memory, as we believe these are the three key factors
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for the purpose of estimating the trustworthiness of others. We

have tested our architecture on an established developmental

psychology experiment [1] and the results we obtained confirm

that our approach successfully models trust mechanisms and

dynamics in cognitive robots.

2. Previous work
Trust is a fundamental, unavoidable component of social inter-

actions that can be defined as the willingness of a party (the

trustor) to rely on the actions of another party (the trustee),

with the former having no control over the latter [2]. Moreover,

to trust somebody to accomplish a specific task is to believe that

he or she is reliable and committed towards the task. At the same

time, distrust is not the mere the absence of trust but, instead, the

belief that the other party is committed and at the same time non-

reliable [3]. Trust is involved in every sort of social interaction

and is a key factor in the achievement of successful relationships,

in our personal safety [4] and in team cooperation [5].

The development of trust during childhood is still under

debate by developmental psychologists. Erikson [6] theorized

that infants not older than 2 years pass through a stage

known as ‘trust versus mistrust’, where their propensity to

trust is shaped by the quality of care received. This happens

because infants highly depend upon the caregivers for suste-

nance and learn whether or not the latter regularly satisfy their

basic needs, either learning that the world is a secure, trustable

environment or an undependable, insecure place.

A psychological trait that relates to the mastery of one’s self

trustfulness is ToM: the ability to attribute mental states to

others (for instance beliefs, intentions and desires) that may

differ from one’s own. In fact, the ability to correctly judge

the trustworthiness of others is strongly correlated to the

matureness of this trait [7] because a mature ToM allows one

to perform behaviour prediction and provides clues on trust-

worthiness [8]. Despite ToM being universal in adults, the

same cannot be said about preschoolers: while the latter are

not completely lacking some form of ToM, this slowly develops

with age [9,10]. An experiment conducted by Vanderbilt et al.
[1] demonstrated that ToM matures around the fourth year of

age and is completely developed by the fifth year.

Whereas trust is such an important factor in human inter-

actions, it is also an essential component of HRI, in the sense

that a great degree of trust improves the quality of interactions

with the robot and, vice versa, successful interactions enhance

the machine’s trustworthiness from the user’s point of view.

Hawley [3] states that inanimate objects can be reliable but

not genuinely trustworthy. This does not apply to humanoid

robots, which are artificial agents that can communicate and

interact and, by adopting the participant stance, can be

worthy of trust or distrust (or neither) from their human part-

ners [11]. In human and robot teaming scenarios, where the

two share a common goal, trust is an essential component to

successfully perform joint activities [12].

Our work is based on an established framework known

as developmental robotics. Cangelosi et al. [13, p. 4] defined

it as ‘the approach to the design of behavioural and cognitive

capabilities in artificial agents that takes direct inspiration

from the developmental principles and mechanisms observed

in the natural cognitive systems of children’.

Whereas various studies have focused on trust in HRI con-

texts, with a human trustor and a robot trustee, our work aims

to investigate the opposite, that is the level of trust assigned
from a robot to its human partners. We state that a robot

involved in a joint task with a human should be able to evaluate

the trustworthiness of the latter and use this information to per-

form decision making. For example, in a hypothetical situation

where the goal is to move some furniture around the house, it

is equally important for both the robot and the human to trust

the other’s ability to perform the job and eventually to dynami-

cally adapt the plan. This can assume a greater importance in

more critical scenarios, as in the performance of robotic-assisted

surgery. Our aim is to design an artificial cognitive architecture

able to evaluate the trustworthiness of the humans it interacts

with, in order to predict their future behaviour. We believe

that the key to such an architecture is the implementation of a

ToM module in a robotic agent. Our work builds upon the

research of Patacchiola & Cangelosi [14], who designed a Baye-

sian model that incorporates aspects of ToM and trust and

applied it to the Vanderbilt experiment [1]. We took these find-

ings a step further, expanding and incorporating them into a

robotic system that can learn to distinguish trustworthy and

untrustworthy sources of information and that can modify its

behaviour according to its belief, thus remarking that it is

possible to adopt a probabilistic approach to model and

adapt ToM and trust in a unified scheme. Our system was

able to reproduce the results obtained by Vanderbilt [1] on

both mature and immature ToMs.

Lastly, we aimed in supporting this trust and ToM architec-

ture with an episodic memory system that made it possible for

the robot to make predictions about novel human informants

with which it had never been familiarized. Episodic memory

is a subcategory of the long-term declarative memory that

stores memories about temporally dated episodes or events

and temporal–spatial relations among them [15]. Knowledge

of one’s personal history enhances the ability to accomplish sev-

eral cognitive capabilities and is strictly related to the sense of

self and consciousness. That is why many researchers have

focused on the design of artificial episodic memory systems

[16,17]. Our idea led us to the implementation of a system

that is able to use memories of its past interactions to influence

its behaviour towards someone with whom it had never inter-

acted before. This means that the robot will develop a personal

character, based upon the way it has been treated in the past,

that will make it more or less keen to trust someone it does

not know, as is the case with infants in the ‘trust versus mistrust’

phase theorized by Erikson [6]. This general and generic first

impression towards novelty will then be subsequently reshaped

by the interactions it will experience: for instance, if the robot

distrusts someone who subsequently proves to be a helper, its

behaviour will slowly change. We accomplished this by design-

ing an algorithm inspired by the particle filter [18,19], a

technique widely used for mobile robot localization.

3. Proposed method
The objective of our research is to implement an artificial cogni-

tive architecture for a humanoid robot that incorporates a

probabilistic unified trust and ToM module to evaluate the trust-

worthiness of human partners involved in joint tasks, paired

with an episodic memory system. To reach our goal, we

designed and developed a cognitive robotic system that is able

to be subjected to a developmental psychology trial [1] and to

obtain the same results as either an under or over 5-year-old

child, therefore successfully simulating the children’s cognitive

abilities and ToM immatureness or matureness, respectively.
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(a) Theoretical background
The psychological test we aimed to reproduce is the one designed

by Vanderbilt [1], in particular, experiment number 1: 90 pre-

school-age children, equally divided into 3-, 4- and 5-year-olds,

were shown a video in which an adult actor, either a helper or

a tricker, gave advice to another adult who was trying to locate

a sticker hidden in one of two boxes. Helpers would suggest

the correct location, whilst the trickers always pointed to the

wrong box. Subsequently, that same pointer would give some

advice to the child on the same sticker-finding task and the par-

ticipant would decide whether to follow that suggestion or not.

Based on the children’s choices and on some meta-cognitive ques-

tions submitted to them, Vanderbilt theorized that only the

5-year-olds were able to differentiate the helpers from the trickers,

therefore demonstrating the possession of a mature ToM.

In order to substitute one of the preschoolers with a huma-

noid robot, the latter needs to possess a trust and ToM

computational model to be able to predict the intentions

and beliefs of the pointers with which it is going to interact.

A good candidate for this model is the developmental Baye-

sian model of trust designed by Patacchiola [14], which uses

a probabilistic approach to solve the problem of trust esti-

mation. Bayesian networks (BNs) are probabilistic graphical

models that represent conditional dependencies between a

set of random variables. This particular model uses discrete

Boolean variables that assume two states: a and b, each corre-

sponding to one of the two positions where the stickers can be

located in the experiment. A graphical illustration of this BN

can be observed in figure 1: the two nodes XR and YR rep-

resent, respectively, the beliefs and actions of the robot. The

posterior distribution of the node YR allows the agent to

choose the action to perform: that means searching for the

sticker in position a or b. The connection between YI and YR

represents the influence that the opinions of the informant

have on the agent’s action. The action of the agent is then a

consequence of its own belief XR and the informant action

YI. Lastly, the estimation of XI, the informant’s belief, makes

the agent able to effectively discriminate a trickery from a

non-malevolent human error. The cognitive architecture we

designed creates one of these BNs for each informant it interacts

with and uses it to predict its future behaviour.

This developmental Bayesian model has been extended

with an episodic memory system that will be described

more in detail in §3d.
(b) Cognitive system architecture
An overview of our robotic architecture is shown in figure 2.

This cognitive system interfaces with each informant individu-

ally and performs various perception and actuation tasks.

The audio module is used to synthesize vocal outputs to

guide the users through the course of the experiment and to

process vocal commands. The motor module is responsible of

piloting the robot’s joints and controlling its head and body

movements. The vision module is in charge of face detection

and recognition through Haar Cascade [20] and Local Binary

Pattern Histogram [21] machine learning algorithms and also

to detect the presence of the sticker on the table. The belief

module is the core component that makes the robot able to

evaluate the trustworthiness of the informant who has been

recognized, eventually using its episodic memory, to generate

a new BN ‘on the fly’ in order to react to a novel user.

(c) Belief
The belief unit encircles all the algorithms that deal with the

Bayesian belief networks. One of its functions is to store epi-

sodes, which are data structures that encode sticker searching

events inclusive of both the sticker position and the suggestion

received from the informer. The way in which these data are cre-

ated depends on the agent’s ToM matureness: in the case of a

misleading suggestion, the immature agent associates the

action YI to the wrong belief XI, whereas the agent with

mature ToM identifies the deception and recognizes that YI ¼

:XI. Because of this deficit in reading the informant’s intention,

the agent with immature ToM collects wrong statistical data

that will distort inference in subsequent phases.

Once the agent has collected a certain amount of episodes

from an informant, it can generate a BN associated with him

or her using the maximum-likelihood estimation (MLE)

algorithm [22] to determine the conditional probability

tables of its nodes. For the root nodes XI and XR we calculate

these probabilities as:

PY(a) ¼ u

and PY(b) ¼ 1� u:

)
(3:1)

Denoting Na and Nb as the number of times the pointer

chooses a or b, we can estimate u as:

û ¼ Na

Na þNb
: (3:2)

For the nodes YI and YR, instead, we have to also take into

consideration the influence of the parents.

Once a BN has been created for a certain user and its par-

ameters have been learned from the interactions, it is possible

to infer the posterior probability of the nodes given some

observations. In particular, we are interested in estimating

the belief given an action and vice versa. We calculate posterior

distributions using Pearl’s Message-Passing algorithm [23].

(d) Episodic memory
The ability to use one’s own past memories to take decisions in

the present and future is an important skill that enhances cog-

nitive processes. An implementation of such skill would enable

the robot to react reasonably towards a novel informant with

whom it has never been familiarized. On a technical level,

the main problem is to generate on the fly a new BN with ade-

quate parameters to use with that unknown informer. These



data
collector

camera
acquisitor

action
selector

postural
controller

audio
acquisitor

speech
synthetizer

command
parser

face
detector

face
learner

face
recognizer

informant

sticker
detector

face identificator
informant
database

belief
network

generator

episodic
memory
generator

trust evaluator

decision
maker

belief
estimator

belief vision

motor

audio
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parameters will depend upon the robot’s personal character

built in respect of the way it has been treated in the past: an

agent who has been tricked often would learn to be mistrustful

and vice versa, as in the ‘trust versus mistrust’ phase in child

development [6].

The design guidelines that we followed in the creation of

our algorithm were the following: memories fade away with

time; the details become blurred proportionally to the

amount of memories possessed; shocking events such as sur-

prises and betrayals should be more difficult to forget than

ordinary, expected experiences.

Our algorithm draws inspiration from the particle filter

technique widely used in mobile robot localization [18]. When-

ever an unknown informant is met, this component generates

on the fly a certain number of episodes to train a new BN.

We define the set of BNs memorized by the agent as:

S ¼ [s0, s1, . . . , sn], (3:3)

where n is the number of informants known by the agent.

Each BN si was generated by a set of episodes, and these

are going to be denoted as replay datasets for that BN:

Esi ¼ [1(si)
0 , 1(si)

1 , . . . , 1(si)
m ] : si [ S, (3:4)

where m is equal to the number of episodes of the replay

dataset. So, in this notation 1
(si)
j represents the jth episode of

the replay dataset that formed the BN si.

The equation we are about to introduce uses information

theory to quantify the amount of information each specific epi-

sode represents. Our goal is to find how much this value differs

from the total entropy of its replay dataset: a high difference

means that the event is to be considered surprising and must

be easier to recall than ordinary, unsurprising events. For

example, if an informant who is always been trustful suddenly

tricks the agent, this betrayal will be remembered with a greater

impact. At the same time, all of the memories are subject to a
progressive time degradation that tends to blur them with

the passage of time, dependent on their importance.

Formally, a real factor denoted as importance value v
defined in the interval [0, 1] is calculated for every episode

1
(si)
j as the difference between the amount of information of

the episode, I(1(si)
j ) and the total entropy of its replay dataset,

H(Esi ), divided by the discrete temporal difference from the

time when the memory was formed.

v(1(si)
j ) ¼

j I(1(si)
j )�H(Esi ) j
Dtþ 1

¼
j � log2 P(1(si)

j )þ
P

1[Esi
P(1) log2 P(1) j

tpresent � t
1

(si )

j
þ 1

:

(3:5)

Once v has been calculated it can be used to determine

a replication factor by projecting it on a step function

defined as:

F(v) ¼
0 if 0 � v � 0.005
1 if 0.005 , v � 0.3
2 if 0.3 , v � 0.6
3 if 0.6 , v � 1.

8><
>: (3:6)

Every episode from each replay dataset in the agent’s

memory is replicated F(v) times.

The thresholds of the step function have been defined by

observing the probability distribution of the importance value

v obtained by making the robot interact with five different infor-

mants, the latter characterized by the following percentages of

helpful interactions: 100%, 75%, 50%, 25% and 0%. This distri-

bution is observable in figure 3. Most samples tend to fall in

the range [0, 0.3], so samples that are contained in this interval

are kept as they are, with no replications. Samples included in

the intervals (0.3, 0.6] and (0.6, 1] are the most surprising ones

for the agent and get, respectively, duplicated and triplicated.

The bottom 5% of the domain, i.e. v values less than or equal

to 0.005, are discarded (they are forgotten).
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The next step in our algorithm is to pick k episodes to

form the replay dataset for the new BN we intend to create,

Esnþ1
. It is possible to select random samples but this will

lead to poor final results, so we instead operate a systematic

resampling [24], a kind of weighted random sampling. To

avoid biases dependent on the two positions in which the

sticker can be located, we want the agent to distinguish

only between positive and negative actions, or ‘truth’ and

‘lies’: for this reason, instead of picking k samples the

system will only select k/2 and for each of them it will gen-

erate the corresponding symmetric example. For instance, if

a fsticker in a, correct suggestiong episode is sampled, a fsticker
in b, correct suggestiong episode will also be included in the

new replay dataset.

The optimal number of samples k has been investigated: a

low value would result in a gullible belief network, whilst a

high value would make it stubborn to changes. Our goal

was to let the robot possess a firm but changeable prejudice

about the novel informant. By analysing the mean entropy

of the episodic networks generated by different values of k,

as shown in figure 4, we selected k ¼ 10 for the following

reasons: it is an even number, so it will produce an integer

k/2 value, it is neither too low or too high to incur the

above-mentioned problems and, finally, it is a local minimum

of entropy.

Finally, MLE is applied to the new reply dataset to evaluate

the parameters of the network. This new BN will be stored in

the agent’s long-term memory as snþ1 and will be used to

predict the trustworthiness of the new informant.
(e) Evaluation criteria for belief networks
We introduce the trust factor T as a measure of how keen a

BN is to trust the informant.

To calculate T, we hypothetically imagine that the sticker is

located in position a and execute a belief estimation task, as
described in §4b(iii), to obtain the posterior probability p of

node YI: what we are doing is computing the probability that

the informant will give correct advice given the matureness of

the agent’s ToM. At this point, the value is scaled in a [ 21,

þ1] interval, where the two endpoints 21 and þ1 represent,

respectively, complete trickers and helpers, which means BNs

whose parameters have been computed from replay datasets

containing only truthful or untruthful episodes. Values of T in

between represent informants that are partially helpful and mis-

leading. To perform the scaling we required the maximum and

minimum values of p and we found them by building two BNs

formed by a large (104) number of, respectively, helpful and mis-

leading episodes and computed p for each of them, resulting in

p ¼ 0.75 for the helper network and p ¼ 0.25 for the tricker one.

For a generic interval [a, b], the scaling is computed as:

T(p) ¼ (b� a)(p�min )

max�min
þ a, (3:7)

with min ¼ 0.25, max ¼ 0.75, a ¼ 21 and b ¼ þ1.

Equation (3.7) is used in §5 to evaluate the experimental

data collected on experiments and simulations.

While experiencing new interactions, the BN can acquire

new statistical data and adapt its behaviour over time. This

happens when T changes sign, that is when the number of

negative interactions surpasses the positive ones, or vice versa.
4. Experiments
(a) Experimental set-up
For our experiments, we used a Softbank Pepper, a humanoid

social robot designed to operate in human environments.

A single table is present in the environment, on top of

which a printed mat, depicting the two positions a and b
and some instructions for the participants, are laid down.

The robot is located on one side of the table, while the
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informants take turns in sitting in front of it, on the opposite

side of the desk. The participants are provided with a sticker

that they are able to move between the left and right

locations. Each informant is instructed to act as a helper,

always revealing the correct position of the sticker, or a

tricker, always giving wrong advice.

(b) Procedure
As for the original experiment by Vanderbilt [1], our trial is

divided in three sections: familiarization, decision making

and belief estimation. Having already introduced the techni-

cal details of the cognitive architecture, this section will focus

on describing the logical flow of operations.

(i) Familiarization phase
The aim of the first phase is to make the robot familiarize with

the informants, which means learning the correct parameters

of the BNs associated with them. A visual description of the

process is shown in figure 5.

One at a time, each of the informants sit at the table while

the robot captures some face images to be able to recognize

them in the future. The user is given time to place the sticker

on one of the two positions marked on the table, a or b. After

that, the robot asks for a suggestion on the location of the

above-mentioned sticker and, once received, it follows this

suggestion blindly, searching for the marker. Based on of

the result of this detection and on the matureness of the

robot’s ToM model, an episode is created in its memory.

Following the original experiment, this demonstrative

task is repeated six times per user, with the sticker located

50% of the time on position a and the other 50% of the time

on position b. At the end of this procedure, the data acquired

are used to build a BN for that informant, as described in §3c.

After the familiarization phase the robot possesses a BN

for every known informant.
(ii) Decision making phase
In the decision making phase, shown in figure 6, the robot

has to correctly locate the sticker, choosing one of the two

locations given the informant’s opinion. Initially, one infor-

mant sits at the table: if he or she is identified, the associated

BN is fetched and used in the subsequent computations, other-

wise, a new one is generated on the fly for him or her using

episodic memory.

At this point, the user positions the sticker and gives a sug-

gestion. The agent performs inference on the BN in order to

calculate the posterior probabilities given YI as evidence. In

particular, if PYR (a) . PYR (b) the robot will investigate position

a and if PYR (a) , PYR (b) it will look at position b.



Can you suggest me the location of
the sticker?

right
I’m thinking at where to look based on

your suggestion

I was right not to trust you

(a) (b)

(c) (d)

Figure 6. Decision-making phase with a tricker informant. (a) The robot asks
for a suggestion on the location of the sticker and receives a misleading sug-
gestion from the informant. (b) The robot performs inference on that
informant’s belief network. (c) The agent decides that the informant will
probably try to trick it, so it looks in the opposite location. (d ) The robot
finds the sticker and gives feedback to the informant. (Online version in
colour.)

I believe you think the sticker is on
the left. I also believe you would

point right to me(a) (b)

Figure 7. Belief estimation phase with a tricker informant. (a) The robot
recognizes the informant using machine learning techniques and looks at
the table to find the position of the sticker. (b) The robot computes inference
on the informant’s belief network and predicts what he would suggest in
that situation. (Online version in colour.)
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The episode generated by this interaction will be used

to update the parameters of the BN, making the robot

progressively adapt to the user’ behaviour.
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(iii) Belief estimation phase

In the original trial, children where asked some meta-cogni-

tive questions in order to investigate their perception of the

informants and to examine their ToM matureness. To test

the same on the artificial cognitive agent, Bayesian inference

can be used.

The belief estimation phase is very similar to the decision

making one and differs only for the kind of inference com-

puted. The robot uses its face detection and recognition

algorithms to identify the informant with whom it is interact-

ing, either a known or an unknown one, then it observes the

table to identify the position of the sticker. Setting XR and YR

as evidence, the Message Passing algorithm [23] is used to cal-

culate the posterior probabilities for the rest of the network. At

this point, the agent can use the probability distributions in

nodes XI and YI to infer the informant’s belief and the location

that most probably would have been suggested by him or her.

This process is shown in figure 7.
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(c) Simulations on character formation
In order to test the effects of episodic memory on character

formation, we made a mature ToM simulated agent familiar-

ize with different sets of informants to study how it would

subsequently react to a novel person. Each set was composed

of eight informants. In particular, the first set was formed by

eight helpers, the second by six helpers and two trickers

and so on until the last set was made up of eight trickers.

For each set of informants familiarized, 100 episodic belief

networks were generated and their trust factors T were

computed using equation (3.7) and plotted on a histogram.

After each set was processed, the memory of the robot was

reset so that the effects of each group of informants could

be analysed individually.
5. Results and discussion
(a) Trust and theory of mind
The final results of Vanderbilt [1] showed that only the children

with mature ToM distinguished between helpers and trickers,

thus confirming the fact that children’s reasoning about whom

to trust is directly correlated with their understanding of

mental life. Our research is coherent with these results: when

the robot is provided with a mature ToM model, it is able to

correctly recognize realiable sources from unrealiable ones,

accepting suggestion from the former whilst rejecting it from

the latter. By contrast, if the agent is operated with an immature

ToM model, it will fail in the evaluation. To understand why

this happens, we will examine the posterior distributions in

each node of a BN after the inference that takes place in the

decision making and belief estimation phases.

Table 1 shows the results obtained from the interaction of

a helper and a tricker with two agents with, respectively, a

mature and an immature ToM.
In the decision-making task, the helper indicated position a
when the sticker was placed in that location. The suggestion

was accepted by both the agents, as demonstrated by the

inequality PYR (a) . PYR (b). The behaviour of the agents differed

towards the tricker who, in contrast, suggested position a when

the sticker was located in b. The mature agent rejected the sugges-

tion and this happened because PYR (a) , PYR (b), which means

that the robot decided to look at the other location on the table.

The immature agent could not recognize the deception and

accepted the misleading advice, as observable in the posterior

distribution PYR (a) . PYR (b), thus falling in with the deception.

During the belief estimation task, with the sticker placed

in a and a helpful informant, both of the agents output

PXI (a) . PXI (b) and PYI (a) . PYI (b), thus correctly anticipating

the helper’s mental states. When facing the tricker, instead,

the mature agent correctly predicts the malevolent intentions

by outputting PXI (a) , PXI (b) and PYI (a) , PYI (b), while the

immature agent failed to do so by predicting PXI (a) . PXI (b)

and PYI (a) . PYI (b).

(b) Episodic memory
Given the non-deterministic nature of the algorithm used to

generate episodic belief networks, a more statistical method

of evaluation is needed to report the results of this module.

The histograms of the trust factors T obtained with the pro-

cedure described in §4c can be interpreted as the different

characters that emerge in the robot, which means the tendency

it has to trust or distrust a novel informant based on the

interactions it has been faced with in the past. So, as shown

in figure 8, an agent who is used to be tricked most of the

time will tend to distrust somebody it meets for the first time,

whereas a robot that has been treated kindly will learn to

trust people and tend to consider them trustworthy until pre-

sented with contrary evidence. This behaviour mimics

exactly the ‘trust versus mistrust’ stage of infancy theorized
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by Erikson [6], in which children learn to shape their personal-

ity by succeeding or failing in developing trust based on the

quality of care received during infancy.

6. Conclusion and future work
In this paper, we discussed an artificial cognitive architecture

for trust, ToM and episodic memory in a HRI scenario that

can enhance the performance of artificial agents in shared

goal contexts. We have extended the previous work by

Patacchiola [14] by integrating the original model into a com-

plete robotic architecture and extending it with an episodic

memory component that enables it to remember and make

use of its past experiences to develop a personal character

and, doing so, to improve its cognitive abilities. We designed

an artificial agent that is able to interact with the world

around it and estimate the trustworthiness of its information

sources to make autonomous decisions about its actions. We

have tested this architecture by successfully reproducing a

developmental psychology experiment [1] that aimed to evalu-

ate the degree of experimental subjects’ ToM through a sticker

finding game, obtaining consistent results.
In the future, we plan to expand this architecture to make it

progressively more general-purpose: thanks to the flexibility of

BNs it is straightforward to reorganize nodes and edges to rep-

resent a wider range of real-life situations. As an example, it

would be possible to take into account the contemporary influ-

ence of two or more informants, similarly to what has been

done by [25]. Other fields of interest are elderly care [26],

robotic-assisted surgery [27], joint-action HRI in the perform-

ing arts [28] and autonomous driving [29]. We also plan to

use this model in a scenario where trust estimation and inten-

tion reading will generate and modulate collaborative

behaviour between humans and robots.
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