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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and
degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing
complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we
analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell line.

Methods: We performed three RIP-Chip experiments using either anti-AGO2 or anti-GW182 antibodies and
compiled a data set made up of the miRNA and mRNA expression profiles of three samples for each experiment.
Specifically, we analyzed the input sample, the immunoprecipitated fraction and the unbound sample resulting
from the RIP experiment. We used the expression profile of the input sample to compute several variables, using
formulae capable of integrating the information on MiRNA binding sites, both in the 3'UTR and coding regions,
with miRNA and mRNA expression level profiles. We compared immunoprecipitated vs unbound samples to
determine the enriched or underrepresented genes in the immunoprecipitated fractions, independently for AGO2
and GW182 related samples.

Results: For each of the two proteins, we trained and tested several support vector machine algorithms capable of
distinguishing the enriched from the underrepresented genes that were experimentally detected. The most efficient
algorithm for distinguishing the enriched genes in AGO2 immunoprecipitated samples was trained by using
variables involving the number of binding sites in both the 3'UTR and coding region, integrated with the miRNA
expression profile, as expected for miRNA targets. On the other hand, we found that the best variable for
distinguishing the enriched genes in the GW182 immunoprecipitated samples was the length of the coding region.

Conclusions: Due to the major role of GW182 in GW/P-bodies, our data suggests that the AGO2-GW182 RISC
recruits genes based on miRNA binding sites in the 3'UTR and coding region, but only the longer mRNAs probably
remain sequestered in GW/P-bodies, functioning as a repository for translationally silenced RNAs.
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Background

Argonaute (AGO) proteins and the GW182 protein fam-
ily (also known as TNRC6 proteins) are involved in the
cellular process which leads to gene silencing mediated
by miRNAs, small endogenous non-coding RNAs that
act as post-transcriptional regulators by base pairing to
target mRNAs [1, 2]. While miRNAs guide AGOs to tar-
get mRNAs, a direct interaction between AGO and
GW182 proteins is required for the assembly of ribonu-
cleoprotein complexes, named RISCs, and the recruit-
ment of additional factors involved in gene silencing,
which is ultimately achieved through the degradation of
target mRNAs or translational repression [3, 4]. Several
studies of higher eukaryotes have indicated that, among
the AGO proteins, AGO?2 is catalytically active and in-
volved in the mRNA cleavage process, whereas AGO1, 3
and 4 are catalytically inactive and mainly involved in
translational repression [4, 5]. In the cell cytoplasm,
AGO s, together with GW182/TNRC6A and its mamma-
lian paralogs, TNRC6B and TNRC6C, have a role in exe-
cuting miRNA-mediated repression, either by silencing
or decay, but the proteins also contribute to other func-
tions in the nucleus, such as transcription and splicing
control [6, 7]. On the other hand, GW182 is a marker of
GW/P-bodies, dynamic cytoplasmic structures contain-
ing non-translating mRNAs, that have been associated
with the cellular response to stress [8] and were first
identified because human autoimmune sera recognized
them [9, 10]. Work over the past few years has signifi-
cantly increased our understanding of the biology of
GW/P-bodies in higher and lower eukaryotes. It has
been shown that these bodies contain proteins involved
in diverse post-transcriptional processes, such as mRNA
degradation, nonsense-mediated mRNA decay, transla-
tional repression, RNA-mediated gene silencing, and
may also function as a cytoplasmic domain for RNA
storage.

Furthermore, RNA-binding protein immunoprecipita-
tion, coupled with high-throughput methods for expres-
sion profiling, such as gene array (RIP-Chip) or se
quencing (RIP-Seq), has allowed the systematic identifi-
cation of RISC-bound miRNAs and their target mRNA
sequences in mammalian cells and the dissection of
miRNA-mediated post-transcriptional regulatory net-
works. This approach has been widely applied to the
AGO protein family, through the immunoprecipitation
of either exogenously introduced tagged-proteins or en-
dogenous proteins and the subsequent analysis of the as-
sociated RNAs [10-13]. So far, few reports have
described a similar approach for GW182 and its paralogs
using specific antibodies [14, 15], and recently, Meister
and co-workers reported a novel method, based on affin-
ity purification, for the simultaneous isolation of all
AGO-containing complexes [16].
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The RIP-based high-throughput method for expression
profiling has been widely used to predict miRNA-target
interactions in order to develop algorithms useful for
identifying potential miRNA targets. Several algorithms
predict potential miRNA targets by considering the
binding site characteristics of the analyzed miRNA-tar-
get pair, for example, the binding site minimum free en-
ergy (miRanda [17]), miRNA seed complementarity and
conservation (Targetscan [18]), binding site accessibility
(PITA [19]). More recent algorithms consider both
miRNA and mRNA paired expression profiles to detect
functional miRNA-mRNA pairs. As an example, we
mention the web-tool MAGIA [20], which combines the
prediction results from Targetscan, PITA and miRanda
algorithms and adopts different statistical measures of
profile correlation and algorithms for expression profile
combination. The expression profile of endogenous miR-
NAs has been shown to be determinant in predicting
RISC machinery functional targets, and it is used by
ComiR [21] to predict targets of a set of miRNAs. In
addition to such collaborative effects, competition effects
have a crucial role in miRNA regulatory function, as
shown by the evidence of competing exogenous [22] and
endogenous [23] effects. In summary, both miRNA and
mRNA expression profiles have a crucial role in deter-
mining miRNA binding activity.

In order to get additional insight into the diverse cellu-
lar functions of RISCs, we performed RIP-Chip experi-
ments using antibodies specific for AGO2 and GW182/
TNRC6A. Data from miRNA and mRNA expression
profiles were combined, using existing target prediction
results, to compute several variables that served to train
and test various support vector machine (SVM) algo-
rithms, searching for the more efficient variables for dis-
tinguishing enriched genes in the immunoprecipitated
samples.

Methods

Cell culture

The MCF-7 human breast cancer cell line was pur-
chased from American Type Culture Collection (ATCC,
Rockville, MD, USA). Cells were cultured in Dulbecco’s
modified Eagle Medium (DMEM) supplemented with
10% heat-inactivated fetal bovine serum (FBS), glutamine
(4 mM) and penicillin/streptomycin (100 pg/ml).

AGO2/GW182 immunoprecipitation

RNA-binding protein immunoprecipitation (RIP) of
RISCs was performed using mouse monoclonal anti
-AGO?2 (clone 1B1-E2H5, RN003M), rabbit anti-GW182
(TNRC6A, RNO033P) and the RIP-Assay Kit for micro-
RNA (MBL International Corporation). Briefly, cells
(1.5 x 10”) were suspended in 0.3ml of miLysis buffer,
supplemented with protease and RNase inhibitors, after
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incubation on ice for 10 min and one freeze-thaw cycle;
the lysate was diluted five times with lysis buffer, and the
cytoplasmic fraction was isolated by centrifugation at
12,000xg at 4°C for 5min. To eliminate nonspecific
binding, the lysate was incubated with protein A/G-agar-
ose beads (SantaCruz) at 4 °C for 1 h. The precleared ly-
sates were then mixed with mouse anti-AGO2 or rabbit
anti-GW182 (15 pg of Ab/mg of lysate) armed beads;
the use of preimmune mouse IgG isotype (clone 6H3,
MO076-3, MBL) and rabbit IgG (PM035, MBL) assessed
the specificity of the precipitated immunocomplexes.
After incubation overnight at 4 °C on a rocking platform,
AGO2-IP and GW182-IP beads were washed three times
with ice cold wash buffer. Total RNA (ie., including
mRNAs and miRNAs) was extracted from IP fractions
following the two-step method described in the
RIP-Assay Kit, while total and unbound fractions were
processed using TRIzol LS (ThermoFisher Scientific
Inc.), according to the manufacturer’s instructions. For
GW182_FT3 and GW182 _IN3 samples, total RNA was
isolated using the miRNeasy Mini Kit from Qiagen, as
described by Turchinovich and Burwinkel [24], obtaining
similar results to those achieved with Trizol. In all cases,
synthetic miRNA-39 from C. elegans (celmiRNA-39) was
added as a spike-in control for miRNA isolation effi-
ciency. RNA was quantified by NanoDrop (Thermo-
Fisher Scientific Inc.), and RNA integrity and quality
were assessed using the 2100 Agilent Bioanalyzer.

Immunoblotting

Cytoplasmic proteins from total (IN), immunoprecipi-
tated (IP) and unbound/flow-through (FT) cell lysates
were separated on NuPage Novex 4-12% Bis-Tris pre-
cast gels (ThermoFisher Scientific Inc.), then transferred
onto a PVDF FL membrane (Sigma-Aldrich). Primary
antibodies against GW182 or AGO2 proteins
(anti-GW182 and anti-AGO2, MBL International Cor-
poration) were revealed with secondary antibodies, ei-
ther conjugated to IRDye® 800CW (LI-COR) or Alexa
Fluor 680, using the Odyssey infrared imaging system
(LI-COR Biosciences) according to the manufacturer’s
instructions.

Microarray gene expression analysis

Cyanine-3 (Cy3) or Cyanine-5 (Cy5) labeled cRNA was
prepared from 325ng RNA for IN and FT samples or
from 20ng RNA for IP sample, using the LowlInput
QuickAmp Labeling Kit (Agilent), according to the man-
ufacturer’s instructions, followed by RNAeasy mini kit
column purification (Qiagen). Dye incorporation and
cRNA yield were checked with the NanoDrop ND-1000
spectrophotometer. Hybridization and washing were
performed using the in situ Hybridization Plus Kit fol-
lowing the manufacturer’s instructions (Agilent protocol:
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G4140-90050_GeneExpression_TwoColor_ver._6.9.1).

Briefly, 1.0 ug of Cy3- or Cy5-labeled cRNA (specific ac-
tivity > 9.0 pmol Cy/ug cRNA) was fragmented at 60 °C
for 30 min in a reaction volume of 55 pl containing 1x
fragmentation buffer and 2x blocking agent. On comple-
tion of the fragmentation reaction, 55pul of 2x
hybridization buffer was added to the mixture and hy-
bridized to Whole Human Genome Microarray 4x44K
v2 (Agilent-G4845A) for 17h at 65°C in a rotating
hybridization oven. After hybridization, microarrays
were washed for 1 min at room temperature with Wash
Bufferl and 1 min with 37°C with buffer2, then dried
immediately. Slides were scanned on the Agilent DNA
Microarray Scanner (G2505B) using the two-color scan
setting for 4x44k array slides (Scan Area 61 x 21.6 mm,
Scan resolution 5pum, dye channel PMT set to 100%).
The scanned images were analyzed by Feature Extraction
Software 9.5.1 (Agilent) using default parameters (proto-
col: GE2-v5_95 and Grid: 026652_D_F_20110325) to ob-
tain background subtracted, dye normalized and
spatially detrended processed signal intensities.

Microarray miRNA expression analysis

Cy3-labeled ¢cRNA was prepared from 100 ng RNA for
IN and FT samples or from 20 ng RNA for IP sample,
using the miRNA Microarray System with miRNA
Complete Labeling and Hyb Kit, according to the manu-
facturer’s instructions (Agilent protocol: G4170-900
11_miRNA_ver_3.1.1). Briefly, Cy3-labeled RNA, in a re-
action volume of 45 pl containing 1x blocking agent and
1x Hi-RPM hybridization buffer, was hybridized to Hu-
man miRNA Microarray 8x15K (Agilent-G4470C) for
20h at 55°C in a rotating hybridization oven. After
hybridization, microarrays were washed as above and
dried immediately. Slides were scanned using the
one-color scan setting for 8x15k array slides (Scan Area
61 x 21.6 mm, Scan resolution 5 pm, dye channel set to
green and green PMT set to 100%). The scanned images
were analyzed by Feature Extraction Software 9.5.1 (Agi-
lent) using default parameters (protocol: miRNA-vl_95
and Grid: 021827_D_20081121) to obtain background
subtracted and spatially detrended processed signal
intensities.

Reverse transcription and real-time PCR analysis

The reverse transcription reaction was performed using
the miScript reverse transcription kit (Qiagen), accord-
ing to the manufacturer’s instructions. Real-time PCR
reagents and miScript primers for miRNAs were from
Qiagen. Amplification reactions were performed using a
StepOne Plus real-time PCR system (Applied Biosys-
tems), according to the manufacturer’s manual; each re-
action had three technical replicates, and data are
presented as means + standard deviation.
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For normalization purposes, we used an adaptation of
the normalization procedure used in [25]. For each sam-
ple, we computed which percentage of the total amount
of RNA extracted in the IP experiments corresponded to
the amount of RNA used in the RT-qPCR. Input RNA
was used as the reference RNA. For each IP sample, a
normalization factor was computed by dividing the per-
centage of RNA in the IP sample by the percentage of
RNA in the Input sample. After RT-qPCR, for each
miRNA, IP results were first compared with the Input
RNA, then divided by the respective normalization fac-
tor. Differences between IP samples and IgG controls
were calculated based on the 2744 method.

Predicted miRNA-mRNA interaction matrix

All the 3UTR and coding sequences used to predict
miRNA binding sites were selected from Ensembl.org. If
the database contained more than one sequence for the
same Ensembl ID, the longest sequence was selected.
We only considered sequences at least 50 bases long.
From Ensembl.org we selected 18,552 3'UTR and 19,420
coding sequences, of which 16,363 mRNAs were in-
cluded in both sets and in the microarray platform used.
MiRNA binding sites were predicted using TargetScan
[18], PITA [19] and miRanda [17] scripts. We computed
two miRNA-mRNA interaction matrices (BS), one for
3'UTR and one for the coding regions, which contained
the number of binding sites predicted for each miRNA
seed on the selected sequences. For both BS matrices,
we computed the respective density matrices (dBS) by
dividing the number of predicted binding sites by the
length of the considered sequence.

Data pre-processing and statistical analysis
Microarray data pre-processing consisted of the follow-
ing pipeline. The Feature Extraction Software already
provided background subtracted, dye normalized and
spatially detrended processed signal intensities. Inten-
sities were normalized using the quantile normalization
technique. First of all, an average linkage cluster analysis
was performed in order to check instrumental replicate
consistency, and then the average expression profile of
instrumental replicates was computed. The obtained ex-
pression profiles were used to perform a post-hoc power
analysis specific for microarray studies [26], and we ob-
tained an observed power of 0.7, which implied that 70%
of truly enriched genes were expected to be discovered.
The pre-processed expression profiles were compared
through hierarchical cluster analysis (average linkage),
where distance was computed as dist=1 — correlation.
Genes enriched and underrepresented in IP samples
were identified using the Significance Analysis of Micro-
arrays (SAM) algorithm [27], implemented by the samr
library in BioconductoR. The samr library associates a
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g-value with each gene, i.e., the lowest False Discovery
Rate at which that gene is called significant. It is like the
well-known p-value, but adapted to multiple-testing situ-
ations. A g-value of 5% was set as the threshold for sig-
nificance in detecting enriched and underrepresented
genes. Enriched genes detected by the SAM algorithm
were compared with the enriched genes detected by
REA [28], an algorithm developed specifically for
RIP-Chip enrichment analysis.

The performance of single variables in distinguishing
the enriched and the underrepresented genes was evalu-
ated as the area (AUC) under the receiver operating
characteristic (ROC) curve, using the pROC R library
[29] and Wilcoxon signed test p-value. SVM models
were trained with linear kernel using the eZ071 R library.
The R library caret was used to test the SVM trained
models with the Leave One Out Cross Validation (train-
Control method = “LOOCV”) testing procedure (train
method “svmLinear2”).

Results

AGO2 and GW182 proteins complexes handle different
mRNA content

To gain new insight into the regulatory networks of gene
expression involving functionally diverse RISCs in the
cell cytoplasm, we used RIP-Chip to identify mRNAs
and miRNAs selectively bound to these complexes in
the MCEF-7 cell line, which is widely used and represen-
tative of luminal breast cancer. We selected AGO2 and
GW182 antibodies against core RISC proteins since
AGO?2 is the most abundantly expressed AGO protein
in many cell types, including MCE-7 cells [30], and
GW182/TNRC6A has been shown to be the major bind-
ing partner for AGO2 [31]. We performed three inde-
pendent RIP experiment, collecting the IN, IP and FT
samples.

The efficiency of the AGO2 and GW182 antibodies in
IPs was confirmed by the enrichment of both proteins in
the IP fractions and their depletion in the FT fractions,
while the lack of precipitation of either AGO2 or
GW182 protein by control IgG confirmed the specificity
of antibodies (Fig. 1a). We also examined, in AGO2-IP
and GW182-IP, the enrichment of seven miRNAs highly
expressed in the MCF7 cell line [13]. As shown in Fig.
1b, all the analyzed miRNAs were significantly enriched
by AGO2 and GW182-IP compared to controls (p-value
<0.05, AGO2 or GW182-IP vs IgG-IP). As expected for
proteins present in the same complex, Western Blot
analysis confirmed the reciprocal co-immunoprecipi
tation of AGO2 and GW182 (Fig. 1c). Whole genome
and miRNA expression profiles, as determined by micro-
array analysis, gave rise to a novel dataset that is avail-
able through the NCBI GEO database (accession ID
GSE109667). As shown in Fig. 1d, the cluster analysis
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Fig. 1 RIP-Chip experiments overview. a and ¢ Western Blot analysis of proteins immunoprecipitated and co-immunoprecipitated with anti-AGO2
or anti-GW182 antibody (IP). IgGs in a) are the negative controls. IN and FT made up 1% of the cytoplasmic lysate used for each IP sample.
GW182 was specifically co-immunoprecipitated with AGO2 (c, left panel), and AGO2 was specifically co-immunoprecipitated with GW182 (c, right
panel). b Enrichment analysis of seven highly expressed miRNAs in anti-AGO2 and anti-GW182 IP compared to IgG-IP controls. d Average Linkage
Cluster analysis of mRNA and miRNA expression profiles of IP, IN-and FT samples from three independent experiments; distance is computed as
1- Correlation (Pearson). AGO2-IP and GW182-IP mRNA expression profiles are highlighted in blue and green, respectively. In mRNA expression
clustering, we considered all the 16,323 genes with a detected expression level in the samples considered. In miRNA expression clustering, we
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performed on whole genome expression profiles revealed
that the mRNA expression profiles of the AGO2-IP sam-
ples (blue cluster) were homogeneous and different from
the GW182-IP mRNA expression profiles (red cluster).
The miRNA expression profile clustering showed only
one homogenous cluster, the AGO2-IP sample cluster
(Fig. 1d, blue cluster). The comparison of AGO2-IP vs
IN expression profiles revealed the underrepresentation,
in the IP sample, of several miRNAs highly expressed in
IN samples, a fact that implies a lower correlation be-
tween IP and IN expression profiles (see Additional file 1).
On the other hand, GW182-IP and IN miRNA expres-
sion profiles were more similar to each other, and such
behavior explains the absence of a GW-IP cluster in
miRNA expression profile clustering.

We also characterized the two proteins’ behavior by
detecting the enriched genes in AGO2-IP and GW182
-IP. We observed that the most efficient comparison in
retrieving miRNA targets was the one between IP vs FT,
with respect to IP vs IN samples. Indeed, GSEA analysis
(see Additional file 2) showed more miRNA predicted
targets in IP vs FT enriched genes than in the IP vs IN
comparison. A detailed list of the enriched genes in

AGO2-IP vs FT and GW182-IP vs FT analyses is pro-
vided in Additional file 3, and an overview of their ex-
pression levels is shown in Additional file 4. We first
noticed that the intersection between the two sets of
enriched genes in AGO2 and GW182-IP showed a poor,
yet significant, overlap, as shown in Additional file 5.
Our list of enriched genes in the AGO2 IP vs FT com-
parison showed a statistically significant overlap with the
published list of 616 enriched genes for AGO2-IP in
MCE-7 cells [13]. Unfortunately, no high throughput
analysis results are vyet publicly available for any
anti-GW182 antibody, which makes it impossible to per-
form a similar comparison for enriched genes in
GW182-IP. The two sets of enriched/underrepresented
genes, named UP/LOW_AGO2 and UP/LOW_GW182,
were used, in the analysis described below, to select the
features capable of distinguishing the mRNA associated
with the AGO2 and GW182 proteins, respectively.

Expression-based variables used for characterizing
enriched genes in IP samples

To have better insight into the roles of the GW182 and
AGO?2 proteins in miRNA regulatory activity, and with
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the aim of selecting the most useful variables for distin-
guishing between enriched and underrepresented genes
in IP samples, we tested formulas including mRNA and
miRNA expression levels in IN samples and miRNA pre-
dicted binding sites on 3'UTR and coding regions of
mRNAs. Specifically, we considered 19 variables, all
computed by using features characterizing the mRNA
sequences and IN sample gene expression. Table 1 de-
scribes all the considered variables. The defined variables
display high correlations among each other, as shown in
the correlation matrix reported in Fig. 2a, where vari-
ables are specifically computed for the AGO2_IN1 sam-
ple. Analogous results were obtained when using the
expression profile information of other IN samples.
Three main clusters of highly correlated variables were
clearly visible, one that contains all the variables in-
cluded in the formula for the mRNA expression profile,
and the other two that relate to the presence of miRNA
binding sites in the coding region and 3’'UTR.

Enriched and underrepresented genes in anti-AGO2 RIP
are efficiently distinguished by miRNA binding sites in
mRNA coding regions weighted by miRNA expression

We first tested the performance of each of the 19 vari-
ables to distinguish the enriched genes (UP) in AGO2-IP
vs FT from the underrepresented (LOW) genes. We
computed the variables by using the expression profiles

Table 1 Definition of variables used to model miRNA activity
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from each individual anti-AGO2 RIP experiment and
performed a ROC analysis and a Wilcoxon test, using
the UP/LOW genes detected comparing AGO2-IP vs FT
as a reference set. Figure 2b and c¢ show the obtained
AUC values and the Wilcoxon-test p-values, both used
as an estimation of performance in distinguishing UP
genes from LOW genes. Similar results are shown in
Additional file 6, where the binding sites were predicted
by using different prediction tools. The Targetscan pre-
diction tool showed the best performance in distinguish-
ing the enriched genes. Thus, we decided to use it in any
further analyses to compute BS matrices. It was evident
that the features belonging to the cluster related to the
coding region length were the most efficient. Indeed, F6
and F8 variables were the best variables for distinguish-
ing between enriched and underrepresented genes in
anti-AGO2 RIP samples. F8 counts the number of bind-
ing sites in the coding region of the mRNA, while the
number of binding sites is weighted by the miRNA ex-
pression values in F6. Both F6 and F8 variables are
highly correlated with the L2 variable, which could have
been anticipated, since the longer the coding region is,
the higher the number of binding sites detected in the
region by any binding site prediction algorithm. Figure 3
clearly shows that F6, F8, and L2 variables assume lower
values for LOW_AGO2 genes with respect to all genes.
On the other hand, the variable with the next highest

Variable name Formula BS

F1 2iexpr(miRNA;) X BS; x expr(mRNA)) number in 3'UTR

F2 Yiexpr(miRNA) X BS; number in 3'UTR

F3 2 BSj X exprimRNA) number in 3'UTR

F4 2BS; number in 3'UTR

Fid Y exprimiRNA;) X dBS,j X expr(mRNAj) density in 3UTR

F2d YexprimiRNA) x dBS; density in 3'UTR

F3d 2idBS; x expr(mRNA)) density in 3'UTR

Fad 2,dBS; density in 3'UTR

F5 YexprimiRNA) x BS; x expr(mRNA)) number in coding region
F6 2iexpr(miRNA;) X BS; number in coding region
F7 2BSj X expr(mRNA) number in coding region
F8 2iBSj number in coding region
F5d YiexprimiRNA) x dBS;; x expr(mRNA) density in coding region
Fed Y exprimiRNA) x dBS;; density in coding region
F7d ,dBS; X expr(mRNA) density in coding region
F8d 2,dBS;; density in coding region
F9 expr(mRNA) Not applicable

L1 length of 3'UTR Not applicable

L2 length of coding region Not applicable

The column BS provides details about the miRNA predicted binding sites used to compute BS; (the binding sites matrix). For each variable, the Formula defines

the values associated to each mRNA;
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Fig. 2 Behavior overview of variables listed in Table 1. a Heatmap representation of the correlation block matrix of the variables computed with
AGO2_INT miRNA and mRNA expression profiles. The reported numbers are the correlation values, expressed in the range [— 100:100]. b ROC-
AUC values obtained by classifying enriched/underrepresented genes associated with the variables computed with each IN expression profile. ¢
Wilcoxon test p-values (log10) obtained by comparing the variable values associated with the enriched/underrepresented gene sets. In both b)
and c), the variables computed with the three AGO2 IN profiles were used to distinguish enriched and underrepresented genes in AGO2-IP vs FT.
The variables computed with the three GW182 IN profiles were used to distinguish enriched and underrepresented genes in GW182-IP vs FT.

performance, not belonging to the L2 cluster, was the
F4d variable. Figure 3 shows that F4d assumes higher
values for UP_AGO2 with respect to all genes. The be-
havior of F4d promised to be synergistic with F6 in dis-
tinguishing UP and LOW genes, and, therefore, we
further discuss it in a separate section.

Next, we verified that the high performance of vari-
ables F6 and F8 was specifically due to the effects of the
miRNA expression profile in the formula. Specifically,
we considered 1000 simulated miRNA expression pro-
files, as obtained by assigning the original expression
profile to 50 random miRNAs, chosen from among all
the miRNAs expressed in the sample, and 1000 simu-
lated miRNA expression profiles, as obtained by shuf-
fling the original 50 miRNAs found to be highly
expressed (top 50 expressed). The first block of simula-
tions was less conservative, and its aim was to test
whether the identity of the top 50 expressed miRNAs
was determinant for reaching the original performance;
it was the only block of simulations meaningful for test-
ing the performance of the F8 variable. The second

block of simulations was more conservative, and its aim
was to assess whether the specific expression profile as-
sociated with the top 50 miRNAs was determinant. In
both cases, the performance of the simulated F6 and F8
variables was significantly lower than the F6 and F8 vari-
ables obtained by including the original miRNA expres-
sion profile (see Fig. 4a). We also tested simulations that
were more conservative by holding the expression pro-
file of the highly expressed miRNAs fixed while shuffling
the expression of the remaining ones. Figure 4a shows
the results of these simulations obtained by fixing up to
five top expressed miRNAs, and Additional file 7 con-
tains the results obtained by serially holding all the top
50 miRNAs fixed. As the number of the top expressed
miRNAs increased, the F6 variable performance became
closer to that obtained with the original miRNA expres-
sion profile; in addition, the higher the number of miR-
NAs fixed, the closer it got to the original performance
level. As a result, we concluded that the miRNA expres-
sion profile is crucial for distinguishing AGO2-asso
ciated miRNA targets, especially the expression profile
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of the first top expressed miRNAs, and that the most
relevant miRNA binding sites are the ones found in the
coding region.

Enriched and underrepresented genes in anti-GW182 RIP
are efficiently distinguished by coding region length

The performance of each of the 19 variables was tested
to distinguish between the enriched genes in GW182-IP
vs FT and the underrepresented ones. Figure 2b and c
show that the features belonging to the cluster related to
the coding region length are the most efficient at distin-
guishing between enriched genes in anti-GW182 RIP
samples. In this case, the best feature for distinguishing
the enriched genes in GW182-IP samples was the coding
region length of the mRNA, i.e., the L2 variable, with a
surprisingly very high performance (average AUC > 0.9).
The average AUC associated with the F6 variable was
also very high (average AUC=0.87); however, the
miRNA expression profile was not crucial for reaching
such high performance since a shuffled expression pro-
file was not significantly deficient in distinguishing the
enriched genes (Fig. 4b, Additional file 7). In Fig. 3, we
compare the ECDF of the coding region length of the

UP and LOW genes in the anti-GW182 RIP experi-
ments. The separation between UP and LOW genes in
anti-GW182 RIP samples is evident in the coding region
length values, though less in the 3'UTR length values.
Wilcoxon tests were performed to compare the 3'UTR
and coding region length of GW182_UP and DOWN
genes with all gene lengths, and gave highly significant
p-values. Anti-GW182 RIP gene expression profiles,
which could be used to support our hypothesis that the
mRNA coding region length is a relevant feature for
GW182 activity, are not available, and none of the
enriched group of genes reported in the literature
regards breast cancer cells. Nevertheless, we considered
the IP-enrichment results of 7820 genes published by
Landthaler and collaborators [14], where the authors
generated HEK293 cell lines stably expressing epitope-
tagged human AGO and GW proteins and used such
cells to detect enriched mRNA in miRNA-containing ri-
bonucleoprotein particles through a microarray analysis.
They found a high overlap among the enriched targets
of the AGO and GW182 family proteins by analyzing
the top immunoprecipitated transcripts associated with
the four AGO proteins vs the ones associated with the
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three GW182 proteins. Differently from [14], we consid-
ered the non-overlapping enriched genes, and we found
that the mRNAs enriched only in GW182-IP had signifi-
cantly longer 3'UTR and coding regions (see
Additional file 8).

SVM models improve performance in distinguishing
enriched genes

We tested whether a combination of two variables could
significantly improve the classification of the perform-
ance of enriched/underrepresented genes. An SVM algo-
rithm model was trained with each pair of features, and
the AUC results for each pair are reported in Fig. 5. The
best performance in predicting AGO2-bound mRNAs
was associated with the F6-F4d variable pair, with an

AUC significantly higher than the one obtained with F6
only (AUC = 0.78; DeLong’s test p-value < 0.05). The F4d
variable takes into account the density of the binding
sites in the 3’'UTR, as predicted for the top 50 expressed
miRNAs. The F4d variable performance by itself (AUC
=0.68) is the highest among the features not highly cor-
related with the F6 variable. We checked whether the
identity of the top 50 expressed miRNAs was crucial for
reaching such a performance by randomly changing the
identity of the 50 miRNAs in the F4d formula, and hold-
ing the expression of an increasing number of top miR-
NAs fixed. The results are plotted in Fig. 4c and
Additional file 7, and they show that, when using ran-
domly chosen miRNAs, the performance is significantly
lower than the one obtained with the true top 50
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expressed miRNAs. Differently from what was obtained
for the F6 variable, to reach the performance obtained
with the original miRNA expression profile, the expres-
sion of almost all the miRNAs had to be held, meaning
that the identity of the top 50 miRNAs is substantially
important to the F4d variable’s performance.

Analogous simulations were done for the predictions
obtained with the SVM model trained with the F6 and
F4d variables, shown in Fig. 4d and Additional file 7.
The results show that several miRNAs had to be fixed in
order to reach a performance similar to that obtained
with the original miRNA expression profile. Finally, we
tested how slightly different expression profiles, such as
the ones obtained by experiment replica, may affect
enriched/underrepresented gene classification. Specific-
ally, we used an SVM model trained with features com-
puted with miRNA expression profiles from one IN
sample to classify genes with higher vs lower IP/FT ra-
tio, computed in each of the three experiments (see
Additional file 9). Our results show that higher perform-
ance was always obtained when predictions of IP/FT ra-
tio values in one experiment were obtained with the

miRNA expression profile belonging to the IN sample
expression profile of the same experiment.

The pair of variables that best predicted the GW182-
bound mRNAs was the L1 and L2 pair, i.e., the length of
the 3’'UTR and the coding region, respectively, but the
improvement in the AUC value was not statistically sig-
nificant (DeLong’s test p-value > 0.05).

Discussion

We analyzed the activity of two endogenous interacting
proteins, AGO2 and GW182, in MCEF-7 cell cytoplasm.
Both are involved in RISCs, and we analyzed the RNA
co-immunoprecipitated with the selected proteins,
which was expected to be enriched in genes involved in
endogenous miRNA regulatory activity. Data from
RIP-Chip experiments served to model miRNA activity
by assigning variables based on miRNA expression pro-
files to each mRNA target, searching for the ones that
would better distinguish the enriched genes in RIP sam-
ples. We expected that the detected variables could re-
veal which information was relevant for modeling
miRNA activity and the RISC proteins’ roles.
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Our results show that mRNAs co-immunoprecipitated
with the two proteins have different characteristics. Such
a finding might appear in contrast with a previous ana-
lysis performed in HEK293 cell lines, in which
tagged-AGO2 or tagged-GW182/TNRC6A proteins we
re stably overexpressed and the AGO protein family and
the GW182 protein family were found to be associated
with highly similar sets of transcripts [14]. The low
consistency with this previous study might indicate a dif-
ferent composition of RISCs in MCF-7 cells than
HEK293 cells. Moreover, analysis under physiological
conditions vs overexpressed AGO or GW182 might also
explain the differences, and the fact that the authors an-
alyzed the top immunoprecipitated transcripts for the
whole AGO family (AGO1-4) vs the GW182 family
(TNRC6A-C) might have mitigated RNA enrichment
differences with respect to what we obtained through
the comparison of two specific proteins, i.e., AGO2 and
TNRC6A. Indeed, it has been reported that AGO1 and
AGO?2 proteins interact with a distinct set of miRNAs
[24] and, as a consequence, with different mRNA tar-
gets, whereas the GW182/TNRC6A protein interacts
with the whole AGO protein family [2]. This evidence
also justifies the high similarity we found between the
miRNA expression profiles of GW182-IP and FT, in
contrast with more specific miRNA expression profiles
associated with the AGO2-IP and FT samples (Fig. 1d).
Furthermore, although a high degree of redundancy
among the members of each protein family has been re-
ported, it cannot be excluded that the use of different
GW182 antibodies and/or slightly different experimental
conditions, e.g., buffer stringency, might result in a dif-
ferent enrichment of RNAs in the immunoprecipitated
samples. To this end, a systematic analysis of the data
obtained using the same antibody in the same cell back-
ground, or the use of methods based on biochemical ap-
proaches, like the one described by Hauptmann and
coworkers [16], might definitively clear up this point.

We found that the mRNAs co-immunoprecipitated
with the AGO2 protein can be distinguished from the
underrepresented mRNAs by considering the number of
miRNA binding sites in the coding region, weighted by
miRNA expression level. In order to improve the classi-
fication performance, we also trained an SVM with two
features at a time, and we found that the additional fea-
ture to be considered was the density of the binding sites
predicted in the 3’'UTR of mRNA. We then performed
simulations by shuffling the miRNA expression profiles
in order to detect which miRNAs are relevant to com-
posing the features used to distinguish enriched and un-
derrepresented genes. When the performance obtained
by randomly shuffling a set of miRNAs is significantly
lower than the performance obtained with the original
miRNA expression profile, we can assess that the set of
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miRNAs replaced is relevant in the classification. Results
show that the only relevant miRNAs, when considering
binding sites in the mRNA coding regions, are the top
two to three of those expressed. On the contrary, almost
all of the top 50 expressed miRNAs are relevant when con-
sidering the binding sites in the 3’'UTR of mRNA, with a
prominent exception being the top expressed one, ie.,
hsa-miR-21-5p. The expression level detected for hsa-
miR-21-5p is very high, by itself covering 60% of the total
miRNA expression profile, and we suppose that its distinct-
ive behavior is related to saturation effects in miRNA activ-
ity, which we plan to investigate in further studies.

In addition to simulated miRNA expression profiles, we
tested how switching miRNA expression profiles across our
experimental replicates affects the performance of the clas-
sification algorithm. We found that even slight differences
in the expression profiles of the single replicate IN samples
gave rise to differences in enriched vs underrepresented
gene classification, leading to the conclusion that the com-
bination of mRNA and miRNA expression profiles from
the same experiment gives the best performance.

On the other hand, we clearly observed that the
mRNA co-immunoprecipitated with the GW182 protein
was highly enriched with genes with longer coding re-
gions. In this case, enriched/underrepresented gene clas-
sification does not depend on the miRNA expression
profile, but only on 3’'UTR and coding region lengths.
We confirmed this result by analyzing the data from
Landthaler and coworkers [14]. Our interpretation is
that GW182 complexes preferentially sequester the lon-
ger mRNAs in the process of populating GW/P-bodies.

While functionally diverse RISCs lacking GW182 have
been described [32], the interaction between mRNAs
and GW182 is reported to be mediated by the miRNA
and AGO proteins and, so far, no direct interaction has
been demonstrated between GW182 and mRNA. Re-
cently, Elkayam and coauthors [33] showed that, differ-
ently from AGO proteins, which have a single
GW182-binding site, GW182 can recruit up to three
copies of AGO proteins via its three distinct GW motifs.
We believe that such a feature supports our results,
since the longer the mRNA is, the higher the number of
miRNA binding sites and the probability that RNA
-loaded AGO proteins would find cooperative binding
sites within the right distance to interact with the same
GW182 protein. In this case, the model of single binding
sites weighted by miRNA expression profile is probably
oversimplified, and further analysis is required to include
collaboration effects. To our knowledge, the involvement
of mRNA length in GW182 recruitment is a novel ob-
servation that may contribute to shedding light on the
different activities of the AGO2 and GW182 proteins in
various RISCs and/or in diverse cellular districts such as
GW/P-bodies.
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Conclusions
In this work, we aimed to unravel RISC activity by ana-
lyzing a novel RIP-Chip data set obtained by the immu-
noprecipitation of two RISC proteins, AGO2 and GW
182. We analyzed the overexpressed genes in the
anti-AGO2 and anti-GW182 RIP samples vs the respect-
ive FT samples, and we revealed different features char-
acterizing the enriched genes in the two data sets.
AGO2-associated mRNAs are characterized by a high
number of binding sites in the coding region for top
expressed miRNAs and by a high density of binding sites
in the 3'UTR region. On the other hand, GW182-asso
ciated mRNAs are characterized by long coding regions.
These different characteristics may underline the different
roles played by the selected proteins in the RISC machin-
ery activity. Our data confirm that the anti-AGO2 RIP
gives an accurate picture of which RNA is involved in
miRNA regulatory activity. Regarding the anti-GW182
RIP, data show no significant involvement of miRNA ex-
pression profiles in GW182-associated mRNA selection,
at least within a simplified model of single binding sites
weighted by miRNA expression profile. Our results sup-
port the hypothesis that, after being recruited by the
miRNA machinery, only the mRNAs with longer coding
regions are destined to be stored in GW/P bodies, while
shorter mRNAs are most likely processed in different ways
that lead to degradation rather than storage.

Additional files

Additional file 1: Analysis of mIRNA expression in AGO2 and GW182-IP
samples. a) MiRNA expression level in AGO2-IP samples (average value
from the three performed experiments) vs the expression level in IN sam-
ples (average value from the three performed experiments). The Pearson
correlation values reported on the top of the picture were computed by
using all the expressed miRNA, and the top 100 or 50 expressed miRNAs.
The colored points refer to miRNA that have been validated by RT-PCR
data. Green points refer to hsa-miR-141-3p, hsa-miR-21-5p, hsa-let-7f-5p,
hsa-miR-16-5p, hsa-miR-24-3p, hsa-miR-27a-3p, hsa-miR-23a-3p. The red
point refers to hsa-miR-1260a. b) Comparison of IP/IN ratios obtained by
RT-PCR data (normalized by IgG control data) and microarray data (nor-
malized by Quantile normalization). The underrepresentation of hsa-miR-
1260a was confirmed by RT-PCR. ¢) and d) Analysis of GW182-IP samples
performed as described in a) and b). (PDF 47 kb)

Additional file 2: Gene set enrichment analysis results with seven top
expressed miRNA predicted targets sets. Predicted targets of miRNAs
(column 1) were predicted with three different target prediction tools
(column 2). The total number of predicted targets is indicated in column
3. Five lists of genes were analyzed. For each list of genes the number of
genes in common with the predicted targets and the associated
hypergeometric test pvalue are provided. The total number of genes
considered in the analysis is 16,392. The five considered lists are: a list of
genes enriched in AGO2 IP sample from [13]; lists of genes enriched in
AGO2 IP vs IN and IP vs FT samples; lists of genes enriched in GW182 IP
vs IN and IP vs FT samples. (XLS 64 kb)

Additional file 3: Summary of enriched and underrepresented genes.
Summary of enriched and underrepresented genes in AGO2 and GW182-
IP vs FT comparisons performed by SAMR (column 2-3). The enrichment
results obtained with the REA algorithm are reported in columns 4-5.
Columns 6 and 7 report the 3'UTR and Coding region (CR) lengths
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respectively. In columns 8-21 we report the number of binding sites pre-
dicted by Targetscan in the 3'UTR and the Coding region of seven highly
expressed miRNAs. (XLS 294 kb)

Additional file 4: Overview of gene expression levels in IP and FT
samples. Focus on the enriched genes in AGO2-IP and GW182-IP vs FT
samples. The reported expression levels are computed as the average
values of the three performed experimental replicates. (PDF 1423 kb)

Additional file 5: Venn diagram of lists of enriched genes. The considered
lists are: AGO2-IP (UP_AGO?2 set), the list of enriched genes detected by Fan
et al. [13] (UP_AGO2_Fan) and our list of enriched genes in GW182-IP sam-
ple (UP_GW182). The reported p-values refer to the closest intersection set
of genes and are computed with one tail Fisher-test. (PDF 34 kb)

Additional file 6: Wilcoxon test p-values summary. Wilcoxon test p-values
(log10) obtained by comparing the variable values associated with the
enriched/underrepresented genes sets. Three different miRNA target predic-
tion tools (Targetscan, PITA and miRanda) were used to compute the neces-
sary binding sites (BS) matrices. The BS matrices used to compute the p-
values in the last panel were obtained by considering BS predicted by at
least two of the three prediction tools. In each panel, the variables com-
puted with the three AGO2 IN profiles were used to distinguish enriched
and underrepresented genes in AGO2-IP vs FT and the variables computed
with the three GW182 IN profiles were used to distinguish enriched and un-
derrepresented genes in GW182-IP vs FT. (PDF 133 kb)

Additional file 7: Summary of miRNA expression profiles shuffling
effects. ROC analysis was performed to evaluate the performance of F6
and F4d variables, computed with simulated miRNA profiles, in
distinguishing enriched/underrepresented genes in AGO2 or GW182-IP
samples. Each panel reports the AUC values obtained with simulated vari-
ables. Each boxplot refers to AUC values obtained with a specific set of
simulations, where the expression profile of a set of miRNAs was shuffled.
The boxplot in the center was obtained by shuffling all miRNAs. The box-
plots from the center to the right refer to simulations where all the miR-
NAs were shuffled with the exception of n top expressed miRNAs, n
increasing in the right direction. The boxplots from the center to the left
refer to simulations where all the miRNAs were shuffled with the excep-
tion of n low expressed miRNAs, n increasing in the left direction. The
green horizontal line defines the AUC value obtained with the original
miRNA expression profile. Boxplots are colored in red if less than 5% of
the simulations reach the AUC original value, green otherwise. This file
contains the following simulation results: A. Simulated F6 variable distin-
guishing AGO2 enriched vs underrepresented genes. B. Simulated F6 vari-
able distinguishing GW182 enriched vs underrepresented genes. C.
Simulated F4d variable distinguishing AGO2 enriched vs underrepre-
sented genes. D. Simulated F6&F4d SVM model distinguishing AGO2
enriched vs underrepresented genes. (PDF 555 kb)

Additional file 8: Empirical Cumulative Distribution Function of 3'UTR
and coding region length of IP-Enriched genes. Enriched genes in AGO
(1-4) and in GW182 protein family IP selected by considering log2 IP-
Enrichment of transcript greater than 1. Data are downloaded from Land-
thaler et al. [14]. The Empirical Cumulative Distribution Function of the
3'UTR length (top) and coding region length (bottom) of genes enriched
exclusively by AGO-IP (red line), GW182-IP (blue line) and both IPs (black
line) are reported. The reported p-value is computed by performing a Wil-
coxon test to compare the length distributions of genes enriched exclu-
sively in AGO-IP and in GW182-IP. (PDF 145 kb)

Additional file 9: Summary of miRNA expression profiles switch between
experiment replicas. ROC analysis of F6&F4d SVM model trained with
variables calculated with miRNA expression profiles from each of the three
anti-AGO2 RIP experiments. SVYM models were used to classify the top 1000
and the bottom 1000 genes with respect to the IP/FT mRNA expression ra-

tio, computed for each of the three AGO2 RIP experiments. (PDF 653 kb)
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3'UTR: 3" untranslated regions; AUC: Area under the (ROC) curve;

ECDF: Empirical Cumulative Distribution Function; FT: Flow-through;
miRNA: microRNA; RIP — Chip: RIP coupled to microarray; RIP: RNA-binding
protein immunoprecipitation; RISC: RNA-induced silencing complex;

ROC: Receiver operating characteristic; SVM: Support vector machine
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