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A B S T R A C T

We describe the dynamics of quantum discord of two interacting spin-1/2’s subjected to controllable time-dependent magnetic fields. The exact time evolution of
discord is given for various input mixed states consisting of classical mixtures of two Bell states. The quantum discord manifests a complex oscillatory behaviour in
time and is compared with that of quantum entanglement, measured by concurrence. The interplay of the action of the time-dependent magnetic fields and the spin-
coupling mechanism in the occurrence and evolution of quantum correlations is examined in detail.

1. Introduction

Quantum correlations became in the last two decades a field of large
interest, due to their crucial role played in the quantum information
science [1,2]. Much effort and work are presently devoted to char-
acterize and quantify the quantum correlations, like entanglement,
steering and discord existing in multipartite quantum states [3–6].
These quantum correlations are considered useful physical quantum
resources with promising applications in quantum information proces-
sing and transmission tasks and protocols. It is well known that
quantum entanglement does not describe all the properties of non-
classical nature of the quantum correlations. In this respect, quantum
discord has been proposed as a measure of quantum correlations, be-
yond entanglement [7,8], which can also exist in separable mixed
states. The physical understanding of quantum discord constantly ad-
vanced and several operational interpretations to discord have been
proposed [9,10].

It is nowadays possible to realize physical scenarios where quantum
coherence turns out to be robustly protected against detrimental clas-
sical and quantum uncontrollable sources. This circumstance has
spurred a growing interest toward the quantum dynamics of closed
bipartite physical systems subjected to controllable time dependent
external classical fields. When the corresponding Hamiltonian model is
both non trivial and exactly solvable, one might indeed undertake a
systematic, hopefully exact, study of the unitary time evolution of
correlations get established in the closed system, not traceable back to

classical physics [11–16]. To follow and to interpret, for example, the
appearance, time variation and death at finite time instants of en-
tanglement and quantum discord is of relevance from both a theoretical
and applicative point of view. On the one hand, such a knowledge may
significantly contribute to highlight the meaning of crucial concepts
like non locality and dechoerence and to capture their connection with
properties experimentally exhibited by the system. On the other hand,
due to such an interpretative potentiality, it provides the key to clarify
the role of quantum correlations as resources for quantum technologies.

In the previous paper [11] the authors studied the behaviour of two
coupled spin-1/2’s interacting with a time-dependent magnetic field.
An exact time evolution of the compound system has been obtained and
several physically relevant quantities have been evaluated, in particular
the concurrence as a measure of the intensity of entanglement. In Refs.
[17,18] the evolution of quantum discord and entanglement of a two-
mode Gaussian state, namely the squeezed thermal state, in contact
with local thermal reservoirs was investigated. It was shown that the
discord can increase in time above its initial value in a special situation.
In this work we study the evolution of discord of the physical system
described by the model introduced and analyzed in Ref. [11]. It is worth
to be mentioned that due to the C2-symmetry with respect to the
quantization axis z, possessed by this model, it is possible to solve ex-
actly the dynamics of the considered system, by reducing the problem
to two independent problems of single spin-1/2.

We will show that, thanks to peculiar symmetries of the
Hamiltonian model, the states which describe the evolution of the
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considered system keeps the form of X-states. Consequently in order to
determine the behaviour of the quantum discord we make use of the
algorithm known for its evaluation in the case of X-states [19,20]. Our
analysis discloses the existence of sudden death and birth of both
concurrence and quantum discord. In addition, we highlight the inter-
play between externally acting time-dependent magnetic fields and the
internal coupling mechanism between the two spins in the emergence
and evolution of quantum discord. This novelty provided by the be-
haviour of the mentioned nonclassical correlations - entanglement and
discord - could enable a better understanding and description of the
intrinsic quantum nature of the considered system.

The paper is organized as follows. In Section 2 we introduce the
quantum discord for X-states, which is a measure of all quantum cor-
relations in the bipartite state, including entanglement. In Section 3 we
introduce the time-dependent models of two interacting spin-1/2’s
[11]. In Section 4 we exactly describe the evolution of quantum discord
and concurrence, considering various input mixed states consisting of
classical mixtures of two Bell states. It is emphasized the role played by
the magnetic fields in determining the occurrence of quantum corre-
lations between the two spins. The quantum discord manifests a com-
plex oscillatory behaviour in time and it is compared with that of
quantum entanglement, measured by concurrence. It is shown that for
pure initial states the two types of correlations manifest a similar be-
haviour, however for an initial mixed state they exhibit remarkable
differences. Final remarks and conclusions are given in Section 5.

2. Quantum discord of X-states

The main feature of the quantum world, discriminating it from the
classical one, is the possibility of representing a pure state as super-
position of pure states. Indeed, while a quantum state of a bipartite
system is not necessarily writeable as a tensor product of two in-
dependent pure states of the two subsystems, a pure state of a classical
bipartite system turns out to be always factorizable since the super-
position principle does not hold in this context [2]. This crucial dif-
ference leads to the following remarkable physical consequences. (1)
Contrary to what happens in classical Physics, the knowledge that a
non-factorizable state of a quantum bipartite system is pure does not
lead to pure states of the two subsystems. (2) Non-factorizable states of
a quantum bipartite system lead to non-locality effects christened by
Schrödinger as entanglement.

Quantum entanglement represents one of the most important re-
sources in quantum information [1,3]. At the same time, there exist
quantum correlations, different from entanglement, with potential ap-
plications in quantum information tasks, for instance quantum non-
locality without entanglement [3,21,22]. Likewise, it was shown that
there exist separable states which can produce a speeding of some
protocols, in comparison to the classical states [23–26].

Such a kind of nonlocal correlation, introduced by Ollivier and
Zurek [7,8], is quantum discord, that received a lot of attention in the
recent years [8,19,27–37]. Quantum discord is defined as the difference
between two different quantum analogues of classically equivalent
expressions of the quantum mutual information, which is a measure of
all correlations in a quantum state. In a bipartite state discord measures
the total quantum correlations, without restricting to entanglement.
Discord coincides with the entropy of entanglement for pure entangled
states. Some mixed separable states can have non-zero discord, so that
it is considered to represent a characteristic of the quantumness of such
separable states.

The measure of the total correlations in a bipartite system AB is
given by the quantum mutual information [38]

= + −ρ S ρ S ρ S ρ( ) ( ) ( ) ( ).AB A B ABI (1)

where = −S ρ ρ ρ( ) Tr( log )2 is the von Neuman entropy. ρAB represents
the density operator of the compound system +A B, whilst

=ρ ρTr ( )A B
B A

AB( )
( ) is the reduced density matrix of the subsystem A (B).

Quantum discord was determined [8,28] by using a measurement-
based conditional density operator in order to generalize the classical
mutual information. The considered von Neumann-type measurement
consists of one-dimensional local projectors summing to identity. The
quantum mutual information corresponding to the quantum condi-
tional entropy associated to a measurement

∑⎛

⎝
⎜

⎞

⎠
⎟ =S ρ B p S ρ( ),k

k
k k

(2)

is given by [8,39]

= −ρ B S ρ S ρ B( ) ( ) ( ).k
A

kI (3)

Here Bk is the set of the projectors which perform the measurement on
the subsystem B and = ⊗ ⊗p I B ρ I BTr( ) ( )k k k is the measurement
probability for the kth projector. We may write, indeed, the conditional
density operator ρk, denoting the reduced density operator of subsystem
A after the local measurements and which is associated with the mea-
surement outcome k, in the following form (I denotes the identity op-
erator on the subsystem A):
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⎠

⎛
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(4)

Quantum discord is interpreted as a measure of quantum correla-
tions since it is defined by the difference between the mutual in-
formation ρ( )I and the classical correlations ρ( )C

= −D ρ ρ ρ( ) ( ) ( ).I C (5)

The measure of bipartite classical correlations =ρ ρ B( ) sup ( )B kkC I

(sup is taken over all possible von Neumann local measurements Bk)
represents the quantum mutual information induced by measurement.

When a bipartite system is in a pure state, entanglement and
quantum discord give the same information on quantum correlations,
while in a mixed state there might be quantum correlations - discord,
even if the two subsystems are not entangled. Quantum discord has the
peculiarity to be strictly related to the subsystem under measurement to
investigate the existence of quantum correlations. This means that for a
bipartite system composed by two subsystems A and B, we speak of
quantum discord with respect to the subsystem A D, A, and B D, B. It is
useful to remind that quantum discord is zero for a general state of a
bipartite system, =D ρ( ) 0B AB , if and only if the state can be written as

∑ ∑= ⊗ = ⩾ρ p ρ i i p p, 1, 0,AB
i

i A
i

B i
i i

(6)

that is if there exist an orthonormal basis for the subsystem with respect
to which we calculate the quantum discord (B in this case) such that its
state results diagonal.

The difficulty in calculating quantum discord consists in the com-
plexity of the maximization procedure for computing the classical
correlations, due to the fact that maximization has to be performed over
all possible von Neumann measurements on party B. Analytical ex-
pressions for classical correlations and quantum discord are known for
two-qubit Bell diagonal state and for some kinds of two-qubit X states
[19,28].

A generic X-state of a system of two spin-1/2, A and B, may be cast
in the following form

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
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⎟

ρ

ρ ρ
ρ ρ
ρ ρ

ρ ρ
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The unit trace and positivity conditions read
∑ = ⩾= ρ ρ ρ ρ1,i ii1

4
11 44 14

2 and ⩾ρ ρ ρ22 33 23
2, assuming in general

=ρ ρ eiϕ
14 14 14 and =ρ ρ eiϕ

23 23 23. It is easy to show [40–45] that with
the help of the local unitary transformation ⊗U UA B, such that
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the generic entry ρij ( ≠i j) becomes ρij . This means that ⊗U UA B
turns ρX into a density matrix whose entries are real and non-negative.
This property is useful for the calculation of the quantities of interest in
this paper - quantum correlations - since they are all invariant under
local unitary transformations.

Thus, it is possible to parametrize the generic X-state just with five
parameters in the following way

=
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Such a writing can be represented through the Bloch normal form
[20,44,46–48,63,64]

= ⎡
⎣⎢
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with the two Bloch vectors = rr (0, 0, ) and = ss (0, 0, )
( =σ σ σ σ( , ,x y z) are the standard Pauli matrices). We underline that if
r= s=0, ρ becomes the Bell diagonal state.

As a measure of entanglement we shall use Wootter’s concurrence
(entanglement of formation [65] is a monotonically increasing function
of the concurrence), which can be calculated by using the eigenvalues
of ∼ρρ , where = ⊗ ⊗∼ ∗ρ σ σ ρ σ σy y y y. The eigenvalues of ∼ρρ for the
state (9) are
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and the concurrence is given by

= − − − −C ρ λ λ λ λ λ λ λ λ( ) max{2max{ , , , } , 0}.1 2 3 4 1 2 3 4

(11)

For fixed r and s, the previous states and their corresponding con-
currence depend on three parameters.

For two-qubit X states with density matrices of the form (9), the
quantum discord can be computed analytically according to the pro-
cedure elaborated in Refs. [19,20], and shortly described in the fol-
lowing. The quantum mutual information can be expressed in the form

= + + + + ++ + − − + + − −ρ S ρ S ρ u u u u v v v v( ) ( ) ( ) log log log log ,A B
2 2 2 2I
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with

⎜ ⎟

⎜ ⎟

= + = + = − − ⎛
⎝

− ⎞
⎠

− + ⎛
⎝

+ ⎞
⎠

⩽ ⩽

S ρ f r S ρ f s f t t t

t t t

( ) 1 ( ), ( ) 1 ( ), ( ) 1
2

log 1

1
2

log 1 , 0 1

A B
2

2
(13)

and
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being the two eigenvalues of ρX in Eq. (9).
After performing the von Neumann measurement =B i, 0, 1i for the

subsystem B, one obtains the ensemble ρ p{ , }i i and then the classical
correlations ρ( )C can be evaluated by
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where

= +S ρ B p S ρ p S ρ( ) ( ) ( ).i 0 0 1 1 (16)

According to Refs. [19,20] the minimum of the quantum conditional
entropy (16) has to be taken over the following expressions:
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Finally, Li [20] formulated the following
Theorem: For any state ρ of the form (9), the classical correlations

of ρ are given by

= −ρ S ρ S S S( ) ( ) min{ , , },A
1 2 3C (20)

where S S S, ,1 2 3 are defined by Eqs. (17)–(19) respectively. The
quantum discord is then given by

= −D ρ ρ ρ( ) ( ) ( ),I C (21)

with ρ( )I given by Eq. (12).
The same results are obtained by generalizing von Neumann mea-

surements to POVM [19].

3. Hamiltonian model

We are interested in studying analytically the time evolution of the
quantum discord exhibited by a two-interacting-spin-1/2 system when
the Hamiltonian governing the dynamics is time-dependent. Such a task
turns out to be hard for two important reasons. First, as highlighted in
the previous section, analytical expressions for the QD are possible only
for X-states and, in general, an initial X-state of two spin 1/2’s does not
keep the X-structure in successive time-instants. To this end, thus, we
look for a non-trivial and physically relevant two-spin-1/2 time-de-
pendent model accomplishing the request to leave the X-structure of an
initial state unchanged. That is, a model for which an initial X-state
evolves non-trivially in time remaining an X-state. Secondly, we know
that non-trivial exactly solvable time-dependent models of interacting
qudits are very rare and difficult to be found. However, quite recently
an interesting time-dependent model of two interacting spin-1/2’s, with
a clear and transparent physical meaning, satisfying the two previous
requirements has been introduced [11]. Such a model, examined in
detail and solved in [11], reads:

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂
̂ ̂

= + + + + +

+

H ω t σ ω t σ γ σ σ γ σ σ γ σ σ γ σ σ

γ σ σ

ℏ ( ) ℏ ( )z z
xx

x x
yy

y y
zz

z z
xy

x y

yx
y x

1 1 2 2 1 2 1 2 1 2 1 2

1 2 (22)

where ̂ ̂σ σ,i
x

i
y and ̂σi

z ( =i 1, 2) are the Pauli matrices. The matrices are
represented in the standard two-spin basis ordered as follows

+ + + − − + − −{ , , , } ̂ ± = ± ±σ( )z .
According to the symmetry-based argumentations reported in Ref.
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[11], the time evolution operator, solution of the Schrödinger equation
=i U HUℏ ̇ , may be formally put in the following form

=
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Φ Φ

Φ Φ

Φ Φ

Φ Φ
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where
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.a b a b
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a b a b
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/ / / / (24)

The condition =U (0) is satisfied by putting =±a (0) 1 and
=±b (0) 0. It is worth to note that ≡± ±

±a t a t e( ) ( ) iϕ t( )a and
≡± ±

±b t b t e( ) ( ) iϕ t( )b are the time-dependent parameters of the two
evolution operators

= ⎛
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±
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±
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± ±U e
a e b e
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,iγ t

iϕ iϕ

iϕ iϕ
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a b
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solutions of two independent dynamical Cauchy problems of fictitious
single spin-1/2, namely = =± ± ± ± ±i U H U Uℏ ̇ , (0) , with

⎜ ⎟= ⎛
⎝ −

⎞
⎠

±±
± ±

±
∗

±
H

t
t

γ
Ω ( ) Γ

Γ Ω ( )
,zz

(26)

where

= ± = ∓ − ± +± ±t ω t ω t γ γ i γ γΩ ( ) ℏ[ ( ) ( )], Γ ( ) ( ).xx yy xy yx1 2 (27)

Thus, it means that the solution of the dynamical problems of the
two interacting spin-1/2’s is traced back to the solution of two in-
dependent problems, each one of single (fictitious) spin-1/2.

It is possible to convince oneself that =ρ ρ(0) X evolves keeping the
X-structure at any time instant. Thus, preparing our two-spin system in
the X-state (7), at any subsequent time instant =ρ t U t ρ U t( ) ( ) (0) ( )† is
still an X-state,U t( ) being the operator defined in Eq. (23). The proof is
based on the following argument reported in Ref. [11].

The property exhibited by ρ t( ) is due to the special structure of the
time evolution operator which, in turn, is determined by the symmetry
properties of the Hamiltonian. The C2-symmetry with respect to the z-
direction, possessed by the Hamiltonian, indeed, causes the existence of
two dynamically invariant Hilbert subspaces related to the two eigen-
values of the constant of motion ̂ ̂σ σz z

1 2 . Thus, every state which does not

mix the two subspaces at the initial time instant, like the X-states, will
keep this property at any following time instant. This fact implies that,
being able to calculate analytically the quantum discord for a generic X-
state, we are able to calculate exactly its general time-dependent ex-
pression for our model. Such a general analytical expression will de-
pend on the four parameters ±a t( ) and ±b t( ). In case of exactly sce-
narios, it means that we have the analytical form of these two
parameters, so that we would get an explicit time-dependent expression
of the quantum discord.

The explicit expressions of ±a t( ) and ±b t( ) depend on the specific
time-dependences of the Hamiltonian parameters. Although, as shown
before, the dynamical problem of the two spins may be converted into
two independent problems of single spin-1/2, we know that we are not
able to find the analytical solution of the time-dependent Schrödinger
equation for a spin-1/2 subjected to a generic time-dependent
Hamiltonian (that is for generic time-dependences of the Hamiltonian
parameters). Therefore, the knowledge of specific exactly solvable time-
dependent scenarios for a single spin-1/2 becomes crucial. In Ref. [11],
the authors present two new classes of time-dependent exactly solvable
single-spin-1/2 models and they show how such models can be
exploited to construct exactly solvable time-dependent scenarios of the
two-interacting-spin system. Precisely, they considered only the two
local magnetic fields acting upon the two spins time-dependent and
they showed that, by the knowledge of two exactly solvable time-de-
pendent two-level-system models it is possible to deduce four time-
dependent scenarios of the two-interacting qudit model, reported in
Appendix A, for which we may construct explicitly the time-evolution
operator in Eq. (23).

Thus, for such exactly solvable time-dependent models of the two-
spin system we are able to calculate the explicit form of a generic state
and, in particular for an X-state, the explicit time evolution of the
quantum discord. In the next section we analyse the time-dependent
quantum discord related to specific initial X-states considered in
Appendix B.

4. Time evolution of quantum discord

Next we describe the temporal evolution of the quantum discord,
using the formalism developed in the previous Section, by taking dif-
ferent initial states for both models considered in this paper (see
Appendix A and B).

In Figs. 1–6, we have reported the time dependences of both the

Fig. 1. Quantum concurrence C (red) and quantum discord D (blue) versus time t, for various values of the mixing parameter: =p 0, 0.1, 0.3, 0.5, 0.8, 1, respectively,
for = =ω ω 01 2 , for initial state (B8)up. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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concurrence (C) and the quantum discord (D) for the state (B8) up for
different values of the mixing parameter p. As expected, the dynamical
behaviour of quantum discord is very similar to that of quantum en-
tanglement, measured by the concurrence, and they evolve quite syn-
chronously, especially for initial states having a small degree of mix-
edness (p close to 0 or 1). They have an identical qualitative behaviour
for initial pure states, but are different for the mixed states.

In Figs. 1–4, C and QD are plotted for constant magnetic fields,
precisely when they are both vanishing, very lower than, of the same
order of and much larger than the interaction intensity, respectively. In
Fig. 3, then, we may see the effects on C and QD purely due to the
interaction between the two spins, according to our specific choice
about the coupling parameters (see Appendix A). Figs. 4–6, instead,
show us how the interplay between the interaction and the presence of
static magnetic fields determines a different behaviour in time. In the
plots related to the values of =p 0 for such figures, we may appreciate

how the static magnetic field significantly changes the time-de-
pendences of the two quantities under scrutiny. In absence of magnetic
fields we have, indeed, constant and maximum values for C and QD,
whereas when the magnetic field is present periodic oscillations occur.
Plots for =p 0.1, 0.3, 0.5, 0.8 show instead a clear difference between
the cases of low and high magnetic field. For such states, indeed, we
may identify qualitative different behaviours related to the intensity of
the magnetic fields. For high intensity magnetic fields it is worth no-
ticing the appearance of plateaux in the time-behaviour of both C and
QD in some cases for long interval of time. In other case ( =p 1/2) such
plateaux have a finite duration and makes legitimate to speak of sudden
death and birth. Moreover, we note phenomena of quasi-freezing of the
quantum correlations when =p 0.1, 0.3, 0.8. Also the plots related to
the value =p 1 brings to light clearly effects of the different intensities
of the magnetic fields on the time-dependence of C and QD, even if in
this case the same qualitative behaviour is maintained. Precisely, we

Fig. 2. Quantum concurrence C (red) and quantum discord D (blue) versus time t, for various values of the mixing parameter: =p 0, 0.1, 0.3, 0.5, 0.8, 1, respectively,
for constant magnetic fields, with =+ cΩ 0.1 , for initial state (B8)up. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 3. Quantum concurrence C (red) and quantum discord D (blue) versus time t, for various values of the mixing parameter: =p 0, 0.1, 0.3, 0.5, 0.8, 1, respectively,
for constant magnetic fields, with =+ cΩ 3 , for initial state (B8)up. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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have a gradual squeezing of the curve towards the top value. It is im-
portant to underline that the asymmetry in the time-behaviour between
the states identified by =p 0 and =p 1 in Fig. 3 stems from the dif-
ferent Hamiltonians governing the two subdynamics which the two
state belong to. Precisely it is possible to verify that our specific choice
of the coupling parameters determines such difference and in particular
the fact that C and QD are constant when =p 0. It can be seen that if we
choose = − = = −γ γ γ γ2 2xx yy xy yx , we get an interchange of time-beha-
viour between the two states, with consequent constant quantum cor-
relations for the state related to =p 1.

In Figs. 5 and 6 we plot the time dependences of C and QD for the
same states when the magnetic fields change in time accordingly to the
two time-dependent scenarios defined in Eqs. (A1)–(A2) and (A3)–(A4).
We can see how a time-dependent magnetic field may deeply modify
the time-behaviour of the quantum correlations arising between the
two spins in the system. This means that appropriately engineered

magnetic fields may be used to control (generate, destroy, freeze)
quantum correlations between the two subsystems as to manipulate
them for several tasks.

In Fig. 7 finally, we report 3-D plots of C and QD as functions of time
and p for the other two initial conditions in Eqs. (B12) and (B13). A
peculiar time-dependence may be noted for =p 1/2; in this case, in-
deed, we have a constant value both for C and QD. Differently from the
case of =p 0 in Fig. 3, such a behaviour is not due to our specific choice
of the coupling parameters. Rather, it is traceable back to the fact that
the states in Eqs. (B12) and (B13) for =p 1/2 do not evolve in time
since they commute with H at any time, as it is easy to see by direct
inspection.

5. Summary and conclusions

We analyzed the dynamics of the quantum discord of two

Fig. 4. Quantum concurrence C (red) and quantum discord D (blue) versus time t, for various values of the mixing parameter: =p 0, 0.1, 0.3, 0.5, 0.8, 1, respectively,
for constant magnetic fields, with =+ cΩ 10 , for initial state (B8)up. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Quantum concurrence C (red) and quantum discord D (blue) versus time t, for various values of the mixing parameter: =p 0, 0.1, 0.3, 0.5, 0.8, 1, respectively,
for the first model with (B6), for both initial states (B8)-up and (B10)-down. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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interacting spin-1/2’s described by the Hamiltonian model studied in
detail in Ref. [11]. Such a model possesses a C2-symmetry with respect
to the quantization axis z and this fact gives us the possibility of solving
exactly the dynamics of the system by reducing the problem into two
independent problems of single spin-1/2. Such a reduction is valid also
when the Hamiltonian parameters are time-dependent, allowing the
study of the dynamics of the two interacting spins when they are sub-
jected to specific time-dependent magnetic fields. The hyperbolic secant
time-dependence involved in our proposals was introduced by Rosen
and Zener in the early 1930s investigating the quantum dynamics of a
single spin [49]. Since this sech pulse is experimentally realizable
[50–52], it appears in other generalized spin models of physical interest

from both a theoretical and applicative point of view [53–55]. In view
of our Hamiltonian model, it is worth noting that the Scanning Tun-
neling Microscopy (STM) allows the local application of magnetic fields
on a single qubit while it interacts with other ones (e.g. in a spin chain)
[56–62]. Such local fields are effective magnetic fields stemming from
the tunable exchange interaction between the target spin we wish to
address and the spin present on the STM tip [56–62]. Thanks to the
possibility of varying the distance between the tip spin and the one in
the chain, effective time-dependent magnetic fields may be generated
[61].

The fundamental symmetry of the model is at the basis also of the
other important property possessed by such a system consisting in the

Fig. 6. Quantum concurrence C (red) and quantum discord D (blue) versus time t, for various values of the mixing parameter: =p 0, 0.1, 0.3, 0.5, 0.8, 1, respectively,
for the second model with (B7), for both initial states (B8)-up and (B10)-down. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Quantum discord D (up) and concurrence C (down) versus time t and mixing parameter p: for the first model with (B6), for the initial state (B13) (left); for the
second model with (B7), for the initial state (B13) (middle); for both models with (B6), (B7), for the initial state (B12) (right).
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fact that an initial X-state maintains this structure at any time. We know
that quantum discord is a very difficult quantity to be calculated, but
for the specific class of X-states we may take advantage of the analytic
expression reported in Refs. [19,20]. This enabled us to calculate the
time evolution of the quantum discord for several mixed X-states con-
sisting in convex combinations of Bell density matrices. In particular,
we have examined the cases of vanishing, very low and very high static
magnetic fields with respect to the coupling constants strength. In this
way we could analyse the role of the magnetic fields in determining the
occurrence of quantum correlations between the two spin-1/2’s. Fur-
thermore, we have brought to light how specific time-dependences of
the magnetic fields deeply modify the time-behaviour of the quantum
discord, emphasizing how for such a model we may control (give rise,
kill or freeze) the quantum correlations in time.

We also made a comparison of the behaviour of quantum discord
and concurrence, as different measures of quantum correlations. As
expected, the dynamical behaviour of quantum discord and con-
currence exhibit a similar behaviour when the system starts from pure
states. The same comparison when the system starts from a mixed state,
reported in this paper, makes evident the occurrence of remarkable

differences analyzed and discussed in Section 4.
Quantifying nonclassical correlations in physical systems enables a

deeper understanding of genuine quantum behaviour [66]. Over the
last years, several methods and protocols have been developed in order
to grasp experimentally signatures of such correlations [67–70]. In Ref.
[71] an experimental algorithm allowing the tomographic reconstruc-
tion of the density matrix of a two-qubit system has been proposed as
basis to evaluate quantum discord. It is worth noticing how the diag-
onal Bell states, studied in this paper, play a prominent role for such
kind of investigations thanks to their properties and their robustness
exhibited also in open quantum systems immersed in dephasing en-
vironment [72–75].
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Appendix A. Exactly solvable time-dependent scenarios

In Ref. [11] the authors shows that if we choose the two magnetic fields acting upon the two spin-1/2’s as follows

= ±+

+

−

−
ω t

τ τ
ℏ ( ) Γ

cosh(2 )
Γ

cosh(2 )1/2
(A1)

the solutions for the entries of the time evolution operator (23) are

= =

= − − = − + −

= =

= − − = − + −
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+
−

+
+ +

+
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−
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a t b t
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2cosh(2 )
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cosh(2 ) 1
2cosh(2 )

Γ 2 (A2)

If, instead, the two local magnetic fields change in time as

= ± ⎡
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− ⎤
⎦⎥

+
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−
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(A3)

the solutions, in this case, read

= =
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In the previous expressions we put

= = ∓ + ± + = − ⎡

⎣
⎢

± +
∓
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± ±τ t γ γ γ γ ϕ

γ γ
γ γ
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Γ

(A5)

Actually, other two possible exactly solvable scenarios may be constructed, namely when the magnetic fields are

= ⎡
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− ⎤
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= ⎡
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⎦

± ⎡
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− ⎤
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3
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Γ
4

3
cosh( )

Γ
4

3
cosh( ) (A6)

Moreover, further exactly solvable time-dependent scenarios for a single spin-1/2 may be found in Refs. [76,77].
In the previous formulas, +τ and −τ are scaled dimensionless times acting as independent variables; +ϕΓ and −ϕΓ are true parameters strictly related

to the microscopic model. In our calculations we consider the case analyzed in Ref. [11], namely = = = =γ γ βγ βγ cxx yy xy yx with =β 2; we get
= =+ −cΓ Γ /2 and = − =+ −ϕ π ϕ/2, 0Γ Γ . Then =− +τ τ2 .
If the magnetic fields acting upon the two spin 1/2’s were constant, i.e. =ω const1/2 . and then =± constΩ ., for the entries of the time evolution
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operator we would have

⎜ ⎟ ⎜ ⎟

⎜ ⎟

= ⎡

⎣
⎢

⎛
⎝

⎞
⎠

− ⎛
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/ℏ Ω

/ℏ Γ

zz
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(A7)

with ≡ +± ± ±ν Ω Γ2 2 . For the constant magnetic field cases we consider:

• = = = − =+ − + −c ϕ π ϕΓ Γ /2, /2, 0Γ Γ ;

• = =− + + cΩ 2Ω , Ω 3 ;

• =± ±τ ν t/ℏ.

So we have

• =− +ν ν2 → = =− + +τ τ τ ct2 , 10 /ℏ;

• = =−+
+

−
−

,ν
i

ν
Γ

10
Γ 1

10 ;

• = =+
+

−
−ν ν

Ω Ω 1
1, 1

.

Appendix B. X-states and their evolution

The general and formal expressions of the entries of =ρ t U t ρ U t( ) ( ) ( )X
† may be written as follows

= + +
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= + +
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44
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44 14 (B1)

with all the other entries equal to 0. The X-state ρ t( ) of Eq. (B1) has complex entries. By performing the local unitary operation ⊗U UA B described by
Eq. (8), ρ t( ) is transformed to its canonical form by replacing ρij by ρij for i different from j. By Eqs. (B1) it is straightforward to deduce the time-
dependence of the five parameters in Eq. (9) in terms of the elements of the general density matrix in Eq. (7), namely:

= + − −
= − + −
= − − +

r t ρ t ρ t ρ t ρ t
s t ρ t ρ t ρ t ρ t
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( ) 2( ( ) ( ) ),
( ) 2( ( ) ( ) ).

1 23 14

2 23 14

To get easily X-structured density matrices it is sufficient to consider convex combination of Bell states. Let us consider, firstly, the Bell states as
initial conditions, namely
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(B3)

It is easy to see that =± ±ρ t U t ρ U t( ) ( ) ( )0
† keeps the same structure of ±ρ0 at any time, so that the only entries changing in time are the following

ones

= ± ⎡
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(B4)

Analogously for ̃ ̃=± ±ρ t U t ρ U t( ) ( ) ( )0
† we get
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In the first case, the explicit expression of the density matrices for the four possible initial Bell states are dictated by the following quantities:
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In the second case we have instead
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We may consider now mixed states consisting of classical mixture of two Bell states, for example
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with ⩽ ⩽p0 1. Since the two subdynamics does not interfere it is easy to write the time evolution expression of the entries of =ρ t U t ρ U t( ) ( ) ( )0
† ,

namely
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Of course, the quantities ± ±
∗a bRe[ ] and −± ±a b2 2 defining the time-dependence of the entries in the two specific exactly solvable time-dependent

scenarios are the same as those written in Eqs. (B6) and (B7). The analogous reasoning may be done for the other following two mixtures
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with
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The other two possible classical mixtures of Bell states are
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In the first case we have
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while in the second one we get
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∗

− − − −
∗ρ t p a b ρ t

p
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2

, ( ) 1
2
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