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ABSTRACT

Concepts and formalism from acoustics are often used
to exemplify quantum mechanics. Conversely, quantum
mechanics could be used to achieve a new perspective on
acoustics, as shown by Gabor studies. Here, we focus
in particular on the study of human voice, considered as
a probe to investigate the world of sounds. We present
a theoretical framework that is based on observables of
vocal production, and on some measurement apparati
that can be used both for analysis and synthesis. In
analogy to the description of spin states of a particle,
the quantum-mechanical formalism is used to describe
the relations between the fundamental states associated
with phonetic labels such as phonation, turbulence, and
slow myoelastic vibrations. The intermingling of these
states, and their temporal evolution, can still be interpreted
in the Fourier/Gabor plane, and effective extractors can
be implemented. This would constitute the basis for a
Quantum Vocal Theory of sound, with implications in
sound analysis and design.

1. INTRODUCTION

What are the fundamental elements of sound? What is the
best framework for analyzing existing sonic realities and
for expressing new sound concepts? These are long stand-
ing questions in sound physics, perception, and creation.
In 1947, in a famous paper published in Nature [1], Den-
nis Gabor embraced the mathematics of quantum theory
to shed light on subjective acoustics, thus laying the ba-
sis for sound analysis and synthesis based on acoustical
quanta, or grains, or wavelets. The Fourier/Gabor frame-
work for time-frequency representation of sound is widely
used, although human acuity has been shown to beat the
uncertainty limit [2] and cochlear filters [3] have been pro-
posed to match human performance. Still, when we are
imagining sound, or describing it to peers, we do not use
the Fourier formalism.

1.1 Voice as Embodied Sound

Many researchers, in science, art, and philosophy, have
been facing the problem of how to approach sound and its

Copyright: c�2018 Davide Rocchesso et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution License 3.0 Unported, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

representations [4, 5]. Should we represent sounds as they
appear to the senses, by manipulating their proximal char-
acteristics? Or should we rather look at potential sources,
at physical systems that produce sound as a side effect
of distal interactions? In this research path we assume
that our body can help establishing bridges between dis-
tal (source-related) and proximal (sensory-related) repre-
sentations, and we look at research findings in perception,
production, and articulation of sounds [6]. Our embodied
approach to sound [7] seeks to exploit knowledge in these
areas, especially referring to human voice production as a
form of embodied representation of sound.

When considering what people hear from the environ-
ment, it emerges that sounds are mostly perceived as be-
longing to categories of the physical world [8]. Research
in sound perception has shown that listeners spontaneously
create categories such as solid, electrical, gas, and liquid
sounds, even though the sounds within these categories
may be acoustically different [9]. However, when the task
is to separate, distinguish, count, or compose sounds, the
attention shifts from sounding objects to auditory objects
[10] represented in the time-frequency plane. Tonal com-
ponents, noise, and transients can be extracted from sound
objects with Fourier-based techniques [11, 12, 13]. Low-
frequency periodic phenomena are also perceptually very
relevant and often come as trains of transients. The most
prominent elements of the proximal signal may be selected
by simplification and inversion of time-frequency repre-
sentations. These auditory sketches [14], have been used
to test the recognizability of imitations [15].

Vocal imitations can be more effective than verbaliza-
tions at representing and communicating sounds when
these are difficult to describe with words [16]. This
indicates that vocal imitations can be a useful tool for
investigating sound perception, and shows that the voice
is instrumental to embodied sound cognition. At a more
fundamental level, research on non-speech vocalization
is affecting the theories of language evolution [17], as it
seems plausible that humans could have used iconic vocal-
izations to communicate with a large semantic spectrum,
prior to the establishment of full-blown spoken languages.
Experiments and sound design exercises [7] show that
agreement in production corresponds to agreement in
meaning interpretation, thus showing the effectiveness
of teamwork in embodied sound creation. Converging
evidences from behavioral and brain imaging studies give
a firm basis to hypothesize a shared representation of
sound in terms of motor (vocal) primitives [18].
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In the recent EU-FET project SkAT-VG 1 , phoneticians
have had an important role in identifying the most relevant
components of non-speech voice productions [19]. They
identified the broad categories of phonation (i.e., quasi
periodic oscillations due to vocal fold vibrations), turbu-
lence, slow myoelastic vibrations, and clicks, which can be
extracted automatically from audio with time-frequency
analysis and machine learning [20], and can be made to
correspond to categories of sounds as they are perceived
[15], and as they are produced in the physical world.
Indeed, it has been argued that human utterances somehow
mimic “nature’s phonemes” [21].

1.2 Quantum Frameworks

It was Dennis Gabor [1] who first adopted the mathematics
of quantum mechanics to explain acoustic phenomena. In
particular, he used operator methods to derive the time-
frequency uncertainty relation and the (Gabor) function
that satisfies minimal uncertainty. Time-scale representa-
tions [22] are more suitable to explain the perceptual de-
coupling of pitch and timbre, and operator methods can
be used as well to derive the gammachirp function, which
minimizes uncertainty in the time-scale domain [23]. Re-
search in human and machine hearing [3] have been based
on banks of elementary (filter) functions and these systems
are at the core of many successful applications in the audio
domain.

Despite its deep roots in the physics of the twentieth
century, the sound field has not yet embraced the quan-
tum signal processing framework [24] to seek practical
solutions to sound scene representation, separation and
analysis. A quantum approach to music cognition has
not been proposed until very recently [25], when its ex-
planatory power has been demonstrated to describe tonal
attraction phenomena in terms of metaphorical forces. The
theory of open quantum systems has been applied to music
to describe the memory properties (non-Markovianity) of
different scores [26]. In the image domain, on the other
hand, it has been shown how the quantum framework can
be effective to solve problems such as segmentation. For
example, the separation of figures from background can
be obtained by evolving a solution of the time-dependent
Schrödinger equation [27], or by discretizing the time-
independent Schrödinger equation [28]. An approach to
signal manipulation based on the postulates of quantum
mechanics can also potentially lead to a computational
advantage when using Quantum Processing Units. Results
in this direction are being reported for optimization
problems [29].

1.3 Research Direction

In the proposed research path, sound is treated as a super-
position of states, and the voice-based components (phona-
tion, turbulence, slow myoelastic pulsations) are consid-
ered as observables to be represented as operators. The
extractors of the fundamental components, i.e. the mea-
surement apparati, are implemented as signal-processing

1 www.skatvg.eu

modules that are available both for analysis and, as control
knobs, for synthesis. The baseline is found in the results
of the SkAT-VG project, which showed that vocal imita-
tions are optimized representations of referent sounds, that
emphasize those features that are important for identifica-
tion. A large collection of audiovisual recordings of vocal
and gestural imitations 2 offers the opportunity to further
enquire how people perceive, represent, and communicate
about sounds.

A first assumption underlying this research approach,
largely justified by prior art and experiences, is that artic-
ulatory primitives used to describe vocal utterances are ef-
fective as high-level descriptors of sound in general. This
assumption leads naturally to an embodied approach to
sound representation, analysis, and synthesis. A second
assumption is that the mathematics of quantum mechan-
ics, relying on linear operators in Hilbert spaces, offers a
formalism that is suitable to describe the objects compos-
ing auditory scenes and their evolution in time. The latter
assumption is more adventurous, as this path has not been
taken in audio signal processing yet. However, the results
coming from neighboring fields (music cognition, image
processing) encourage us to explore this direction, and to
aim at improved techniques for sound analysis and synthe-
sis.

2. SKETCH OF A QUANTUM VOCAL THEORY

An embryonic theory of sound based on the postulates of
quantum mechanics, and using high-level vocal descriptors
of sound, can be sketched as follows. Let σ be a vector
operator that provides information about the phonetic ele-
ments along a specific direction of measurement. Phona-
tion, for example, may be represented by σz , with eigen-
states representing a upper and a lower pitch. Similarly,
the turbulence component may be represented by σx, with
eigenstates representing turbulence of two different distri-
butions. A measurement of turbulence prepares the system
in one of two eigenstates for operator σx, and a successive
measurement of phonation would find a superposition and
get equal probabilities for the two eigenstates of σz . The
two operators σz and σx may also be made to correspond to
the two components of the classic sines+noise model used
in audio signal processing. If we add transients/clicks as a
third measurement direction (as in the sines + noise + tran-
sients model [12]) we can claim that there is no sound state
for which the expectation value of the three components
is zero: a sort of spin polarization principle as found in
quantum mechanics. The evolution of state vectors in time
is unitary, and regulated by a time-dependent Schrödinger
equation, with a suitably chosen Hamiltonian. The eigen-
vectors of the Hamiltonian allow to expand any state vector
in that basis, and to compute the time evolution of such ex-
pansion. A pair of components can be simultaneously mea-
sured only if they commute. If they don’t, an uncertainty
principle can be derived, as it was done for time-frequency
and time-scale representations [1, 23]. The theory can be
extended to cover multiple sources, and the resulting mixed

2 https://www.ircam.fr/projects/blog/multimodal-database-of-vocal-
and-gestural-imitations-elicited-by-sounds/
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states can be described via density matrices, whose time
evolution can also be computed if a Hamiltonian operator
is properly defined. The effect of disturbances and devia-
tions can be accounted for by introducing relaxation time,
to model return to equilibrium. This sketch of a Quan-
tum Vocal Theory needs to be developed and formally laid
down.

3. THE PHON FORMALISM

Consider a 3d space with the orthogonal axes

z : phonation, with different pitches;

x : turbulence, with noises of different frequency distribu-
tions;

y : myoelastic, slow pulsations with different tempos.

The phon operator σ is a 3-vector operator that provides
information about the phonetic elements in a specific di-
rection of the 3d phonetic space.

In this section we present the phon formalism, obtained
by direct analogy with the single spin, as presented in ac-
cessible presentations of quantum mechanics [30]. We use
standard Dirac notation.

3.1 Measurement along z

A measurement along the z axis is performed according to
the quantum-mechanics principles:

1. Each component of σ is represented by a linear op-
erator;

2. The eigenvectors of σz are |ui and |di, correspond-
ing to pitch up and pitch down, with eigenvalues +1
and −1, respectively:

(a) σz |ui = |ui
(b) σz |di = − |di

3. The eigenstates of operator σz , |ui and |di, are or-
thogonal: hu|di = 0;

The eigenstates can be represented as column vectors:

|ui =

1
0

�
and |vi =


0
1

�
,

and the operator σz as a square 2 ⇥ 2 matrix. Due to
principle 2, we have

σz =


1 0
0 −1

�
. (1)

3.2 Preparation along x

The eigenstates of the operator σx are |ri and |li, corre-
sponding to turbulences having different spectral distribu-
tions, one with the rightmost centroid and the other with
the leftmost centroid. The respective eigenvalues are +1
and −1, so that

(a) σx |ri = |ri

(b) σx |li = − |li .

If the phon is prepared |ri (turbulent) and then the mea-
surement apparatus is set to measure σz , there will be equal
probabilities for |ui or |di phonation as an outcome. Es-
sentially, we are measuring what kind of phonation is in a
pure turbulent state. This measurement property is satis-
fied if

|ri = 1p
2
|ui+ 1p

2
|di . (2)

In fact, any state |Ai can be expressed as |Ai =
↵u |ui+ ↵d |di, where ↵u = hu|Ai, and ↵d = hd|Ai. The
probability to measure pitch up is Pu = hA|ui hu|Ai =
↵u

⇤↵u, and the probability to measure pitch down is
Pd = hA|di hd|Ai = ↵d

⇤↵d (Born rule).
Likewise, if the phon is prepared |li and then the mea-

surement apparatus is set to measure σz , there will be equal
probabilities for |ui or |di phonation as an outcome. This
measurement property is satisfied if

|li = 1p
2
|ui− 1p

2
|di , (3)

which is orthogonal to the linear combination (2). In vector

form, we have: |ri =
"

1p
2
1p
2

#
and |li =

"
1p
2

− 1p
2

#
,

and

σx =


0 1
1 0

�
. (4)

3.3 Preparation along y

The eigenstates of the operator σy are |fi and |si, corre-
sponding to slow myoelastic pulsations, one faster and one
slower 3 , with eigenvalues +1 and −1, so that

(a) σy |fi = |fi
(b) σy |si = − |si

If the phon is prepared |fi (pulsating) and then the mea-
surement apparatus is set to measure σz , there will be equal
probabilities for |ui or |di phonation as an outcome. Es-
sentially, we are measuring what kind of phonation is in a
slow myoelastic pulsations. This measurement property is
satisfied if

|fi = 1p
2
|ui+ ip

2
|di , (5)

where i is the imaginary unit.
Likewise, if the phon is prepared |si, we can express

this state as

|si = 1p
2
|ui− ip

2
|di , (6)

which is orthogonal to the linear combination (5). In vector

form, we have: |fi =
"

1p
2
ip
2

#
and |si =

"
1p
2

− −ip
2

#
,

and

σy =


0 −i
i 0

�
. (7)

The matrices (1), (4), and (7) are called the Pauli matri-
ces and, together with the identitity matrix, these are the
quaternions.

3 In describing the spin eigenstates, the symbols |ii and |oi are often
used, to denote the in–out direction.

P r o c e e d i n g s o f t h e 2 2 n d C I M , U d i n e , N o v e m b e r 2 0 - 2 3 , 2 0 1 8

C I M 2 0 1 8 P R O C E E D I N G S 1 0 3



3.4 Measurement along an arbitrary direction

Orienting the measurement apparatus along an arbitrary di-
rection n = [nx, ny, nz]

0 means taking a weighted mix-
ture:

σn = σ · n = σxnx + σyny + σznz =

=


nz nx − iny

nx + iny −nz

�
. (8)

3.4.1 Example: Harmonic plus Noise model

A measurement performed by means of a Harmonic plus
Noise model [11] would lie in the phonation-turbulence
plane (nz = cos ✓, nx = sin ✓, ny = 0), so that

σn =


cos ✓ sin ✓
sin ✓ − cos ✓

�
(9)

The eigenstate for eigenvalue +1 is |λ1i =

cos ✓/2
sin ✓/2

�
, the

eigenstate for eigenvalue −1 is |λ−1i =

− sin ✓/2
cos ✓/2

�
, and

the two are orthogonal. Suppose we prepare the phon to
pitch-up |ui. If we rotate the measurement system along
n, the probability to measure σn = +1 is (by Born rule)

P (+1) = |hu|λ1i|2 = cos2 ✓/2, (10)

and the probability to measure σn = −1 is

P (−1) = |hu|λ−1i|2 = sin2 ✓/2. (11)

The expectation value of measurement is therefore

hσni =
X

i

λiP (λi)

= (+1) cos2 ✓/2 + (−1) sin2 ✓/2 = cos ✓ (12)

3.4.2 Rotate to measure

What does it mean to rotate a measurement apparatus to
measure a property? Assume we have a machine that sep-
arates harmonics from noise from (trains of) transients,
and that can discriminate between two different pitches,
noise distributions, and tempos. Essentially, the machine
receives a sound and returns three numbers {ph, tu,my} 2
[−1, 1]. If ph > 0 the result will be |ui, and if ph < 0 the
result will be |di. If tu > 0 the result will be |ri, and if
tu < 0 the result will be |li. If my > 0 the result will
be |fi, and if my < 0 the result will be |si. These three
outputs correspond to rotating the measurement apparatus
along each of the main axes. Rotating it along an arbitrary
direction means taking a weighted mixture of the three out-
comes.

3.5 Time evolution

In quantum mechanics the evolution of state vectors in time

| (t)i = U(t) | (0)i (13)

is governed by the operator U, which is unitary, i.e.,
U†U = I. Taken a small time increment ✏, continuity of
the time-development operator gives it the form

U(✏) = I− i✏H, (14)

with H being the quantum Hamiltonian (Hermitian) oper-
ator. H is an observable and its eigenvalues are the values
that would result from measuring the energy of a quantum
system. From (14) it turns out that a state vector changes
in time according to the time-dependent Schrödinger equa-
tion 4

@ | i
@t

= −iH | i . (15)

Any observable L has an expectation value hLi that
evolves according to

@ hLi
@t

= −i h[L,H]i , (16)

where [L,H] = LH − HL is the commutator of L with
H.

3.5.1 Phon in utterance field

Similarly to a spin in a magnetic field, when a phon is part
of an utterance, it has an energy that depends on its orien-
tation. We can think about it as if it was subject to restoring
forces, and its quantum Hamiltonian is

H / σ ·B = σxBx + σyBy + σzBz, (17)

where the components of the field B are named in analogy
with the magnetic field.

Consider the case of potential energy only along z:

H =
!

2
σz. (18)

To find how the expectation value of the phon varies in
time, we expand the observable L in (16) in its components
to get

hσ̇xi = −i h[σx,H]i = −! hσyi (19)
hσ̇yi = −i h[σy,H]i = ! hσxi
hσ̇zi = −i h[σz,H]i = 0,

which means that the expectation values of σx and σy are
subject to temporal precession around z at angular velocity
!. The expectation value of σz steadily keeps the pitch
if there is no potential energy along turbulence and slow
myoelastic vibration.

A potential energy along all three axes can be expressed
as

H =
!

2
σ · n =

!

2


nz nx − iny

nx + iny −nz

�
, (20)

whose energy eigenvalues are Ej = ±1, with energy
eigenvectors |Eji.

4 We do not need physical dimensional consistency here, so we drop
Planck’s constant.
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An initial state vector (phon) | (0)i can be expanded as

| (0)i =
X

j

↵j(0) |Eji , (21)

where ↵j(0) = hEj | (0)i, and the time evolution of state
turns out to be

| (t)i =
X

j

↵j(t) |Eji =
X

j

↵j(0)e
−iEjt |Eji . (22)

3.6 Uncertainty

If we measure two observables L and M (in a single ex-
periment) simultaneously, quantum mechanics prescribes
that the system is left in a simultaneous eigenvector of the
observables only if L and M commute, i.e. [L,M ] = 0.
Measurement operators along different axes do not com-
mute. For example, [σx,σy] = 2iσz , and therefore phona-
tion and turbulence can not be simultaneously measured
with certainty.

The uncertainty principle, based on Cauchy-Schwarz
inequality in complex vector spaces, prescribes that the
product of the two uncertainties is at least as large as half
the magnitude of the commutator:

ΔLΔM ≥ 1

2
|h | [L,M ] | i| (23)

Equation (23) expresses the uncertainty principle.
If L = t is the time operator and S = −i d

dt is the fre-
quency operator, and these are applied to the complex os-
cillator Aei!t, the time-frequency uncertainty principle re-
sults, and uncertainty is minimized by the Gabor function.
Starting from the scale operator, the gammachirp function
can be derived [23].

4. WHAT TO DO WITH ALL THIS

Assuming that a vocal description of sound follows the
postulates of quantum mechanics, the question is how to
take advantage of the quantum formalism. How can we
practically connect theoretical ideas with audio signal pro-
cessing?

4.1 Non-commutativity and autostates

We expect that measurement operators along different axes
do not commute: this is the case, for example, of mea-
surements of phonation and turbulence. Let A be an au-
dio sample. The measurement of turbulence by the oper-
ator T leads to T (A) = A0. A successive measurement
of phonation by the operator P gives P (A0) = A00, thus
P (A0) = PT (A) = A00. If we perform the measurements
in the opposite order, with phonation first and turbulence
later, we obtain TP (A) = T (A⇤) = A⇤⇤. We expect that
[T, P ] 6= 0, and thus, that A⇤ ⇤ 6= A00. The diagram in
figure 1 shows non-commutativity in the style of category
theory.

Measurements of phonation and turbulence can be actu-
ally performed using the Harmonic plus Stochastic (HPS)
model [11]. The order of operations is visually described
in figure 2. The measurement of phonation is performed

Figure 1. A non-commutative diagram (in the style of cat-
egory theory), representing the non-commutativity of mea-
surements of phonation (P ) and turbulence (T ) on audio
A.

Figure 2. On the left, a voice is analyzed via the HPS
model. Then, the stochastic part is submitted to a new
analysis. In this way, a measurement of phonation follows
a measurement of turbulence. On the right, the measure-
ment of turbulence follows a measurement of phonation.

through the extraction of the harmonic component in the
HPS model, while the measurement of turbulence is per-
formed through the extraction of the stochastic component
with the same model. The spectrograms for A00 and A⇤⇤ in
Figure 3 show the results of such two sequences of anal-
yses on a segment of female speech 5 , confirming that the
commutator [T , P ] is non-zero.

Essentially, if we adopt the HPS model and skip the
final step of addition and inverse transformation, we are
left with something that is conceptually equivalent to a
quantum destructive measure. Let St be the filter that
extracts the stochastic part from a signal. As figure 4
shows, the spectrogram of St(x) is visibly different from
the spectrogram of x. Conversely, if we apply St once
more, we get a spectrum that does not change much:
St2(x) = St(St(x)) ⇠ St(x). If we transform back
from the second and third spectrograms of figure 4, we
get sounds that are very close to each other. In fact,
ideally, St2(x) = St(x). It means that, after a measure
of the non-harmonic component of some signal, the
output-signal can be considered as an autostate. If we
perform the measure again and again, we still get the same
result. Such a measure operation provokes the collapse
of a hypothetical underlying wave function, which is
originally a superposition of states, and is reduced to a
single state upon measurement. The importance of the
autostates in this framework is connected with the concept

5 https://freesound.org/s/317745/.
Hann window of 2048 samples, FFT of 4096 samples, hop size of 1024
samples.
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Figure 3. On the top, the spectrogram corresponding to a
measurement of phonation P following a measurement of
turbulence T , leading to PT (A) = A00. On the bottom,
the spectrogram corresponding to a measurement of turbu-
lence T following a measurement of phonation P , leading
to TP (A) = A⇤⇤.

of quantum measures, which may become practically
feasible through a set of audio-signal analysis tools.

We can define other filters that extract more specific in-
formation: for example, a glissando filter would extract
glissando passages within a sound signal, giving as out-
put the inverse transform of the filtered spectrum, that is, a
filtered signal where we can just hear the glissando effect
and nothing else. Re-performing the glissando-measure on
that sound, we still get the same sound: the new sound
signal is an autostate of glissando. A suitable col-
lection of filters that act both on the original sounds as
well as on their vocal imitations can produce simplified
spectra, easier to compare. These may give hints on how
information are extracted by voice, that permit to recog-
nize the original sound source. This would confirm the
importance of human voice as a probe to investigate the
world of sounds, and Quantum Vocal Theory as a bridge
between quantum physics, acoustics, and cognition, with
possible further bridges to multisensory perception and in-
teraction. If we consider that voice can imitate not only
sounds, but also movements and, sometimes, even visual
shapes through crossmodal correspondences [31], new fas-
cinating scenarios open up for investigation.

4.2 Time evolution

We know that time evolution of states is governed by the
unitary transformation (13) and by the Schrödinger equa-
tion (15). A measurement is represented by an operator
that acts on the state and that causes its collapse onto one
of its eigenvectors. The system remains in a superposition
of states until a measurement occurs, whose outcome is in-
herently probabilistic. The states change under the effect
of external forces, which therefore determine the change in
the probabilities associated with each state. It is a Hamil-
tonian such as (20) that controls the evolution process. We
can think of the vocal Hamiltonian as containing the po-

Figure 4. Top: spectrum of the original sound signal (a
female speech), Center: the stochastic component, derived
from harmonic plus stochastic analysis (HPS), as the ef-
fect of a destructive measure, and Bottom: the stochastic
component of the stochastic component itself. The last two
spectra are very close.

tential energies due to restoring forces that are contained
in the utterance at a particular moment in time. We could
even think of a formal composition of forces acting at dif-
ferent levels, and describe them through a nested categori-
cal depiction.

Similarly to what has been done by Youssry et
al. [27], the Hamiltonian can be chosen to be time-
dependent yet commutative (i.e., [H(0),H(t)] =
H(0)H(t) − H(t)H(0) = 0), so that a closed-form
solution to state evolution can be obtained. A time-
independent Hamiltonian such as the one leading to (22)
would not be very useful, both because forces indeed
change continuously and because this would lead to oscil-
latory solution. Instead, with a time-varying commutative
Hamiltonian the time evolution can be expressed as

| (t)i = e−i
R t
0
H(⌧)d⌧ | (0)i . (24)

A simple choice is that of a Hamiltonian such as

H(t) = g(t)S, (25)

with S a time-independent Hermitian matrix. A function
g(t) that ensures convergence of the integral in (24) is the
damping

g(t) = e−t. (26)

In an audio application, we can consider a slice of time and
the initial and final states for that slice. We should look
for a Hamiltonian that leads to the evolution of the initial
state into the final state. In image segmentation [27], where
time is used to let each pixel evolve to a final foreground-
background assignment, the Hamiltonian is chosen to be

H = e−tf(x)


0 −i
i 0

�
, (27)

and f(·) is a two-valued function of a feature vector x that
contains information about a neighborhood of the pixel.
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Figure 5. Extraction of the two most salient pitches from
a mixture of a male voice and a female voice

Such function is learned from an example image with a
given ground truth. In audio we may do something simi-
lar and learn from examples of transformations: phonation
to phonation, with or without pitch crossing; phonation to
turbulence; phonation to myoelastic, etc. We may also add
a coefficient to the exponent in (26), to govern the rapidity
of transformation. As opposed to image processing, time
is our playground.

The matrix S can be set to assume the structure (20),
and the components of potential energy found in an utter-
ance field can be extracted as audio features. For example,
pitch salience can be extracted from time-frequency anal-
ysis [32] and used as nz component for the Hamiltonian.
Figure 5 shows the two most salient pitches, automatically
extracted from a mixture of male and female voice 6 . Fre-
quent up-down jumps are evident, and they make difficult
to track a single voice. Quantum measurement induces
state collapse to |ui or |di and, from that state, evolution
can be governed by (24). In this way, it should be possible
to mimic human figure-ground attention [33], and follow
each individual voice.

5. CONCLUSION AND FURTHER RESEARCH

We presented an early attempt at applying the fundamental
quantum formalism to the description of human voice, and
to sounds in general through voice-based basic elements.
Such a theoretical research can have several practical im-
plications, due to the importance of voice as a probe to
investigate the world of sounds in general. Also, a quan-
tum vocal theory enhances the role of quantum mechan-
ics and of the underlying mathematics as a connecting tool
between different areas of human knowledge. By flipping
the wicked problem of finding intuitive interpretations of
quantum mechanics, the proposed approach aims to use
quantum mechanics to interpret something that we have
embodied, intuitive knowledge of. The new theory can
lead to the development of voice-based tools for sound
analysis and synthesis, for research and communication

6 https://freesound.org/s/431595/

understanding. Finally, given the importance of vocal im-
itations in the framework of improvised music and sound
art, they can constitute a probe also for studying and cre-
ating instrumental music, and for conceiving new forms
of sonic expression, also through manual and body ges-
tures, which enable connections to the visual and perform-
ing arts.
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