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Abstract

Cerebral aneurysms are pathological dilations of brain arteries. These diseases carry an
inherent risk of rupture with consequent intracranial hemorrhages. Although the mecha-
nisms of initiation, growth and rupture of cerebral aneurysms are not well understood yet,
it is commonly recognized that hemodynamic factors play a very important role in these
processes.

Numerical simulations can provide useful information on the hemodynamics and can
be used for clinical applications. In the traditional grid-based numerical methods the
discretization process of cerebral vessels hosting an aneurysm is very challenging. On the
other hand, the Lagrangian mesh-less smoothed particle hydrodynamics (SPH ) is very
suitable for representing geometrically complex domains, moving boundaries and multi-
phase processes.

In this research study the SPH method is employed to model blood flow in cerebral
aneurysms using an open-source code (PANORMUS-SPH ). New algorithms and proce-
dures are introduced in the code to improve the accuracy, stability and computational
efficiency of the numerical model, focusing on cerebral aneurysm simulations.

The truly incompressible SPH (ISPH ) approach is used to solve the discretized gov-
erning equations. To this aim, the mass conservation is enforced by solving a system of
Pressure Poisson Equations using the preconditioned BiConjugate Gradient STABilized
method.

A novel procedure is proposed to treat open-boundaries in SPH, allowing to set Dirich-
let pressure boundary conditions at the inlet and outlet sections or to impose the velocity
profile at the inflow. Mass conservation is guaranteed during the procedure, which is a
challenging task in Lagrangian modeling of domains with open-boundaries.

An innovative multi-resolution technique is developed in the SPH model. This ap-
proach is based on the domain decomposition into subdomains in each of which a proper
refinement is used. The technique is crucial when dealing with geometrically irregular
domains, such as cerebral vessels, for which the use of a uniform particle distribution may
become unsustainable in terms of CPU time and memory requirements.

The computational efficiency of the SPH code is largely improved through its com-
plete parallelization based on the Message Passing Interface paradigm. The implemented
domain distribution algorithm ensures a well-balanced load even with highly irregular
domains subdivided through the multi-resolution approach.

In endovascular treatments of cerebral aneurysms the stability of the blood clot forming
inside the aneurysm sac is a key factor for the healing process. The analysis of the blood
clotting process is thus extremely important to evaluate the treatment outcomes. In
this study tracer transport, residence time and mechanical platelet activation models are
implemented in the SPH code in order to lay the groundwork for a future SPH -based
blood clot model.

A performance evaluation of the implemented numerical improvements is conducted
through comparison of the results with available analytical and numerical solutions and
with experimental measures obtained in benchmark test cases including also ideal and real
aneurysm geometries.
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Sommario

Gli aneurismi cerebrali sono dilatazioni patologiche di arterie cerebrali. Queste patologie
hanno un intrinseco rischio di rottura con conseguenti emorragie intracraniche. Sebbene i
meccanismi di formazione, crescita e rottura degli aneurismi cerebrali non sono ancora del
tutto compresi, è comunemente riconosciuto che in questi processi i fattori emodinamici
giocano un ruolo molto importante.

Le simulazioni numeriche possono fornire utili informazioni sull’emodinamica e possono
essere usate per applicazioni cliniche. Nei tradizionali metodi numerici basati su una griglia
di calcolo il processo di discretizzazione dei vasi cerebrali sui quali insiste un aneurisma è
molto complesso. D’altra parte, il metodo Lagrangiano smoothed particle hydrodynamics
(SPH ) è particolarmente adatto per la rappresentazione di domini geometricamente molto
complessi, contorni mobili e processi multi-fase.

In questo studio di ricerca il metodo SPH viene impiegato per modellare il flusso
sanguigno all’interno di aneurismi cerebrali utilizzando un codice di calcolo open-source
(PANORMUS-SPH ). All’interno di questo codice sono introdotti nuovi algoritmi e pro-
cedure per migliorarne l’accuratezza, la stabilità e l’efficienza computazionale al fine di
effettuare simulazioni di aneurismi cerebrali.

Per risolvere le equazioni guida discretizzate viene adottato l’approccio totalmente
incomprimibile (ISPH ). La conservazione della massa è imposta risolvendo un sistema di
equazioni di Poisson attraverso il metodo del gradiente biconiugato stabilizzato con un
algoritmo di precondizionamento.

Si propone una procedura innovativa per trattare confini aperti nel metodo SPH, con-
sentendo di imporre condizioni di Dirichlet per la pressione nelle sezioni di ingresso e di
uscita oppure il profilo di velocità all’ingresso. La conservazione della massa, che è un
compito arduo nella modellazione Lagrangiana di domini con confini aperti, è garantita
durante la procedura.

Un’originale tecnica multi-risoluzione è sviluppata nel modello SPH. Questo approccio
è basato sulla decomposizione del dominio in subdomini in ognuno dei quali viene utilizzato
un appropriato livello di discretizzazione. La tecnica è cruciale quando si studiano domini
geometricamente irregolari, come i vasi cerebrali, per cui l’uso di un’uniforme dimensione
delle particelle potrebbe risultare insostenibile in termini di costi computazionali e richieste
di memoria.

L’efficienza computazionale del codice SPH è notevolmente migliorata attraverso la
sua parallelizzazione basata sul paradigma Message Passing Interface. L’algoritmo di
distribuzione del dominio permette di ottenere un carico ben bilanciato anche con domini
altamente irregolari suddivisi attraverso l’approccio multi-risoluzione.

Nei trattamenti endovascolari di aneurismi cerebrali la stabilità del coagulo di sangue
che si forma all’interno della sacca è un fattore chiave per il processo di guarigione. Per-
tanto, l’analisi del processo di coagulazione è estremamente importante per valutare i
risultati del trattamento. Sfruttando la natura Lagrangiana del metodo SPH, in questo
studio sono implementati i modelli del trasporto di un tracciate, del tempo di residenza e
dell’attivazione meccanica delle piastrine, ciò al fine di gettare le basi per il futuro sviluppo
di un modello di coagulo di sangue.

Una valutazione delle prestazioni dei miglioramenti numerici implementati è condotta
confrontando i risultati di casi test di riferimento, che includono anche geometrie di
aneurismi ideali e reali, con soluzioni analitiche e numeriche disponibili e con misure spe-
rimentali.
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Methodological note

In this research study an existing open-source code has been further developed and spe-
cialized to some classes of fluid dynamic problems mainly related to the hemodynamics
in cerebral aneurysms. The code, named PANORMUS (PArallel Numerical Open-souRce
Model for Unsteady flow Simulations) was developed at the Department of Civil, Environ-
mental, Aerospace, Materials Engineering (DICAM ) of the University of Palermo (Italy).
The PANORMUS model is distributed under the General Public Licence (GPL) and is
available at http://www.panormus3d.org.

The numerical model contains a Finite-Volume package, named PANORMUS-FVM
(Napoli, 2011), and a fully incompressible smoothed particle hydrodynamics (SPH ) solver,
PANORMUS-SPH (Napoli et al., 2015). In the PANORMUS software the equation solvers
are written in the FORTRAN 95 programming language while the Graphical User Inter-
face is written in C++ and based on the multiplatform Qt R© library (https://www.qt.io).

New algorithms and procedures have been developed in the SPH solver to model cere-
bral aneurysms (the motivations for the choice of the SPH technique will be discussed in
Chap. 1).

Specifically, the list of the implemented algorithms in the PANORMUS code is shown
below.

• Pressure Poisson equation resolution (see Chap. 2). Implementation of the Unpre-
conditioned and Preconditioned BiCGSTAB method in SPH, and FVM solvers;

• Adaptive time step technique in SPH (see Chap. 2);

• Inflow/outflow boundary treatment for SPH (see Chap. 3);

• Multi-Domain SPH approach (see Chap. 4);

• Parallelization of the SPH model using the Message Passing Interface (MPI ) li-
braries (see Chap. 5);

• Tracer transport and residence time models in SPH (see Chap. 7);

• Mechanical platelet activation model in the SPH framework (see Chap. 7);

• Coupled FVM-SPH method (see Appendix A).
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Glossary

AP Activation potential

BiCGSTAB BiConjugate Gradient STABilized

BC Boundary condition

CA Cerebral aneurysm

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Levy

CPU Central processing unit

CRS Compressed Row Storage

FD Flow diverter

FVM Finite Volume Method

HPC High-performance computing

In/OutFlow-BCs Inflow/Outflow boundary conditions

ISPH Incompressible smoothed particle hydrodynamics

MPI Message Passing Interface

MD Multi-Domain

OSI Oscillatory shear index

PPE Pressure Poisson Equation

Pre-BiCGSTAB Preconditioned BiCGSTAB

RHS right-hand-side

RT Residence time

SD Single-Domain

SPH Smoothed particle hydrodynamics

STL Standard Triangle Language

TAWSS Time averaged wall shear stress

TAWSSG Gradient of time averaged wall shear stress

transWSS Transverse wall shear stress

WCSPH Weakly compressible smoothed particle hydrodynamics

WSS Wall shear stress

WSSPI Wall shear stress pulsatility index
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Symbols

∆t time step

” · ” if it is used in equations it indicates the scalar product

ceiling if it is used in equations it indicates the operation of rounding up

W kernel function

h smoothing length

∆x starting particle distance

i i-th interpolating particle

mi mass of i

ρi density of i

νi kinematic viscosity of i

µi dynamic viscosity of i

Ωi Support domain of i

j j-th particle lying in Ωi

dij distance between the particles i and j

Wij kernel function at the distance dij

u∗i intermediate velocity of i

ui corrected velocity of i

pi pressure of i

ψi kinematic pressure of i. It is equal to ψ = pi/ρi when the predictor-

step equations are solved using an explicit algorithm

Ne total number of effective particles in the domain

Nmirror total number of mirror particles

Nspecies number of species in the tracer transport model

Cnci concentration vector of the particle i

The vectors are highlighted with bold letters. Considering the vector vect of length
n:

• vect(l) indicates the value of vect at the position l;

• vect(:), that is equal to vect(1 : n), indicates all the components of vect;

• vect(l : m) indicates the components of vect from the positions l up to m.
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List of symbols used to classify the particles:

e effective particles

m mirror particles

IO in/out-flow particles

IP multi-domain interface particles

PP parallel particles

PeP parallel effective particles

PmP parallel mirror particles

IP ∗ received interface particles

List of symbols used with reference to the particles inside Ωi:

s an effective particles into Ωi

g the effective particle generating mirror and/or IO particles

which lie in Ωi

N total number of particles lying into Ωi

Ni number of effective and mirror particles in Ωi

N e
i number of effective particles in Ωi

N
′
i number of effective and mirror (with g 6= i) particles in Ωi

NM
i number of mirror particles in Ωi, ∀g

NMs
i number of mirror particles in Ωi, with g = s

N
M(g 6=s)
i number of mirror particles in Ωi, with g 6= s

N IO
i number of in/out-flow particles in Ωi, ∀g

N IOs
i number of in/out-flow pressure particles in Ωi, with g = s

N
IO(g 6=s)
i number of in/out-flow pressure particles in Ωi, with g 6= s

N IP
i number of interface multi-domain particles in Ωi

N∗i number of effective, IO pressure, IP and PeP particles in Ωi

NPP
i number of parallel particles in Ωi

NPmPs
i number of parallel mirror particles PmP into Ωi generated by

the parallel effective particle s

NM+PmP
i number of mirror and parallel mirror particles in Ωi, ∀g
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List of symbols used in the Multi-Domain approach and in the parallel computing
algorithm (see Chap. 4 and Chap. 5):

Nprocs number of processors

myid current processor

id index of the processor (from 0 to Nprocs − 1)

N t theoretical number of effective particles in each processor domain

res number of the remaining effective particles in the last cell assigned

to the processor id

N(id) number of effective particles in the domain of id

Nmirror,id number of mirror particles in the processor id

NPP,tot total number of parallel particles received from the neighboring

processors (as sum of left and right)

NPePL number of effective parallel particles received from the left

NPePR number of effective parallel particles received from the right

NPeP,tot total number of effective parallel particles received. It is equal to

NPeP,tot = NPePL +NPePR

NBlocks number of blocks in the Multi-Domain approach

Bn generic block (or subdomain)

Ne,Bn number of effective particles in the block Bn

Ne,tot total number of effective particles in the whole domain as sum of

the Ne,Bn with Bn = 1, .., NBlocks

Na
Bn number of the available effective particles in the block Bn

(not yet assigned to any processor)

lb index of the block from which the IP has been generated

ib index of the block where the IP is contained

N ib
IP,id number of IP particles contained in the block ib and in the domain

of the processor id

N tot
IP,id total number of IP particles contained in the domain of id

N tot
IP,tot total number of IP particles generated by the current processor myid

as sum of the N tot
IP,id with id = 0, .., Nprocs − 1

N∗ibIP,id number of IP received by id that myid must solve using the values

of the particles in the block ib

N∗totIP,id total number of IP received by id

N∗totIP,tot total number of IP received as sum of the N∗totIP,id, id = 0, .., Nprocs − 1
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Chapter 1

Introduction

1.1 Generalities on blood flow circulation

Blood flow in the vascular system is unsteady and pulsatile due to the pumping action of
the heart (Ku, 1997; Kundu et al., 2016). During a cardiac cycle, pressure and velocity
fields vary periodically with time in all arteries. Although blood flow is not perfectly
periodic, since it is adjusted to meet the body’s blood demand, the approximation to a
periodic phenomenon can be accepted when considering short periods of time, since the
overall physical conditions change in a limited way.

In this compound, the Womersley number Wo = D/2
√
ω/ν (where D is the reference

mean diameter of the vessel, ν is the kinetic viscosity and ω is the frequency of the
pulse wave) is generally used to characterize the pulsatile nature of blood flow. This
dimensionless parameter denotes the ratio of unsteady inertial to viscous forces in the
flow. When Wo < 1 viscous effects are dominant and the flow can be considered as
quasi-steady since the frequency of pulsations is sufficiently low for the development of a
parabolic velocity profile. In such flow the Poiseuille’s law is thus reasonable applicable.
On the other hand, with increasing Wo inertial forces become not negligible; therefore,
for Wo > 10 the velocity profiles tend to be flat rather than parabolic since they do not
have enough time to develop during the cardiac cycle. The typical Womersley number
in cerebral vessels is of the order of unity (Shojima et al., 2005; Shimogonya et al., 2009;
Passerini et al., 2012; Steinman et al., 2003); therefore, the analysis of pulsatile flows in
the cerebral circulatory system is commonly accomplished using the Womersley solution
(Womersley, 1955).

Beside the pulsatile conditions which prevent developing the parabolic velocity profile,
a steady blood flow which enters from a large artery into a smaller branch could have even
a flat velocity profile. In fact, a steady flow takes a certain distance, which is called the
entrance length l, before becoming steady and fully developed with a parabolic velocity
profile. Within the entrance length, the velocity profile changes along the flow and large
velocity gradients (and thus high wall-shear stresses) exist near the wall. Inside the en-
trance length a boundary layer is formed since the fluid close to the wall is affected by the
viscous forces. On the other hand, in the central region of the vessel the velocity profile is
essentially flat. When the blood continues to flow along the entrance length, the bound-
ary layer progressively grows in thickness since the viscous shear stress affects more fluid.
At the end of the entrance length, where the flow is fully developed, the boundary layer
occupies the whole vessel. For steady flow at low Reynolds number (parameter obtained
through the entrance flow conditions, Re = ūD/ν, where ū is the mean sectional velocity),
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the entrance length can be estimated as l = 0.06ReD (Kundu et al., 2016). Considering
a cerebral vessel with inlet diameter of 4 mm and Re = 350, the entrance length is ap-
proximately 21 diameters long. Cerebral vessels are not straight but are curved and have
several branches, therefore, blood flow is in general not well developed. For pulsatile flow
the entrance length depends on the Reynolds number as well as on the Womersley number,
as discussed by Ku (1997).

In cerebral circulation, blood flows inside irregular vessels having a lot of curves,
branches and bifurcations. Moreover, the diameter of the arteries forming the Circle
of Willis is very variable; it is ranging between 1.5 mm and 5 mm (Kamath, 1981),
while in several smaller vessels, originated from the larger ones, it is even less than 1 mm
(Lang, 2001).

Laminar flow is commonly assumed in cerebral arteries; this assumption is widely
justified due to the values of the Reynolds number being far lower than the threshold
value of 2 000÷ 2 500.

Since the characterization of patient-specific flow conditions is not part of the routine
clinical examinations, the estimation of the blood flow rate in cerebral vessels is usually
accomplished by ”typical” waveforms, where the flow rates are scaled to the area of the
inflow artery through empirical relationships (Cebral et al., 2008) or based on the principle
of minimum work (Oka and Nakai, 1987). A typical mean flow rate over a cardiac cycle in
the Internal Carotid Artery (ICA) is about 240 ml/min (Marshall et al., 2004; Hendrikse
et al., 2005; Cebral et al., 2008; Damiano et al., 2015), which corresponds to an average
velocity ū = 0.32 m/s considering a diameter of 4 mm. In the ICA a value of Re = 350 is
assumed to be representative of the blood flow regime in the range of physiological values
(Passerini et al., 2012). In the Middle Cerebral Artery (MCA) a flow rate of 120 ml/min
has been measured by Stock et al. (2000) through phase-contrast MR imaging. As a
consequence, average ū = 0.41 m/s and Re = 270 can be assumed with a mean diameter
of 2.7 mm (Lang, 2001).

1.2 Cerebral aneurysms

1.2.1 Generalities

Cerebral aneurysm (CA) is a vascular disease characterized by local dilatation of the cere-
bral arterial walls. This pathology afflicts approximately 2÷3 % of the general population
(Rinkel, 2008).

The aneurysms can be classified in different frames considering their shape and size.
The most common aneurysm has saccular shape, it is thus named saccular (or berry)
aneurysm. The saccular aneurysm is characterized by a sack sticking from the side of
a blood vessel wall connected through the so-called neck region. Less frequently, the
aneurysms have fusiform shape (Xu et al., 2018); in this case it is not identified a neck
region and the artery walls expand in all directions involving a longer vessel segment.
According to their size, the aneurysms can be classified as tiny (having diameter Da <
3 mm), small (3 ≤ Da < 5 mm), medium (5 ≤ Da < 13 mm), large (13 ≤ Da < 25 mm)
and giant (Da ≥ 25 mm) (Badry et al., 2014).

Aneurysms predominantly occur at bifurcations apices or at the outer walls of arterial
curvatures in or near the Circle of Willis (Chason, 1958; Stehbens, 1972; Foutrakis et
al., 1999). In particular, most brain aneurysms form in the anterior circulation (Rinkel
et al., 1998). The Fig. 1.1.a shows the Circle of Willis with the indication of saccular and



1.2. CEREBRAL ANEURYSMS 3

Saccular 
aneurysm

Fusiform
aneurysm 

(a) (b)

Coils

Stent

(c)

flow diverter

(d)

Figure 1.1: a) Circle of Willis with the indication of saccular and fusiform aneurysms
(taken from: https://orangecountysurgeons.org); b) Surgical procedure. Aneurysm clip-
ping (taken from: https://www.bafound.org); c) Endovascular treatment. Stent-assisted
coiling (taken from: https://ami.org); d) Endovascular treatment. Aneurysm flow diver-
sion (taken from: https://www.fda.gov).

fusiform aneurysms.

The main risk factors for aneurysm formation and rupture are positive family history,
hypertension, older age, female gender, population, smoking, alcohol abuse, connective
tissue disorder and blood vessel injury. Rupture is influenced also by aneurysm mor-
phological characteristics including size, shape, and location (Wiebers and Marsh, 1998;
Wiebers, 2003; Feigin et al., 2005; Toth and Cerejo, 2018).

The largest aneurysms can be discovered since they cause the compression of surround-
ing brain structure. However, most of these diseases are silent throughout the patient’s
life because they are asymptomatic. In the most catastrophic events they rupture and
lead to intracranial hemorrhage into the subarachnoid space (named subarachnoid hem-
orrhage). The subarachnoid hemorrhage, whose main cause arises from the rupture of a
cerebral aneurysm (Rinkel et al., 2001), has an associated high mortality and morbidity
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Aneurysm

Figure 1.2: Digital subtraction angiography (taken from: http://www.scielo.org.za).

risk (Rinkel et al., 1998; Meng et al., 2013).

In order to detect CAs different techniques can be used. Digital subtraction angiography
(see Fig. 1.2) is widely considered the current gold standard for detecting brain aneurysms
(Walkoff et al., 2016; Goertz et al., 2018; Toth and Cerejo, 2018; Turan et al., 2018),
although the 3D rotational angiography is able to depict smaller (diameter < 3 mm)
additional aneurysms (Rooij et al., 2008).

1.2.2 The role of Wall Shear Stress

It is widely recognized in the literature that hemodynamic factors including Wall Shear
Stress (WSS ), vorticity, jetting, recirculation and pressure fluctuations play a very im-
portant role in the initiation, growth, and rupture of CAs (Jou et al., 2008; Cebral et
al., 2011; Xiang et al., 2011; Munarriz et al., 2016). Vessel walls remodel their structure in
order to adaptively respond to shear stress variations: if WSS locally increase, a punctual
enlargement of the wall may take place. Moreover, WSS regulates endothelial functions.
Therefore, it is fundamental to understand the WSS distribution on the vessel walls.

The mechanisms of aneurysm growth and rupture are not well understood yet. Specif-
ically, it is not clear if either low or high shear stresses have to be considered the main
triggers since the progression and rupture of CAs have been associated with zones of
the aneurysm wall exposed to both high and low WSS (Meng et al., 2013; Munarriz et
al., 2016). On one hand, under high shear stresses the arterial walls can weaken due to
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biochemical processes and the prevalence of blood pressure forces over internal wall resis-
tance can occur. On the other hand, blood stagnation in the aneurysm sac as result of low
blood flows can lead to aggregation of red cells, accumulation and adhesion of platelets
and leukocytes along the intimal surface. This process could imply the progressively wall
tissue degeneration making the vessel walls no longer able to support blood pressure.

1.2.3 Therapeutic treatments

Choosing the optimal management for each patient requires the careful consideration of
several factors such as patient’s age and medical conditions, as well as aneurysm size and
shape (dome-neck ratio) and site (Cowan J. et al., 2007; Rinkel, 2008; Shamloo et al., 2017;
Toth and Cerejo, 2018).

In order to prevent the rupture of detected CAs, the therapeutic decisions are mainly
surgical clipping or endovascular procedures (such as coils and/or stent and flow diverter
devices). Unfortunately, both endovascular and surgical treatments carry the risk of as-
sociated morbidity and mortality; therefore, the treatment of complex CAs remains chal-
lenging. Sometimes, when the risk associated to the treatment is higher than the natural
risk of rupture, the medical follow-up is chosen to check, using detection procedures, if the
aneurysm is enlarging (Wiebers et al., 2003).

Surgery mainly involves placing a metallic clip across the aneurysm neck to separate it
from the parent artery circulation (see Fig. 1.1.b). It is recommended after CA rupture.

Endovascular approaches are increasingly used, as they are less invasive compared
to open surgery. Interventional thromboembolization treatments are used to stabilize the
disease, promoting thrombus formation via the endovascular insertion of coils and stents
or flow-diverter (FD) devices.

Coils technique involves filling the sac with platinum preshaped wires inducing the
blood coagulation inside the aneurysm sac. These wires are often kept in the cavity
putting meshes made up of surgical grade metal (stent) in the parent vessel across the neck
of the aneurysm (see Fig. 1.1.c). Due to the CA shape and dimension, sometimes coiling
has significant limitations in achieving durable occlusion. This is the case of aneurysms
characterized by wide neck or fusiform shape or giant dimension (Fiorella et al., 2008;
Becske et al., 2013). Furthermore, this procedure can lead to complications such as coil
compaction which implies the re-growth of the aneurysm or the formation of a second
pathological dilatation.

The FD devices aim at changing intra-aneurysmal flow deviating it away from the sac
and promoting the thrombosis of the aneurysm (Vanninen et al., 2003). Moreover, FD
structure provides neointimal growth over its struts allowing the parent vessel reconstruc-
tion. FD design is different from the conventional stents used as scaffold for coils. This
devices are characterized by very thin wires braided like a mesh (see Fig. 1.1.d), whose level
of compaction is related to the configuration assumed during the release of the FD from
a microcatheter owing to its deformable mesh structure. Despite the flow diversion tech-
nique has shown great promise and has been adopted by much of the neuroendovascular
community, some apparently successful cases have worsened later as result of incomplete or
prolonged occlusions as well as of post-procedure delayed hemorrhage due to the rupture
of the CA (Pierot, 2011; Siddiqui et al., 2012; Briganti et al., 2015; Raymond et al., 2016;
Rouchaud et al., 2016; Kiselev et al., 2018). The triggers of the post-procedure rupture
of the aneurysm, which has a significant morbidity risk (White et al., 2018), are poorly
understood. Causal factors responsible for these clinically devastating complications have
been only suggested. They are likely related to multiple factors working synergistically
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such as anti-aggregation therapy (that is necessary to prevent thromboembolism), patient’s
individual anatomy and FD size and compaction level (Turowski et al., 2011). Concerning
the latter aspect, compacting the FD mesh is an emerging technique to create a denser
wire configurations across the aneurysm neck in order to promote a higher flow reduction
inside the sac of the CA (Zhang et al., 2017). On the other hand, it was found that an
excessive and abrupt stagnation of blood promotes the formation of non-organized and
unstable red thrombi that are characterized by the predominance of red blood cells. In
this respect, platelet content of the clot is thought to determine the clot stability promot-
ing the formation of the so-called white thrombi that facilitate the healing process after
aneurysm flow diversion. Therefore, the platelets play a very important role in the process
of aneurysm occlusion. The activation of platelets can occur through both chemical and
mechanical stimuli. As discussed by Xiang et al. (2014), whilst maximum FD compaction
at the CA neck can improve aneurysmal bulk flow reduction, potentially accelerating the
dome thrombotic occlusion, on the other hand, an excessively dense mesh of the device
reduces also the blood shear stress generated near the FD struts which could mechanically
activate platelets. Thus, attention should be paid not only to the aneurysmal bulk flow
reduction but also to the shear-induced activation of platelets near the FD struts (which
could potentially generate white thrombus). To the author’s best knowledge, yet no study
exists in the literature investigating this latter fundamental aspect.

1.3 Computational fluid dynamics

The analysis of the problems mentioned above requires a detailed description of the hy-
drodynamic phenomena developing in cerebral vessels with the presence of a CA. Since
the governing equations of hemodynamics are non-linear partial differential equations and
they can not be solved analytically, one possible strategy is to use the Computational Fluid
Dynamics (CFD). The CFD allows to obtain a complete description of the velocity and
pressure fields as well as of the shear-stress on the vessel walls. Indeed, the investigation
of a vast range of engineering and science problems using CFD analysis is an active and
very interesting research area allowing to solve the complex equations of the fluid dynam-
ics. The CFD encompasses different numerical approaches which can be broadly framed
into grid-based and mesh-less methods. While the conventional grid-based methods are
characterized by large robustness and efficiency, they suffer from some difficulties mainly
related to the required mesh generation to discretize the domain. Specifically, construct-
ing a high-quality grid for geometrically complex domains as well as analyzing solid-fluid
moving interfaces are very challenging for the grid-based methods both in terms of com-
putational time and mathematical complexity. Several procedures have been developed to
alleviate these difficulties such as the use of unstructured grids or of techniques like the
Immersed Boundary Method (Mittal and Iaccarino, 2005).

On the other hand, to overcome the issues of the grid-based methods in the last decade
a strong interest has been focused on the mesh-less methods, among which Smoothed
Particle Hydrodynamics (SPH ) is probably one of the most used. These methods, not
requiring a spatial mesh, are specifically suitable to study highly complex geometries,
multi-phase flows, moving boundaries and rapidly evolving air-water interfaces. Although
mesh-less methods share some common features, the employed approximation techniques
are very different as discussed in Liu and Liu (2003).
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1.3.1 Numerical simulations of cerebral aneurysms

CFD analysis, thanks to progress in computer equipment and medical imaging field, can be
used nowadays to study hemodynamics in realistic patient aneurysm geometries. Several
studies have shown that CFD can be a powerful tool to investigate aneurysm hemody-
namics (Jou et al., 2003; Steinman et al., 2003; Cebral et al., 2005; Shojima et al., 2005;
Castro et al., 2006; Boussel et al., 2008; Szikora et al., 2008; Karmonik et al., 2009; Shi-
mogonya et al., 2009; Karmonik et al., 2010; Marzo et al., 2011; Passerini et al., 2012;
Geers et al., 2017), analyzing the complex nature of blood flow inside the aneurysm sac
as well as the interaction with endovascular devices (Ohta et al., 2005; Meng et al., 2006;
Janiga et al., 2015; Shamloo et al., 2017; Zhang et al., 2017).

Numerical investigation on CA is commonly undertaken using the traditional grid-based
numerical methods. Due to the very irregular and winding geometry of the aneurysm and
the surrounding vasculature, the meshing process is not trivial and specific unstructured
grids must be used. Moreover, when modeling endovascular treatments the large difference
of scale between the size of the devices (coils or flow-diverter), the parent vessel and
the aneurysm sac must be addressed (Jeong and Rhee, 2012). Blood flow through the
structure of endovascular devices is difficult to simulate; thereby, simplified representations
of device geometries and deployment are frequently employed. To overcome this issue some
adaptive embedding techniques have been developed (Appanaboyina et al., 2008; Cebral
and Lohner, 2005). A different strategy was proposed by Augsburger et al. (2011) based
on the modeling of the device as a porous medium. In this framework, an international
study, named Virtual Intracranial Stenting Challenge (VISC) 2007, was conducted with
the purpose of establishing the reproducibility of state-of-the-art hemodynamic simulation
and grid generation techniques in subject-specific stented aneurysm models (Radaelli et
al., 2008).

Differently from the traditional and widely used grid-based formulation, in this research
study the Lagrangian mesh-less SPH method is employed to model blood flow in cerebral
aneurysms. This methodology fits naturally for the treatment of geometrically complex
and irregular domains, such as cerebral vessels, without requiring the generation of a mesh.

Although the hemodynamic simulations presented within this manuscript (see Chap.
6) could be performed, in principle, with an unstructured grid approach as well, such
irregular geometries are intrinsically hard to be handled for grid-based methods (Chui and
Heng, 2010).

In this thesis no vessel walls deformation neither multi-phase processes, whose treat-
ment would make SPH a very competitive strategy than an Eulerian method, have been
considered. It is necessary to highlight that this research study is a step towards a more
widely and complex modeling of cerebral aneurysms, where of a whole life cycle of these
diseases should be considered, which encompassing their birth, progressively growth and
rupture at the end. In this context, where the vessel deformations should be taken into
account, the use of a mesh-less method like SPH is extremely beneficial, as it helps to
straightforwardly model moving boundaries (Liu and Liu, 2010). Therefore, this research
opens the door for future applications of SPH aimed at modeling cerebral vessels with
moving walls, where the traditional grid-based methods would have strong difficulties since
the process of generation of unstructured grids would become very time consuming since
the mesh should be updated at each time step.

Moreover, SPH could be effectively used for predicting the effect of interventional pro-
cedures since it is very appropriate for modeling blood clot formation occurring inside
the aneurysm sac after inserting endovascular devices. In this regards, blood clotting
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process is governed by activation of platelets through biochemical and mechanical mech-
anisms which are strongly related to the trajectory of each particle and are thus usually
analyzed through Lagrangian particle tracking procedures (Hansen et al., 2015; Shadden
and Arzani, 2015; Alemu and Bluestein, 2007). Secondly, the thrombus formation occurs
as a consequence of adhesion and deposition of activated platelets. In this framework,
the use of a truly Lagrangian method is very suitable since the history of each platelet
can be tracked and, moreover, a integration of multiple types of media (flow-related clot
aggregation-dissolution) can be studied in detail.

In this compound, another important CFD application is the modeling of a virtual
contrast transport, the so-called ”virtual angiogram” (Ford et al., 2005; Vali et al., 2017),
which can be used to analyze endovascular treatment outcomes. On one hand, the analysis
of injection of a virtual medical agent can be very helpful to model an anti-aggregation
therapy in order to prevent thromboembolism downstream the aneurysm site. On the other
hand, through the virtual contrast modeling it is possible to evaluate the residence time,
which defines the so-called ”blood age”. In other words, residence time indicates the mean
time that a blood particle spent when passes through a region of the vessel. Residence time
is, in fact, a key factor for identification of intra-aneurysmal regions of stagnancy which
are associated with an increased likelihood for thrombus formation due to the insertion of
an endovascular device.

As a merit of Lagrangian nature of the SPH method, the model for platelet activa-
tion mechanisms, as well as residence time parameter and tracer agent injection can be
elegantly formulated considering the history of each particle (platelet, blood and drug
particle, respectively). Specifically, through SPH it is possible to quantify the exposure
of particles to some influence as they move through the domain, such as the level of shear
stress or the chemical exposure.

In this research study, a stress-exposure time model has been implemented in SPH in
order to simulate the process of mechanical platelet activation (see Chap. 7). Moreover,
the residence time parameter and the transport of a virtual contrast agent have been an-
alyzed employing a tracer transport model. Future research activities will be addressed
to develop a SPH-based blood clot model encompassing both biochemical and mechani-
cal stimuli for the platelet activation as well as a multi-phase process for studying their
adhesion and deposition.

1.4 Smoothed particle hydrodynamics

SPH is a robust Lagrangian particle method for solving partial differential equations which
was initially developed for astrophysical flow problems (Lucy, 1977; Gingold and Mon-
aghan, 1977; Benz, 1988). The method was rapidly extended and applied to compressible
and incompressible flows in different fields (Monaghan, 2012).

In the classical SPH approach the fluid domain is represented using a finite number
of particles with a uniform distribution.

In SPH simulations of incompressible flows, the weakly compressible (WCSPH ) and
the truly incompressible (ISPH ) approaches can be used to solve the Navier-Stokes equa-
tions. The original method was formulated as WCSPH (Monaghan, 1994) where the
fluid flow is treated as slightly compressible relating the pressure to the fluid density
through an appropriate equation of state. As discussed by Lee et al. (2008), the WC-
SPH scheme leads to some issues related to the development of acoustic waves traveling
throughout the medium whose high speed imposes to use very low time steps in order
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to respect the Courant-Friedrichs-Levy stability condition (CFL). Recently, Meringolo et
al. (2017) proposed a filtering technique to remove the unphysical acoustic frequencies
using a wavelet-based filtering. On the other hand, the ISPH approach enforces the fluid
incompressibility solving the pressure field with a Pressure Poisson Equation (PPE ) fol-
lowing the projection method proposed by Chorin (1968). The ISPH approach allows to
make use of larger time steps since no explicit dependence on the speed of sound is enforced
(Lind et al., 2012). However, the solution of the PPE, which is required to guarantee the
mass conservation, leads to computational costs much higher than WCSPH for each time
step. In this research study the ISPH approach has been employed. Therefore, from now
on, all the numerical considerations will focus on the ISPH algorithm, although most of
the implemented procedures (except those closely related to the PPE ) could be applied
with limited changes to the WCSPH scheme as well.

1.4.1 SPH limitations and improvements

Whilst SPH exhibits the best behavior just in those applications where grid-based methods
show the most serious challenges (De Padova et al., 2013), the mesh-less method has
some disadvantages mainly related to numerical instability, tedious treatment of boundary
conditions (BCs) and high computational costs.

The motion of the particles, which are initially distributed regularly, can become un-
stable resulting in particle clustering along the streamlines due to the well-known problem
of the tensile instability (Monaghan, 2000). This issue has been widely studied and several
techniques have been developed to overcame it (Monaghan, 2000; Xu et al., 2009; Lind
et al., 2012).

Modeling of wall BCs is non-trivial and requires some special treatments such as place-
ment of ghost particles outside the computational domain. Moreover, peculiar difficulties
are encountered when open-boundaries exist since the treatment of the particles leaving
or entering the domain is very challenging. On one hand, the mass conservation con-
straint must be satisfied, on the other hand, a regular particle distribution at the inlet
must be maintained in order to avoid any occurrence of void spaces. Recently, Mon-
teleone et al. (2017) proposed an inflow/outflow procedure which meets both the above
requirements. The procedure will be fully described in Chap. 3.

It is widely known that the SPH method requires huge computational efforts (Gomez-
Gesteira et al., 2010) limiting its applications to close-up analysis of relatively small re-
gions. This issue is mainly related to the employed in the ”classical” SPH formalism of
constant space particle distribution. In this case, indeed, the particle mutual distance
is imposed by the regions requiring the highest accuracy and it is applied to the whole
domain. Therefore, SPH can be computationally more expensive than the most employed
Eulerian methods where, in order to reduce the computational costs, grids are usually non
uniform. Employing the SPH method with a uniform particle distribution to real applica-
tions involves simulations requiring a high number of particles making frequently necessary
the use of high-performance computing (HPC ) (Crespo et al., 2015; Guo et al., 2018). In
order to overcome this drawback, several refinement strategies have been proposed allow-
ing to use a variable space particle distribution (Nelson and Papaloizou, 1994; Owen et
al., 1998; Feldman and Bonet, 2007; López et al., 2013; Barcarolo et al., 2014; Shibata et
al., 2017). Recently, Monteleone et al. (2018) proposed a multi-domain approach, entirely
different from other existing refinement procedures in SPH. This method, which will be
widely described in Chap. 4, allows to partition the computational domain in different
subdomains in each of which a proper refinement can be used.
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Differently from the aforementioned refinement procedures, there are also other strate-
gies to reduce the SPH computational costs based on the merging of the SPH approach
with the mesh-based methods. These strategies have been developed to simulate fluid-
solid interactions (Jianming et al., 2010), wave processes (Narayanaswamy et al., 2010),
ice dynamics (Nolin et al., 2009). Bouscasse et al. (2013b) developed an algorithm for
coupling SPH (in WCSPH formulation) with other approaches through an interface re-
gion. Napoli et al. (2016) proposed a coupled method (named Coupled FVM-SPH ) which
allows to combine the larger computational efficiency of the finite-volume method with the
flexibility of SPH. The method consists on partitioning of the computational domain in dif-
ferent regions in order to use the finite-volume method in some portions, while employing
the mesh-less Lagrangian approach in the regions with the higher geometric complexity
and/or the presence of moving boundaries or rapidly evolving free-surfaces. Although the
Coupled FVM-SPH method has not been applied in the CA analysis, it will be discussed
in Appendix A.

1.4.2 SPH applications in blood flow analysis

The use of the SPH method to simulate blood flow has significantly increased in last years.

Chui and Heng (2010) developed a rheological model for medical simulations with SPH
including a flow-related clot aggregation-dissolution technique.

Shahriari et al. (2012) and Mao et al. (2016) used SPH to simulate blood flow passing
through heart valves, whilst Caballero et al. (2017) simulated the blood flow dynamics in
two realistic left ventricular models.

Other authors (Müller et al., 2004; Chong et al., 2017; Shi et al., 2017) proposed
bleeding models in the human body with SPH in order to show how numerical techniques
can provide an essential tool for future medical training such as virtual surgery.

To the author’s best knowledge, no SPH applications exist to study CA hemodynamics.

1.5 Motivations and thesis outlines

1.5.1 Motivations and Objectives

Numerical simulations can provide useful information on aneurysm hemodynamics and can
be used to clinically useful applications. On one hand, the numerical tools can make more
realistic the surgical training systems. On the other hand, since for unruptured aneurysms
the choice between immediate treatment or simple observation is strongly controversial,
numerical simulations could improve the quality and timing of the treatment planning.
For example CFD can be exploited as a criterion for endovascular devices design and
placement as well as to study their interaction with the blood flow and vessels. Moreover,
computational tools for simulating clinical interventions in patient-specific geometries may
help to evaluate the impact of endovascular devices. Therefore, it is possible to identify
the hemodynamic factors that affect treatment outcomes, thereby assisting neurosurgeons
in choosing a favourable treatment plan.

The mesh-less feature of the SPH method can be exploited to model complex geome-
tries such as cerebral vessels in presence of an aneurysm and CAs treated with endovascu-
lar devices. Moreover, the truly Lagrangian nature of SPH makes the method suitable to
model the multi-phase process of blood clot formation inside the sac of aneurysms treated
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with thromboembolization devices.

In this research the open-source SPH solver PANORMUS-SPH has been employed
(see Methodological note). The numerical code is available at www.panormus3d.org.

The aim of this research study is to perform numerical analysis of blood flow in CAs
by developing suitable algorithms and procedures in the SPH model to improve the per-
formance of the PANORMUS-SPH code. The numerical improvements can be used to
analyze the hemodynamics of patient-specific CA models, to investigate the transport of
a tracer passively transported with the blood flow, to determine the ”blood age” in each
point of the domain (through the residence time parameter) and to study the activation
of platelets through mechanical stimuli.

1.5.2 Thesis outlines

The thesis is organized into eight chapters and one appendix that are briefed as follows:

• Chapter 1 introduces background knowledge on CAs. The role of computational fluid
dynamics is highlighted and the features of the grid-based and mesh-less numerical
techniques are briefed. The SPH method is introduced describing some general
features, advantages, limitations, improvements as well as applications in blood flow
analysis. Motivations and objectives of the thesis are outlined;

• Chapter 2 provides fundamental and basic concepts of the SPH method. Several
aspects of the PANORMUS-SPH code are explained such as the solid boundary
treatment and the procedure to solve the momentum and continuity equations in
the ISPH approach. Peculiar attention is paid to the PPE resolution method. The
structure of the SPH numerical model in the basic version is described;

• Chapter 3 describes the developed procedure to treat open-boundaries in SPH. Two
benchmark test cases are considered to show the efficiency and accuracy of the
technique. This chapter is based on the paper of Monteleone et al. (2017);

• Chapter 4 describes the implemented refinement technique in the SPH method. The
3D transient Poiseuille flow in a circular pipe and the 2D vortex shedding in the
wake are performed in order to show the performance of the developed method. This
chapter is based on the paper of Monteleone et al. (2018);

• Chapter 5 proposes a CPU -based parallel computing procedure in SPH using the
MPI libraries. Some numerical scalability tests are performed to show the perfor-
mance of the parallelized SPH model;

• Chapter 6 investigates several numerical applications of CA hemodynamics consid-
ering an ideal geometry as well as real geometries selected from the Aneurisk dataset
repository (Aneurisk-Team, 2012). Some numerical results are compared with finite-
volume solutions and with experimental measures;

• Chapter 7 presents tracer transport, residence time and mechanical platelets activa-
tion models. Some benchmark test cases are shown. Ideal and real geometries of
CAs are investigated;

• Chapter 8 draws main conclusions and suggests possible future research directions;
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• Appendix A describes the Coupled FVM-SPH method. This appendix is based on
the paper of Napoli et al. (2016). The appendix provides a procedure to speed up the
solution of the original method of Napoli et al. (2016). A performance evaluation is
conducted through the simulations of a 3D confined flow test (the lid-driven cavity
problem) and a 2D free-surface application (the solitary wave run-up and overtopping
on a seawall).



Chapter 2

Smoothed particle hydrodynamics
and numerical procedure

In this chapter the basic concept and formulation of the smoothed particle hydrodynamics
(SPH ) method are discussed. The governing equations are written in the SPH formula-
tion following the ISPH approach. The attention is focused on the numerical procedures
employed in the PANORMUS-SPH code. Specifically, the boundary treatment at the
solid walls, the fractional-step method to make the numerical solution marching in time,
some stabilizing techniques and the adaptive time step procedure are explained. A pe-
culiar attention is payed to the resolution of the elliptic Pressure Poisson Equation with
the BiConjugate Gradient STABilized (BiCGSTAB) method and to the preconditioning
algorithm to speed-up the convergence of the BiCGSTAB. Finally, a flow chart outlines
the structure of the PANORMUS-SPH code considering its basic and serial version.

2.1 SPH basic idea and formulation

In the SPH method, the fluid domain is represented using a set of particles which move
according to the Navier-Stokes equations. In the classical SPH approach the particles are
initially distributed uniformly in space with a starting particle distance ∆x.

Each i particle has its own mass mi, density ρi, volume ∆Vi = mi/ρi and other physical
properties. The field variables at each particle are obtained using discrete convolution
integrals with filter functions of assigned shape, indicated as kernel functions.

In the SPH formulation the kernel approximation and particle approximation can be
conceptually identified (Liu and Liu, 2010).

2.1.1 Kernel approximation

The kernel approximation consists in representing a generic function f at position vector
x in continuous form as a convolution integral extended to the domain D

〈f( x )〉 =

∫
D
f
(
x′
)
δ(x− x′) dx′ (2.1)

where δ is the Dirac delta function equal to 1 if x = x′ and 0 elsewhere.

Replacing the Dirac delta function with a weight function W (x − x′, h), the kernel

13



14 CHAPTER 2. SPH THEORY AND NUMERICAL PROCEDURE

approximation of f , indicated with the symbol 〈f( x )〉, can be written as

〈f( x )〉 =

∫
D
f
(
x′
)
W (x− x′, h) dx′ (2.2)

In the SPH approximation the weight function is known as kernel function and h is its
characteristic length named smoothing length. The smoothing length h, which plays a role
corresponding to the cell dimension in grid-based methods, controls the influence domain
of the kernel function W defining its support domain.

Applying the Taylor series expansion to eqn. 2.2 and using the properties of the kernel
function, defined in Sec. 2.2.1, it can be obtain the kernel approximation order accuracy

〈f( x )〉 =

∫
D

[
f(x) + f ′(x)(x′ − x) +O((x′ − x)2)

]
W (x− x′, h)dx′ =

= f(x)

∫
D
W (x− x′, h)dx′ + f ′(x)

∫
D

(x′ − x)W (x− x′, h)dx′ +

+ O(h2)

where it is
∫
DW (x− x′, h)dx′ = 1 (see unity condition property of the kernel function in

Sec. 2.2.1), whilst
∫
D (x′ − x)W (x− x′, h)dx′ = 0 since the kernel function is even with

respect to x (see the symmetric condition in Sec. 2.2.1). Thus, it can be stated that the
kernel approximation has second order accuracy with respect to h (Monaghan, 1992) as
shown by the following equation.

〈f( x )〉 = f(x) +O(h2)

The derivatives of the generic function can be obtained replacing f(x) with ∂f(x)
∂x in

eqn. 2.2 and applying integration by parts〈
∂f(x)

∂x

〉
=

∫
D

∂f(x′)

∂x
W (x− x′, h)dx′ =

=

∫
D

∂ [f(x′)W (x− x′, h)]

∂x
dx′ −

∫
D
f(x′)

∂W (x− x′, h)

∂x
dx′ (2.3)

In eqn. 2.3 the term
∫
D
∂[f(x′)W (x−x′,h)]

∂x dx′ can be transformed into a surface integral
using the divergence theorem∫

D

∂ [f(x′)W (x− x′, h)]

∂x
dx′ =

∫
S
f(x′)W (x− x′, h)nxdS

where nx is the x component of the unit vector normal to the surface S. Due to the
compact condition property, defined by Liu and Liu (2003), the kernel function W has
null values in the surface S (see Sec. 2.2.1), thus the surface integral is zero. Therefore,
eqn. 2.3 can be rewritten as〈

∂f(x)

∂x

〉
= −

∫
D
f(x′)

∂W (x− x′, h)

∂x
dx′ (2.4)

where the derivatives of f can be obtained through the derivatives of W .
Similarly to what observed for the kernel approximation of a function, it is possible

to show that the kernel approximation of the derivative is also of second order accuracy
when the support domain is contained inside the problem domain (Liu and Liu, 2010).

The kernel approximation of higher order derivatives can be obtained substituting
f(x) with the corresponding derivatives in eqn. 2.2, using integration by parts, divergence
theorem and some algebra.
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Figure 2.1: Sketch of the particle support domain. Continuous blue line: kernel function;
red full cycle: particle i; empty red circle: support domain of i (Ωi).

2.1.2 Particle approximation

The particle approximation involves representing the problem domain using Ne particles
in each of which the field variables are estimated. As shown in Fig. 2.1, each particle i has
a support domain Ωi which includes all the surrounding particles having distance from the
position of i (xi) lower than the product between the characteristic width h of the kernel
function and a constant k depending on the shape of the kernel function (see Sec. 2.2.2).

The integral of eqn. 2.2 computed at the position xi of the i particle can be replaced
in a discretized form as the sum over the N particles lying into Ωi

〈fi〉 =
N∑
j=1

mj

ρj
fjWij (2.5)

where for simplicity 〈fi〉 indicates 〈f(xi)〉 and the weighting function W (xi − xj , h) is
written as Wij since its value depends on the distance dij between the particle i and its
surrounding particle j.

As discussed by Colin et al. (2006), three different formulas can be used to compute
the first derivatives of f at i particle, known as Basic (BGAF ), Difference(DGAF ) and
Symmetric (SGAF ) Gradient Approximation (eqns. 2.6, 2.8, 2.7, respectively)

∂f

∂x

∣∣∣∣
i

= −
N∑
j=1

mj

ρj
fj
∂Wij

∂x

∣∣∣∣
i

(2.6)

∂f

∂x

∣∣∣∣
i

= −
N∑
j=1

mj

ρj
(fi − fj)

∂Wij

∂x

∣∣∣∣
i

(2.7)
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∂f

∂x

∣∣∣∣
i

= ρi

N∑
j=1

mj

(
fj
ρ2
j

+
fi
ρ2
i

)
∂Wij

∂x

∣∣∣∣
i

(2.8)

where ∂f
∂x

∣∣∣
i

=
〈
∂f(xi)
∂x

〉
.

In this research study the DGAF formula has been used.

The second derivatives could be obtained applying one of the formulae above (2.6 - 2.8)
to the first derivative but time-consuming double sum and additional smoothing would
be required. To avoid this the formula proposed by Morris et al. (1997) is used which is
based on Taylor series expansion together with the DGAF first derivative

∂2f

∂xα∂xα

∣∣∣∣
i

=

N∑
j=1

2
mj

ρj

∂Wij

∂dij

1

dij
(fi − fj) (2.9)

Eqn. 2.9 can be expressed for the Laplacian as follows

∇2fi =

N∑
j=1

2
mj

ρj

(xi − xj) · ∇Wij

d2
ij + η

(fi − fj) (2.10)

where the symbol ”·” indicates the scalar product, ∇Wij is the gradient of the kernel
function and η is a small distance (set to 0.01h in all the applications presented in this
thesis) used to avoid occurrence of singularities when the distance dij approximates to
zero.

2.2 The Kernel function

2.2.1 Properties

The kernel functions should satisfy several conditions (Liu and Liu, 2003), the main ones
are listed below:

• Unity condition. The integration of W over the whole domain D is equal to one;∫
D
W (x− x′, h) dx′ = 1

• Delta function behavior. When h tends to zero the kernel function W approaches
the Dirac function;

lim
h→0

W (x− x′, h) = δ(x− x′)

• Compact support condition. The area of influence of W , named support domain, has
limited width equal to kh. It is thus:

W (x− x′, h) = 0, when
∣∣x− x′

∣∣ > kh

• Positivity condition. The function W is positive for each particle inside the support
domain at x:

W (x− x′, h) > 0 when
∣∣x− x′

∣∣ ≤ kh
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Figure 2.2: Wendland function (continuous black line) and its first derivative (dashed
black line).

• Monotonically decreasing behaviour. The value of W is monotonically decreasing
with the increase of the distance |x− x′|;

• Symmetric condition. W is an even function and particles with same distance but
different positions have equal effect on a given particle:∫

D
(x− x′)W (x− x′, h) dx′ = 0

2.2.2 Wendland function

Several different functions have been proposed in the literature. In this research study, the
Wendland function has been used (Wendland, 1995) where the proportionality constant
k between the radius of the support domain and the smoothing length h is equal to 2

Wij =
21

16πh3

 (1− rij/2)4 (2rij + 1) , when 0 ≤ rij < 2

0, when rij ≥ 2

(2.11)

where rij is the ratio |xi − xj |/h. The Wendland function and its first derivative are
plotted in Fig. 2.2.

2.3 Consistency

The concept of SPH consistency has been in-deep described by Liu and Liu (2010). In
general, if a function approximation can exactly reproduce a polynomial of up to n-th
order exactly, it has Cn it. The concept of SPH consistency can be subdivided in kernel
and particle approximation consistency. The SPH method has up to C1 kernel consistency
for the interior regions. However, due to the kernel truncation, occurring at the boundary
regions, the unity condition is not satisfied; therefore, the SPH not even reaches C0 kernel
consistency and suitable procedures must be used to restore consistency.
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dij

Figure 2.3: Sketch of the kernel function W (continuous blue line) truncated at the bound-
aries. Red circle: particle i; dotted blue line: support domain of i, (Ωi); bold dotted red
line: boundary.

The order of kernel consistency can be further reduced in the discretized SPH model
due to the particle approximation process not only affecting the truncation of the support
domain at the boundaries (as shown in Fig. 2.3) but also implying irregular particle
distribution.

Moreover, the particle approximation process is strongly affected by two parameters:
the smoothing length h, which characterizes the radius of interaction between particles,
and the ratio of h to the isotropic initial distance ∆x. A detailed analysis on the role of
both h and h/∆x parameters has been performed by Quinlan et al. (2006).

In PANORMUS-SPH the ratio h/∆x has been set to 1 (in other words, kh/∆x = 2
considering the Wendland function where k = 2). The employed ratio (h/∆x = 1) is
slightly lower than the most commonly used which ranges between 1.2 and 1.33 (Oger
et al., 2007; Colagrossi and Landrini, 2003; Bouscasse et al., 2013a; Lind et al., 2012;
Marrone et al., 2011; Skillen et al., 2013).

It should be noted that the ratio h/∆x = 1 leads to a quite limited number of neighbors,
about 27 considering 3D approximations, and can involve inconsistencies when the support
domain is truncated as discussed by Souto-Iglesias et al. (2013).

However, an higher ratio h/∆x, on one hand implies an higher smoothing level with
a constant ∆x and, on the other hand, requires the inclusion of more particles in each
support domain while maintaining constant the smoothing length. These aspects are of
particular importance at the boundaries since they affect the number of mirror particles
to be generated in order to account for the truncation of the support domain at the solid
walls, as it will be discussed in Sec. 2.5.1. Specifically, the number of mirror particles
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increases with the ratio h/∆x.
Since in the SPH applications presented within this thesis the boundaries have a

particularly considerable influence and the ratio between the domain surface and volume
is very high, it is extremely important to limit as much as possible the number of mirror
particles to be generated. Similar considerations can be done for the treatment of open-
boundaries (see Chap. 3), multi-domain interfaces (see Chap. 4) and parallel interfaces
(see Chap. 5) where an higher ratio h/∆x would increase the number of interface particles
and the amount of information to be shared between the processors, respectively. Anyhow,
the comparison with some benchmark test cases (the available analytical solution in Secs.
3.3.1, 3.3.2, 4.3.1 and the literature data in Secs. 4.3.2, A2.1, A2.2) has shown that the
employed ratio h/∆x = 1 allows to obtain good results when suitable correction procedures
are employed (see Sec. 2.4)). A more in-deep analysis on the influence of this ratio on the
results will be done in future work.

2.4 Correction of kernel and its gradient

As discussed in Sec. 2.3, the truncation of the support domain at the boundaries, the non-
uniformly distribution of the particles and the limited number of neighbors considered can
lead to some inconsistency.

Therefore, in the PANORMUS-SPH code some corrections of the kernel function and
of its gradient are applied aimed at improving the consistency properties.

Eqn. 2.5 is thus normalized as follows

〈fi〉 =

∑N
j=1

mj
ρj
fjWij∑N

j=1
mj
ρj
Wij

(2.12)

The derivatives of the kernel function (eqns. 2.6 - 2.8) must be corrected in the
numerical model as well. Specifically, the procedure discussed by Oger et al. (2007) and
Xu et al. (2009) is used to improve consistency of the kernel interpolation gradient. To
this aim, the gradient of the kernel function ∇Wij is replaced with the corrected gradient
∇WC

ij

∇W c
ij = C−1∇Wij

where C is a (3 x 3) array whose generic element C is the derivative of the position function
at the i particle. The array C can thus be expressed as

C =


∑ mj

ρj
(xj − xi)∂Wij

∂xi

∑ mj
ρj

(xj − xi)∂Wij

∂yi

∑ mj
ρj

(xj − xi)∂Wij

∂zi∑ mj
ρj

(yj − yi)∂Wij

∂xi

∑ mj
ρj

(yj − yi)∂Wij

∂yi

∑ mj
ρj

(yj − yi)∂Wij

∂zi∑ mj
ρj

(zj − zi)∂Wij

∂xi

∑ mj
ρj

(zj − zi)∂Wij

∂yi

∑ mj
ρj

(zj − zi)∂Wij

∂zi


where the summation symbol

∑N
j=1 is simply indicated with

∑
.

The correction is used when calculating the diffusive term in the predictor-step equation
(eqn. 2.20), the divergence of the velocity in eqn. 2.21 and the pressure gradient in eqn.
2.24.

2.5 Boundary condition treatment

The boundary treatment in the SPH method is a very challenging task. On one hand,
appropriate conditions must be imposed at solid walls and at inflow and outflow bound-
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Figure 2.4: Sketch of the mirror particles (green squares), effective particle (blue squares)
and boundary triangles (red lines) in a section of a cerebral blood vessel. Taken from:
Napoli et al. (2016), 677, fig. 1.

aries. On the other hand, the kernel function truncation occurring at particles near the
boundaries (see Fig. 2.3) must be overcome.

In SPH, several strategies have been developed to treat boundary conditions. The tra-
ditional approaches are based on the introduction of mirror particles (Morris et al., 1997;
Takeda et al., 1994; Colagrossi and Landrini, 2003) or fixed dummy particles (Lee et
al., 2008; Marrone et al., 2011; Bouscasse et al., 2013a; Chow et al., 2018).

In PANORMUS-SPH mirror particles are employed at solid walls, while a peculiar
procedure is used at inflow/outflow boundary using ghost particles (this procedure will
discussed in Chap. 3). It should be noted that in this thesis, the term ”effective particle”
is used to indicate the particles representing the computational domain (as explained in
Sec. 2.1.2), whose total number is Ne; on the other hand, term ”mirror particle” refers
to the particles generated at solid walls to impose the boundary conditions (BCs), whose
total number is Nmirror. Moreover, other types of particles, that can be classified as ghost,
will be introduced for specific procedure in the following chapters.

2.5.1 Mirror particle technique

The effective particles having distance from the boundaries shorter than kh generate mir-
ror particles along the directions normal to the boundary. Each mirror particle has the
same physical properties (such as mass, density, viscosity, etc..) of the generating effective
particle, while the velocity is chosen to ensure the satisfaction of the required boundary
conditions (adherence, free-slip, Neumann, wall-law, periodic, etc..).

To ease up the identification of the normal direction and the distance particle-wall, in
the PANORMUS-SPH model the boundaries of the computational domain are discretized
into triangles, following a procedure employed in mesh-based methods with reference to
the immersed boundary approach (Roman et al., 2009). The triangle discretization allows
to obtain suitable descriptions of complex shapes and, moreover, it is very easy to identify
the normal directions since the triangles lie in planes. The Fig. 2.4 shows the boundary
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Figure 2.5: Sketch of the mirror particles generation. Full and empty circles: effective
and mirror particles, respectively; bold red line: boundary. a) 2D scheme. Dotted line:
support domain of S, ΩS ; b) 3D scheme. Gray area: boundary triangles surface.

triangles (red lines) of a cerebral vessel section. A boundary file must be created before
carrying out the simulation. This file contains the coordinates of the nodes of the tri-
angles followed by the triangle indices and the corresponding boundary conditions. At
the beginning of the simulation the boundary file is read and the coefficients of the plane
are calculated for each triangle. It should be noted that if the domain walls are fixed
(that is one of the hypothesis of this research study as will by discussed in Sec. 6.1) the
coefficients are calculated and stored only once, during the initialization step, since they
do not change while the simulation runs.

In Fig. 2.5 it is shown how an effective particle S with distance from the boundary
dS < kh generates the mirror particle S′. In the figure a 2D (where the boundary
triangles are represented with segments) and 3D approximations (Figs. 2.5.a and 2.5.b,
respectively) are plotted.

In the PANORMUS-SPH code, in order to speed up the identification of the effective
particles to be mirrored, a virtual grid is created, made of cubic cells of side length equal
to kh. The left-south-down corner of the grid (x0) and the number of cells in the three
directions (nx, ny, nz) are calculated as follows

x0 = xmin − kh

nx =
x1,max − x1,min

kh
+ 2

ny =
x2,max − x2,min

kh
+ 2

nz =
x3,max − x3,min

kh
+ 2 (2.13)

where the subscripts max and min indicate the vertices of the boundary triangles having
greater and lowest coordinates, respectively.

In the starting particle distribution, each cell of the virtual grid has a number of
particle Ncell equal to

Ncell =

(
kh

∆x

)3

, in 3D
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Figure 2.6: Sketch of the particle initial distribution inside a cell of the virtual grid. The
ratio h/∆x = 1 is considered. a) 2D scheme; b) 3D scheme.

Ncell =

(
kh

∆x

)2

, in 2D

and thus, since it is kh = 2∆x, each cell has 8, and 4 particles in 3D and 2D approxima-
tions, respectively. The effective particles are regularly distributed inside the virtual cells
(as shown in Fig. 2.6). The cell indices of each particle i are calculated, through eqn.
2.14, and stored for future use:

celli = ceiling

(
xi − x0

kh

)
(2.14)

where ceiling indicates the operation of rounding up.

The grid cells are thus classified in six different types:

• Cell type 1: cells contained inside the domain, with faces having distance from the
boundaries > kh. These cells border only with cell of type 1 or 2 (to be defined
below) and can only contain effective particles;

• Cell type 2: cells contained inside the domain with at least one lateral face with
distance from the boundaries < kh. These cells can border with cell of type 1, 3 and
4 (to be defined below). They can contain only effective particles;

• Cell type 3: cells partially inside the domain and intersecting at least one of the
boundaries. These cells intersect at least one boundary triangle. Effective, mirror,
IO (defined in Chap. 3), interface (defined in Chap. 4), parallel (defined in Chap.
5) particles can be contained inside them;

• Cell type 4: cells entirely outside the domain. These cells can contain the same
particles defined in the previous item with the exception of the effective ones;

• Cell type 5 and 6: These cells are used in the parallel computing model (see
Chap. 5). They contain the particles to be shared with neighboring processors. The
distinction between types 5 and 6 will be discussed in Chap 5. It should be noticed
that these types are reported here only for completeness since they are not related
to mirror technique.
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Figure 2.7: 2D Sketch of the virtual grid. Bold black line: boundary of the fluid domain.
Full black circles: effective particles; empty black circles: mirror particles; dashed line:
virtual grid (with nx = 9 and ny = 8). The cell type is indicated in red.

In order to classify the cells of the virtual grid, first the cells of type 3 are identified using
the algorithm of Akenine-Möllser (2001) that checks the possible intersections between
boxes and triangles in the 3D space, using the separating axis theorem. Then the internal
(types 1 or 2) and external (type 4) cells are distinguished using a ray-tracing procedure
proposed by Roman et al. (2009). Among the internal cells, the ones neighboring to cells
of type 3 are first identified (type 2). For fixed boundaries, the procedure is performed
only once, at the beginning of the simulation, since the cell type do not change during the
simulation run. For each virtual cell, some information are recorded: the type and the
number and list of triangles intersected by the cell (or close to it). The Fig. 2.7 shows a
2D sketch of a computational domain with the virtual grid.

The virtual grid allows to quickly select the effective particles near the boundary,
reducing the computational time related to the mirror generation. Thereby, only the
effective particles inside cells of type 2 and 3 are considered while generating the mirror
particles, since they could have distance d < kh from the boundaries. Moreover, after
having selected one effective particle to be mirrored and having identified its cell (eqn.
2.14), the triangles with distance from the particle less than kh must be identified. To
this aim, only the triangles intersecting the cell of the particle or one of the neighboring
ones are checked, avoiding to scan all the triangles of the domain.

The mirror particles are numbered after the effective particles: the first mirror parti-
cle has the index Ne + 1 while the last one has the index Ne + Nmirror. For each mirror
particle, the generating particle is recorded for later use.

The mirror generation can be summarized as follows:
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1. The domain boundaries are discretized into triangle and a virtual grid is created;

2. The cells of the virtual grid are classified in types 1, 2, 3 and 4 (and 5 and 6 for
parallel computation);

3. Only the effective particles belonging to cells of type 2 and 3 are considered since
they can have distance from the boundary shorter than kh;

4. The distance (dS) between each particle S (identified at step 3, which lies thus in
a cell of type 2 or 3) and each triangle intersected or close the cell of S (cellS) is
calculated. To this aim, the intersection point xI between the current triangle plane
(named nb) and its normal line starting from S is identified (see Fig. 2.5.b). The
variable dS is thus obtained as the distance between S and the intersection point xI ;

5. If dS < kh and the intersection point xI is inside the triangle surface, one mirror
particle S′ is generated with coordinate: xS′ = 2 xI − xS .

The mirror technique allows to impose different boundary conditions assigning to the
mirror particles values coherent with the required condition as explained below.

Adherence boundary condition
In order to set the velocity at the intersection point uI equal to that of the current triangle
nb (unb), the velocity of the mirror S′ (generated through the effective particle S) is set
equal to

2uS′ = uI − uS

Therefore, for fixed solid walls (where unb is equal to zero), it is

uS′ = −uS

Free-slip boundary condition
In this case, the wall-normal velocity component of S′ is set equal to the opposite of that
of S, corresponding to null normal velocity at the wall in the linear approximation

unS′ = −unS

where n is the wall normal direction. The tangential velocity of the mirror particle is set
equal to that of the generating effective particle; thereby the velocity derivative in the
wall-normal direction is equal to zero

uS′ = uτS

where τ is the wall tangential direction. The wall-normal velocity component of the ef-
fective particle unS is obtained projecting the velocity of S in the direction n of the line
connecting S with S′, while the tangential component uτS is calculated as the magnitude
of the vector uτS − nunS .

Neumann boundary condition
The velocity of S′ is set equal to

uS′ = uS − ∂u/∂n · dS
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where dS is the distance between S and S′ and ∂u/∂n is the assigned velocity derivative
in the normal direction (pointing towards the fluid region);

Periodic boundary condition
For periodic BCs two identical parallel boundary triangles are placed normally to the
direction of the periodic condition. The physical and hydrodynamic properties of the
periodic mirror particles are identical to that the generating effective particle.

2.6 Governing equations and numerical procedure

The continuity and momentum equations for incompressible flows can be written as

∇ · u = 0
Du

Dt
+

1

ρ
∇p− ν∇2u− fm = 0 (2.15)

where u is the instantaneous velocity, fm is the mass force per unit mass, p is the pres-
sure, t is the time, ρ is the fluid density and ν is the kinematic viscosity. These equa-
tions are solved in the framework of ISPH (Lind et al., 2012) using a projection method
(Chorin, 1968) and requiring the solution of a Pressure Poisson Equation (PPE ) to en-
force incompressibility. Specifically, in PANORMUS-SPH the fractional-step procedure
is employed to solve the momentum and continuity equations. The procedure can be
subdivided into: predictor-step, PPE and corrector-step.

In the predictor-step the intermediate velocity u∗ is calculated removing the pressure
gradient term from the momentum equation

Du∗

Dt
− ν∇2u− fm = 0 (2.16)

In order to correct the u∗ velocities while imposing the continuity constraint for in-
compressible flows, an irrotational corrective velocity field uc is calculated. The potential
ψ∆t of uc is calculated solving, through an iterative procedure, the PPE

∇2ψ = −∇ · u
∗

∆t
(2.17)

where ψ is the pseudo-pressure (p/ρ) having the dimension of the kinematic pressure and
∇ · u∗ is the divergence of the intermediate velocity. The PPE must be solved with
boundary conditions set as follow:

• At solid walls (adherence, free-slip or wall law) the Neumann condition is used;

• At inflow or outflow boundaries the pressure condition must be set, resulting in a
Dirichlet condition for the pressure.

The following discussion refers only to the PPE boundary condition at solid walls; the
PPE BCs for inflow and outflow boundaries will be discussed in Chap. 3 where a detailed
description of the implemented procedure can be found. The boundary conditions for the
PPE at solid walls are obtained assigning to the mirror particles the Neumann condition

∂ψ

∂n
=
uk+1
n − u∗n

∆t
(2.18)
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where n is the wall normal direction (pointing towards the interior of the domain) and
uk+1
n and u∗n are the corrected and intermediate wall velocity projections in the n direction,

respectively. Differently from Cummins and Rudman (1999), here a non-homogeneous
Neumann condition is used, obtaining the intermediate velocity at the boundaries through
suitable extrapolations.

In the corrector-step the divergence-free updated velocity field uk+1 (named corrected
velocity) is obtained as the sum of the intermediate velocity u∗ and the corrective velocity
uc

uk+1 = u∗ + uc = u∗ −∇ψ∆t (2.19)

2.6.1 Fractional-step in the ISPH formulation

Considering the i-th particle, eqn. 2.16 can be rewritten as

u∗i − uki
∆t

+
3

2
Dk
i −

1

2
Dk−1
i − fmi = 0 (predictor-step) (2.20)

where u∗i is the intermediate velocity of the i particle, the apex k indicates the variables
at the k-th time step, ∆t is the time step, uki is the velocity of the i particle at time k and
fmi is the mass force per unit mass acting on the i particle. The diffusive term Di of eqn.
2.20 is calculated using a second-order Adams-Bashforth scheme

Di = −
N∑
j=1

mj(νi + νj)
(xi − xj) · ∇W c

ij

d2
ij + η

(ui − uj)

The PPE (eqn. 2.17) in the SPH approximation becomes

N∑
j=1

2
mj

ρj

(xi − xj) · ∇W c
ij

d2
ij

(ψi − ψj) = (2.21)

= − 1

∆t

N∑
j=1

mj

ρj
∇W c

ij · (u∗i − u∗j ) (Poisson)

The PPE BCs at solid walls are imposed assigning to the mirror particle m generated
from the i effective particle the value

ψm = ψi −
(uk+1
n − u∗n)

∣∣
b

∆t
dim (2.22)

where dim is the distance between the particles i and m, while the difference (uk+1
n − u∗n)

∣∣
b

is calculated at the intersection point xb between the line connecting the particles m and i
and the boundary triangle surface. The normal component of the corrected velocity uk+1 is
set equal to the wall-normal velocity (null for fixed boundaries) or to the imposed value for
Dirichlet boundary conditions. The normal component of the intermediate velocity at the
boundary u∗n can be obtained through an extrapolation from the interior of the problem
domain as discussed by Zang et al. (1994) in the framework of mesh-based methods.
Specifically, the intermediate velocity at the boundary u∗(xb) is obtained through a Taylor
series expansion around the closest effective particle (indicated with P ) does not have
mirror particles in the vicinity. Considering the α − th component (with α = 1, 2, 3) the
velocity at xb can be expressed as

u∗α(xb) = u∗α,P +
∂u∗α
∂x

∣∣∣∣
P

· (xb − xP )
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The term ∂u∗α
∂x

∣∣∣
P

in the previous equation is calculated using eqn. 2.7

∂u∗α
∂x

∣∣∣∣
P

=

N∑
j=1

mj

ρj
(u∗α,j − u∗α,P )∇WPj

where the summation is extended to the N particles lying in ΩP . Thus, the normal
component can be easily obtained projecting u∗(xb) in the wall-normal direction n

u∗n(xb) = u∗(xb) · n (2.23)

Applying the SPH approximation to eqn. 2.19, the corrector-step equation can be
written as

uk+1
i = u∗i + ∆t

N∑
j=1

mj

ρj
∇W c

ij (ψi − ψj) (corrector-step) (2.24)

After calculating the updated velocity field, the particles are moved at the end of each
time step. The updated position xk+1

i can be obtained using the mean value of the new
and old velocities (uk+1

i and uki , respectively).

xk+1
i = xki +

uk+1
i + uki

2
∆t (2.25)

2.7 Solution methods for the Poisson system

The numerical solution of the elliptic PPE is one the key challenges of the ISPH algorithm.
The PPE is the most time consuming step in the ISPH procedure, typically occupying
more than 80% of the total computational time. Moreover, the PPE matrix system is
sparse and non-symmetric. Comparing to mesh-based methods, the added complexity for
solving the PPE in SPH is that the non-null coefficients of the sparse matrix change
every time step due to the movement of the particles. In the previous version of the
PANORMUS-SPH code (Napoli et al., 2015) the PPE was solved by using a semi-implicit
SOR algorithm. In this research study, in order to reduce the high computational costs
of the elliptic Poisson equation solution and to increase the accuracy of the numerical
model, the iterative BiConjugate Gradient STABilized (BiCGSTAB) method, proposed
by Van der Vorst (1992), has been implemented. Therefore, the numerical solution of a
Poisson system made of the PPE of all the effective particles of the computational domain
is performed using an implicit algorithm.

2.7.1 The BiCGSTAB method

In order to implicitly solve the system of eqns. 2.21 iterating among all the particles
of the computational domain, in this research study the BiCGSTAB method has been
implemented in the numerical model. The BiCGSTAB method is very suitable due to the
non-symmetricity and diagonal dominant of the coefficient matrix of the PPE system.

The PPE is iteratively solved as a linear matrix system A x = b. In the follow-
ing, before explaining the BiCGSTAB method, the PPE system is analyzed identifying
the matrix coefficients and the right-hand-side (RHS) term of the system made of Ne

equations.
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The PPE system

Considering the i-th particle, eqn. 2.21 can be rewritten in the following compact form

N∑
j=1

Cij(ψi − ψj) = Ti (2.26)

where the coefficients Cij and the known term Ti are expressed through eqns. 2.27 and
2.28, respectively.

Cij = 2
mj

ρj

(xi − xj) · ∇W c
ij

d2
ij

(2.27)

Ti = − 1

∆t

N∗i∑
j=1

mj

ρj
∇W c

ij · (u∗i − u∗j ) (2.28)

In eqn. 2.28 the mirror particles are excluded while calculating the divergence of the
intermediate velocity u∗, thereby N∗i indicates the number of effective particles in Ωi.

The i-th row diagonal term of the coefficient matrix is

N
′
i∑

j=1

Cij (2.29)

where the summation is extended to the effective and mirror particles in Ωi, excluding for
the latter those generated by i (N

′
i ). Indeed, including the mirror particles generated by i

and substituting eqn. 2.22 in eqn. 2.26, the difference ψi−ψj reduces to (uk+1
n −u∗n) dij/∆t,

thus contributing only to the system right-hand-side.

The i-th row off-diagonal term in the s-th column of the system coefficient matrix is
equal to

−

δisCis +

NMs
i∑
j=1

Cij

 (2.30)

where δis = 1 if the effective particle s lies inΩi and δis = 0 elsewhere, while the summation
is extended to the NMs

i mirror particles generated by the particle s and lying in Ωi (with
NMs
i = 0 if no mirror particle generated by s exists in Ωi).

The Fig. 2.8 shows a scheme of the system coefficient matrix.

The i-th equation right-hand-side term can be obtained adding in eqn. 2.26 the bound-
ary conditions (eqn. 2.22) for the all mirror particles in Ωi

RHSi = Ti +
1

∆t

NM
i∑

j=1

Cij (uk+1
n − u∗n)

∣∣∣
b
dgj (2.31)

where the index g indicates the effective particles generating the NM
i mirror particles

lying in the support domain of i.
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Figure 2.8: Scheme of the coefficient matrix of the PPE system.

The coefficient matrix of the system is sparse since the off-diagonal terms (eqn. 2.30)
of the i-th row are null for the columns corresponding to effective particles outside Ωi
(δis = 0) and not generating any mirror particle lying in Ωi (NMs

i = 0). Moreover, the
matrix is non-symmetric due to the terms related to the mirror particles in the off-diagonal
terms (eqn. 2.30). Moreover, the coefficient matrix of the PPE is diagonal-dominant
since the diagonal terms (eqn. 2.29) of the current particle i contain the sum of the Cij
coefficients relative to all the particles lying in Ωi and thus are equal to the sum of the
off-diagonal terms (eqn. 2.30) in the same row.

The Compressed Row Storage (CRS) format (Bisseling, 2004) has been adopted to re-
duce memory requirements, to fasten row access and matrix-vector multiplications, storing
only the non-null terms of the PPE matrix of coefficients. An example of the CSR format
for a matrix [8 x 8] is shown in Fig. 2.9. Three 1-dimensional vectors are created to
represent the matrix of the coefficients of the system:

• vals. This array, of length nv, contains all the values of the non-zero elements of
the matrix. For the matrix A in the figure it is nv = 22;

• cols. This array has length nc equal to that of vals (nc = nv). It contains the
column number of the corresponding elements in the array vals;

• limits. Each element in this vector is a pointer to the first non-zero element of each
row in vectors vals and cols. The vector limits has length nl equal to the number
of rows plus one, where the last entry is used to store nv (nl = 9 for the matrix A
in the figure). It starts from 1 (limits(1) = 1, where limits(1) indicates the value at
the first position of the vector limits) and ends with the number of elements with
non-null values +1 (limits(nl) = nv+ 1, where limits(nl) indicates the value at the
last position of the vector limits).

The Unpreconditioned BiCGSTAB method

In the following, the algorithm of the BiCGSTAB method in its unpreconditioned version
is shown (Van der Vorst, 1992).
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Figure 2.9: CRS format example for a sparse matrix A.

Specifically, the non-symmetric linear system A x = b is considered, where A is a [n
x n] matrix (with n the number of equations system equal to the total number of effec-
tive particles Ne), while x and b are the vector solution and the vector of known terms,
respectively, (whose lengths are equal to n).

ALGORITHM 2.1- BiCGSTAB method

1. r0 = b−A x0

2. Choose r∗0 such that (r∗0, r0) 6= 0. For instance r∗0 = r0;

3. ρ0 = α0 = ω0 = 1
The coefficients ρ, α and ω are set to one;

4. v0 = p0 = 0
The vectors v and p are set to zero;

5. The iterative cycle is performed until convergence (RSQ < tol):

5.0 do j = 1, ... until convergence

5.1. ρj = (r∗0, rj−1);

5.2. βj =

(
ρj
ρj−1

;

)(
αj−1

ωj−1

)
;

5.3. pj = rj−1 + β (ρj−1 − ωj−1 vj−1) ;

5.4. vj = A pj ;

5.5. αj =
ρj

(r∗0,vj)
;
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5.6. s = rj−1 − αjvj ;
5.7. t = A s;

5.8. ωj =
(t, s)

(t, t)
;

5.9. xj = xj−1 + αj pj + ωj s;

5.10. res = b−A xj ;

5.11. RSQ = (res, res)

5.12. Check if convergence is reached:

5.12.1 if (RSQ < tol) then quit .

5.12.2 else rj = s− ωj t and the cycle continues.

where x0 at item 1 is an initial solution vector (equal to zero for the first time step of the
simulation or to the ψ values of the previous time step), ρ, α, ω are scalar coefficients while
r, r∗0, x0, v, p, s, t are vectors of length n. The iterative cycle at point 5.0 is performed until
the sum of the squared errors (RSQ) becomes lower than an imposed tolerance value (tol).

The matrix-vector multiplications (items 1, 5.4, 5.7 and 5.10 in the algorithm above)
in the CRS format can be made using the following algorithm that is written considering
the product r = A x.

ALGORITHM 2.2- ASUB

do j = 1, .., Ne

r(j) = 0

do limits(j), limits(j + 1)− 1

r(j) = r(j) + vals(j)x(cols(j))

where again Ne is the number of equations in the system (equal to the number of effective
particles) and vals, cols and limits are the vectors in the CRS format as explained
above. The dimension of the vectors vals and cols is equal to the total number of non-
null elements, while the dimension of the vector limits is equal to the total number of
equations plus one (Ne + 1).

The Preconditioned BiCGSTAB method

Although the algorithmic efficiency is excellent, the BiCGSTAB method is numerically
unstable. In order to make solvers converge faster a preconditioning algorithm has been
implemented (Saad, 2003).

The preconditioning modifies the spectrum of the coefficient matrix to speed-up the
convergence of the iterative method.

In the Preconditioned BiCGSTAB (Pre-BiCGSTAB) algorithm the vectors y and z
(with dimension n = Ne) are introduced. The Pre-BiCGSTAB algorithm is shown below.
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ALGORITHM 2.3- Pre-BiCGSTAB method

1. r0 = b−A x0

2. Choose r∗0 such that (r∗0, r0) 6= 0. For instance r∗0 = r0;

3. ρ0 = α0 = ω0 = 1

4. v0 = p0 = 0

5. The iterative cycle is performed until convergence (RSQ < tol):

5.0 do j = 1, ... until convergence

5.1. ρj = (r∗0, rj−1);

5.2. βj =

(
ρj
ρj−1

;

)(
αj−1

ωj−1

)
;

5.3. pj = rj−1 + β (ρj−1 − ωj−1 vj−1) ;

5.4. y = K−1pj (solving y′ = L−1pj and y = U−1y′)

5.5. vj = A y;

5.6. αj =
ρj

(r∗0,vj)
;

5.7. s = rj−1 − αjvj ;
5.8. z = K−1s (solving z′ = L−1s and z = U−1z′)

5.9. t = A z;

5.10. ωj =
(t, s)

(t, t)
;

5.11. xj = xj−1 + αj y + ωj z;

5.12. res = b−A xj ;

5.13. RSQ = (res, res);

5.14. Check if convergence is reached:

5.14.1 if (RSQ < tol) then quit .

5.14.2 else rj = s− ωj t and the cycle continues.

where K is a preconditioning matrix obtained with the lower L and upper U triangular
matrix (K = L U) at points 5.4 and 5.8. The lower and upper triangular matrix have
been obtained with the incomplete LU factorization.

The scheme of the algorithm for the ILU(0) factorization expressed in CRS format to
obtain the new matrix coefficients value (valsILU ) is shown below.
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ALGORITHM 2.4- ILU(0) factorization in CRS format

valsILU = vals; the vector is initialized

do i = 2, .., Ne

li1 = limits(i) and li2 = limits(i+ 1)− 1

do k = li1, li2

if (cols(k) < i) then

lk1 = limits(cols(k)) and lk2 = limits(cols(k) + 1)− 1

vals(k) =
valILU (k)

valILU (lk1)

do j = li1, li2

if (cols(j) > cols(k) and cols(k) ≤ ne) then

do m = lk1, lk2

if (cols(m) = cols(j)) then

valsILU (j) = valsILU (j)− valsILU (k) valsILU (m)

quit the m cycle

where i, j, k are used as indices of the cycles, li1 and li2 are the limits of the column i
and lk1 and lk2 are the limits of the column of the k element. As for the vector vals,
the dimension of the vector valsILU is equal to the total number of non-null elements.
The product for the preconditioning matrix K at points 5.4 and 5.8 of the Preconditioned
BiCGSTAB algorithm is obtained considering the lower and upper matrix as shown below.

ALGORITHM 2.5- Solve Lower and Upper system

y′ = L−1p the lower system is solved

do j = 1, ne

lj1 = limits(j)

lj2 = limits(j + 1)− 1

do k = lj1, lj2

if (cols(k) < j) then

y′(j) = y′(j)− valsILU (k) y′(cols(k))

y = U−1y′ the upper system is solved

do j = ne, 1,−1

lj1 = limits(j)

lj2 = limits(j + 1)− 1

do k = lj1, lj2

if (cols(k) > j and cols(k) ≤ ne) then

y(j) =
y(j)

valsILU (lj1)
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Figure 2.10: Comparison of different solution methods of the PPE system. Blue line:
BiCGSTAB method; red line: Pre-BiCGSTAB method; black line: SOR algorithm.
RSQmax: maximum residual expressed using the semi-logarithmic scale); iter: iterations.

where the product y = K−1p is solved in two steps: y′ = L−1p and y = U−1y′.

2.7.2 Results

The Fig. 2.10 shows a performance comparison among the three different algorithm ex-
plained in this section: BiCGSTAB, Pre-BiCGSTAB and the SOR method previously im-
plemented in PANORMUS-SPH. Specifically, the 3D lid-driven cavity problem has been
considered. The domain geometrical features and boundary conditions are identical to
those discussed in Appendix A in the framework of the Coupled FVM-SPH method (see
Sec. A2.1), while here the SPH method has been used for representing the whole com-
putational domain resulting in a total number of effective particles Ne = 125 000. The
semi-logarithmic scale is used in the y-axis for the maximum residual RSQmax, which
expresses the maximum difference between the current solution and that of the previous
iteration. As it is seen in the figure, the SOR algorithm reaches the minimum value of
RSQmax ∼= 10−7 after about 150 iteration and then diverges due to numerical instability,
whilst the BiCGSTAB method needs 400 iteration to converge with RSQmax ∼= 10−13.
The Pre-BiCGSTAB algorithm is dramatically faster; the RSQmax is quite the same of
the BiCGSTAB but with the preconditioning algorithm the Pre-BiCGSTAB reaches the
convergence after 100 iterations. In this application the Pre-BiCGSTAB algorithm is 4
times faster than the unpreconditioned version of the method.

The Fig. 2.11 shows a comparison of the BiCGSTAB and Pre-BiCGSTAB in a more
geometrically complex domain. To this aim, the test case of the aneurysm C05, that will
be discussed in Chap. 6, has been chosen. The maximum residual RSQmax and the sum
of the squared error RSQ are plotted during the iteration of the PPE (Figs. 2.11.a and
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Figure 2.11: Comparison between BiCGSTAB (blue line) and Pre-BiCGSTAB (red line)
algorithms. The test case shown in Sec. 6.4 (aneurysm C05). The semi-logarithmic scale
is used in the y-axis. a) Maximum residual (RSQmax); b) sum of the squared errors
(RSQ).

2.11.b, respectively). Again the Pre-BiCGSTAB algorithm is about 4.5 times faster than
the unpreconditioned version of the method.

2.8 Instability in SPH

The tensile instability problem, identified by Swegle et al. (1995), is a well-known issue in
the SPH method. It happens when the motion of the particle becomes unstable resulting
in particle clumping. This issue can lead to complete blow-up in the computation. The
reason for the instability is that, although initially the particles are distributed regularly
and under uniform initial stress, during the simulation running they can clump forming
voids in the computational domain (Liu and Liu, 2010). Several methods have been pro-
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posed to overcome the tensile instability problem such as the use of the artificial stress
method for stabilizing the computation (Monaghan, 2000; Gray et al., 2001), the addition
of stress points other than the normal particles (Dyka et al., 1997), the correction of the
kernel to give exact linear interpolations (Dilts, 1999; Bonet and Kulasegaram, 2000) and
the employing of particle shifting procedures (Xu et al., 2009; Lind et al., 2012; Khayyer
et al., 2017).

In the PANORMUS-SPH solver, in order to overcome the tensile instability, the algo-
rithm proposed by Xu et al. (2009) is adopted. The procedure involves slightly shifting
the particles across streamlines in order to avoid the extreme stretching and bunching of
particles. To this aim, the new particle position xk+1

i (calculated through the eqn. 2.25)
is modified with a further small shifting dsi obtained as

dsi = αu∆t ri (2.32)

where α is a constant whose values can be set in the range 0.01 ÷ 0.5. Differently from
the proposal of Xu et al. (2009), where the maximum particle velocity is used, here the
average of the velocity particle magnitude u is employed in order to avoid too large dsi
when the particle velocities are quite large in specific portions of the domain. The shifting
vector ri, which identifies the shift direction, is calculated as

ri =

Ns∑
j=1

dij
d3
ij

(∑Ns
j=1 dij

Ns

)2

(2.33)

where dij is the vector distance between i and the neighboring particle j and dij is its
norm. It has been verified that using in the summation of eqn. 2.33 a smaller support
domain than the classical Ωi the shifting procedure gives the best results. Specifically,
in order to obtain a more regular shifting in the particles with distances not larger than
0.7 kh (rather than the standard kh value) from the position of i are considered (their
number is indicated in eqn. 2.33 with the symbol Ns).

The value of the hydrodynamic variables (xi+dsi) are then adjusted in the new position
through a Taylor series expansion

Ψ ′i = Ψi + (∇Ψ)i dsi +O(r2
i ) (2.34)

where Ψ is the generic variable and the superscript ′ is used to indicate the particle prop-
erties in the new position. The shifting procedure allows to avoid clustering, maintaining
an ordered particle distribution.

The shifting procedure has been employed in all the considered test cases with α = 0.1.

2.9 Adaptive time step procedure

During the research, in the PANORMUS-SPH code, an adaptive time step has been intro-
duced allowing to speed-up the simulation time when the velocity field changes suddenly
(e.g. when the waveform of the cardiac cycle is imposed at the inlet as it will be discussed
in Sec. 6.4 and Sec. 6.5).
To this aim, the minimum and maximum values of the Courant-Friedrichs-Lewy (CFL)
stability condition are imposed and, at the end of each iteration, it is checked if

CFLmin < CFL < CFLmax (2.35)
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During the simulation, the CFLmin and CFLmax have been set to 0.2 and 0.5, respectively.
The CFL number is calculated as

CFL =
umax∆t

∆x
(2.36)

where umax is the maximum magnitude particle velocity in the whole domain and ∆x is
the starting particle distance.

If the condition eqn. 2.35 is not satisfied due to CFL < CFLmin or CFL > CFLmax,
the time step is modified (increasing or decreasing, respectively, its value).

The Adams-Bashforth scheme to calculate the diffusive term in the predictor-step eqn.
2.20 is modified as

u∗i − uki
∆t

+ c1 Dk
i − c2 Dk−1

i − fmi = 0 (2.37)

with

c1 =
2 ∆told + ∆t

2 ∆told

c2 =
∆t

2 ∆told

where ∆t and ∆told are the current and the previous time step. Eqn. 2.37 becomes eqn.
2.20 when ∆t = ∆told.

2.10 Structure of the PANORMUS-SPH code

The Fig. 2.12 shows the flow chart of the SPH procedure in the PANORMUS-SPH code.

The code can be subdivided in three sections: initialize, initial conditions and time
marching.

• INITIALIZE

ACTION 1: The boundary triangles are read from a file together with the boundary
conditions to be set at each triangle;

ACTION 2: The virtual grid (described in Sec. 2.5.1) is created identifying its
left-south-down corner x0 subtracting the distance kh (in all the directions) to the
boundary triangle having the vertex with the lowest coordinates. The number of
virtual cubic cells in the three directions (nx, ny, nz) are calculated as well (eqns.
2.13). Then the cubic cells of the virtual grid are classified in types 1, 2, 3 and 4.

• INITIAL CONDITIONS

ACTION 3: The SPH numerical model needs an initial particle distribution that
is generated by the code with starting isotropic particle distance equal to ∆x. If
the simulation is starting from developed conditions, the code reads from a file, with
vtk format, the particle positions and their hydrodynamic variables. Specifically,
velocity, pseudo-pressure, specie concentration (if the tracer module is activated as
will be explained in Sec. 7.2) and activation potential (whose definition will be given
in Sec. 7.4) are read. On the contrary, if the simulation starts from the rest, these
variables are set to zero. The virtual cell of each particle is calculated (eqn. 2.14);
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Figure 2.12: Flow chart of the PANORMUS-SPH code.

ACTION 4: The mirror particles are generated following the procedure described
in Sec. 2.5;

ACTION 5: The support domain of the effective particles is thus defined. To
this aim, for each effective particle the surrounding particles having distance from
it shorter than kh are identified and are stored in a list.

• TIME MARCHING

ACTION 6: The fractional-step procedure starts from the simulation time t0 (that
can be t0 = 0 or t0 6= 0, if the simulation starts from the rest or from developed
conditions, respectively);

ACTION 7: The intermediate velocity is calculated for the effective particles
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through eqn. 2.20 (or eqn. 2.37 if the time step is variable as explained in Sec.
2.9). For the mirror particles u∗n is calculated at the xb position using eqn. 2.23;

ACTION 8: The eqn. 2.21 must be solved for all the effective particles as a linear
system in the form of A x = b. The PPE matrix is created using the CRS for-
mat. If the BiCGSTAB method is used in its preconditioned version, the ILU(0)
factorization is performed (following ALGORITHM 2.4) in order to obtain the pre-
conditioned matrix. Therefore, the Pre-BiCGSTAB iterative method is applied fol-
lowing ALGORITHM 2.3. After calculating the ψ values of the effective particles,
the corresponding ψ values of the mirror ones are obtained through eqn. 2.22;

ACTION 9: The corrected velocities uk+1
i are calculated using eqn. 2.24;

ACTION 10: For each effective particle, the new position xk+1
i is obtained through

eqn. 2.25;

ACTION 11: After updating the particle positions, the mirror particles are gen-
erated and the old mirror ones are deleted;

ACTION 12: For each effective particle the support domain is updated saving in
its list the new neighboring particles;

ACTION 13: In order to improve the particle distribution, the effective particles
are shifted of dsi (calculated with eqn. 2.32) and the hydrodynamics variables in
the new position are updated through eqn. 2.34, as explained in Sec. 2.8;

ACTION 14: After the shifting procedure, the mirror particles are generated
(again deleting the old mirror ones);

ACTION 15: This action is identical to ACTION 12;

ACTION 16: The simulation time is advanced by one time step (t = t+dt). If the
adaptive time step procedure is activated it must be checked if the Courant limit
constraint is satisfied (2.35) or if it is necessary to change the time step as discussed
in Sec. 2.9.

After the sixteenth action, the procedure is restarted with the predictor-step (ACTION
7).
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Chapter 3

The Inflow/Outflow procedure

In this chapter a novel procedure to treat inflow and outflow boundaries is described in
the ISPH framework. The procedure is carefully explained in Monteleone et al. (2017),
where some validation test cases are discussed too. The technique allows to set pressure
values in the computational domain inlets and outlets or to assign the velocity profile at
the inlets and the pressure at the outlets.

Two 3D numerical tests are presented to show the performance of the method consid-
ering both steady and oscillating inflow conditions.

3.1 Background and motivations

In order to reduce the computational costs, in the numerical modeling of blood flow in
cerebral aneurysms it is customary to limit the size of the computational domain to the
vessel tract hosting the CA. Therefore, artificial inlet and outlet sections must be identified
(see Fig. 3.1), where proper boundary conditions must be prescribed. Due to the lack of
patient-specific information, the correct treatment of inflow and outflow boundaries is a
key problem in hemodynamics simulations.

Open-boundary treatment is relatively simple in grid-based method since it is sufficient
to impose the values of the hydrodynamic variables at the inlet and outlet sections. On
the other side, it is a well-known issues in the SPH numerical scheme particularly when
the ISPH approach is employed.

Furthermore, the management of the particles leaving or entering the domain through
open-boundaries is very challenging.

In many SPH simulations periodic boundary conditions are employed at the open-
boundaries (Lee et al., 2008; Morris et al., 1997), using a mass force to drive the flow.
This approach is limited to very simple geometries and obviously it cannot be usually
employed to study CAs flow dynamics.

Other authors proposed procedures to assign at inflow cross-sections Dirichlet bound-
ary conditions for the velocity (Hosseini and Feng, 2011; Vacondio et al., 2011; Federico
et al., 2012; Khorasanizade and Sousa, 2016b). These procedures can be used when the
velocity profiles are available.

Otherwise, when the velocity profile is unknown, other techniques have been developed
to impose Dirichlet boundary conditions for the pressure at the inlet and outlet sections.
Tan et al. (2015) developed a procedure not requiring the inflow velocity assignment for
open channel flows. In this procedure, wall and dummy particles are moved considering
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Figure 3.1: Cerebral aneurysm geometries. Taken from: Aneurisk dataset repository
(Aneurisk-Team, 2012). a) case id: C93. Location: middle cerebral artery; b) case id
C95. Location: basilar artery.

a uniform velocity equal to the channel depth-averaged one. However, the method can-
not be efficiently employed when the effective inflow velocities are quite different from
their depth-averaged values. Khorasanizade and Sousa (2016a) generalised the procedure
of Khorasanizade and Sousa (2016b) to incompressible flows where inlet velocity profiles
were unknown, thus extending its use to more general problems. Hirschler et al. (2016) pro-
posed a procedure dividing the open-boundaries in multiple segments, each one connected
to a fluid particle, which move according to the fluid velocity (the moving-mirror-axes,
MMA, technique). A new particle is placed into the domain when the movement of a
boundary segment exceeds a given distance from the initial position, while the boundary
segment is correspondingly shifted behind the new particle. However, some numerical er-
rors are introduced in the MMA method, due to the axes shifting. The MMA procedure
was improved by Kunz et al. (2016) allowing the mirror axes to remain fixed (the fixed-
mirror-axes, FMA, technique). Nevertheless, although the FMA technique works fine in
a wide range of flow conditions, it has some issues related to the occurrence of void spaces
and not uniform particle distribution at the inflow/outflow. In Leroy et al. (2016) the
masses of the inlet/outlet particles are let to evolve over time as a function of the desired
ingoing/outgoing mass flux through the corresponding cross-sections. The procedure re-
quires specific care to ensure a smooth evolution since the mass evolution could effect the
flow. Recently, Tafuni et al. (2018) developed an open-boundary algorithm in the WCSPH
approach to simulate real engineering problems with free-surface. The model is based on
the use of buffer layers near the open regions of the computational domain, where the
particles contained are used as a means of enforcing certain boundary conditions.

A different procedure is proposed here which allows for the treatment of the inflow
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Figure 3.2: 2D sketch of the IO particles generation at inflow and outflow boundaries.
Full circles: effective particles; empty circles: IO particles; bold red line: inlet and outlet
boundaries.

and outflow regions avoiding any occurrence of void spaces and the reflection of numerical
noises into the fluid domain. The procedure (named In/OutFlow-BCs in the following) has
been developed in the ISPH framework. The In/OutFlow-BCs technique is specifically
suitable to simulate the flow inside cerebral aneurysms and will be widely explained in
this chapter. The In/OutFlow-BCs method can be used to impose different hydrodynamic
variables at the inflow according to the available physical quantities. Specifically, it is
possible to impose Dirichlet BCs for the velocity at the inlet sections (in the following
this condition will be named incoming BCs), whilst Dirichlet BCs for the pressure and
Neumann BCs for the velocity at the outlet sections. When the velocity profiles are not
available, the technique allows to impose Dirichlet BCs for the pressure and null velocity
derivatives (this condition will be named pressure BCs) at the inlet and outlet sections.

Recently, Wang et al. (2019) proposed a specific non-reflective boundary condition
(NRBC) approach in SPH which allows outward traveling pressure and velocity messages
to pass through the boundary without reflection. To this aim, a buffer layer of boundary
particles placed outside the fluid domain is used. The velocity and pressure of these
particles are obtained through the Lagrangian interpolation in time which is derived from
the propagation of characteristic waves between particles. A similar procedure could be
implemented in the In/OutFlow-BCs algorithm; nevertheless, for the test cases considered
in this thesis the use of NRBC seems less necessary than in the problem analyzed by Wang
et al. (2019) which simulated underwater explosion.

3.2 The In/OutFlow-BCs algorithm

The In/OutFlow-BCs procedure is activated when an open-boundary exists. The open-
boundaries are discretized into triangles as explained in Sec. 2.5 for the domain boundaries
at solid walls. As discussed above, two type of conditions can be assigned at the open-
boundaries: Dirichlet BCs for the velocity (when incoming BCs are imposed at the open-
boundary triangles) or Dirichlet BCs for the pressure (when pressure BCs are employed).

The new technique allows to treat in the same way inflow and outflow sections, effec-
tively dealing with the release of new particles at inlets and the deactivation of the ones
leaving the domain through the outlets.
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3.2.1 The IO particles

The IO particle generation

When incoming or pressure BCs are set at one boundary triangle, the effective particles
with distance from the triangle less than ∆x are identified in order to release a particular
type of ghost particles indicated as in/out-flow particles (IO). Specifically, starting from
the identified particle i (having dip < ∆x, where dip is the distance between i and the
pressure or incoming triangle) a number ”n” of IO particles are generated along the
line normal to the triangle plane and passing from the i position. These IO particles are
displaced at distance from the relative generating particle equal to n∆x where n = 1, 2, 3, ..
is the integer part of the ratio kh/∆x. As discussed in Chap. 2, in this research study the
ratio kh/∆x has been set to 2, therefore two IO particles are generated for each selected
i particle. It should be noted that, if the most common ratio kh/∆x = 2.66 had been
used, three IO particles would have been generated for each i particle to avoid the kernel
truncation.

The Fig. 3.2 shows a 2D sketch of the IP particle generation. In the figure, due to
the 2D representation, the open-boundary triangle (pressure or incoming BC ) is reduced
to a segment, indicated with the bold red line.
The two IO particles (IP1 and IP2 in the figure) are placed at distances from i equal to
∆x and 2 ∆x, respectively.

Pressure boundary conditions

When pressure BCs are imposed to the open-boundary triangles, the velocity of the IO
particle is set equal to that of the generating particle g (homogeneous Neumann BCs,
as in Fig. 3.3.a). If some regularization of the inflow or outflow velocity is wanted, the
homogeneous Neumann BC can be used for the normal velocity component only, while
the tangential component is set to zero (see Fig. 3.3.b). Inflow and outflow boundaries
are treated in the same way as shown in Fig. 3.3.c where an outflow boundary with null
normal derivative for the normal velocity component is considered.

The potential ψ for the j-th IO particle can be obtained through a linear extrapolation
based on the generating particle ψg value and the assigned kinematic pressure ψp at the
pressure boundary (as shown in Fig. 3.4)

ψj = ψp
dgj
dgp
− ψg

dgj − dgp
dgp

(3.1)

Therefore, the PPE system must to be modified as will be explained in Sec. 3.2.5.

Incoming boundary conditions

When incoming BCs are set at the open-boundary triangles, the velocity at the inflow
section must be imposed. To this aim, two different profile laws can be prescribed: the
Poiseuille and the Womersley velocity profiles.

For the generic IO particle, considering a circular cross-section, the Poiseuille velocity
profiles can be expressed as

uIO = uinflow

[
2− 8

( r
D

)2
]
· n (3.2)



3.2. THE IN/OUTFLOW-BCS ALGORITHM 45

fluid domain

u

dgp

pressure BC

n
gIO2 IO1

Δx

ΔxΔx

(a)

un

fluid domain

u

dgp

pressure BC

n
gIO2 IO1

Δx

ΔxΔx

(b)

dgp

n

n

u

u
IO2 IO1 g

pressure BC

fluid domain

Δx

Δx Δx

(c)

Figure 3.3: 2D sketch of the IO particles conditions for pressure BCs. Bold red line: inlet
and outlet pressure boundaries. The other symbols as in Fig. 3.2. a) Inlet section with
homogeneous Neumann BCs for the velocity; b) inlet section with homogeneous Neumann
BCs for the normal velocity (un) and tangential velocity set to zero for IO particles; c)
as in the previous point .b considering an outlet section. Taken from: Monteleone et
al. (2017), 13, fig. 1.

where uinflow is the mean velocity, D is the diameter of the inflow section, n is the triangle
normal direction and r is the distance between xc (the center of the inflow section) and
xint (the intersection point between the triangle plane and the line passing through the
IO particle and normal to the plane).

For the fully developed pulsatile flow in a rigid straight pipe the Womersley solution
(Womersley, 1955) can be prescribed rather than the Poiseuille profile. The Womersley
solution can be used when transient problems such as blood flow in the cardiovascular
system are considered. As discussed by Taylor et al. (1998), the velocity profiles are
computed from the Fourier decomposition of the prescribed flow-rate curves to extract the
frequency content of the volume flow waveform given the fundamental frequency ω (heart
rate expressed in radians/sec). When the flow rate Q(t) is known, it can be decomposed
into N Fourier modes with the Fourier coefficients Bn given by

Q(t) ≈
N∑
n=0

Bn e
inωt

The Womersley velocity profile for the axial component of velocity at the position of the
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Figure 3.4: PPE BCs at pressure boundaries. Linear extrapolation between the value
of the generation particle ψg and the value at the pressure boundary triangle ψp. Taken
from: Monteleone et al. (2017), 15, fig. 5.a.

IO particle (ur,IO) obtained as

ur,IO(t) =
2B0

π(D/2)2

[
1−

(
2 r

D

)2
]

+
N∑
n=1

 Bn
π(D/2)2

1− J0(αn
r
R
i3/2)

J0(αn i3/2)

1− 2J1(αn i3/2)

αn i3/2 J0(αn i3/2)

 einωt (3.3)

with
αn = D/2

√
nω/ν

where J0 and J1 are the Bessel functions of the first kind of order 0 and 1, respectively,
Wo = D/2

√
ω/ν is the Womersley number and i is the imaginary number. The velocity

is thus obtained as
uIO(t) = ur,IO(t) · n

where n is normal direction of the triangle from which the IO has been generated.
Differently from the pressure BCs, in this case the Poisson BCs are the same as those

explained for mirror particles at the solid wall (eqn. 2.22) and the PPE matrix system
(eqns. 2.29,2.30 and 2.31) thus does not change.

3.2.2 Generation of new particles

Besides setting the correct conditions, the particles entering the domain have to be dealt
with. If the distance dip of the effective particle i from the open-boundary ranges between
∆x and the kh value and, moreover, the velocity component normal to the boundary
triangle is positive (ui · n > 0), thus implying an inflow condition, it must be checked if
the release of a new particle is required. To this aim, a conical scan region is considered,
having the vertex in the position of the particle i and the angle β. Three strategies
can be used to identify the direction of the conical region axis depending on the user’s
choice. The first one, suitable for regular and very simple geometries (such as the flow
in a circular pipe), consists of setting the direction of the conical region axis equal to the
boundary triangle normal direction n. In the second one, which is more general, the axis
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direction of the cone is assigned equal to the particle velocity (ui) direction, as shown in
Fig. 3.5.a. Details of this procedure will be provided in Sec. 4.2.4 with reference to the
Multi-Domain approach. In the third one, that is useful if some regularization is necessary,
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Figure 3.5: 2D sketch of the procedure to identify the axis of the scan region. Bold
blue lines: bounds of the conical scan region. Bold red line: inflow boundary. a) The
axis is assigned equal to the velocity direction of the particle i; b) The axis is obtained by
summing up the vectors rij of the j particles in Ωi having magnitude inversely proportional
to the dij distance. Taken from: Monteleone et al. (2017), 13, fig. 2.a.

the direction of the conical region axis is identified by summing up the vectors rij pointing
towards i starting from the surrounding j particles in Ωi and having magnitude inversely
proportional to the dij distance (see Fig. 3.5.b).

The surrounding effective particles j are then analyzed to check if lying inside or
outside the scan region. To this aim, the angle γ between the cone axis and the line
connecting the particle j with the cone vertex is calculated: if γ > β/2, the particle j is
clearly outside the cone (see Fig. 3.6.a). If no effective particles are found inside the cone
region, a new particle is created at a distance from i equal to ∆x along the cone axis,
as shown in Fig. 3.6.b. Since the new generated particle will lie at a distance from the
boundary triangle shorter than ∆x, two IO particles must be generated.

A dynamic procedure has been implemented in order to control the total number
of effective particles in the domain. In particular, the opening angle β is dynamically
changed at each time step, making it wider (by 1 degree) whenever the particle number
is larger than the starting value, thus reducing the frequency of release of new particles
(the opposite occurs when the particle number becomes lower than the starting value).
In order to avoid too large fluctuations in the opening angle width, at each time step the
average particle number in the last 10 time steps is used and the lower and upper bounds
are set to 5◦ and 45◦, respectively, with a starting value of 30◦.

The new particles mass and density are set equal to those of the particle i in the vertex
of the scan region. For pressure BCs the velocity of the new particle is set equal to that
of the particle i (as for the IP particles explained in Sec. 3.2.1). For incoming BCs the
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Figure 3.6: 2D sketch of the procedure to release new particles at inflow boundaries. Bold
blue lines: bounds of the conical scan region; bold red line: inflow boundary. a) Checking
of the position of the particle j with respect to the conical scan region; b) release of a new
effective particle jnew. Taken from: Monteleone et al. (2017), 13, figs. 2.b and 2.c.

velocity of the new particle is imposed through the velocity profile law as discussed in Sec.
3.2.1.

3.2.3 Particles deactivation

If the velocity component normal to the triangle points outside the fluid domain (ui·n < 0),
the boundary is an outflow section and no new effective particles must be generated.
The effective particles are allowed to go out of the domain through pressure or incoming
boundary triangles. Therefore, at the end of the time step the particles leaving the domain
are deactivated and removed from further calculations. In order to avoid a continuous
increase of the number of particles allocated in the computer memory (since new particles
are continuously created at inflow boundaries), the deactivated particles are saved in a
storage list from which selecting the new ones to be released. In Fig. 3.7 the effective
particle P at the time r-th generates two IO particles, while it is deactivated at the time
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Figure 3.7: Particle deactivation at an outflow boundary (bold red line).

step r+ 1 since it has crossed the open-boundary. The Q particle at time r+ 1 approaches
the open-boundary without crossing it, thus it generates two IO particles.

3.2.4 Flow chart of the In/OutFlow-BCs procedure

The flow chart shown in Fig. 3.8 summarizes the algorithm implemented to perform the
In/OutFlow-BCs procedure.

1. The procedure starts for a particle i if its distance from the open boundary (with
pressure or incoming BCs) is less than kh (dip < kh);

2. if dip < ∆x two IP particles are generated starting from i;

3. if ∆x < dip < kh and u · n < 0 the boundary is an outflow and the procedure ends;

4. if ∆x < dip < kh and u ·n > 0 the scan region technique is activated for checking if
the new particle must be created starting from i:

(a) If no effective particles are found inside the scan region, a new particle is created.
The new particle j generates two IP particles due to djp < ∆x;

(b) If at least one effective particle is found inside the scan region no new particle
is created and the procedure ends.

3.2.5 The PPE system with pressure BCs

Pressure BCs are more challenging than the incoming ones since the PPE system (ex-
plained in Sec. 2.7.1) must be modified. The coefficient matrix and the right-hand-side
term of the Poisson system (eqn. 2.21) are modified with respect to eqns 2.29, 2.30 and
2.31 when IO particles are generated through pressure boundaries. The potential ψ for the
j-th IO particle can be obtained through eqn. 3.1 where a linear extrapolation between
the value ψg of the generating particle g and the value ψp at the boundary is used (see
Fig. 3.4).

The first term in eqn. 3.1 contributes to the system RHS, while the second one con-
tributes to the coefficient matrix entries, since ψp and ψg are known and unknown values,
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Figure 3.8: Flow chart of the In/OutFlow-BCs algorithm.

respectively.

Using eqn. 3.1, thus, the i-th row diagonal term of the coefficient matrix (eqn. 2.29)
becomes

N
′
i∑

j=1

Cij +

NIOi
i∑
j=1

Cij
dij − dgp
dgp

+

NIO
i∑
j=1

Cij (3.4)

where the two additional summations (second and third term) are extended respectively to
the IO particles in Ωi generated by the current particle i only (N IOs

i , with s = i; particles
IO1(i) and IO2(i) in Fig. 3.9) and to all the IO particles in Ωi (N IO

i ).

Correspondingly, the i-s off-diagonal entry of the system matrix, eqn. 2.30, is modified
as

−

δisCis +

NMs
i∑
j=1

Cij

+

NIOs
i∑
j=1

Cij
dsj − dgp
dgp

(3.5)

where the IO particles to be included in the last summation are only those generated by
the effective particles s (IO1(s) and IO2(s) in Fig. 3.9) whose total number is indicated
with N IOs

i .
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Figure 3.9: Scheme of the IO particles to be included in the Poisson system terms (eqns.
3.4, 3.5 and 3.6). Bold red line: pressure boundary; blue circle: current effective i particle;
empty blue circles: IO particles generated by i; black circles: effective particle lying in Ωi;
empty black circles: IO in Ωi not generated by i; grey circles: effective particles outside
Ωi; dotted empty circles: IO particles outside Ωi. Taken from: Monteleone et al. (2017),
15, fig. 5.b.

The RHS of the i-th equation system (eqn. 2.31) is modified as:

Ti +
1

∆t

NM
i∑

j=1

Cij (uk+1
n − u∗n)

∣∣∣
b
dgj +

NIO
i∑
j=1

Cijψp
dgj
dgp

(3.6)

where again the index g indicates the effective particles generating the mirror and/or IO
particles j (with g = i or g 6= i indifferently). The known term Ti is calculated through
eqn. 2.28 where the summation is extended to the effective and IO particles in Ωi. In eqn.
3.6 the intermediate normal velocity component u∗n at the open-boundaries is calculated
according to eqn. 2.23, without using mirror particles while setting the values of the IO
particles equal to that of the effective generating particles. The IO particles are also used
to calculate the divergence of the intermediate velocity in eqn. 2.28.

Example

An example of the Poisson equation for an effective particle close to a pressure boundary
triangle is shown below (particle 2 in Fig. 3.10).
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Example- Poisson equation for the particle 2 in Fig. 3.10
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Figure 3.10: Black circles: effective particles; blue circle: particle 2; empty black circles:
mirror particles; empty red circles: IO particles. For the IO and mirror particles the
number inside the brackets is their own generating particle. Only the particles (effective,
mirror or IO) lying in Ω2 are numbered.

The 2-th row diagonal term of the coefficient matrix is

C2,3 + C2,7 + C2,12 + C2,19 + C2,20 + C2,65 + C2,104 +

+ C2,103 + C2,124
d2,124 − d2,p

d2,p
+ C2,125

d2,125 − d2,p

d2,p
+

+ C2,124 + C2,125 + C2,127 + C2,128

while the (2− s) (second row, s-th column) off-diagonal entries of the system matrix are

− (2− 3) entry: (C2,3 + C2,103) + C2,126
d3,126 − d3,p

d3,p

− (2− 7) entry: C2,7 + C2,128
d7,128 − d7,p

d7,p

− (2− 12) entry: C2,12

− (2− 19) entry: C2,19

− (2− 20) entry: C2,20

− (2− 65) entry: (C2,65 + C2,104)
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The RHS of the 2− th equation system is

T2 + C2,101 ũ
∗
n,101 d2,101 + C2,102 ũ

∗
n,102 d2,102 + C2,103 ũ

∗
n,103 d2,103 +

+C2,104 ũ
∗
n,104 d2,104 + C2,124 ψp

d2,124

d2,p
+ C2,125 ψp

d2,125

d2,p
+

+C2,126 ψp
d2,126

d2,p
+ C2,127 ψp

d2,127

d2,p
+ C2,128 ψp

d2,128

d2,p

where ũ∗n,m = 1
∆t (uk+1

n + u∗n)
∣∣
bm

, m is the index of the mirror and bm is the boundary
triangle from which m has been generated.

3.2.6 Flow chart of the PANORMUS-SPH code

The flow chart described in Sec. 2.10 must be modified introducing the In/OutFlow-
BCs algorithm in the structure of the PANORMUS-SPH code, as shown in Fig. 3.11.
Specifically, the IO particles are generated simultaneously to the mirror ones in ACTIONS
4, 13 and 16. The PPE system is built (ACTION 8) including the IO particles (as
explained in Sec. 3.2.5). After moving the effective particles (ACTION 10), the particles
having gone through outflow boundaries are deactivated in ACTION 11 (as discussed in
Sec. 3.2.3), whilst the new particles are generated during ACTION 12. After updating
the simulation time by one time step (t = t+dt) in ACTION 18, the procedure is restarted
with the predictor-step (ACTION 7).

3.3 Benchmark test cases

Two test cases are presented here in order to show that the In/OutFlow-BCs procedure
is able to guarantee the global mass conservation and the achievement of correct velocity
profiles when the velocity distribution is unknown setting the pressure BCs only. The non
reflective properties of the method will be shown in Sec. 6.3.1. Several application of the
incoming BCs will be shown in Chap. 6.

The flow in a circular pipe has been considered. Steady pressure BCs are employed
in the first test case, whilst an oscillatory flow is considered in the second one. A simple
geometry is used to compare the numerical results with analytical solutions available both
for steady and oscillatory flow.

The diameter D of the circular pipe is 0.1 m, while the fluid density and kinematic
viscosity are 1000 kg/m3 and 10−6 m2/s, respectively.

3.3.1 Starting transient Poiseuille flow

The transient flow in a circular pipe, starting from the rest towards the achievement of
the steady-state, is considered in this test case. The Fig. 3.12 shows the boundary condi-
tions: pressure boundary conditions are imposed on the triangles in the inflow and outflow
cross-sections, while adherence conditions are employed on the triangles of the pipe lateral
surface.

The kh value is set to D/25 = 0.004 m, while the pipe length L is equal to the
diameter, resulting in the initial number of 97 500 effective particles. The pressure gradient
is −2 · 10−2 Pa/m, which is obtained imposing the kinematic pressure values of ψA =
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Figure 3.12: Benchmark test case - Sec. 3.3. Sketch of the circular pipe. a) Boundary
conditions: adherence conditions on the pipe lateral surface, pressure conditions on the
triangles on the A and B cross-sections. b) Pipe longitudinal section. Full black circles:
effective particles; red empty circles: IO particles; blue empty circles: mirror particles.
Taken from: Monteleone et al. (2017), 15, fig. 6.

2 ·10−6 m2/s2 and ψB = 0 in the inlet (A) and outlet (B) cross-sections, respectively. The
resulting analytical cross-section averaged velocity is V = 0.00625 m/s, corresponding to
the Reynolds number Re = 625.

The numerical results during the transient regime before the steady-state are compared
with the analytical solution of Szymanski (1932)

ũ
(
r̃, t̃
)

= (1− r̃2)−
+∞∑
n=1

8

(αn)3J1(αn)
J0(αnr̃)e

−α2
n t̃ (3.7)

where ũ is the streamwise velocity non-dimensionalized with the steady-state axial velocity,
r̃ = 2r/D with r the distance from the pipe axis, t̃ = 4tν/D2 is the non-dimensional time,
J0(x) and J1(x) are the Bessel functions of first kind and order 0 and 1, respectively, αn
are the roots of J0(αn) for n = (1, 2, ...).

The Fig. 3.13 shows the non-dimensional axial velocity as a function of the non-
dimensional time. It can be observed that the steady-state condition is achieved after
about one non-dimensional time unit and a perfect agreement of the numerical axial
velocity with the analytical solution (eqn. 3.7) for r̃ = 0 is obtained during the whole
simulation.

In Fig. 3.14 the numerical and analytical velocity profiles at several time steps are
plotted, showing again a very good agreement of the obtained results with the analytical
solution. The velocity profiles in the figure have been calculated considering one diam-
eter only in the middle channel cross-section (no azimuthal or axial averaging is thus
performed). In order to make available a more precise comparison of the numerical and
analytical results, a Table with the Coefficients of Variation (ratio between the Standard

Deviation
√∑N

i=1(uNUM,i − uAN,i)2/N and the mean velocity in the streamwise direc-

tion) at different time steps is included in Fig. 3.14. The Table shows that the errors
reach a maximum values of 3.2%, to reduce to about 2% at the steady-state.
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Figure 3.13: Benchmark test case - Sec. 3.3.1. Non-dimensional axial velocity (r = 0)
of the starting transient Poiseuille flow as a function of t̃ = 4tν/D2. Blue continuous
line: analytical solution (eqn. 3.7) of Szymanski (1932). Red dotted line: SPH numerical
results. Taken from: Monteleone et al. (2017), 15, fig. 7.
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Figure 3.14: Benchmark test case - Sec. 3.3.1. Velocity profiles at different time-steps
across the pipe diameter. Line symbols as in Fig. 3.13. In the Table the Coefficients of
variation are shown too, at time-steps corresponding to the velocity profiles. Taken from:
Monteleone et al. (2017), 16, fig. 8.
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An analysis of the velocity changes in the axial direction (see Fig. 3.15) showed that,
coherently with the flow incompressibility and domain geometry, no velocity changes oc-
curred in the axial direction.

The number of particles during the simulation remains almost constant, with changes
lower than 0.05%, as it is shown in Fig. 3.16. Since the mass, volume and density of
each particle in the ISPH algorithm are constant during the simulation, the conservation
of the particle number implies also the domain mass conservation. The In/OutFlow-
BCs procedure to account for inflow and outflow boundary cross-sections is thus able to
guarantee a correct mass conservation while new particles are continuously introduced in
the computational domain and other particles leave it through the outlet.

3.3.2 Pulsating flow in a circular pipe

An oscillating pressure is assigned at the A cross-section of the pipe shown in Fig. 3.12)
according to the sinusoidal function

ψA = 2 · 10−6 sin(ωt) [m2/s2]

with ω = 2π/T and T = 360 s. In the section B of the pipe the constant null pressure
value is imposed. Differently from the previous case, thus, the pressure gradient oscil-
lates between positive and negative values, so that the fluid can enter or leave the domain
through both the cross-sections A and B. As shown in Fig. 3.17, at some time instants
in each of the cross-sections A and B an inlet and an outlet portion can be identified.
The described procedure with pressure BCs does not need a priori identification of inlet
and outlet boundaries that are treated in the same way, allowing also to take into account
cross-sections with mixed inflow/outflow conditions.
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Figure 3.15: Benchmark test case - Sec. 3.3.1. Non-dimensional axial velocity along the
non-dimensional direction (x̃ = x/L) of the starting transient Poiseuille flow at different
times (t̃ = 4tν/D2).
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Figure 3.16: Benchmark test case - Sec. 3.3.1. Ratio between the number Ne of the
effective particles in the computational domain and the initial number N0 during the
simulation. Taken from: Monteleone et al. (2017), 16, fig. 9.
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Figure 3.17: Benchmark test case - Sec. 3.3.2. Velocity profile with mixed positive and
negative values, corresponding at the B cross-section to simultaneous inflow (blue arrows)
and outflow (red arrows) conditions (with the opposite holding for the cross-section A).
Taken from: Monteleone et al. (2017), 14, fig. 4.
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Figure 3.18: Benchmark test case - Sec. 3.3.2. Axial velocity (r = 0) as a function of
the non-dimensional time t/T . Comparison between the analytical solution of Womers-
ley (1955) (continuous blue line) and the numerical results (dotted red line). Taken from:
Monteleone et al. (2017), 17, fig. 10.

The simulations are carried out for 10 periods. In order to reduce the computational
time, the kh value is set to 0.006 m, 1.5 times larger than in the previous test case. The
resulting total number of effective particles is equal to 60 000.

The numerical results can be compared with the analytical solution of Womersley (1955),
where the pressure gradient is assigned through the general periodic function

∂p

∂x
=

∞∑
n=−∞

Cne
inωt (3.8)

The resulting time-dependent velocity profile is

u(r, t) =

∞∑
n=−∞

Cn
iρnω

[
1− J0(i3/2αn1/2 2r/D)

J0(i3/2 n1/2 α)

]
· einωt (3.9)

where α is the Womersley number equal to D/2
√
ω/ν (Womersley, 1955) and i is the

imaginary number.

In the considered test case, in order to obtain the sinusoidal function

∂p/∂x = −2 · 10−2 sin (ωt)

the coefficients Cn are set to zero, with the exception of C−1 = −i ·10−2 and C1 = i ·10−2.

In Fig. 3.18 the numerical velocities at r = 0 are plotted for 10 periods, using the
analytical formula (eqn. 3.9) for comparison. As it is seen in the figure, after 5 periods
there is a perfect agreement of the numerical results with the analytical one. It should
be noticed that since the numerical simulation is conducted starting from the rest, while
the initial axial velocity according to eqn. 3.9 is equal to 1.176 · 10−3 m/s, some periods
are required before achieving the regime oscillatory pattern. However, during the first 5
periods, despite the amplitude disagreement, the numerical and analytical velocities are
in phase for each time step.
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Figure 3.19: Benchmark test case - Sec. 3.3.2. Velocity profiles at different time steps
during the 6-th oscillation period. Continuous blue line: analytical solution of Womers-
ley (1955); dotted red line: numerical results. a) Profiles at time steps with positive or
negative velocities in the whole cross-section. b) Profile with simultaneous positive and
negative velocities in the cross-section. Taken from: Monteleone et al. (2017), 17, fig. 11.

In Fig. 3.19 the velocity profiles are plotted at different time steps during the 6-th
oscillation period. The profiles in Fig. 3.19.a with u > 0 correspond to time steps in
which the fluid flows comes from the cross-section A (inflow) towards B (outflow), while
the opposite occurs for velocities u < 0, when A and B become the outlet and inlet cross-
sections, respectively. The profile in Fig. 3.19.b (t/T = 6.22) refers on the other hand to
a time instant in which inflow and outflow conditions simultaneously occur in the same
cross-section.

The Fig. 3.20 shows the kinematic pressure gradient ∂(p/ρ)/∂x as a function of the
dimensionless time t/T . The results have been compared with he analytical solution
(Womersley, 1955) plotted in the same figure. The kinematic pressure gradients have been
obtained averaging at each time step the values along the pipe axis at x = L/4, L/2 and
3/4L. In the figure it is clearly seen that the numerical kinematic pressure gradients are
in very good agreement with the analytical values, with a percentage error equal to 1.5%
with respect to the analytical oscillation amplitude.

During the simulation the mass conservation is reasonably guaranteed, since the changes
in the number of effective particles are limited to 3% after the simulated 10 periods.

This result is quite satisfactory considering that, due to the limited pipe length and
the involved velocities, during the simulation each particle was deactivated in the average
about 20 times after having left the computational domain through the outflow section, to
be subsequently released as a new particle at the inflow. In order to remove the domain
length effect from the analysis of the conservation properties, it is useful to compare the
number of particles lost in each cycle (equal to about 90 in the average in the simulations)
with the total number of the ones going through the inflow and outflow sections in the same
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Figure 3.20: Benchmark test case - Sec. 3.3.2. Kinematic pressure gradient as a function
of the dimensionless time t/T (numerical values obtained averaging the gradients in three
points along the pipe axis at x = L/4, L/2 and 3/4L). Blue continuous line: analytical
solution of Womersley (1955); red dotted line: numerical results. Taken from: Monteleone
et al. (2017), 18, fig. 12.

time period. This comparison shows that, although no direct relation between the number
of particles leaving and entering the domain is enforced in the procedure, a negligible loss
of particles has been observed in the simulations.
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Chapter 4

The Multi-Domain approach

In this chapter a procedure is described aimed at improving the discretization refinement
in SPH while not overloading the computation. The procedure has been published in
Monteleone et al. (2018).

The method allows to partition the computational domain in subdomains (or blocks),
in each of which the smoothing length of the kernel function is maintained constant while
changing between blocks where a different resolution is required. The domain decom-
position technique, the numerical procedure to match the solution between neighboring
subdomains as well as the algorithms to release and to delete particles entering and leaving
the blocks are explained.

Two test cases are presented to show the efficiency and accuracy of the method and
its ability to strongly reduce the computational efforts: the 3D unsteady channel flow in
a cylindrical pipe and the 2D vortex shedding in the wake of a circular cylinder.

4.1 Background and motivations

In the SPH method, the accuracy of the computation is directly related to the smoothing
length h. In order to obtain high quality solutions, a reasonably high number of particles
must be contained in each particle support domain, maintaining a relatively regular space
distribution during the time evolution of the simulation. The number of particles rep-
resenting the computational domain (Ne) depends on their isotropic initial distance ∆x,
which is proportional to the smoothing length h. In 3D computations, Ne ∝ h3.

In mesh-based methods it is quite straightforward to reduce the computational efforts
realizing non uniform grids, being stretched and/or clustered close to external or internal
boundaries and in regions of the computational domains with high gradients of the hy-
drodynamic variables. On the contrary, in the ”classical” SPH approach the smoothing
length is uniform in space due to the difficulty of changing the width of the kernel function
while the particles move from one region to another. The SPH computational efforts are
thus very high, since the value of the smoothing length must be chosen according to the
one imposed by the regions requiring the finest discretization. The same computational
overload would be undergone by grid-based methods employing in the whole domain cubic
cells with constant size (selected accordingly to the finest required width).

This is a very relevant issue when the domain geometry is characterized by regions with
very different size such as the heterogeneous geometry of the CA with the parent vessel and
the surrounding branches (see Fig. 4.1.a) and even more CAs treated with endovascular
devices such as flow diverter (as shown in Fig. 4.1.b). Regarding the latter case, it should
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Figure 4.1: a) Cerebral vessel with small branches and a giant aneurysm. Taken from:
Aneurisk-Team (2012). Dmin = 1 mm is the diameter of the smaller branch whilst Dmax =
10 mm is the ellipsoid maximum axis of the aneurysm sac; b) ideal aneurysm with flow
diverter (FD) device. From: Prof. Frangi’s research group (University of Sheffield).

be noted that blood flow through FD is difficult to simulate using the conventional grid-
based methods as well, due to the very large difference scale between the size of the FD
struts, the parent vessel and the aneurysm, as discussed in Jeong and Rhee (2012). To
overcome this problem, some adaptive embedding techniques have been developed in grid-
based framework (Appanaboyina et al., 2008; Cebral and Lohner, 2005) or an alternative
strategy based on the modeling of the device as a porous medium (Augsburger et al., 2011).

In the SPH method, adopting a constant h value in the whole domain would imply
the use of a huge number of particles, with a resolution exceedingly high in most of the
domain. Considering the example in Fig. 4.1.a, the h value should be chosen according to
the smallest vessel (whose diameter, Dmin, is indicated in the figure) in order to obtain a
sufficient number of effective particles. Thereby, a very high and unnecessary number of
particles would be placed in the aneurysm sac, whose ellipsoid maximum axis is ten times
that of the smallest branch.

In order to increase the computational efficiency of the SPH method, several refinement
strategies have been proposed using a smoothing length variable in space (Feldman and
Bonet, 2007; López et al., 2013). Due to the Lagrangian nature of the method, these
approaches require introducing splitting and coalescing techniques for the particles, since
their dimension and support domain must be adapted to the space dependent h (Xiong
et al., 2013; Vacondio et al., 2013a; Vacondio et al., 2013b; Spreng et al., 2014; Vacondio et
al., 2016; Hu et al., 2017). In this framework, Barcarolo et al. (2014) proposed a procedure
in the WCSPH scheme based on the coupling of a particle refinement technique with
an innovative particle derefinement strategy. Specifically, based on a spatial refinement
criterion, several regions of the domain with a different refinement level are identified.
In the refinement process, following the scheme of Feldman and Bonet (2007) and its
improved version proposed by López et al. (2013), a splitting technique is used: when a
bigger particle (”mother” particle) enters a region with a higher level of refinement it is
divided into a finite number of smaller particles (”daughter” particles). The refinement is
achieved by choosing some refinement parameters (the distance between daughter particles,
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the radius length of the daughter particles with respect to the mother one, the mass ratio
between daughter and mother particles) through minimization of a local refinement error
based on the estimation of the gradient of the density function. The mass of the mother
particles as well as the kinetic energy, the linear momentum and the angular momentum,
have to match with the sum of the corresponding properties of the daughter particles.
The mother particles, when entering a refinement region, are not used to compute the
SPH operators but are kept during the simulation and passively advanced in time with
the flow. When leaving the refinement zone, the mother particles are activated again. On
the other hand, daughter particles are simply erased when leaving the refinement zone.
Moreover, in order to avoid pressure discontinuities occurring when a mother particle
enters (or leaves) a refinement domain, a transition region is defined between the unrefined
and the refined zones where mother and daughter particles are progressively deactivated
(but not erased) and activated, respectively. This procedure, that was validated for 2D
simulations only, allows to straightforwardly switch back to the derefined distribution
whenever required. Although several levels of refinement can be used, the choice of the
order of the refinement levels and of the values ∆x to be used has some constraints. In fact,
the mother particles, which passively pass through the regions with a finer discretization,
must enter a derefinement region with their own original value ∆x in order to be again
activated.

A different method based on multi-domain decomposition is proposed here which relies
on the partitioning of the domain in several subdomains (or blocks) each of which has its
own value of the smoothing length. Differently from the previously mentioned techniques,
this method does not require splitting or coalescing strategies and in each block the sim-
plicity of the classical SPH numerical scheme with constant h is maintained. As it will
be shown in the 3D geometrically complex domain of Fig. 4.2, the method allows to use
whatever level of refinement without the need to switch from h, h/2, h/3, ... (which was a
limit for the procedure of Barcarolo et al. (2014) as discussed before). Moreover, differently
from Shibata et al. (2017) which proposed a multi-resolution technique where the whole
computational domain is represented with partially overlapping subdomains (with their
own spatial resolutions and particle shape) and differently from Barcarolo et al. (2014), in
the procedure presented here no overlapping of the subdomains is employed, thus avoiding
any artificial increase of the computational domain.

In the following the method will be named Multi-Domain (MD) approach, whilst the
epithet Single-Domain (SD) will be used to indicate the classical SPH method with a
constant smoothing length. The Multi-Domain approach is described also in the recently
published paper of Monteleone et al. (2018).

4.2 The multi-domain procedure

The Multi-Domain technique can be subdivided in the following items:

• Domain decomposition technique;

• generation of the interface particles;

• solution matching at the block interfaces for the velocities and the ψ values;

• inflow/outflow procedure through the block interfaces.
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4.2.1 Domain decomposition

As discussed above, the computational domain is partitioned in blocks without overlapping
regions in order to adapt the SPH method to the spatial resolution required in each of the
selected subregions. The Fig. 4.2 shows the subdomains obtained by the decomposition
of the aneurysm in Fig. 4.1.a. The blocks are separated by plane or curved surfaces
named block interfaces (or simply interfaces). These separation surfaces are discretized
into triangles as explained in Sec. 2.5 and Sec. 3.2 for solid wall and open boundaries,
respectively.

The smoothing length h and the starting particle distance ∆x are maintained constant
inside each block, while different values are assigned to the particles contained in different
blocks. As a consequence, the classical SPH formulation (discussed in Sec. 2.1) can be used
inside each block, although specific procedures have been implemented to account for the
proper treatment of near-interface regions. Specifically, since in these areas the support
domain of the particles can be truncated by the block interfaces, additional interface
particles (indicated as IP) are added in the neighboring subdomain. The IP particles play
an important role in order to obtain a suitable matching of the solution in neighboring
blocks, as will be discussed Sec. 4.2.3.

The total number of effective particles of the whole computational domain Ne,tot is the
sum of the effective particles contained in all the blocks

Ne,tot =

NBlocks∑
n=1

Ne,Bn (4.1)

where NBlocks is the total number of blocks and Ne,Bn is the number of effective particle
in the block Bn.

A boundary triangles file as well as the initial particle distribution and the virtual
grid must be created for each block. For example, considering a generic block named ”A”
the grid properties x0A and nxA, nyA, nzA can be obtained through eqns. 2.13 using
the smoothing length hA and the boundary vertices having lowest coordinates among the
triangles of the block A.

4.2.2 IP generation

The IP particles are generated from the effective particles having distance shorter than
∆x from one of the block interfaces.

As discussed for the generation of the IO particles (see Sec. 3.2.1), these effective
particles generate ”n” (where ”n” is the integer part of the ratio kh/∆x) interface particles
in the direction normal to the block interface in order to reach the contour of their support
domain. Since in this research study the ratio kh/∆x has been set to 2 (see Chap. 2),
for each of these effective particles two IP particles are generated at distance equal to
∆x and 2∆x, respectively. As explained for the IO generation, three IP particles would
have been generated if the most common ratio kh/∆x = 2.66 had been employed. As
a consequence, an increase of the computational efforts of the Multi-Domain procedure
would have occurred.

The Fig. 4.3.a shows a computational domain partitioned in two blocks: A and B.
For the sake of clarity only the effective and the IP particles of block A are represented
and a bi-dimensional sketch is considered, where the triangle interfaces are represented by
a segment (bold red line in the figure). The particle S of block A, having distance from
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Figure 4.2: Sketch of the subdivision into 6 blocks of the aneurysm of Fig. 4.1.a. The
external surfaces and the block interfaces are discretized into triangles (e.g., the rectangular
gray area in block 1 and the elliptical red area at the interface between blocks 1 and 2).
The change in the particle initial distance is visible in the enlargement inside the circular
black line in the vicinity of the interface between blocks 5 and 6. Taken from: Monteleone
et al. (2018), 960, fig. 2.
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Figure 4.3: Sketch of the IP particle generation. a) 2D scheme where the effective particles
of block A (full black circles) having distance d < ∆xA from the block interface (bold
red line) generate IP particles (empty black circles). The dotted blue circle around the
effective particle S indicates the support domain S, containing the particles S′ and S′′; b)
3D scheme, where a curved block interface is used. Effective R and S particles generate
two IP particles each in the neighboring subdomain in the direction normal to the interface
triangle. Taken from: Monteleone et al. (2018), 961, fig. 3.
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Figure 4.4: Sketch of the domain decomposition through curve block interface. EP : ef-
fective particles; IP : interface particles; IT : interface triangles; Block A: green particles;
Block B: blue particles. a) 3D sketch; b) 2D sketch. Taken from: Monteleone et al. (2018),
961, fig. 4.

the interface shorter than ∆xA, generates two IP particles in the direction normal to the
interface (S′ and S′′). The two IP particles S′ and S′′ have distance from the generating
particle S equal to ∆xA and 2∆xA, respectively. These particles are contained in the
neighboring block B. In Fig. 4.3.b a 3D scheme of the IP generation from both blocks
A and B is shown where the block interface is a curved surface. In the figure the effective
particles S of block A and R of block B are considered. Since S and R have distance from
the relative triangle planes (dR and dS) shorter than ∆xB and ∆xA, respectively, two IP
particles are generated from each of them. The lines normal to the triangle planes are
identified, allowing to generate the IP particles R′ and R′′ and the IP particles S′ and
S′′ having distance from the corresponding effective particles equal to once and twice the
starting particle distances (∆xA, for block A and ∆xB for block B).

As discussed above, in the procedure no overlapping region is created between neigh-
boring subdomains, which are entirely separated. Nevertheless, since the effective particles
of a block generate, through the block interface, IP particles lying in the neighboring sub-
domain, an overlapping region is created where effective particles of a block coexist with
IP particles generated by the neighboring block. The Fig. 4.4 shows two subdomains A
(green effective particles) and B (blue effective particles) separated by a block interface
which is represented by red triangles in Fig. 4.4.a (3D view) and is plotted as a red line
in Fig. 4.4.b (2D view). No effective particles of block B (blue points in the figure) are
contained in block A (which is filled with green particles) and viceversa, since the blocks
are separated. On the contrary, the IP particles generated by the effective particles of
block B (red points in the figure) are contained inside block A, while on the other hand
the IP particles generated by block A (black points) are contained inside block B.
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Figure 4.5: Sketch of the interface particle distribution. Full and empty black circles:
effective and IP particles of block A; full and empty black squares: effective and IP
particles of block B; bold red line: block interface; dotted blue and green lines: support
domains ΩS and ΩR of particles S and R belonging to block A and B, respectively. Taken
from: Monteleone et al. (2018), 962, fig. 5.

4.2.3 The solution matching at the block interfaces

The hydrodynamic values f (such as intermediate and corrected velocity and potential ψ)
of the IP particles generated by a block are obtained through an interpolation starting from
the effective particles of the block in which they are contained. As shown in Fig. 4.5, the
IP particles of block A neighboring block B are contained inside B. Their hydrodynamic
properties can be thus obtained through a Taylor series expansion around the closest
effective particle of block B. Using the symbols P and R to indicate an IP particle of
block A and its closest effective particle of block B, respectively, the interpolation can be
written as

fAP = fBR +

NR∑
j=1

mj

ρj
(fBj − fBR ) ∇WRj

 · (xP − xR) (4.2)

where the superscripts A and B are used to indicate particles of blocks A and B, respec-
tively, the sum is extended to the NR particles inside the support domain of R (ΩR) with
radius khB (dotted green line) and the expansion is truncated at first order.

In the same way, the interpolation for the IP particle Q of block B through the closest
effective particle S of block B is

fBQ = fAS +

NS∑
j=1

mj

ρj
(fAj − fAS ) ∇WSj

 · (xQ − xS) (4.3)
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where the sum is extended to the NS particles inside the support domain of S (ΩS) with
radius khA (dotted blue line in the figure).

Solution matching at block interface for the velocities

As it can be seen in the Fig. 4.5, the support domains ΩR and ΩS contain both effective
(full squares and circles in the figure, respectively) and IP (empty squares and circles in
the figure, respectively) particles. Eqns. 4.2 and 4.3 can be rewritten as

uAP = uBR +

Ne
R∑

j=1

C ′pr(u
B
j − uBR) +

NIP
R∑
j=1

C ′pr(u
B
j − uBR) (4.4)

uBQ = uAS +

Ne
S∑

j=1

C ′qs(u
A
j − uAS ) +

NIP
S∑
j=1

C ′qs(u
A
j − uAS ) (4.5)

with

C ′pr =
mj

ρj
∇WRj · (xP − xR)

C ′qs =
mj

ρj
∇WSj · (xQ − xS) (4.6)

where the variable f has been substituted with the m-th component of the velocity (in-
termediate or corrected) u(m) simply indicated as u, N e

R and N IP
R are the effective and

IP particles in ΩR, respectively (obviously it is the same for N e
Q and N IP

Q refers to ΩQ
with respect to eqn. 4.5). This separation is useful since the values uj in eqns. 4.4 and
4.5 are known if j is an effective particle (first summation) and are unknowns if j is an
IP particles (second summation). In the latter case the values can be obtained using
corresponding Taylor series expansions around the closest effective particles of block A
and block B, respectively.

As a consequence, the eqns. 4.4 and 4.5 relative to the neighboring A and B blocks
must be solved as a system containing one equation for each IP particle of the blocks

uAP −
NIP
R∑
j=1

C ′pru
B
j = RHSP P = 1, · · ·NA

IP

uBQ −
NIP
S∑
j=1

C ′qsu
A
j = RHSQ Q = 1, · · ·NB

IP (4.7)

where NA
IP and NB

IP are the numbers of IP particles in the blocks A and B, respectively.
The right-hand-side terms RHSP and RHSQ are

RHSP = uBR +

Ne
R∑

j=1

C ′pr(u
B
j − uBR)−

NIP
R∑
j=1

C ′pru
B
R

RHSQ = uAS +

Ne
S∑

j=1

C ′qs(u
A
j − uAS )−

NIP
S∑
j=1

C ′qsu
A
S
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The equation system (4.7) is solved at each block interface using the Pre-BiCGSTAB
method (explained in Sec. 2.7.1, see ALGORITHM 2.3). In order to obtain velocity
vectorial values the system must be solved at each block interface once for each component,
using the same coefficient matrix and updating the right-hand-side only.

The system of the interface l is made of N l
IP equations, where N l

IP is the total number
of IP generated through l as the sum of the IP generated through the neighboring blocks
A and B (N lA

IP and N lB
IP , respectively). Considering the component m of the velocity

(intermediate or corrected) u(m) (indicated simply with u), the system for the interface l
can be written with the algorithm shown and explained below.

ALGORITHM 4.1- MD velocity equations for the interface l

1. do n = 1, N l
IP

2. diagn = 1 (diagonal term)

3. n ∈ A (n is an IP of block A for example)

4. Find the closest particle R in block B

5. RHSn = uR (the velocity of R is a known term)

6. do j = 1, NR (cycle on the particles in ΩR)

7. if j is effective or mirror then

RHSn = RHSn + C ′nr (uj − uR)

8. if j is IP then

off diag(n,j) = C ′nr

RHSn = RHSn − C ′nr uR

where the coefficient is C ′nr =
mj
ρj
∇WRj · (xn − xR).

1. The cycle is repeated on all the IP particles generated by blocks A and B through
the interface l (N l

IP = N lA
IP +N lB

IP );

2. The diagonal term of each row is equal to 1;

3. The block from which the IP particle n is generated must be identified. In the
example n is generated through an effective particle of A (n ∈ A);

4. The closest effective particle to n belonging to the block B is identified. This particle
is named R in the example;

5. The right-and-side term of the n-th equation is set to the velocity of the R particle
(uR);

6. The cycle on the particles j (effective, mirror or IP ) lying in the support domain of
R (ΩR) is performed;

7. If j is an effective or mirror particle, its velocity (uj) goes to the right-and-side of
the n-th equation since it is a known term. If u is the intermediate velocity and j is
a mirror particle, the velocity uj is set equal to that of its generating particle;

8. If j is an IP particle, uj is unknown and must be added in n-j off-diagonal entry
of the system matrix, while the uR value is added to the right-and-side of the n-th
row.
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Solution matching at block interface for the ψ values

Differently from the MD velocity system, the pseudo-pressure values of the effective par-
ticles are unknown thus implying that the MD system for the ψ must be solved simulta-
neously with the PPE (eqn. 2.21). Therefore, a global system made of the Ne,tot Pressure
Poisson equations and the NIP interface particle Taylor series expansions must be solved,
where Ne,tot and NIP are the sums of the effective and interface particles in the whole
computational domain. The global system is solved with the Pre-BiCGSTAB method (see
ALGORITHM 2.3).

Eqns. 4.2 and 4.3 can be rewritten as

ψAP − ψBR +

N∗R∑
j=1

C ′pr (ψBR − ψBj ) +

N
M(g 6=R)
R∑
j=1

C ′pr (ψBR − ψBg ) = RHSP

ψBQ − ψAS +

N∗S∑
j=1

C ′qs (ψAS − ψAj ) +

N
M(g 6=S)
S∑
j=1

C ′qs (ψAS − ψAg ) = RHSQ (4.8)

with

RHSP =
1

∆t

N
MR
R∑
j=1

C ′pr (uk+1
n − u∗n)

∣∣∣
b
dRj −

1

∆t

N
M(g 6=R)
R∑
j=1

C ′pr (uk+1
n − u∗n)

∣∣∣
b
dgj

RHSQ =
1

∆t

N
MQ
Q∑
j=1

C ′qs (uk+1
n − u∗n)

∣∣∣
b
dSj −

1

∆t

N
M(g 6=S)
S∑
j=1

C ′qs (uk+1
n − u∗n)

∣∣∣
b
dgj

where N∗R are the effective and IP particles in ΩR, N
M(g 6=R)

R are the mirror particles in

ΩR not generated by R and NMR
R are the mirror particles in ΩR generated by R. The

same definitions can be given to N∗S , N
M(g 6=S)
S and NMS

S replacing ΩR with ΩS . The
boundary conditions for the PPE are set through eqn. 2.22, where the index g indicates
the effective particle generating the mirror particles j lying in the support domain of R
and dgj is the distance between the generating particle g and the particle j. When j is

a mirror, the summation is extended to the N
M(g 6=R)

R particles only, since considering the
mirror particles generated by R and substituting eqn. 2.22 the difference ψR−ψj reduces
to (uk+1

n −u∗n) dRj/∆t, thus contributing only to the system right-hand-side (as explained
in Sec. 2.7.1).

When the closest effective particle has in its support domain IO pressure particles (as
defined in Chap. 3), eqns. 4.8 are modified through trivial algebra

ψAP − ψBR +

N∗R∑
j=1

C ′pr (ψBR − ψBj ) +

N
M(g 6=R)
R∑
j=1

C ′pr (ψBR − ψBg ) +

+

NIOR∑
j=1

C ′prψ
B
R

(
1 +

dRj − dRp
dRp

)
+

N
IO(g 6=R)∑
j=1

C ′pr

(
ψBR + ψBg

dgj − dgp
dgp

)
=

= RHSP (4.9)
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E E1 2 IP1 2IP

B1
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Figure 4.6: Scheme of the MD matrix global system for the ψ. B1 and B2 are the rows
corresponding to equations of the effective particles of the blocks 1 (E1) and 2 (E2),
respectively. I1−2 and I2−1 are the rows relative to the equations of the interface particles
of block 1 (IP1) and block 2 (IP2), respectively.

with

RHSP =
1

∆t

N
MR
R∑
j=1

C ′pr (uk+1
n − u∗n)

∣∣∣
b
dRj −

1

∆t

N
M(g 6=R)
R∑
j=1

C ′pr (uk+1
n − u∗n)

∣∣∣
b
dgj +

+

NIO
R∑
j=1

C ′prψp
dgj
dgp

where for brevity only the equation for the interface particle P of block A has been con-
sidered and eqn. 3.1 is used to express the ψ values of the IO pressure particles.

The blocks are numbered starting from 1 up to the total number of subdomains
(NBlocks). As discussed above, the global system is made of Ne,tot equations of the ef-
fective particles (eqn. 2.21) following the order of the block number (first the equations
of the block 1, then those of the block 2, etc..) and then the equations for the interface
particles in order of block as well (first the equations of the IP generated by effective
particles of block 2, then those generated by effective particles of block 2, etc..). With
reference to the matrix scheme shown in Fig. 4.6, where two blocks (named 1 and 2) are
considered:

• First the equations refer to the block B1 are added (eqn. 2.21) whose number is equal
to the number of effective particles of block 1 (E1). In these equations the values
of the effective and interface particles of block 1 are used that are thus highlighted
with gray area while the bold black line indicates the diagonal terms. It should be
noted that, for each equation, not all the particles inside the gray area are used but
only these inside the support domain of the current particles. The coefficient matrix
is thus sparse and for this reason the CRS format (explained in Sec. 2.7 for the only
PPE system) is used;
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• The equations refer to the second block (B2) are added (eqn. 2.21) whose number
correspond to the number of effective particles of block 2 (E2). In these equations
the values of the effective and interface particles of block 2 are used that are again
colored in grey;

• The equations I1−2 of the interface particles generated by effective particles of the
block 1 and thus contained in block 2 (indicated with IP1 in the figure) are added.
In these equations the values of the effective E2 and interface particles of block 2
(IP2) are used that are thus highlighted in grey, while the bold red line indicates
the identity matrix. As explained in point 3 of the previous algorithm, the values in
the diagonal are always 1, while the off-diagonal terms of this sub-matrix are null,
since no IP particles of the same block are used. The IP2 values are used since these
particles can be contained in the support domain of the effective particles E2;

• The equations I2−1 of the interface particles generated by effective particles of block
2 and thus contained in block 1 (indicated with IP2 in the figure) are added. In these
equations the values of the effective (E1) and interface (IP1) particles of block 1 are
used, that are thus colored in grey, while the bold red line indicates the identity
matrix. The IP1 values are used since these particles can be inside the support
domain of the effective particles E1.

The i-th, with i < Ne,tot, row diagonal term of the system for the pseudo-pressure ψ is

N
′
i∑

j=1

Cij +

NIP
i∑
j=1

Cij (4.10)

where N IP
i is the total number of the interface particles in Ωi. Likewise, considering the

IO pressure particles introduced in Sec. 3.2.5, two summations must be added to eqn.
4.10

NIOi
i∑
j=1

Cij
dij − dgp
dgp

+

NIO
i∑
j=1

Cij

If i > Ne,tot the diagonal term is equal to 1 (as discussed above).

The i-s off-diagonal entry with i < Ne,tot of the system matrix is equal to eqn. 2.30
(or to eqn. 3.5 with IO pressure particles) if s is an effective particle, while it is equal to
−δisCis if s is an IP particle.

The i-s off-diagonal entry with i > Ne,tot and s equal to the closest effective particle
of i is

− 1 +

N∗S∑
j=1

C ′is +

N
M(g 6=S)
S∑
j=1

C ′is (4.11)

While considering the IO pressure particles, the following two summations must be added
to eqn. 4.11

NIOS∑
j=1

C ′is

(
1−

dSj − dSp
dSp

)
+

NIO(g 6=S)∑
j=1

C ′is
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where N∗S is the total number of effective, IO and IP particles lying in ΩS , N
Mg 6=S
S is the

number of mirror in ΩS not generated by S, NIOS is the number of IO particles in ΩS
and NIO(g 6=S) is the number of IO particles in ΩS not generated by S.

If i < Ne,tot, the RHS of the i-th system (eqns. 2.31 and 3.6) does not change.
Moreover, the IP particles are used to calculate the divergence of the intermediate velocity
in eqn. 2.28.

If i > Ne,tot the RHS of the i-th system is

1

∆t

N
MS
S∑
j=1

C ′is (uk+1
n − u∗n)

∣∣∣
b
dSj −

1

∆t

N
M(g 6=S)
S∑
j=1

C ′is (uk+1
n − u∗n)

∣∣∣
b
dgj (4.12)

where S is the closest effective particle to i. If IO pressure particles lie in ΩS , eqn. 4.12
is modified adding the following summation

NIO
S∑
j=1

C ′isψp
dgj
dgp

The equations for the IP particles to be added to the PPE system are written using
the algorithm below.

ALGORITHM 4.2- Multi-Domain ψ equations

1. do l = 1, inttot

2. do n = 1, N l
IP

3. diagn = 1 (diagonal term)

4. n ∈ A (n is an IP of block A for example)

5. Find the closest particle R in block B

6. off diag(n,R) = −1 (the psi of R is an unknown term)

7. do j = 1, NR (cycle on the particles in ΩR)

8. if j is effective or IP then

off diag(n,R) = off diag(n,R) + C ′pr

off diag(n,j) = off diag(n,j) − C ′pr
9. if j is mirror and g = R then

RHSn = RHSn + C ′pr (uk+1
n − u∗n)

∣∣∣
b
dRj

10. if j is mirror and g 6= R then

RHSn = RHSn − C ′pr (uk+1
n − u∗n)

∣∣∣
b
dgj

off diag(n,R) = off diag(n,R) + C ′pr

off diag(n,g) = off diag(n,g) − C ′pr
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11. if j is IO pressure then

RHSn = RHSn + C ′pr ψp
dgj
dgp

12. if g = R then

off diag(n,R) = off diag(n,R) + C ′pr

(
1 +

dRj − dRp
dRp

)
13. if g 6= R then

off diag(n,R) = off diag(n,R) + C ′pr

off diag(n,g) = off diag(n,g) + C ′pr
dgj − dgp
dgp

1. The cycle on the all interfaces inttot is performed;

2. The cycle on the IP particles generated through the interface l is performed;

3. The diagonal term of the n-th equation is set to 1;

4. It must be identified the block from which the IP particle n is generated. In the
example n is generated through an effective particle of A (n ∈ A);

5. The effective particle closest to n is searched in the block B. This particle is named
R in the algorithm above;

6. The value 1 must be added in the n-j off-diagonal entry of the system matrix due
to ψR is unknown;

7. The cycle on the all particles lying in ΩR is performed;

8. If j is an effective or IP particle, the values C ′pr and −C ′pr are added in the n-R and
n-j off-diagonal entries of the system matrix, respectively;

9. If j is a mirror particle generated by R, the right-and-side term corresponding to
the n-th eqn. is increased by the value C ′pr (uk+1

n − u∗n)
∣∣
b
dRj ;

10. If the generating particle g of the mirror j is different from R, the right-and-side
term of the n-th eqn. is decreased by C ′pr (uk+1

n − u∗n)
∣∣
b
dgj . The n-R off-diagonal

entry of the system matrix is increased by the value C ′pr, while the n-g off-diagonal
entry is decreased by the same quantity;

11. This point and the following points (12 and 13) of the algorithm are activated when
the closest effective particle R has IO pressure particles in its support domain.
Specifically, if j is an IO pressure particle the right-and-side term of the n-th eqn.
is increased of the value C ′prψp

dgj
dgp

;

12. If R is also the generating particle of the IO pressure particle j, the n-R off-diagonal
entry of the system matrix is increased by C ′pr;

13. If the generating particle g is different from R, the n-R off-diagonal entry is in-
creased by the quantity C ′pr, while the n-g off-diagonal entry is increased by the

value C ′prψp
dgj
dgp

.
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4.2.4 The inflow/outflow procedure through the block interfaces

The employment of a multi-domain approach in the framework of a Lagrangian method
as SPH requires taking into account the movements of the particles from one block to
another.

In the Multi-Domain approach the inflow and outflow procedures are handled sepa-
rately using a technique similar to that explained in Sec. 3.2.2 and Sec. 3.2.3 with reference
to the In/OutFlow-BCs technique. Specifically, at the end of each time step, after having
calculated the particle velocities through eqn. 2.24 and having accordingly updated their
position (eqn. 2.25), it is checked for each effective particle if it has gone through one of
the interface triangles. In this case the interface triangle is considered an outflow for the
block and the particle is simply removed from the list of particles of the block it comes
from. Open-boundaries and internal interfaces connecting neighboring blocks are treated
in the same way from this point of view, since in both cases the particle is leaving the
block to which it belongs. As it is shown in Fig. 4.7.a, thus, a particle P leaving block
A towards B is canceled at the next time step (r + 1 in the figure). If at the end of the
time step a particle approaches one of the interfaces without crossing it (particle Q in the
figure), one or more IP particles are generated as it has been described in Sec. 4.2.2.

On the other hand, considering the scheme in Fig. 4.7.b, the entering of new particles
in block B is handled as described in the following.

At the end of each time step, the region between the starting particle distance ∆x and
kh from the interfaces is considered (light green area in the figure). In order to verify if the
generation of new particles is required into this region, for each effective particle contained
in this checking area (S and T in the figure) and having positive velocity component in
the direction normal to the interface (thus pointing towards the interior of the block), a
conical scan region is identified, which is indicated with the yellow color in the 2D scheme
shown in the figure. The vertex of the cone and the axis direction are assigned equal to
the particle position and velocity direction, respectively, as shown in Fig. 4.7.b (particles
S and T ). The conical volume thus is placed on the upstream region contained between
the checked particle and the interface. The region is used to verify if the movement of
the considered particle towards the interior of the block is causing the development of an
empty region, which would require the generation of a new particle to fill it. Thus, a new
particle is released if no effective particle is found in the conical region, as occurring in
the figure with reference to the cone with vertex in T . The new particle (R in the figure)
is displaced at distance ∆x from the cone vertex along the cone axis direction. If on the
contrary some effective particles are found in the conical region (which occurs in the figure
for the cone with vertex in S), no particle is generated inside the cone since no empty
region has been identified.

In order to control the frequency of new particle release, the cone amplitude β is dy-
namically adjusted at each time step as discussed for the release of new particles at the
inlet (see Sec. 3.2.2). Specifically, the widening of the cone increases the probability to
find effective particles inside the conical region and thus reduces the frequency of release.
Therefore, the angle β is increased by a fixed amount (1◦ in our test cases, starting from
the initial value of 30◦) when the total number of effective particles in the block becomes
higher than the starting number and it is reduced by the same amount in the opposite
case. The particles removed from the computation after having left a block through the
interface are saved in a storage list, from which they are collected when new particles
have to be released. The continuous increase of the number of existing particles is thus
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Figure 4.7: Sketch Inflow/Outflow procedure at block interfaces. a) Outflow. Full and
empty black circles: effective and IP particles of block A at time r; full and empty blue
circles: effective and IP particles of block A at time r + 1; b) Inflow. Full and empty
black squares: effective and IP particles of block B; yellow area: conical scan region with
opening angle β; R: effective particle generated inside the cone with vertex in T ; empty
blue squares: IP particles of R; green area: checked region. Taken from: Monteleone
et al. (2018), 964, fig. 6.
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avoided, which would occur if the released particles would be newly generated instead of
been taken from the list of the previously canceled ones.

The inflow/outflow procedure at the block interface is summarized below:

• Deleted particles.
If one effective particle at the end of the time step crosses one of the triangles
defining an external boundary or an internal interface (connecting one block with
the neighboring one) it will be removed from the computation at the next time step.
The interface triangle is thus considered an outflow for the current block;

• IP generation.
If an effective particle has distance d from the interface shorter than the particle
distance ∆x, two or more IP particles are generated as discussed in Sec. 4.2.2. This
is valid for both inflow and outflow interfaces;

• Effective particles with ∆x < d < kh and ui · n > 0.
If an effective particle has distance from the interface ranging between the starting
particle distance ∆x and kh, and the velocity component normal to the interface
plane is positive (ui · n > 0, implying an inflow condition) it must be checked if the
release of a new particle is required. Thus the procedure described above, based on
the cone region analysis, starts;

• Particles with ∆x < d < kh and ui · n < 0.
If an effective particle has distance from the interface ranging between ∆x and kh
but its velocity component normal to the interface triangle is negative (thus the
particle points outside the interior of the particle block), no new particle is released
starting from the current effective particle, nor any IP particle is generated since
the distance from the interface is larger than ∆x.

4.2.5 Flow chart of the PANORMUS-SPH code

In order to provide a general description of the single steps required to advance in time
the solution in the proposed multi-domain technique, a flow chart is shown in Fig. 4.8.
The actions indicated in the flow chart are briefly explained in the following:

• ACTION 1: The domain is partitioned into non-overlapping blocks having a dif-
ferent smoothing length. Each block is separated from the neighboring ones by plane
or curved interfaces. The action is a preparatory step, which is performed only
once before running the simulation. Specifically, the file containing the triangles
of the whole domain is divided and a boundary triangles file for each subdomain
is created. To this aim, in this research study the open-source multiple-platform
application ParaView R©(https://www.paraview.org) and the free software Autodesk
Meshmixer R©(http://www.meshmixer.com) have been used. Moreover, a particle
starting file is created starting from the boundary triangle file and the h value of
each block;

• ACTION 2: The starting particle distribution and the boundary triangles file are
read for all the blocks. The particle hydrodynamic variables are saved for each
effective particle;
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Figure 4.8: Flow chart of the PANORMUS-SPH code with the Multi-Domain approach.
The actions closely related to the Multi-Domain approach are highlighted with the red
color.
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• ACTION 3: The virtual grid of each block is created. The cubic cells of each
virtual grid are classified in types 1, 2, 3 or 4;

• ACTION 4: For each block the mirror, IO and IP particles are generated at solid
walls (see Sec. 2.5.1), open-boundaries (see Sec. 3.2.1) and block interfaces (see Sec.
4.2.2), respectively;

• ACTION 5: The support domain of each effective particle is identified considering
the neighboring particles lying in the same subdomain with distance shorter than
the kh value of the belonging block;

• ACTION 6: If the simulation starts from developed velocity (t0 6= 0), the initial
velocity of the IP particles is obtained solving the equation system 4.7;

• ACTION 7: The fractional step procedure starts from the initialized simulation
time t0;

• ACTION 8: In the predictor-step, eqn. 2.20 is solved for the effective particles of
each block to calculate the intermediate velocity u∗;

• ACTION 9: The equations system 4.7 is solved at each interface to obtain the
intermediate velocity u∗ of the IP particles generated from the neighboring blocks;

• ACTION 10: The pseudo-pressure ψ values of the effective and IP particles of all
the blocks are calculated by solving one single system made up of one Pressure Pois-
son equation (eqn. 2.21) for each effective particle and one interpolation equation
(eqn. 4.8) for each IP particle;

• ACTION 11: In the corrector-step, the updated velocity u is calculated for each
effective particle by solving eqn. 2.24;

• ACTION 12: The positions of all the effective particles are updated using the
corrected velocities u calculated in ACTION 10;

• ACTION 13: The particles crossing external outflow boundaries or internal block
interfaces are deactivated and saved in a storage list (as discussed in Sec. 4.2.4);

• ACTION 14: New particles are released from inflow and interface triangles (Sec.
4.2.4). The new particles are generated before the solution of the MD system for
the corrected velocity (ACTION 17) in order to improve the Taylor series expansion
performance using a more regular particle distribution without voids (due to lack
of particles) at the block interfaces. The velocity of the new particles coming from
block interface triangles is set equal to that of the closest particle belonging to the
neighboring block. For example, in Fig. 4.7 the velocity of the new particle R of the
block B is set equal to that of the closest effective particle in block A (not represented
in the figure). This velocity will be updated after solving the MD system for the
velocity as discussed in ACTION 17;

• ACTION 15: Identical to ACTION 4;

• ACTION 16: Identical to ACTION 5;
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• ACTION 17: The equation system 4.7 is solved at each interface to obtain the
corrected velocity u∗ of the IP particles generated from the neighboring blocks. After
solving the system (the velocities of the IP particles are known now) the velocity of
each new particle i (generated through the ACTION 14) is updated with a linear
extrapolation among i and the two interface particles generated by i;

• ACTION 18: The shifting procedure proposed by Xu et al. (2009) is used to
overcome the well-known tensile instability problem and to improve the particle
distribution as described in Sec. 2.8;

• ACTION 19: The mirror, IO and IP particles are generated as in ACTION 4;

• ACTION 20: As in ACTION 16;

• ACTION 21: The equation system 4.7 is solved at each interface to obtain the
corrected velocity u∗ of the new IP particles generated after the shifting procedure;

• ACTION 22: the solution time is advanced by one time step (t = t+ dt) and the
procedure is restarted with ACTION 8.

The activities specifically required by the proposed Multi-Domain technique are indicated
in red in the flow chart of Fig. 4.8.

4.3 Benchmark test cases

Two test cases have been used in order to properly demonstrate the method efficiency and
accuracy through the direct comparison with reliable solutions.

Specifically, the 3D unsteady channel flow in a cylindrical pipe and the 2D vortex
shedding in the wake have been considered. The flow regime in these cases is laminar.
The multi-domain application to CAs will be presented in Chap. 6.

4.3.1 Transient Poiseuille flow

The flow through a cylindrical pipe with diameter D = 0.1 m and length L = D has been
analyzed. The Tab. 4.1 summarizes the data of the simulation. The domain has been
partitioned into two coaxial cylindrical blocks, as shown in Fig. 4.9, with the diameter
of the internal block D2 = 0.6D. The interface (plotted in red color in the figure) is
therefore a curved surface corresponding to the internal lateral wall of block 1 and the
external lateral wall of block 2. The smoothing lengths of the external and internal blocks

D L ρ ν ∇P umax Re D2

[m] [m] [kg/m3] [m2/s] [Pa/m] [m/s] [−] [m]

0.1 0.1 1000 1 · 10−6 0.02 0.0125 625 0.06

Table 4.1: Benchmark test case - Sec. 4.3.1. Data. D: pipe diameter; L: pipe length; ρ:
flow density; ν: kinematic viscosity; ∇P : pressure gradient; umax: analytical maximum
velocity; Re = ūD/ν: Reynolds number where ū is the cross-section averaged streamwise
velocity at the steady-state; D2: diameter of the internal block.
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Figure 4.9: Benchmark test case - Sec. 4.3. Domain subdivision into blocks 1 (gray) and 2
(blue). The bold red line indicates block interface triangles, while A and B are the inflow
and outflow sections, respectively. a) surface representation; b) cross-section with particle
representation. Taken from: Monteleone et al. (2018), 967, fig. 8.

have been set to h1 = 2 · 10−3 m and h2 = 3 · 10−3 m, respectively (correspondent to
kh1 = 4 · 10−3 m and kh2 = 6 · 10−3 m). The resulting initial number of effective particles
is equal to N01 = 62 750 in the first block and N02 = 10 428 in the second one. The
reduction of the particle numbers with respect to the value obtained using the smallest
value of kh in the whole domain is quite moderate in this simple test case (about 25%
only) since the geometry and parameters have been chosen only to show the accuracy
of the method through the result comparison with the well-known analytical solution. A
larger reduction could have been easily obtained employing a higher ratio of the smoothing
lengths.

A pressure gradient has been used to drive the flow imposing pressure BCs at the
cross-sections A and B (pA = 2 · 10−3 Pa and pB = 0), as discussed in Chap. 3, while
adherence BCs have been set on the external lateral surface of block 1. The simulation
has been performed starting from the rest till achieving the steady-state.

The velocity profiles across the pipe radius at two intermediate time levels (t1 and
t2) and at the steady-state (t3) are plotted in Fig. 4.10, showing a very good agreement
with the analytical solution (Szymanski, 1932) and a quite satisfactory matching of the
solutions near the curved block interface. In the figure the values are plotted relative to
virtual points at fixed steps of 0.001 m along the pipe radius. Therefore, in the external
cylinder (of length 0.02 m along the radial direction) and in the internal one (of length
0.03 m along the radial direction), 20 (empty circles in the figure) and 30 (stars in the
figure) virtual points have been obtained, respectively. The number of these points is thus
independent on the local refinement. Due to the Lagrangian feature of SPH, which allows
to obtain the hydrodynamic values in the particle positions only, in each virtual point the
velocity has been calculated through Taylor series expansion based on the results of the
simulation.

The time evolution of the effective particle numbers N1(t) and N2(t) is shown in
Fig. 4.11, made non-dimensional with the relative starting numbers. The changes in the
total number of particles are quite limited in both the blocks, with ratios N1(t)/N01 and
N2(t)/N02 much lower than 0, 1% in most of the computational time. It should be noticed
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Figure 4.10: Benchmark test case - Sec. 4.3.1. Velocity profile as a function of the radial
coordinate r. Open circles: SPH solution in block 1. Stars: SPH solution in block 2.
Blue, green and red lines: analytical solutions at t1 = 500 s, t2 = 1 000 s and at the
steady-state, respectively.
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Figure 4.11: Benchmark test case - Sec. 4.3.1. Time evolution of the numbers of particles
N1(t) and N2(t) normalized with the initial numbers N01 = 62 750 and N02 = 10 428.
Taken from: Monteleone et al. (2018), 968, fig. 10.
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D L H L1 H1 ρ ν ū Re
[m] [m] [m] [m] [m] [kg/m3] [m2/s] [m/s] [−]

0.1 2.2 0.41 0.2 0.2 1 10−3 1 100

Table 4.2: Benchmark test case - Sec. 4.3.2. Data taken from the test case 2D-2 of
Schäfer et al. (1996). D: diameter of the cylinder. L: length of the channel; H: height of
the channel; L1: distance between the center of the cylinder and the inflow section; H1:
distance between the center of the cylinder and the bottom wall; ρ: fluid density; ν: fluid
kinematic viscosity; ū: mean velocity imposed at the inlet section; Re = ūD/ν = 100:
Reynolds number.

that higher values (lower than 1%) can be seen only at the starting of the simulation, due
to the perfectly regular initial distribution of the particles, which results in the leaving and
entering of entire slices of particles through the inflow and outflow sections. This effect is
particularly evident in block 2 since the particle velocity is larger, but is rapidly canceled
as the particle distribution becomes less regular.

4.3.2 Von Kármán vortex shedding

The 2D laminar flow around a circular cylinder has been studied. The geometry, fluid
properties and boundary conditions have been assigned as in the test case 2D-2 of Schäfer
et al. (1996) (see Tab. 4.2), which has been used for comparison. The length L and the
height H of the computational domain have been set equal to 22D and 4.1D, respectively.
The center of the cylinder is located at distance L1 = 2D from the inflow section and
H1 = 2D from the bottom wall.

The fluid density and kinematic viscosity have been set to ρ = 1 kg/m3 and ν =
10−3 m2/s. A parabolic profile has been imposed at the inflow with mean velocity ū =
1m/s, imposing incoming BCs (as discussed in Chap. 3), resulting in the Reynolds number
Re = ūD/ν = 100. Since the simulation has been started from the rest, in order to obtain
a smoother transition, the selected inflow velocity has been imposed after 0.1 s from the
starting of the simulation, with a linear increase from the initial null value. Adherence
BCs have been used at the lateral walls and on the immersed body, while null velocity
derivatives and null pressure have been imposed at the outflow (setting pressure BCs on
the outflow triangles).

The refinement of the solution has been increased in the vicinity of the immersed body
considering three subdomains. The Fig. 4.12 shows the domain decomposition with blocks
2 and 3 in the annular regions close to the cylinder and block 1 elsewhere. The smallest
value kh3 = 0.02D (where D = 0.1 m is the diameter of the immersed cylinder) has been
used in block 3 (between the diameters D2 and D), the intermediate value kh2 = 0.04D
in block 2 (between D2 = 1.5D and D1 = 2D) and the largest value kh1 = 0.1D in
block 1, covering most of the domain. The resulting initial number of effective particles
is Ne,tot = 48 086 (with 34 816 particles in block 1, 3 456 in block 2 and 9 814 in block
3), about 5% of the value that would have been obtained using a constant value of the
smallest kh (0.02D) in the whole domain. During the simulation the number of particles
in the blocks remained almost constant, with changes limited to 0.8% in the largest block
1 and 0.6% and 0.25% in blocks 2 and 3, respectively.
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Figure 4.12: Benchmark test case - Sec. 4.3.2. a) Domain subdivision into blocks 1
(blue), 2 (yellow) and 3 (green). The bold red lines indicate the two block interfaces; b)
domain dimension. L1 = 0.2 m, L = 2.2 m, D1 = 0.2 m, D2 = 0.15 m, D = 0.1 m,
H1 = 0.20 m and H = 0.41 m. Front point A (xA = 0.15 m, yA = 0.20 m) and end point
B (xB = 0.25 m, yB = 0.20 m) of the cylinder; c) boundary conditions. Taken from:
Monteleone et al. (2018), 968, fig. 11.

The periodic detachment of vortices from either sides of the cylinder, characteristic of
the considered flow at Re values in the range of about 50÷150, is easily identified in Figs.
4.13 and 4.14. The Fig. 4.13.a shows the particle streamwise velocity at time t = 8 s
after the starting of the simulation, corresponding to about 24 vortex shedding periods
T . An enlargement of the near cylinder region is shown in Figs. 4.13.b and 4.13.c, where
the particle streamwise velocity and velocity vectors are plotted respectively, showing a
very good matching of the solution through the block interfaces. The increasing particle
distance while moving outwards from the cylinder and the corresponding velocity vectors
is clearly seen in Figs. 4.13.d and 4.13.e.

The vortices are shown in Fig. 4.14 at the time levels t = 6.31 s (one of the peaks of
the lift coefficient that will be defined below), t+T/4, t+T/2 and t+ 3/4T . In the figure
the vectors are colored as the corresponding blocks in Fig. 4.12.

The smoke lines are plotted in Fig. 4.15 with reference to the inflow positions corre-
sponding to the cylinder height (between y = H1−D/2 and y = H1 +D/2), using different
colors from red to light blue to indicate growing distances from the axis of the domain. A
peculiar procedure has been implemented to obtain the continuity of the smoke lines while



88 CHAPTER 4. THE MULTI-DOMAIN APPROACH
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Figure 4.13: Benchmark test case - Sec. 4.3.2. Velocity field at time t = 8 s. a) Streamwise
particle velocity in the whole domain; b) streamwise particle velocity near the circular
cylinder; c) velocity vectors near the circular cylinder; d) particle distribution at the
subdomain transitions; e) velocity vectors at the subdomain transitions colored as the
corresponding blocks in Fig. 4.12. Taken from: Monteleone et al. (2018), 969, fig. 12.

particles are deleted and generated through block interfaces. Specifically, the smoke value
is assigned as a new property to each effective particle through a scalar variable named
smoke that is initialized to zero at the beginning of the simulation. While new effective
particles are generated at the inflow section of the block 1 they acquired the smoke value
as a function of the distance from the axis of the channel. Due to the Lagrangian nature
of the SPH, the particles carry the smoke property while they move. When a particle
is deactivated through block interface, its coordinates and smoke value are stored for 10
iteration of the simulation in a list of the block where the particle is contained. Therefore,
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(a) (b)

(c) (d)

Figure 4.14: Benchmark test case - Sec. 4.3.2. Velocity vectors (colored as in Fig. 4.12) at
different times levels. a) t = 6.31 s; b) t+T/4; c) t+T/2; d) t+3/4T ), where T = 0.328 s
is the vortex shedding period.

Figure 4.15: Benchmark test case - Sec. 4.3.2. Smoke lines at time t = 8 s. Taken from:
Monteleone et al. (2018), 970, fig. 14.

when a new particle is generated in a subdomain through block interface it is searched from
the aforementioned storage list of the neighboring block the closest particle considering
a limit of maximum distance equal to ∆x/2. The closest particle is thus sought starting
from the particle deactivated in the current time step and going back in iteration (until
the limit of 10) if the distance limit is not satisfied. Assigning to the new particles the
smoke value of the closest deactivated particles in the neighboring block the continuity of
the smoke line is insured.

The Figs. 4.16.a and 4.16.b show the time evolution of non-dimensional drag coefficient
CD and lift coefficient CL. These coefficients have been calculated as

CD =
2

ρū2D

∫
S

(
ρν
∂ut
∂n

ny − pnx
)
dS

CL = − 2

ρū2D

∫
S

(
ρν
∂ut
∂n

nx + pny

)
dS (4.13)

where S is the cylinder surface (discretized into line segments in the 2D approximation),
ut is the tangential velocity, p is the pressure and n is the surface normal direction pointing
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outwards, with components nx and ny in the horizontal and vertical directions respectively.
The surface integrals in eqn. 4.13 have been calculated in discrete form considering the
middle points of the line segments. The figures show that stable conditions, corresponding
to the complete vortex development, are achieved after about 5 s. The maximum value of
the drag coefficient after t = 5 s oscillates between 3.345 and 3.370, with an average value
of 3.354, slightly larger (about 3.5%) than the optimal value of 3.22 ÷ 3.24 estimated by
Schäfer et al. (1996). Correspondingly, the maximum value of CL oscillates between 0.956
and 0.989, with an average value of 0.972, only 1.7% lower than the estimated optimal
value of 0.99.

The pressure difference between the front point A having coordinates (L1 −D/2, H1)
and the end point B (L1 + D/2, H1) of the cylinder (see Fig. 4.12.b) is plotted in Fig.
4.16.c. The obtained mean value in the time period t = 5 ÷ 10 s is ∆p = 2.484 Pa,
in perfect agreement with the values suggested by Schäfer et al. (1996), where the range
2.46÷ 2.50 Pa is reported. The mean frequency of separation f has been estimated from
the period of oscillation T of the lift coefficient CL, resulting in the value f = 3.043 Hz.
Correspondingly, the value of the Strouhal number St = Df/ū = 0.304 has been obtained,
which is again in perfect agreement with the reference values of 0.295÷ 0.305.

The Fig. 4.17 shows a comparison of the results at t = 2 s with those obtained using a
constant value of the smoothing length with kh = 0.04D (single domain SD in the figure).
The velocity, the smoke lines and the pressure field (shown in a enlargement in the vicinity
of the immersed body) are plotted in Figs. 4.17.a, 4.17.b and 4.17.c, respectively, showing
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Figure 4.16: Benchmark test case - Sec. 4.3.2. a) Drag coefficient CD; b) lift coefficient
CL; c) pressure difference ∆p (pA − pB). Taken from: Monteleone et al. (2018), 971, fig.
15.
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Figure 4.17: Benchmark test case - Sec. 4.3.2. Comparison between single domain (SD)
and the proposed multi-domain (MD) approaches at t = 2 s. a) Streamwise particle
velocity. The scale is the same of Fig. 4.13; b) smoke lines; c) pressure field in the vicinity
of the immersed body. Taken from: Monteleone et al. (2018), 972, fig. 16.

a very good agreement between the MD and SD results.
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Chapter 5

SPH Parallel Computing for
Single and Multi-Domain
approaches

This chapter presents the implemented parallel computing scheme for Single and Multi-
Domain SPH approaches. Several implementation details are provided as well as some
scalability tests to analyze the performance of the parallel SPH code.

5.1 Background and motivations

Applying the SPH technique to cerebral vessels with CAs involves simulations requiring
a very large number of particles and consequently leads to unsustainable computational
efforts. Multi-resolution techniques, as the Multi-Domain method (described in Chap.
4), can dramatically reduce the computational costs alleviating this issue, however these
procedures alone are not enough to perform real-time simulations. In this framework,
high-performance computing (HPC ) is necessary, allowing to meet the computational com-
plexity of hemodynamics in CAs with efficient scalable programs.

In Lagrangian particle methods, as SPH, the implementation of parallel computing
is not trivial since it must be taken into account that the particles move during the
computation. Therefore, parallelization algorithms must dynamically handle particles
leaving or entering the domain of each processor.

One of the most important step in the code parallelization is the domain distribution
where the computational domain is divided among several processors. This step is com-
mon for WCSPH and ISPH solvers. The efficiency of the parallel computing is closely
linked to the domain distribution: if the computation division is not fair, the overloaded
processor becomes the process bottleneck. In the SPH method an efficient load balancing,
and thus a highly scalable parallel performance, is achieved assigning a fair number of
effective particles to each processor as well as grouping physically close particles within a
single processor in order to reduce inter-processor communication. These operations are
not trivial in computational domains with complex geometries due to the irregular distri-
bution of the particles (such as the geometry of the CA and the parent vessel with the
surrounding branches). Moreover, a peculiar attention must be paid to maintain during
the simulation an efficient load balancing while the particles move from one region of the

93
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computational domain to another.

When the ISPH approach is adopted, the parallel computing implementation is more
challenging since the PPE linear system must be solved. It should be noted that the
Poisson solver is responsible for over 80% of the computation time, thus great attention
must be focused on the Poisson system parallelization. Moreover, as discussed in Sec.
2.7, since the particle connectivity is constantly changing with the evolution of the flow,
the ISPH algorithm requires the solution of a new PPE system, whose sparse coefficient
matrix changes at each time step.

HPC strategies are based on the employment of parallel multiple Central and/or
Graphical Processor Units (CPU and GPU, respectively) architectures. Although the
use of multiple GPUs is a very promising and powerful alternative to HPC clusters, cur-
rently in CFD simulations multiple CPUs paradigm is the most widespread and used
standard where efficient and stable libraries can be found and robust algorithms can be
thus developed.

Some CPU -based parallel computing procedure have been proposed in the ISPH
framework. Yeylaghi et al. (2016) proposed an OpenMP -based parallel scheme, although
in this procedure the Poisson equation is solved explicitly without the use of a matrix,
which affects accuracy and limits the time step size. Recently, Guo et al. (2018) developed
a massively parallel scheme to solve incompressible SPH for free-surface flows for simula-
tions involving even more than 100 million particles using the Message Passing Interface
(MPI ) paradigm.

It should be noted that in the last years the attention towards the GPU architecture
is strongly developing especially in SPH. The open-source DualSPHysics code is ought to
be mentioned in this context. This code, which is developed in the WCSPH approach,
is designed to launch simulations either on multiple CPUs using OpenMP or on a GPU
(Crespo et al., 2015). Domı́nguez et al. (2013) added in the DualSPHysics code an MPI
implementation for Multi-GPU execution. Recently, Chow et al. (2018) proposed a novel
implementation of a parallel ISPH algorithm on a single GPU. To the author’ best knowl-
edge, the solution of the PPE system on multiple GPUs is still a goal to reach.

In this research study the PANORMUS-SPH code has been parallelized on multiple
CPUs using the MPI paradigm for communication between partitions. Future work will
be aimed at parallelizing the code within the emerging GPU architecture. The imple-
mented high-performance computing in SPH (SPH-HPC in the following) is general for
the classical SPH technique with constant resolution (Single-Domain) and for the Multi-
Domain approach. In this chapter the SPH-HPC is first explained with reference to
the Single-Domain approach. Then the HPC implementation is extended to the Multi-
Domain approach where the HPC procedure more complex due to the use of variable kh
values in the subdomains.

It should be highlighted that in the following the term ”decomposition” refers to the
creation of different blocks starting from the whole computational domain in the MD
approach, whilst the term ”distribution” is used to indicate the division of the domain
among processors in the parallel computing scheme.
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Figure 5.1: Scheme of the MPI ALLREDUCE function. Black circles: processor id;
green rectangles: input values; blue rectangles: output values.

5.1.1 Message Passing Interface

The MPI paradigm is a specification for a standard library for message passing proposed
by a broadly based committee of vendors, implementors, and users (Gropp et al., 1996).
The message-passing paradigm has been widely used for implementing high performance
computing since the available optimized MPI libraries and their wide portability. It can
be used in fact in communication for distributed-memory and shared-memory multiproces-
sors, networks of workstations, as well as combinations of these elements. MPI provides a
set of libraries for writing, debugging, and performance-testing distributed programs with
language bindings for C, C++, and FORTRAN .

The MPI functions mentioned in this chapter are listed below.

• MPI ALLREDUCE: this function applies a reduction operation to the vector
send-buffer of each processor and distributes the results to all processes. In Fig.
5.1 each processor sends the value to be shared (green square in the figure). These
values are summed and then the result is distributed to all processors (blue squares
in the figure).

• MPI SENDRECV : it is a blocking send and receive operation. In the imple-
mented SPH-HPC algorithm, this function is used to share particles with neighbor-
ing processors (explained in Sec. 5.2.3 and Sec. 5.2.4);

• MPI ALLTOALL: it allows each process to send and receive distinct data (with
the same amount of information) from other processors, including itself. In this
research study, it is used to share the number of interface particles (see Sec. 5.3.3);

• MPI ALLTOALLV : it allows to send data from all to all processes. Differently
from the function MPI ALLTOALL, each processor may send a different amount
of data may provide displacements for the input and output data. This function is
used to share the coordinates of the interface parallel particles (explained in Sec.
5.3.3).

5.2 SPH-HPC for the Single-Domain approach

5.2.1 Domain distribution

The domain distribution procedure implemented in the PANORMUS-SPH code allows
to subdivide the computational domain among the selected number of processors Nprocs
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Figure 5.2: Sketch of the particle numbering for the cell (i, j, k) where i, j, k are the cell
index in the x, y, z-directions, respectively.

in order to obtain a well-balanced loads distribution. In the following the processors are
indicated with the index id numbered starting from zero up to Nprocs − 1; on the other
hand, when explaining a specific action, the concerned processor will be named myid.

In order to partition the computational domain, the virtual grid of cubic cells discussed
in Sec. 2.5.1 is used. Before explaining the subdivision procedure, a brief explanation of
the particle numbering inside the virtual grid must be provided. When the particles
are initially distributed inside the domain, in each cell (i, j, k) the effective particles are
arranged first in the z-direction, then in the y-direction and finally in the x-direction as
shown in Fig. 5.2. Likewise, in the virtual grid the particles are numbered spanning the
cell columns in the z-direction starting from the bottom to the top and increasing first the
j index (from 1 to ny) and then the i index (from 1 to nx). Considering the scheme in
Fig. 5.3.a, first the particle in cell (1, 1, 1) are thus numbered, than those in cells (1, 1, 2),
(1, 1, 3) and so on till (1, 1, nz). Later the second index is increased starting again from
the bottom and thus spanning the cells from (1, 2, 1) till (1, 2, nz) (Fig. 5.3.b). The same
process is repeated with the index j increasing till ny (Fig. 5.3.c). Finally, the index i is
increased from 1 till nx (Figs. 5.3.d, 5.3.e and 5.3.f).
The Fig. 5.4 shows a simpler 2D scheme of the particle numbering employing the same
procedure.

At the beginning the cells of the virtual grid containing effective particles are dis-
tributed among the selected number of processors in order to allot to each processor a
number of particles close to the theoretical one N t (equal to the least integer greater than
or equal to Ne/Nprocs)

N t = ceiling(Ne/Nprocs)

Each processor scans the particles from 1 to Ne following the numbering explained above.
The cells containing the first N t particles are assigned to the first processor (id = 0). The
second and, in general, the following processors (id from 1 to Nprocs−1), while scanning the
particles, check if the corresponding cell (identified through eqn. 2.14) has been already
assigned to another processor and start to count the theoretical number of particles when
the first cell yet not assigned is found. If one cell has been allotted to the processor id,
all the particles inside the cell will belong to id, even if the required number N t had been
reached. Therefore, the particles belonging to the processor id at the beginning, indicated
as N(id), are

N(id) = N t + res (5.1)
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Figure 5.3: 3D Sketch of the particle order in the virtual grid.
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Figure 5.4: 2D Sketch of the particle numbering in the virtual grid.

where res is the number of remaining effective particles inside the last cell assigned to
the processor id. In 3D approximation the maximum and minimum values of res are 7
(if only one particle was taken in the last cell) and 0 (if all the particles were taken in
the last cell), respectively, since each cell contains 8 particles. On the other hand, in 2D
approximation the maximum value of res is 3, since 4 particles are contained in each cell.

If the domain walls are fixed, that is one of the hypothesis of this research study (as
discussed in Sec. 6.1), each processor maintains the same cells during the simulation
while changing N(id) since the particles move and can switch to cells belonging to other
processors. A detailed description of the procedure of the particle leaving and entering
the processor domain is explained in Sec. 5.2.4.

The Fig. 5.5 shows a 3D scheme of the cell distribution, considering a domain with
Ne = 288 and two processors (Nprocs = 2). In the figure the domains of the processors
are represented with different colors (cyan and yellow for the first and second processors,
respectively) and the first and last particle counted by each processor are highlighted by
red full squares and diamonds, respectively. In this simple example, the first processor
counts the particles from 1 to 144 (that is the theoretical number of particles N t), thus the
cells of these particles are assigned to id 0 (cyan cells in the figure). The second processor
counts the particles starting from the first particles lying in a cell not yet assigned (particles
145) until the required number of particles is reached (particles 288). Therefore, the cells
of these particles are assigned to id 1 (yellow cells in the figure). In this example res = 0
for both processors.

The Figs. 5.6 and 5.7 show a 2D example with Ne = 348 considering different number
of processors. In Fig. 5.6.a, the computational domain is distributed between two proces-
sors; the theoretical number of particles for each processor id isN t = ceiling(348/2) = 174.
For the first processor the particles from 1 to 174 are counted and the cells of these parti-
cles are assigned to id 0 (cyan cells in the figure). Since the last cell has other 2 particles
(175 and 176) also these particles are counted and thus N(0) = 176. For the second proces-
sor the first cell not yet assigned is the one containing the particle 177; thus the particles
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Figure 5.5: 3D Sketch of the distribution of the cells containing effective particles. Ne =
288, Nprocs = 2. Cyan region: domain of the processor id 0; yellow region: domain of the
processor id 1; red full squares and diamond: first and last particles of each processor.

are counted starting from 177 to 348, resulting in N(1) = 172. Therefore, the cells of
these particles are assigned to id 1 (yellow cells in the figure). The surfaces separating
neighboring processors are named parallel interfaces. Due to the 2D representation these
surfaces are represented with segments (bold red lines) in the figures.

The Fig. 5.6.b shows the cell distribution with 3 processors (N t = ceiling(348/3) =
116). The first processor takes the cells from the particle 1 to 116 with N(0) = 116 (cyan
cells in the figure), the second takes the cells from 117 to 232 with N(1) = 116 (yellow
cells) and the third those from 233 to 348 with N(2) = 116 (green cells).

In Fig. 5.6.c the cell distribution with 4 processors in shown withN t = ceiling(348/4) =
87. The first processor takes the cells from the particle 1 to 88 with N(0) = 88 (cyan cells),
the second those from 89 to 176 with N(1) = 88 (yellow cells), the third those from 177
to 264 with N(2) = 88 (green cells) and the fourth those from 265 to 348 with N(3) = 84
(pink cells). The Fig. 5.7 shows other two schemes of the cell distribution with 4 and
8 processors (Fig. 5.7.a and Fig. 5.7.b, respectively). The number of particles for each
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Figure 5.6: 2D Sketch of the distribution of the cell containing effective particles. Ne =
348. Black circles: effective particles; bold black line: domain boundary; black line: cells
containing effective particles (cell types 1, 2 and 3); dashed black line: external cells (type
4); bold red lines: parallel interfaces; red full squares and diamond: first and last particles
of each processor.

processor of Figs. 5.6 and 5.7 are summarized in Tab. 5.1.

In the following the scheme with 3 processors (shown in Fig. 5.6.b) will be used to
explain the other steps of the implemented parallel computing procedure.
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Figure 5.7: 2D Sketch of the distribution of the cell containing effective particles. Ne =
348. Symbols as in Fig. 5.6.

Nprocs Nt N0 N1 N2 N3 N4 N5 N6 N7

2 174 176 172 − − − − − −
3 116 116 116 116 − − − − −
4 87 88 88 88 84 − − − −
8 44 44 44 44 44 44 44 44 40

Table 5.1: Number of particles for each processor. Examples shown in Figs. 5.6 and 5.7.
Ne = 348.
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5.2.2 Identification of the particles to be shared

After partitioning the cells containing effective particles, the current processor myid clas-
sifies as type 4 (external cells) the cells not belonging to its domain. The Fig. 5.8 shows
the domains of the three processors considering the scheme in Fig. 5.6.b. Moreover, myid
records, for each cell of the whole computational domain, the processor id whose the cell
belongs.

The classical SPH formulation can be used inside the domain assigned to each proces-
sor, although, since the support domain of the particles can be truncated near the parallel
interfaces, the processors must receive, and must send in turn, the particles near these
regions from/to the neighboring processors.

To ease up the identification of the particles to be shared with the neighboring pro-
cessors, other two types of cells are introduced (as discussed in Sec. 2.5.1): type 5 (cells
whose particles must be sent to the right, dark gray cells in Fig. 5.8) and type 6 (cells
whose particles must be sent to the left, light gray cells in Fig. 5.8). In order to identify
these cells, the current processor myid checks if each cell of its domain borders:

• only with its own cells, thus the cell must not be shared;

• with at least one cell of the processor id = myid + 1: the particles inside the cell
must be shared on the right; the cell is set to type 5;

• with at least one cell of the processor id = myid − 1: the particles inside the cell
must be shared on the left; the cell is set to type 6.

As discussed in Chap. 2, employing for kh/∆x a value higher than 2 (which is the
value chosen in this research study), a greater number of particles should be shared with
the neighboring processors making the proposed HPC scheme less efficient.

5.2.3 Sharing values procedure

The values of all the particles (effective, mirror, IO) lying in the cells to be shared must
be sent to the left neighboring processor and/or to the right one. Simultaneously, each
processor receives the corresponding values of the neighboring processors from the right
and/or from the left. The received particles are indicated with PP (parallel particles) and
the receiving processor is able to identify if each PP was an effective (PeP ) or a mirror
(PmP ) particle in the domain of the processor from where the PP comes from.
Considering the scheme with three processors in Fig. 5.9, where the cells to be shared
(types 5 and 6) are represented with cyan, yellow and green colors (for id 0, 1, 2, respec-
tively), the procedure can be summarized as follows:

• myid 0 sends to id 1 (processor on the right) the values into its cells of type 5 (cyan
cells in the figure). Simultaneously, it receives the values from id 1 from the right
(neighboring yellow cells). The first processor (id 0) sends and receives to/from the
right only;

• myid 1 sends to id 0 (processor on the left) the values inside its cells of type 6
neighboring to id 0 (yellow cells border to the first parallel interface) and receives
the values of id 0 from the right (cyan cells). It sends on the right to id 2 the values
inside the cell of type 5 neighboring id 2 (yellow cells border to the second parallel
interface) and receives from the left the values of id 2 (green cells). The intermediate
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Figure 5.8: 2D Sketch of the identification of the cell of types 5 (dark gray area) and 6
(light gray area). Black circles: effective particles belonging to the current processor; bold
black line: domain boundary; Black line: cell grid contained effective particles (cell types
1, 2 and 3); dashed black line: external cell grid (cell type 4); bold red line: processor
boundary. a) Domain of the first processor (myid 0); b) domain of the second processor
(myid 1); c) domain of the third processor (myid 2).
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Figure 5.9: 2D Sketch of the sending/receiving procedure. The cells of type 5 are high-
lighted with the color of the processor subdomain in which they lie (cyan, yellow and green
for id 0, 1 and 2, respectively, as in Fig. 5.6.b); full and empty black circles: effective and
mirror particles, respectively, of the whole computational domain.

processors (such as myid 1 in this example) exchange values with the neighboring
processors in both directions (left and right);

• myid 2 sends to id 1 on the left the values inside the green cells and receives the
values of the type 6 cells of id 1 (yellow cells neighboring to the second parallel
interface) from the left. The last processor (myid 2 in the example in the figure)
sends and receives to/from the left only.

As it is seen in the figure, also the mirror particles are shared, therefore the send-
ing/receiving procedure must be performed after the mirror particles generation (as it
will be explained in Sec. 5.2.6).

At the beginning of each time step, the positions of the particles inside the cells of
types 5 and 6 are shared and each processor adds the PP particles inside its own cells (as
shown in Fig. 5.10). The PP particles are numbered after the effective and mirror parti-
cles. Therefore, the first PP particle has the index N(id) +Nmirror,id + 1 (where N(id) and
Nmirror,id are the number of effective and mirror particles, respectively, in the domain of
the processor), while the last one has the index N(id) +Nmirror,id +NPP,tot (where NPP,tot

is the total number of parallel particles as the sum of those received from the left and from
the right).

Each processor builds the vectors of the values to be shared on the right (values of the
particles inside the cells of type 5) and on the left (values of the particles inside the cells
of type 6). The values to be shared are: positions, intermediate and corrected velocities,
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Figure 5.10: 2D Sketch of the processor domain after sharing the particle positions. Full
and empty black circles: effective and mirror particles, respectively, of the processor myid;
full and empty red circles: effective and mirror particles, respectively, received from the
neighboring processors (PP particles).

pseudo-pressure, value (uk+1
n − u∗n)

∣∣
b
dgj (to be used in the Poisson right-and-side of eqn.

5.4, see Sec. 5.2.5) and the tracer concentrations (see Sec. 7.2.2).

It should be noted that for sending array, for example the positions, the first particles
to be share fills the first three elements of the sending vector, the second particles starts
from the fourth element to the sixth one, and so on for the others.

5.2.4 Management of the particle leaving/entering the processor domain

As already discussed, due to the Lagrangian nature of the SPH method, the particles leav-
ing and entering the domain assigned to each processor have to be dealt with. To this aim,
at the end of each time step the processors check if some of their own effective particles
have left their domain crossing the parallel interfaces. The particles leaving the domain of
the processor are deactivated and are added in a local storage list (each processor has a list
of the deactivated particles that it is the same of that explained in Chap. 3 and Chap. 4
for the particles deactivated through outflow BCs and block interfaces, respectively). The
particles deactivated by the current processor myid can belong now to cells of the neigh-
boring processors on the right (id = myid+ 1) or on the left (id = myid− 1). Therefore,
the current processor builds two vectors (one for sending the information to the processor
on the right and one to the processor on the left), adding the required values of these
particles. Specifically, the information to be sent are: positions, velocities, accelerations
at the current time step (in order to use the Adams-Bashforth scheme in the predictor-step
at the next time step), pseudo-pressure, concentration of the analyzed species (see Sec.
7.2.3), platelet activation potential (see Sec. 7.4). The receiving processor records each
new particle inside its own cell to which the particle belongs and gives to the new particle



106 CHAPTER 5. SPH PARALLEL COMPUTING

a local index picking up it from its list of deactivated particles or increasing the number
of its effective particles if the aforementioned list is empty.
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Figure 5.11: 2D Sketch of the particle leaving/entering the processor domain. Color of
the processor subdomain as in Fig. 5.6.b. Black circles: effective particles; blue circles:
new particles; black circles with red cross: deactivated particles; bold red lines: parallel
interfaces; black continuous lines: cells containing effective particles; black dashed lines:
external cells.

The Fig. 5.11 shows a simple computational domain partitioned into three processors.
In Fig. 5.11.a the whole domain is represented at time r. Some effective particles close to
the parallel interfaces are highlighted: the particles A, B, C, D, E, F of the first processor
(cyan area in the figure) and the particles G, H, I, L, M , N of the second processor (yellow
area in the figure). The Figs. 5.11.b,c,d show the domain of the processors id 0, 1 and 2,
respectively, after one time step (time r + 1). For the first processor (Fig. 5.11.b), the
particles A, C, D, E and F have crossed the first parallel interface and thus they are
deactivated (in the figure the particles deactivated are marked with a red cross). While
the particle B not having crossed the parallel interface stays, for the current time instant,
in the domain of the first processor. The current processor myid 0 identifies the id of the
processor to which these particles belong in the new position. To this aim, the cell of each
deactivated particle is calculated through eqn. 2.14 and the processor owning this cell is
identified. For example, the particle A at time r + 1 belongs to a cell of id = myid + 1.
In this case all the particles deactivated belongs now to cells of the processor id 1 (as
explained in Sec. 5.2.3 the first processor can sends/receives particles only to/from the
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Figure 5.12: Scheme of the PPE linear system A x = b in serial mode. A is a matrix [n
x n] with n = Ne while x and b are the vector solution and the vector of known terms,
respectively, of length n.

right). Therefore, the current processor myid 0 builds a vector to send these particles
on the right, adding the three components of the position, the three components of the
velocity, the acceleration and the pseudo-pressure of the first particle to be sent (the
particle A in the figure) and, in the vector queue, the same values of the other particles
(particle C, D, E and F in figure). These particles are received by the processor on the
right, as shown in Fig. 5.11.c where the new particles are represented by the blue color.
Simultaneously, the second processor deactivates the particles crossing the second parallel
interface (particles G, H, I, M) and identifies the processor to which they must be sent:
the processor on the right (id 2) in this example. As explained for the first processor,
myid 1 creates a vector with the values of these deactivated particles. It should be noted
that, since myid 1 is an intermediate processor (preceded by id 0 and followed by id 2),
it could send effective particles on the right and left simultaneously. Specifically, if any
particle (not existing in the scheme in the figure) passes through the first parallel interface,
the current processor must send it to id 0, building a second vector containing the values
of the particles to be sent on the left. The processor myid 2 receives the values of the
particles G, H, I, and M as shown in Fig. 5.11.d. The last processor can send/receive
particles to/from the left only.

5.2.5 The equation Poisson system in parallel computing

As explained in Sec. 5.1, the parallel computing implementation in the ISPH approach is
challenging since it is necessary to solve the PPE system made of Ne equations: a eqn.
2.21 for each effective particle of the computational domain. In the implemented parallel
computing algorithm, the whole Poisson linear system, explained in Sec. 2.7 and shown
in Fig. 5.12, is partitioned among the processors.

Specifically, each processor must solve a new linear system A x = b represented in Fig.
5.13, where

• the coefficient matrix A has dimensions [n x m] where n is the number of effective
particles in the current processor N(myid) and m is the sum of N(myid) and the
effective particles received from the neighboring processors NPeP,tot (m = N(myid) +
NPeP,tot). The parallel effective particles are in turn the sum of those received from



108 CHAPTER 5. SPH PARALLEL COMPUTING

Figure 5.13: Scheme of the PPE linear system A x = b of each processor in parallel
computing. A is a matrix [n x m] with n = N(myid) and m = N(myid) +NPeP,tot; the vector
x has length m while the vector b has length n.

the left NPePL and those received from the rightNPePR (NPeP,tot = NPePL+NPePR).
For each matrix row:

– from the column 1 to the column N(myid) the values of its own effective particles
are stored

1 ≤ col ≤ N(myid), for effective particles

– from the column N(myid) + 1 to the column N(myid) +NPePL the values of the
parallel effective particles received from the left are stored

N(myid) + 1 ≤ col ≤ N(myid) +NL
PeP , for PePL

– from the column N(myid) +NPePL + 1 to the column N(myid) +NPePL +NPePR

the values of the parallel effective particles received from the right are stored

N(myid) +NL
PeP < col ≤ N(myid) +NL

PeP +NR
PeP , for PePR

The i-th row diagonal term of the coefficient matrix eqn. 2.29 becomes

N
′
i∑

j=1

Cij +

NPP
i∑
j=1

Cij (5.2)

where NPP
i is the number of parallel particles (sum of the parallel effective and

parallel mirror particles, PeP and PmP , respectively) in Ωi, while the other symbols
are known.

The i-th row off-diagonal term in the s-th column with s ≤ N(myid) of the system
coefficient matrix is equal to eqn. 2.30 since s is an effective particle. Otherwise, if
s ≥ N(myid), s is a parallel effective particle; therefore, eqn. 2.30 must be modified
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substituting the term NMs
i with the NPmPs

i (which is the number of parallel mirror
particles PmP into Ωi generated by the parallel effective particle s).

−

δisCis +

NPmPs
i∑
j=1

Cij

 with s ≥ N(myid) (5.3)

• the vector solution x is extended to the effective particles received from the neigh-
boring processors NPeP,tot. Thus it has length m = N(myid) + NPeP,tot and the
values from the positions n + 1 to m are received from the neighboring processors.
Differently from the procedure explained in Sec. 5.2.3, here only the values of the
effective particles inside the cells of type 5 and 6 must be sent that are stored in the
vectors GCR and GCL, respectively. The solution value of each of these particles is
searched in the x vector at the position of the particle column x(col) (a value that
can span between 1 and n since it is an effective particle) and it is stored in the
arrays GCR

x or GCL
x (depending on if the particle comes from the vector GCR or

from the vector GCL). The receiving processor fills its x vector starting from the
position n + 1, placing the values received from the left (PePL) followed by those
received from the right (PePR). Obviously, the first processor has only the values
received from the right (PePR), while the last processor has only those received
from the left (PePL).

• the vector of known terms b has length equal to n = N(myid).

The i-th equation right-hand-side term eqn. 2.31 can be rewritten adding the sum
of the PmP lying in Ωi (NPmP

i )

RHSi = Ti +
1

∆t

N
(M+PmP )
i ∑
j=1

Cij (uk+1
n − u∗n)

∣∣∣
b
dgj (5.4)

where the mirror and PmP particles inΩi are written in the compact formN
(M+PmP )
i .

Moreover, the PeP particles are used in eqn. 2.28 to calculate Ti.

The BiCGSTAB method (used for iteratively solving the PPE system as explained
in Sec. 2.7.1) has been entirely parallelized. The ALGORITHM 2.1 (or ALGORITHM
2.3 considering the preconditioned version) has been modified in the parallel computing
scheme considering the non-symmetric linear system of Fig. 5.13. For parallel computa-
tion, the vectors x, x0, s, p, y and z of the BiCGSTAB algorithm are extended to the total
number of effective particles received from the neighboring processor (PeP , parallel effec-
tive particles). The dimension of these vectors is thus equal to the total number of effective
particles of the current processor myid, N(myid), plus the number of effective particles re-

ceived from the neighboring processors as sum of left and right (NPeP,tot = NL
PeP +NR

PeP ).
As for the serial mode, the dimension of the vectors r0, r, b, v, t is equal to the num-
ber of equations N(myid) (since the equations are written for each effective particle of the
processor domain). The new Pre-BiCGSTAB algorithm is shown below.

ALGORITHM 5.1- Parallel Pre-BiCGSTAB method

1. Send GCR
x0 and GCL

x0 / Receive x0 (n+1:m)
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2. r0 = b−A x0

3. Choose r∗0 such that (r∗0, r0) 6= 0. For instance r∗0 = r0;

4. ρ0 = α0 = ω0 = 1;

5. v0 = p0 = 0;

6. The iterative cycle is performed until convergence (RSQ < tol):

6.0 do j = 1, ... until convergence

6.1 ρj,myid = (r∗0 (1:n), rj−1 (1:n));

call MPI ALLREDUCE(ρj,myid, ρj);

6.2 βj =

(
ρj
ρj−1

)(
αj−1

ωj−1

)
;

6.3 pj (1:n) = rj−1 (1:n) + β
[
(ρj−1 − ωj−1 vj−1 (1:n)

]
;

6.4 y(1:n) = K−1pj (1:n) (solving y′ = L−1pj and y = U−1y′)

Send GCR
y and GCL

y / Receive y(n+1:m)

6.5 vj = A y;

6.6 α∗j,myid = (r∗0,vj)

call MPI ALLREDUCE(α∗j,myid, α
∗
j )

αj =
ρj

(α∗j )
;

6.7 s(1:n) = rj−1 (1:n) − αjvj (1:n);

6.8 z(1:n) = K−1s (solving z′ = L−1s and z = U−1z′)

Send GCR
z and GCL

z / Receive z(n+1:m)

6.9 t = A z;

6.10 ω∗j,myid = (t(1:n), s(1:n));

call MPI ALLREDUCE(ω∗j,myid, ω
∗
j );

ω∗∗j,myid = (t(1:n), t(1:n));

call MPI ALLREDUCE(ω∗∗j,myid, ω
∗∗
j );

ωj =
ω∗j
ω∗∗j

;

6.11 xj (1:m) = xj−1 (1:m) + αj y(1:m) + ωj z(1:m);

6.12 res(1:n) = b(1:n) −A xj ;

6.13 RSQmyid =
[
res(1:n), res(1:n)

]
;

call MPI ALLREDUCE(RSQmyid, RSQ);

6.14 Send GCR
x and GCL

x / Receive x(n+1:m)

6.15 Check if convergence is reached:

if (RSQ < tol) then quit .

else rj (1:n) = s(1:n) − ωj t(1:n) and continue.

where the sending/receiving actions (points 1, 6.4, 6.8 and 6.14) are highlighted with



5.2. SPH-HPC FOR THE SINGLE-DOMAIN APPROACH 111

blue color. A local FORTRAN subroutine (”SPH Share GC”) has been implemented
using the MPI function MPI SENDRECV for sending and receiving vectors during
the iterative procedure. Specifically, the subroutine needs as input the vectors GCR

x

and GCL
x containing, depending on the vector to be shared, the value of x0 (GCR

x0 and

GCL
x0), y (GCR

y and GCL
y ), z (GCR

z and GCL
z ) or x (GCR

x and GCL
x ), as appropriate,

of the effective particles to be shared. These vectors are created as explained above for
the vector solution and are sent to the neighboring processors. The receiving processor
puts these values in the corresponding vector (x0, y, z or x) from the position n + 1 up
to m starting from the values received from the left. The matrix-vector multiplications
(A x) in points 2, 6.5, 6.9, 6.12 of the algorithm above, are possible since the number
of columns of the matrix A are equal to the number of elements in the vector x (length
m = N(myid) +NPeP,tot). Each processor performs the A x product after having received
the values from the neighboring processors. In the point 6.1 the ρ value is calculated
separately from each processor (obtaining ρ(myid)) using their own r vector.
Through the MPI function MPI ALLREDUCE the value of each processor is added to
that of the others in order to obtain the total value (ρ(myid)). The same procedure is used
at points 6.6, 6.10 and 6.13 to calculate α, ω and RSQ, respectively.

5.2.6 Flow chart of the PANORMUS-SPH code

The Fig. 5.14 shows the flow chart of the SPH code in parallel computing and for the
Single-Domain approach. The steps of the flow chart, explained below, are performed by
each processor with the exception of the ACTION 2 that is only performed by the first
processor at the beginning of the simulation.

• ACTION 1: The current processor reads the particle starting file and the boundary
triangles file as described in Sec. 2.10;

• ACTION 2: The processor id 0 creates the virtual grid and prints in a file (which
is named sph initialize.inp) the cell type classification (it is performed at the be-
ginning of the simulation only). The other processors read that file;

• ACTION 3: The particles are distributed among the selected number of processor
Nprocs reading their coordinates through the starting file (ACTION 1) until the
required theoretical number (N t) is reached (as described in Sec. 5.2.1). The cells
in which these particles lie are assigned to the current processor. All the remaining
particles inside the last cell assigned (res) belong to the current processor, thus the
real number of particles of each myid can be different from N t (N(myid) = N t+res).
Therefore, in this step each processor identifies its own cells. Moreover, the current
processor knows the processors id to which each cell of the whole computational
domain belongs. The cells belonging to other processors are set to type 4. As
explained in Sec. 5.2.2, the processor identifies the cells of type 5 whose values must
be shared to the right (with the processor myid+1) and those of type 6 to be shared
to the left (with the processor myid−1). The cells of type 4 neighboring to the ones
of type 5 are set to type 5 (the same is for the cells neighboring the ones of type 6)
since the mirror values must be shared too;

• ACTION 4: The processor generates the mirror particles starting from its own
effective particles close to the domain boundaries, as described in Sec. 2.5.1 for the
serial mode;
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Figure 5.14: Flow chart of the PANORMUS-SPH code with the parallel SD procedure.
The parallel computing actions are highlighted with red color.

• ACTION 5: The processor sends positions and velocities of all the particles (ef-
fective and mirror) inside the cells of types 5 and 6. It receives, simultaneously, the
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values inside the cells of types 5 and 6 of the neighboring processors. The received
particles are named parallel particles (PP ) and the processor is able to identify if the
PP is an effective (PeP ) or a mirror (PmP ) particle in the domain of the sending
processor;

• ACTION 6: For each effective particle i belonging to the current processor, the
support domain is identified storing in the list of i the particles (effective, mirror,
IO, PP ) having distance from i shorter than kh;

• ACTION 7: The time marching procedure starts from the initial time t = t0;

• ACTION 8: In the predictor-step the intermediate velocities u∗i are calculated for
the effective particles of the current processor through eqn. 2.20 (or eqn. 2.37 if the
time step is variable as explained in Sec. 2.9). For the mirror particles the u∗n is
calculated at the xb position using eqn. 2.23;

• ACTION 9: The processor sends the values of the intermediate velocities of the
particles inside the cells of type 5 and 6. Simultaneously, it receives the values inside
the cells of type 5 and 6 of the neighboring processors;

• ACTION 10: The value (uk+1
n − u∗n)

∣∣
b
dgj (to be used to build the Poisson right-

and-side, eqn. 5.4) is shared. The coefficient matrix is built in the CRS format
creating the vectors vals, cols and limits. The Pre-BiCGSTAB method is per-
formed until convergence following the ALGORITHM 5.1;

• ACTION 11: The ψ values are shared with neighboring processors;

• ACTION 12: In the corrector-step the corrected velocities uk+1
i of the effective

particles of the current processor are calculated using eqn. 2.24;

• ACTION 13: The processor updates the positions of its own effective particles
through eqn. 2.25;

• ACTION 14: At the end of the time step the current processor myid checks if any
of its effective particles have left its domain through parallel interfaces. The particles
crossing the parallel interfaces are deactivated for the processor and are added in
its storage list. On the other hand, the processor receives the effective particles
(positions, velocities, pseudo-pressure and accelerations) which have left the domain
of the neighboring processors and now lie in cells belonging to myid as explained in
Sec. 5.2.4;

• ACTION 15: As in action 4;

• ACTION 16: After moving the effective particles and generating the mirror ones,
the processor sends the values of the positions and velocities of the particles inside
the cells of type 5 and 6 and, simultaneously, it receives the values inside the cells
of type 5 and 6 of the neighboring processors (as in ACTION 5);

• ACTION 17: As in ACTION 6;

• ACTION 18: The shifting procedure is performed as explained in Sec. 2.8;

• ACTION 19: As in ACTION 14;
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• ACTION 20: As in ACTION 4;

• ACTION 21: As in ACTION 5;

• ACTION 22: As in ACTION 6;

• ACTION 23: The simulation time is advanced by one time step (t = t + dt). If
the adaptive time step procedure is activated it must be checked if the Courant
limit checking is satisfied (eqn. 2.35) or if it is necessary to change the time step as
discussed in Sec. 2.9. In eqn. 2.36 the umax is the highest velocity value among all
processors, and it is obtained through the MPI function MPI ALLGATHER.

After the ACTION 23, the procedure is restarted with the predictor-step (ACTION 8).

5.2.7 Scalability test

A cylindrical pipe of length L = 0.012 m and diameter D = 0.001 m has been considered
in order to perform a scalability test. A parabolic velocity profile has been imposed at
the inlet, zero pressure has been set at the outlet section (the incoming and pressure BCs,
respectively, described in Chap. 3) and adherence BCs have been adopted at the lateral
walls.

The smoothing length h has been set to 2.5 10−5 m, corresponding to an initial number
of effective particles Ne = 606 720.

The time required to execute one time step in the time marching procedure has been
calculated using the serial mode (Nprocs = 1), and the parallel computing with 2, 4, 8,
16 and 32 processors having 303 360, 151 680, 75 840, 37 920 and 18 960 initial number of
effective particles, respectively. The results (red stars) and the trend-line (dashed black
line) whose slope is equal to −0.796 are plotted in Fig. 5.15 using a double logarithmic
scale.

As it is seen in the figure a very good scalability has been obtained, although in order
to have a perfect linear scalability the slope of trend-line should be −1 1.

5.3 SPH-HPC for the Multi-Domain approach

The parallel computing algorithm has been further extended to the Multi-Domain ap-
proach.

1This can be obtained through trivial algebra. The theoretical time of each processor Tid can be
expressed as

Tid =
Tserial
Nprocs

where Tserial is the time required in serial mode when Nprocs = 1. Thus Tserial is a constant

TidNprocs = Tserial = cost

Applying the logarithm operator to both the side of the previous equation

log(Tid) + log(Nprocs) = log(Tserial)

Moving the term log(Nprocs) to the right-and-side

log(Tid) = −log(Nprocs) + log(Tserial)

where f(x) = log(Tid), x = log(Nprocs), b = log(Tserial) is the intercept and the slope of the line is −1.
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Figure 5.15: Scalability test : Parallel SD. Ne = 606 720; t is the CPU time and Nprocs is
the number of processors. Red stars: time required using different Nprocs; dashed black
line: trend-line.

As explained in Chap. 4, in the Multi-Domain approach the computational domain is
partitioned into blocks (numbered from 1 to NBlocks) separated through block interfaces
(see Sec. 4.2.1). The matching of the solution in neighboring subdomains is obtained
generating at the block interfaces a new type of ghost particles named IP particles (see
Sec. 4.2.3).

In one such approach, the HPC implementation becomes extremely complex due to
the difficulty on balancing among processors the particles belonging to different blocks
separated by block interfaces which, furthermore, can be in general shared among different
partitions. Therefore, the parallel computing scheme must take into account both the
handling of different blocks with their own kh value as well as the interaction of several
processors.

5.3.1 Domain distribution

In the Multi-Domain approach the total number of effective particles in the whole com-
putational domain Ne,tot is obtained summing the effective particles Ne,Bn of each block
Bn (eqn. 4.1). Each block Bn has a own virtual grid of side khBn (smoothing length of
the block Bn) where the effective particles are numbered following the scheme of Fig. 5.3
separately for each block (the numbering starts again from the particle number 1).

In the domain distribution step, the cells of the whole computational domain, as sum
of the cells of the virtual grid of each block containing effective particles, are distributed
among the selected number of processors. These cells are distributed in order to allot
to each processor a number of particles close to the theoretical one, which is equal to
N t = Ne,tot/Nprocs.
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All the processors know the virtual grid of each block, reading it from a file at the
beginning of the simulation.

The current processor myid identifies the cells to be assigned to each processor. For
each cell of the computational domain a variable, named cell processor, containing the
id of the processor of the selected cell is calculated. The procedure starts from the first
processor (id = 0) and the first block (Bn = 1).

Each processor performs the algorithm described below.

ALGORITHM 5.2-Domain distribution in MD

1. cell processor(:, :, :) = −10

2. do id = 0, Nprocs − 1

3. do n = 1, NBlocks

4. SEARCH the first particles (PS)

5. COUNT the particles from PS to PE

6. SET cell processor = id for the cells of these particles

7. if id = myid

Add these particles to the particle list of the block n

8. Different CASES may occur:

8.1 if CASE 1: N t = Na
Bn

8.2 if CASE 2: N t < Na
Bn, NR = Na

Bn −N t

if CASE 2.1: NR < tol

if CASE 2.2: NR > tol

8.3 if CASE 3: N t > Na
Bn, NR = N t −Na

Bn

if CASE 3.1: NR < tol

if CASE 3.2: NR > tol

1. At the beginning no cell has been assigned and the variable cell processor is initial-
ized to the value −10 for all the cells of the computational domain;

2. The cycle on the processor is performed;

3. The current processor myid scans, for each processor id, all the blocks starting from
n = 1;

4. Myid starts to count the required number of particles from the first particle PS lying
in the first cell not yet assigned whose variable cell processor is still equal to −10;

5. The particles are counted until the theoretical number N t is reached for the processor
id. The last particles counted is named PE ;

6. The cell processor variable is set to id for the cells to which the counted particles
(starting from PS) belong;

7. When myid = id the counted particles are recorded in the particle list of the pro-
cessor of the corresponding block;
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8. Three main cases may occur. In cases 2 and 3 a tolerance value is used in order to
prevent that a processor manages a block with an extremely low number of particles.

• CASE 1: If the theoretical number of particles is equal to the available particles
in the block Na

Bn (corresponding to the particles whose cells are not yet assigned
to any processor) the cycle on the processor id is ended. The cycle starts again
at point 3 with the processor id+ 1;

• CASE 2: The processor needs less particles than the available number in the
block n. The residual number of particles is NR = Na

Bn − N t. The cases 2.1
and 2.2 may occur.

– CASE 2.1: if NR < tol, where tol is a given tolerance (for example tol =
0.1N t), all the cells of the remaining particles in the block n are assigned
to id;

– CASE 2.2: if NR > tol, the cycle on the processor id is ended. The cycle
starts again at point 3 with the processor id+ 1;

• CASE 3: The processor id needs more particles than these available in the
current block Na

Bn
. The residual number of particles is NR = N t −Na

Bn. The
cases 3.1 and 3.2 may occur.

– CASE 3.1: if NR < tol, the cycle on the processor id is ended. The cycle
starts again at point 3 with the processor id+ 1;

– CASE 3.1: if NR > tol, the cycle at point 3 is increased with the same id
in order for taking the required further particles in the next block. The
required number of particles for the processor id are N t = NR, these
particles are counted in the next block n+ 1 starting from the particle 1.

The Fig. 5.16 shows the flow chart of the domain distribution procedure in the Multi-
Domain approach considering the generic processor id. Each processor performs the al-
gorithm represented in the figure Nprocs times: starting from id = 0 up to id = Nprocs − 1
(point 2 of the ALGORITHM 5.2). In the following a description of the figure is provided
considering only the first cycle in the algorithm above (when id = 0). The processor myid
starts counting from the particle 1 (PS = 1) of the first block (since no cell of the block
n = 1 has yet been assigned) until N t is reached. As mentioned before, several cases can
happen:

• CASE 1: Ne,B1 = N t. The processor id 0 takes all the cells of the block 1. The
number of particles in the processor is thus N(0) = Ne,B1 . The next processor
(id = 1) starts to count from the first particle of the second block;

• CASE 2: Ne,B1 > N t. The processor needs less particles than the remaining ones in
the block 1.

– CASE 2.1: (Ne,B1 − N t) < tol. As in CASE 1. The difference between the
particles of the block 1 and those required is lower than a given tolerance (for
example tol = 0.1N t). The residual particles in the block 1 are thus taken
N(0) = Ne,B1. Therefore, all the cells of block 1 are assigned to myid 0. The
next processor id = 1 starts counting from the first particle of the second block;

– CASE 2.2: (Ne,B1 − N t) > tol. The difference between the particles of the
block n = 1 and those requested is greater than the tolerance. The processor
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Figure 5.16: Flow chart of the domain distribution algorithm for the Multi-Domain ap-
proach. Each processor performs the algorithm Nprocs times: starting from id = 0 up to
id = Nprocs − 1.

takes the cells starting from that of the particle PS up to that of PE . All
the particles in the last assigned cell belong to the current processor as well
(N(0) = N t + res as explained for the Single-Domain approach, see Sec. 5.2
). The other particles in the block 1 (Ne,B1 − N(0)) will be taken by the next
processor (id = 1) which starts counting from the first particle lying in the cell
of the block 1 not yet assigned.

• CASE 3: Ne,B1 < N t. The processor needs more particles than the remaining ones
in the block 1.

– CASE 3.1: (N t − Ne,B1) < tol. As in CASE 1. The difference between the
particles of the block 1 and those required is lower than the tolerance. The
processor does not take other particles (N(0) = Ne,B1). All the cells of the
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block are assigned to the processor id 0;

– CASE 3.2: (N t − Ne,B1) > tol. The difference between the particles of the
block and those required is greater than the tolerance. The processor id 0 takes
the remaining required particles (NR = N t−Ne,B1) from the next block (block
2). Obviously, the previous cases (1, 2 and 3) can be repeated in the new block
if the Ne,B2 = NR, Ne,B2 > NR and Ne,B2 < NR, respectively. All the cells of
the block 1 and the cells of the particles counted in the block 2 (or in the next
blocks if necessary) are assigned to the current processor.

It should be noted that the processors could have a fraction of a block (the block is
then assigned to more than one processor), a whole block, a whole block and a fraction of
another, more then one block (and so on..). Each processor knows only the blocks assigned
to it.

x
y

block interface 1 block interface 2

(a)

x
y

block interface 1

block interface 2
parallel interface 2parallel interface 1

id 1 id 2id 0

(b)

Figure 5.17: 2D Sketch of the domain distribution in the Multi-Domain approach. a)
Scheme of the domain subdivision in three blocks. Blue lines: block interfaces; b) scheme
of the parallel distribution into three processors. Red lines: parallel interfaces.
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The Fig. 5.17.a shows a 2D simple computational domain partitioned into 3 blocks
with plane block interfaces (represented as blue lines). In the figure the external cells of
each block are not shown for the sake of clarity. The blocks have 144, 255, 208 particles
(Ne,B1 , Ne,B2 , and Ne,B3 , respectively); the total number of particles is thus Ne,tot = 640.
The Fig. 5.17.b shows the domain distribution into 3 processors. The theoretical number
of particles is N t = 214 for each processor. The first processor takes all the cells of the first
block (corresponding to 144 particles); since it needs other 70 particles (NR = N t−Na

B1
=

214 − 144 with NR > tol and tol = 0.1N t = 21), it continues to count the particles in
the second block starting from the particle 1 up to the particle 70 and takes the cells of
the counted particles. Therefore, the particles of id 0 are N(0) = 216: 144 in the block 1,
70 in the block 2 and other 2 particles lying in the last assigned cell (of the same block
2). The domain of id 0 is shown in the figure with the cyan color: the processor has the
whole block 1 and a fraction of the block 2. The second processor id 1 starts to count the
particles from the one lying in first cell not yet assigned (particle 73 of the block 2) up
to the particle 286 of the same block 2. The second processor needs less particles than
those available in the block (Na

B2
= 216); since the difference Na

B2
−N t is lower than the

tolerance tol (216−214 < tol) it still takes all the cells of the block 2 (yellow region in the
figure) starting from that of the particle 73. The number of particles of id 1 is N(1) = 216.
The last processor id 3 starts to count from the first particle of the block 3 (since it lies in
the first cell not yet assigned) and counts until the last particle in block 3 (particle 208).
Therefore, it takes all the cells in block 3 (green cells in the figure) and can not continue
since there are not other subdomains (the number of particles of the last processor is equal
to that of the third block N(2) = 208).

The Fig. 5.18.a shows the domain distribution between five processors considering the
aneurysm of Fig. 4.2 that has been partitioned into six blocks. The number of particles of
each processor is exactly the same (equal to 22 560) with exception of the last processor
(having 22 557 particle) although the difference is negligible (as shown in Fig. 5.18.b). The
domain assigned to each processor is shown in Figs. 5.18.c,d,e,f,g where only the particles
of the considered processor are represented. As it is seen in the figures, the processors
can have particles belonging to different blocks: for example the first processor (whose
particles are highlighted with blue color) has all the particles of block 1 (Ne,B1 = 18 146)
and a fraction of block 2 (equal to 4 414 particles); the second processor (whose particles
are represented with cyan color) has the remaining particles in block 2 (whose number is
13 136 = Ne,B2 − 4 414), all the particles in block 3 (Ne,B3 = 5 766) and a fraction of block
4 (equal to 3 658 particles); and so on for the other processors as shown in Fig. 5.18.b.
The Fig. 5.18 highlights the excellent performance of the domain distribution technique
considering a domain with a very complex geometry.

When the parallel interface does not coincide with the block interface, each processor
must identify the cells containing the particles to be shared with the neighboring processors
on the right and on the left (cells of type 5 and 6, respectively) using the same procedure
explained in Sec. 5.2.1 for the Single-Domain approach. The Fig. 5.19 shows the domain
of each processor with reference to the example of Fig. 5.17. The first processor, whose
domain in shown in Fig. 5.19.a, has the whole block 1 (in the figure the external cells
of block 1 are not represented for the sake of clarity), thus no particle of this block must
be shared. Moreover, since id 0 has a fraction of the second block it set to type 5 the
cells neighboring those of the second processor (dark gray cells in the figure); therefore,
the particles within these cells must be shared on the right. In order to send the mirror
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(a) Scheme of the whole domain

(b) Number of particles

(c) myid 0 (d) myid 1 (e) myid 2

(f) myid 3 (g) myid 4

Figure 5.18: Domain distribution of the aneurysm shown in Fig. 4.2. Nprocs = 5 and
NBlocks = 6.
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Figure 5.19: 2D Sketch of the domain assigned to each processor with reference to the
example shown in Fig. 5.17. Dark and light gray area: cells of type 5 and 6, respectively.
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particles, the external cells (of type 4) neighboring cells to be shared on the right are set
of type 5 as well. Further, the processor id 0 set the remaining cells of the block 2 (that
are assigned to the second processor) to type 4 (dashed black lines in the figure). The
processor id 0 does not have cells of the third block therefore it does not know any particles
in the block 3. The Fig. 5.19.b shows the computational domain of the second processor.
The processor id 1 does not know the first and third blocks, it has only a fraction of the
second block. It set to type 6 the cells bordering those of the first processor. No cells of
type 5 are identified since the second parallel interface coincides with the block interface
2. In this example, the last processor (myid 2) does not share effective particles since the
parallel interface 2 coincides with the block interface 2 (see Fig. 5.19.c). This situation
happens whenever the processor has only one/or more whole blocks.

5.3.2 The solution matching at the block interfaces in parallel comput-
ing

As explained in Sec. 4.2.2, in order to match the solution at the block interfaces, the
IP particles are generated from the effective ones having distance shorter than ∆x (the
starting particle distance of the belonging block) from one of the block interfaces. The
hydrodynamic values of a IP particle generated by an effective particle in the block lb are
calculated through an interpolation starting from the closest effective particle belonging
to the block in which the IP is contained (that will be indicated as block ib as discussed
in Sec. 4.2.3).

In parallel computation, the effective particles of a processor id can generate IP par-
ticles lying in the same domain of id or in the domain of the neighboring processor.
Therefore, the processor generating the IP from the effective particle in its own block lb
may not know the block ib where the IP is contained.

block interface
A

A'

block 1

block 2

Cell of 
myid 

kh1

kh2

Δx1

Cell of id:
id = myid or id = myid

Figure 5.20: 2D Sketch of the IP generation in parallel computing. Black full circles and
squares: effective particles of block 1 and 2, respectively; bold blue line: block interface;
full blue circle: effective particle A of block 1 (lb = 1) lying in the yellow cell belongs to
the processor myid; empty blue circle: IP particle A′ generated by A and lying in the
green cell (of block ib = 2) belongs to the processor id (with id = myid or id 6= myid).

The Fig. 5.20 shows two blocks (block 1 and block 2) separated by the block interface
(represented by the bold blue line). In the figure the effective particle A lying in a cell
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of the current processor myid (the yellow cell in the figure) in the first block (lb = 1) is
considered. It generates the IP particle A′ contained in the subdomain of the neighboring
block 2 (ib = 2). The cell in which the particle A′ is contained (green cell in the figure)
can belong to the same processor myid (if the variable cell processor of the green cell is
equal to myid) or to the neighboring processor id = myid − 1 or id = myid + 1 (if the
variable cell processor 6= myid for the green cell in the figure). In the former case the
parallel interface is internal to the block, whilst in the latter the parallel interface overlaps
the block interface. If id 6= myid, the current processor myid can not do the interpolation
to obtain the value (intermediate and corrected velocities, pseudo-pressure, etc..) of the
particle A′ since it does not know the effective particle surrounding the particle A′ in the
block 2 (black square circles). It happen when the parallel interface overlaps the block
interface.

With reference to the example shown in Fig. 5.19.a, the effective particles of the first
processor will generate IP particles in cells assigned to the same processor. For example,
the generic effective particle A in the block 1 will generate the IP particle A′ in the block
2 inside a cell assigned to myid 0; thus, the processor knows the effective particles in the
block 2 neighboring to A′. Likewise, the generic effective particle B in the block 2 will
generate the IP particle B′ in the block 1 inside of a cell assigned to myid 0; thus, the
processor knows the effective particles in the block 1 neighboring to B′. Considering the
domain of the second processor (shown in Fig. 5.19.b), the generic effective particle C of
the block 2 will generate its IP particle C ′ in a cell assigned to the processor id 2, since the
parallel interface 2 coincides with the block interface 2. Therefore, myid 1 does not know
the effective particles in the block 3 neighboring to C ′ and can not do the interpolation.
Likewise, in Fig. 5.19.c the processor myid 2 does not know the effective particles in the
block 2 neighboring to its IP particle D′ (generated by the effective particle D of the
third block).

A general procedure has been implemented in order to obtain the values of the IP
particles. Specifically, the hydrodynamic values of a IP particle are determined by the
processor owning the cell in which the IP lies, that may coincide or not with the same
processor from which the IP has been generated. Therefore, considering the Fig. 5.20,
the values of the interface particle A′ are determined by the processor id that can coincide
with myid if the yellow and green cells belong to the same processor. Considering the
example of Fig. 5.19.a, the values of the particles A′ and B′ (generated by the particles
A and B, respectively, of the first processor) are both obtained by the first processor; on
the other hand, those of the particles C ′ shown in Fig. 5.19.b (generated by the particle
C of the second processor) and D′ in Fig. 5.19.c (generated by the particle D of the third
processor) are determined by the third and second processors, respectively.

5.3.3 Sending/Receiving procedure of the interface particles

The processor myid, while generating an interface particle starting from its effective par-
ticle of the block lb, identifies the block ib where the IP is contained and the processor
id to which the cell of the IP particle (in the ib block) belongs (this information is read
from the cell processor variable). In the example in Fig. 5.20, the particle A of the block
1 (lb = 1) generates the particle A′ contained in block 2 (ib = 2). The processor myid
must identify the id of the processor having the cell of A′ (yellow cell in the figure).

For each IP particle generated in a cell of the processor id, the current processor myid
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records in the matrix slistid:

slistid =

npm lb ib
1
...

N tot
IP,id

 92903 5 6
...

...
...


• the index npm of the IP particle (for example the particle 92 903);

• the block lb of origin, that is equal to the block of the generating effective particle
(for example lb = 5);

• the block ib where the IP particle is contained, whose particles will be used by
the processor id to obtain the hydrodynamic values of the IP particle (for example
ib = 6).

The number of rows of the matrix is equal to the total number of interface particles gen-
erated in the domain of id (N tot

IP,id).

After generating the IP particles for all its blocks lb, myid identifies and records the
number of the IP particles generated in each ib block of each processor id (N ib

IP,id with
ib = 1, .., NBlocks and id = 0, .., Nprocs − 1) including itself. As will be explained later,
the processor id, after solving the equations for these IP particles using the values of the
particles in the ib block, must send these information to the processor myid. Therefore,
N ib
IP,id represents also the number of particles that the processor myid must receive from

the processor id after that id will have obtained the values of these IP particles.
The processor myid creates a matrix, named Snum, whose generic element N ib

IP,id

represents the number of IP particles contained in the block ib and in a cell of the processor
id. Moreover, myid records the total number of particles generated in a cell of each
processor id in the vector Snum,tot. Considering a domain divided into six blocks and
distributed in four processors, the matrix Snum and the vector Snum,tot can be expressed
as

Snummyid =

id0 id1 id2 id3

B1

B2

B3

B4

B5

B6

Tot



N1
IP,0 N1

IP,1 N1
IP,2 N1

IP,3

N2
IP,0 N2

IP,1 N2
IP,2 N2

IP,3

N3
IP,0 N3

IP,1 N3
IP,2 N3

IP,3

N4
IP,0 N4

IP,1 N4
IP,2 N4

IP,3

N5
IP,0 N5

IP,1 N5
IP,2 N5

IP,3

N6
IP,0 N6

IP,1 N6
IP,2 N6

IP,3

N tot
IP,0 N tot

IP,1 N tot
IP,2 N tot

IP,3



Snum,totmyid =


N tot
IP,0

N tot
IP,1

N tot
IP,2

N tot
IP,3


Obviously, the total number of IP particles generated by the current processor myid can
be expressed as

N tot
IP,tot =

Nprocs−1∑
id=0

N tot
IP,id (5.5)
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In the example of Fig. 5.17, the matrices of the three processors are

Snum0 =

id0 id1 id2

B1

B2

B3

Tot


N1
IP,0 0 0

N2
IP,0 0 0

0 0 0
N tot
IP,0 0 0



Snum1 =

id0 id1 id2

B1

B2

B3

Tot


0 0 0
0 0 0
0 0 N3

IP,2

0 0 N tot
IP,2



Snum2 =

id0 id1 id2

B1

B2

B3

Tot


0 0 0
0 N2

IP,1 0

0 0 0
0 N tot

IP,1 0


where in the matrix Snum0 the only elements 6= 0 are N1

IP,0 and N2
IP,0 since the proces-

sor generates interface particles contained in blocks 1 and 2 inside its own domain (the
particles A′ and B′ for example); thus N tot

IP,2 = N1
IP,0 + N2

IP,0. In the matrix Snum1 only

the element N3
IP,2 is non-null, since the generated IP particles are contained inside cells

of the block 3 of the third processor (N tot
IP,2 = N3

IP,2). Likewise, the only non-null term in

the matrix Snum2 is N2
IP,1, since the IP particles generated by id 2 are contained inside

the domain assigned to the second processor id 1 (N tot
IP,1 = N2

IP,1).
The current processor myid must send each column of the matrix Snum to the corre-

sponding processor id; simultaneously, it must receive the column of its own id from all
the processors including itself.

To this aim, the MPI function MPI ALLTOALL is used allowing to each process
to send/receive distinct data (with the same amount of information) to/from all the pro-
cessors, including itself. Each processor must create a whole vector (named sendbuf)
containing the sending data ordered for processor id and for block number (first all the
blocks of the first processor, then those of the second processor, etc..), while the received
data are placed in the recvbuf array. The sendbuf vector is shown in Fig. 5.21 for the
current processor myid considering the previous example with 6 blocks and 4 processors.

The Fig. 5.22 shows the structure of the sendbuf and recvbuf vectors of all the
four processors. The oval, empty rectangle, full rectangle and dashed rectangle elements,
outlined in the figure for each sendbuf vector with different colors, contain the values
from 1 up to NBlocks to be sent to the processors: id 0 from the position 0 up to 5
(red color in the figure), id 1 from the position 6 up to 11 (gray color), id 2 from the
position 12 up to 17 (blue color) and id 3 from the position 18 up to 23 (green color).
Thus, for example, the red oval in the vector sendbuf0 contains the number of particles
of each block (from 0 up to 5 since the block are six) that the processor 0 must send to
itself. Likewise, the blue empty rectangle in the vector sendbuf1 contains the number
of particles contained into each block (from 12 up to 17 since the block are six) that
the second processor must send to the third processor (id 2). On the other hand, the
information inside these elements are received in the recvbuf vector of each processor,
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where the received values from the processor 0 are placed in the first positions (oval
element of different color for each processor), from 1 up to NBlocks, until those received by
the last processor (dashed rectangle in the figure). Each element (oval, empty rectangle,
full rectangle, dashed rectangle) in the recvbuf arrays contains the number of the IP
particles that the processor will have to solve (using the values of the particles in the

send to

send to

send to

send to

id 0

id 1

id 2

id 3

Figure 5.21: Vector sendbuf of the current processor myid to send the number of IP
particles. N ib

IP,id is the number of IP particles that the current processor myid must
receive from the processor id after that id will have obtained the values of these particles
using the particles in the block ib.
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Figure 5.22: Structure of the sendbuf (to send the number of IP particles whose values
must to be received afterwards) and recvbuf vectors (to receive the number of IP particles
whose values must to be determined and subsequently sent). Nprocs = 4, NBlocks = 6.
Only the positions are indicated.

corresponding block) and will have to send to the corresponding processor from which the
interface particles have been generated. Thus, considering the third processor (id 2), it
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will have to solve the N ib
2 particles contained in the blue oval (considering the blocks from

ib = 1 up to ib = NBlocks corresponding to the positions from 0 up to 5) and then it will
have to send these results to the first processor (id 0). In the same way, the values of the
IP particles contained in the rectangle, full rectangle and dashed rectangle of blue color,
will be obtained by id 2 (using the particles of the corresponding block) and will be sent
to the processor id 1, id 2, id 3, respectively. Therefore, the full green rectangle in the
recvbuf3 vector contains the number of IP for each ib block (from 12 up to 17) whose
values will be obtained by the fourth processor using the particles of the corresponding
block and then will be sent to the third processor.

The Fig. 5.23 shows the vectors sendbf and recvbf for sending the number of IP
particles, considering the example of Fig. 5.17 and assuming that:

• the first processor, starting from the effective particles of block 1 close to the first
block interface, generates 24 particles contained in block 2 (N1

IP,0 = 24) in the
domain assigned to itself. Moreover, it generates 36 particles starting from the
effective particles of block 2 that are thus contained in the first block (N1

IP,0 = 36)
in the domain assigned to itself. The processor id 0 will solve and will send to itself
the values of these particles;

• the second processor generates 40 particles starting from the effective particles of
block 2 close to the second block interface, that are thus contained in block 3 (N3

IP,2 =
40) in the domain assigned to the third processor. The processor id 2 will solve and
will send to the second processor (id 1) the values of these IP particles;

• the third processor generates 26 particles starting from the effective particles of block
3 close to the block interface 2 that are thus contained in block 2 (N2

IP,1 = 26) in
the domain assigned to the second processor. The id 1 will solve and will send to
id 2 the values of these particles.

Differently from Fig. 5.22, where only the positions of the elements in the vectors sendbf
and recvbf are represented (considering six blocks and four processors), in Fig. 5.23 the
values to be sent/received are also shown.

The received values are registered in the Rnum matrix whose generic element N∗ibIP,id

is the number of IP particles received by the processor id in each block ib. The total
number of IP particles received by each processorN∗totid are recorded in the vector Rnum,tot.
Considering an example with six blocks and four processors, the matrix Rnum and the
vector Rnum,tot can be written as follows for the current processor myid

Rnum
myid =

id0 id1 id2 id3

B1

B2

B3

B4

B5

B6

Tot



N∗1IP,0 N∗1IP,1 N∗1IP,2 N∗1IP,3
N∗2IP,0 N∗2IP,1 N∗2IP,2 N∗2IP,3
N∗3IP,0 N∗3IP,1 N∗3IP,2 N∗3IP,3
N∗4IP,0 N∗4IP,1 N∗4IP,2 N∗4IP,3
N∗5IP,0 N∗5IP,1 N∗5IP,2 N∗5IP,3
N∗6IP,0 N∗6IP,1 N∗6IP,2 N∗6IP,3
N∗totIP,0 N∗totIP,1 N∗totIP,2 N∗totIP,3


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Figure 5.23: sendbuf and recvbuf vectors considering the example of Fig. 5.17 and
N1
IP,0 = 36, N2

IP,0 = 24, N3
IP,2 = 40, N2

IP,1 = 26.

Rnum,tot
myid =


N∗totIP,0

N∗totIP,1

N∗totIP,2

N∗totIP,3


Obviously, the total number of IP particles received by myid can be expressed as

N∗totIP,tot =

Nprocs−1∑
id=0

N∗totIP,id (5.6)

In order to obtain the values of the received IP particles, each processor must receive
the coordinates of these particles from the processors from which they have been generated.
To this aim, the MPI function MPI ALLTOALLV is used, allowing to send data from
each processor to every other processor. Differently from the MPI ALLTOALL function,
each processor may send a different amount of data and may provide displacements for
input and output data. The sendbuf vector must be built as explained for the sending of
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the number of IP particles. This vector contains the three coordinates of the IP particles
(whose order is the same described previously, for processor id and for block number) as
shown in Fig. 5.24.

Coordinates of the 
first IP particle 
contained in ib = 1 
to be sent to id 0 

Coordinates
of the last particle
contained in ib = N
to be sent to id 0

Coordinates 
of the last particle 
contained in ib = 1 
to be sent to id 1

and so on for the 
coordinates to be 
sent to the other 
processors 

send to id 0

send to id 1

Blocks

Coordinates
of the last particle
contained in ib = N
to be sent to id 1

Blocks

Figure 5.24: Structure of the sendbuf vector to send the coordinates of the IP particles.

The function MPI ALLTOALLV needs other four vectors:

• scount. Integer array equal to the group size specifying the number of elements to
be sent to each processor;

• sdispl. Integer array (of length group size) where the entry j specifies the displace-
ment relative to sendbuf from which to take the outgoing data destined to processor
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j;

• rcount. Integer array equal to the group size specifying the maximum number of
elements that can be received from each processor;

• rdispl. Integer array (of length group size) where the entry j specifies the displace-
ment of recvbuf at which to place the incoming data from processor j.

The Figs. 5.25 and 5.26 show the sendbf and recvbf vectors, respectively, considering
the example of Fig. 5.17. In Fig. 5.25 the processor id 0 must send the coordinates of
60 particles (24 + 36), thus 180 values in total (3 coordinates x 60 values), to itself (the
first element in the scount vector is 180) starting from the position zero in the sendbuf
array (sdispl value at the first position). The processor id 1 must send the coordinates
of 40 particles thus 120 values in total (3 coordinates x 40 values) to the processor id 2
(scount at the third position is 120) starting from the position zero in the sendbuf array
(corresponding to the sdispl value at the third position). The processor id 2 must send
the coordinates of 26 particles, thus 78 values in total (3 x 78), to the processor id 1
(scount at the second position is 78) starting from the position zero in the sendbuf array
(corresponding to the sdispl value at the second position).

On the other hand, the processor id 0 must receive 180 values from itself (rcount at
the first position is 180) as shown in Fig. 5.26. It places these data starting from the
position zero in the recvbuf array (rdispl at the first position). The processor id 1 must
receive 78 values from id 2 (rcount at the third position is 78). The processor fills the
recvbuf array starting from zero (value of the rdispl array at the third position). The
processor id 2 must receive 120 values from id 1 (rcount at the second position is 120)
and it places these values starting from the position zero in the recvbuf array (rdispl at
the second position).

The coordinates of the received IP particles are recorded in the matrix Rx

Rx
myid =

id0 id1 id2 id3

1
...
...
...

3N∗totIP,id


x1 x1 x1 x1

y1 y1 y1 y1

z1 z1 z1 z1
...

...
...

...
...

...
...

...



After receiving the number and the coordinates of the IP particles, the processor
can obtain the hydrodynamic values (intermediate and the corrected velocities and the
pseudo-pressure) of the received interface particles, as will be explained in the following
sections.

5.3.4 The equation velocity system in parallel MD approach

Each processor must build and solve the MD velocity system whose number of equations
neq is equal to the total number of the received IP particles N∗totIP,tot (eqn. 5.6).

The velocity system, shown in Fig. 5.27, is made of a coefficient matrix A [n1 x n2]
(where n1 = neq, n2 = neq +N tot

IP,tot and N tot
IP,tot is expressed through eqn. 5.5), the vector
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Figure 5.25: sendbuf vectors with reference to the example of Fig. 5.17.

b of length n1 and the vector x (of original length neq) whose length has been extended to
the IP particles generated by the current processor (it has thus length equal to n2). The
velocities of the generated IP particles are received from the processors having the cells
in which the IP particles are contained. These values are recorded in the vector x from
the position n1 + 1 up to n2, following the order in which the numbers and coordinates of
the IP have been previously sent to each processor. For each matrix row of the current
processor myid:

• from the column 1 to the column n1 (with n1 the total number of equations) there
are the values of the IP particles contained in cells of myid whose number and
coordinates had been received from all processors and had been recorded in the
matrices Rnum and Rx, respectively (as discussed in Sec. 5.3.3). These particles are
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indicated with the symbol IP ∗;

• from the columns n1 + 1 up to n2 the values of the IP particles generated by the
current processor myid (indicated simply with IP ) are registered. Specifically, in
the velocity system the columns of IP particles correspond to the order in which the
particles have been sent to each processor. This value must be added to neq (number
of IP ∗ particles for which the equations must be written). Thus in the cols vector
of the CSR format (see Sec. 2.7.1), the first particle contained in the first block
(ib = 1) and sent to the first processor (id = 0) has column number equal to 1 +neq.
On the other hand, the last particle contained in the last blocks (ib = NBlocks) and
sent to the last processor (id = Nprocs − 1) has column number N tot

IP,tot + neq (where

positions coordinates number of 
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id 0
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0
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0
120

0
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0
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Figure 5.26: recvbuf vectors to receive the coordinates of the IP particles with reference
to the example shown in Fig. 5.17.
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Figure 5.27: Scheme of the equation velocity system in the Parallel MD approach. n1 =
neq, n2 = neq +N tot

IP,tot. A is a matrix [n1 x n2], the vectors b and x have length n1 and
n2, respectively.

N tot
IP,tot is the total number of IP particles generated by the current processor myid,

eqn. 5.5).

A scheme of the cols vector is shown below:

colsIP
first particle: ib = 1, id = 0

...

...

...
last particle: ib = NBlocks, id = Nprocs − 1



1 + neq
...
...
...

N tot
IP,tot + neq


Each processor must write the equations described in Sec. 4.2.3 for the received inter-

face particles (IP ∗). Specifically, for each IP particle the closest effective particle (named
R) in the block ib is sought and the Taylor series expansion around R is made. For the
generic received IP ∗ particle (indicated as P ) contained in the block ib of the current pro-
cessor myid, the equation for the component m of the velocity u(m) (which is indicated
with u in the following equations) can be expressed as

uP −
NIP
R∑
j=1

C ′pruj = RHSP , P = 1, .., N∗totIP,tot (5.7)

where, as mentioned before, R is the closest effective particle in the block ib lying in a cell
of the current processor myid, N IP

R is the number of the interface particles generated by
the current processor lying in ΩR (whose values must be received).

The right-hand-side term RHSP is

RHSP = uR +

Ne
R∑

j=1

C ′pr(uj − uR)−
NIP
R∑
j=1

C ′pruR (5.8)



136 CHAPTER 5. SPH PARALLEL COMPUTING

where N e
R and N IP

R are the effective and IP particles, respectively, in ΩR.

The implemented algorithm for building the velocity system in parallel computing is
shown below.

ALGORITHM 5.3- Equation velocity system in parallel MD approach

1. ne = 0 : number of the current equation

2. do id = 0, Nprocs − 1

3. ni = 0 : number of the current IP ∗ received by id (named P )

4. do ib = 1, NBlocks

5. do n = 1, N∗ibIP,id

6. ne = ne + 1

7. diagne = 1 (diagonal term)

8. ni = n+N
∗(ib−1)
IP,id

9. Take the coordinates of P from the matrix Rx:

column id and rows from [3 (ni − 1) + 1] to [3 (ni − 1) + 3)]

10. Find the closest particle R in block ib

11. RHSne = uR (the velocity of R is a known term)

12. do j = 1, NR (cycle on the particles in ΩR)

12.1 if j is effective or mirror then

RHSne = RHSne + C ′pr (uj − uR)

12.2 if j is IP then

off diag(ne,j) = C ′pr

RHSne = RHSne − C ′pr uR

where P is the received interface particle whose velocity must be obtained and the coeffi-
cient C ′pr =

mj
ρj
∇WRj · (xP − xR)

1. The counter of the number of the current equation ne is initialized to zero and it
will be increased for each received interface particle (IP ∗) at point 6 until reaching,
at the end, the sum of the total number of particles received by all the processors
(that is equal to the total number of equations ne = neq);

2. the cycle on the processor id is performed to search all the particles received by all
the processors;

3. the counter of the number of received IP particles by the processor id is initialized
to zero;

4. the cycle on the block ib is made;

5. the cycle on the IP particles contained in the block ib and received from the processor
id is performed;

6. the counter of the equations is increased by one unit;



5.3. SPH-HPC FOR THE MULTI-DOMAIN APPROACH 137

7. the diagonal term of the ne-th row is equal to 1 since the velocity of the received IP
particle is an unknown term;

8. the counter of the number of the current IP particle received by the processor id is
calculated as the sum of the counter n and the total number of particles received by
the same processor id in the previous block ib− 1;

9. the coordinates of the current received IP particle are taken from the matrix Rx;

10. the closest effective particle R is sought in the cells (belonging to the block ib) of
the current processor myid;

11. the RHS (that in the MD system for the velocity is a matrix with three column)
at the position of the current equation is equal to the velocity of R that is a known
term;

12. the cycle on all the j particle lying in the support domain of R is made:

12.1) if the particle j is effective or mirror the right-and-side of the current equation
ne is increased by the quantity C ′pr(uj − uR);

12.2) if j is an interface particle the off-diagonal term of the matrix system (row
ne and column of j) is increased by the quantity C ′pr, whilst the right-and-side is
decreased by the quantity −C ′pruR.

The equation system is solved using the Pre-BiCGSTAB method once for each veloc-
ity component m (with m = 1, 2, 3) using the same coefficient matrix and updating the
right-and-side only. To this aim, the vector solution x (of length n2 as shown in Fig. 5.27)
becomes a matrix [n2 x 3] as well as the initial solution x0 [n2 x 3] and the known terms
vector b [n1 x 3]. The row of the matrices x and x0 and the length of the vectors x, x0,
s, p, y and z are extended to the total number of the interface particles generated by the
current processor. As for the serial mode, the row of the matrix b and the dimension of
the vectors r0, r, b, v, t and res are equal to the number of equations neq = n1.

The ALGORITHM 2.3 has been modified to solve the velocity system for the MD
parallel computing scheme as shown below.

ALGORITHM 5.4- Parallel Pre-BiCGSTAB for the MD velocity system

1. do m = 1, 3

2. Send x0 (1:n1,m)/Receive x0 (n1:n2,m)

3. r0 = b(:,m) −A x0(:,m)

4. Choose r∗0 such that (r∗0, r0) 6= 0. For instance r∗0 = r0

5. ρ0 = α0 = ω0 = 1

6. v0 = p0 = 0

6.0 do j = 1, ... until convergence
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6.1 ρj,myid = (r∗0 (1:n1), rj−1 (1:n1));

call MPI ALLREDUCE(ρj,myid, ρj);

6.2 βj =

(
ρj
ρj−1

)(
αj−1

ωj−1

)
;

6.3 pj (1:n1) = rj−1 (1:n1) + β
[
(ρj−1 − ωj−1 vj−1 (1:n1)

]
;

6.4 y(1:n1) = K−1pj (1:n1) (solving y′ = L−1pj and y = U−1y′)

Send y(1:n1) / Receive y(n1+1:n2)

6.5 vj = A y;

6.6 α∗j,myid = (r∗0,vj)

call MPI ALLREDUCE(α∗j,myid, α
∗
j )

αj =
ρj

(α∗j )
;

6.7 s(1:n1) = rj−1 (1:n1) − αjvj (1:n1);

6.8 z(1:n1) = K−1s (solving z′ = L−1s and z = U−1z′)

Send z(1:n1) / Receive z(n1+1:n2)

6.9 t = A z;

6.10 ω∗j,myid = (t(1:n1), s(1:n1));

call MPI ALLREDUCE(ω∗j,myid, ω
∗
j );

ω∗∗j,myid = (t(1 : n1), t(1 : n1);

call MPI ALLREDUCE(ω∗∗j,myid, ω
∗∗
j );

ωj =
ω∗j
ω∗∗j

;

6.11 xj (:,m) = xj−1 (:,m) + αj y(:) + ωj z(:);

6.12 res(1:n1) = b(1:n1,m) −A xj ;

6.13 RSQmyid =
[
res(1:n1), res(1:n1)

]
;

call MPI ALLREDUCE(RSQmyid, RSQ);

6.14 Send x(1:n1,m) / Receive x(n1+1:n2,m)

6.15 Check if convergence is reached:

if (RSQ < tol) then quit .

else rj (1:n1) = s(1:n1) − ωj t(1:n1) and continue.

where the Sending / Receiving actions are highlighted in red, x0 at point 2 is an initial
solution whose value is set equal to the velocity of the closest effective particle R for the
particles from the position 1 to n1, whilst it is received for the values from the position
n1 + 1 up to n2.
The MPI function MPI ALLTOALLV is used at points 1, 6.4, 6.8, 6.14 to send/receive
the values related to the interface particles. As explained for sending the coordinates of
the IP (see Sec. 5.3.3), the sendbf vector must be created. It contains the elements of the
vector x0 from the positions 1 up to n1 for point 1 (and y, z and x for points 6.4, 6.8 and
6.14, respectively) corresponding to the x0 values of the IP ∗ particles. The scount vector
is the vector Rnum,tot. An example of the sdisplcs vector is shown below considering four
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processors

sdisplcs =


0
N∗totIP,0 + 1

N∗totIP,0 + 1 +N∗totIP,1

N∗totIP,0 + 1 +N∗totIP,1 +N∗totIP,2


The rercvbf is equal to the vector x0 for point 1 (and y, z and x for points 6.4, 6.8
and 6.14, respectively) from the positions n1 + 1 up to n2, rcount is equal to Snum,tot

(containing the total number of IP particles that the current processor must receive by
each processor). An example of the rdisplcs vector is shown below considering four
processors:

rdisplcs =


0
N tot
IP,0 + 1

N tot
IP,0 + 1 +N tot

IP,1

N tot
IP,0 + 1 +N tot

IP,1 +N tot
IP,2



After solving the system, the velocity is assigned to the IP particles following the
algorithm above.

ALGORITHM 5.5- Assignment of values to the IP particles

1. do id = 0, Nprocs − 1

2. do n = 1, N tot
IP,id

3. Take the index npm of the IP from the matrix slist of id:

npm = slistid(n, 1)

4. Take the block lb from which npm has been generated from slistid:

lb = slistid(n, 2)

5. The value of npm (intermediate or corrected velocity, pseudo-pressure)

is the element of the x vector in the position of the column of npm

unpm = x(colnpm)

5.3.5 The equation Poisson system in parallel MD approach

Each processor must build and solve the ψ system made of neq equations: N(myid) Pressure
Poisson Equations for its effective particles (as described in Sec. 2.7) plus N∗totIP,tot Taylor
series expansions for the received interface particles (as explained in Sec. 5.3.4). Therefore,
for the current processor myid, neq is

neq = N(myid) +

Nprocs∑
id=1

N∗totIP,id = N(myid) +N∗totIP,tot

The linear system for the ψ (shown in Fig. 5.28, where n1 = N(myid), n2 = n1 +N∗totIP ,
n3 = n2 + N tot

IP , and n4 = NPeP,tot) is made of a coefficient matrix A [n2 x n4] and
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Figure 5.28: Scheme of the equation Poisson system in Parallel MD approach. n1 =
N(myid), n2 = n1 +N∗totIP,tot, n3 = n2 +N tot

IP,tot, and n4 = NPeP,tot. A is a matrix [n2 x n4]
and the vectors x and b have length n4 and n2, respectively.

the vectors x and b having lengths n4 and n2, respectively. Specifically, the vector of
unknown terms x (of original length equal to the total number of equations neq = n1 +n2)
is extended to the sum of the interface particles generated by the current processor N tot

IP,tot

(whose values are received with the MPI ALLTOALLV function and recorded in the x
array starting from the positions n2 + 1 up to n3) and the effective particles received from
the neighboring processors NPeP,tot (whose values are recorded from the positions n3 + 1
up to n4 of the x array).

The coefficient matrix A of the processor myid is described below:

• from the columns 1 up to n1: the effective particles of the processor (considering all
the blocks of myid) are registered. The column of the effective particles follows the
order of the block number (first the possible particles of block 1, then those of block
2, etc..);

• from the columns n1 + 1 up to n2: the IP ∗ whose ψ values must be obtained by
myid are registered;

• from the columns n2 + 1 up to n3: the interface particles generated by the current
processor myid are registered. As for the velocity, in the ψ system the column of
theses particles follows the order in which they have been sent to each processor; to
this number neq must be added;
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• from the columns n3 + 1 up to n4: the values of the effective particles received by
the neighboring processors are registered. The columns of the PeP follow the order
in which the particles have been received (for each block: first the particles received
from the left and then from the right) to which the value neq +N tot

IP,tot (that is equal
to n1 + n2 + n3) is added.

The ψ system is solved by each processor using the Pre-BiCGSTAB method whose
original version (see ALGORITHM 2.3) has been modified for the parallel MD scheme as
shown below.

ALGORITHM 5.6- Parallel Pre-BiCGSTAB method for MD ψ system

1. Send x0 (n1+1:n2) / Receive x0 (n2+1:n3) for IP

2. Send GCR
x0 and GCL

x0 / Receive x0 (n3+1:n4) for PeP

3. r0 = b−A x0

4. Choose r∗0 such that (r∗0, r0) 6= 0. For instance r∗0 = r0;

5. ρ0 = α0 = ω0 = 1

6. v0 = p0 = 0

7. The iterative cycle is performed until convergence (RSQ < tol):

7.0 do j = 1, ... until convergence

7.1 ρj,myid = (r∗0 (1:n2), rj−1 (1:n2));

call MPI ALLREDUCE(ρj,myid, ρj);

7.2 βj =

(
ρj
ρj−1

)(
αj−1

ωj−1

)
;

7.3 pj (1:n2) = rj−1 (1:n2) + β
[
(ρj−1 − ωj−1 vj−1 (1:n2)

]
;

7.4 y(1:n2) = K−1pj (1:n2) (solving y′ = L−1pj and y = U−1y′)

Send y(n1+1:n2) / Receive y(n2+1:n3) for IP

Send GCR
y and GCL

y / Receive y(n3+1:n4) for PeP

7.5 vj = A y;

7.6 α∗j,myid = (r∗0,vj)

call MPI ALLREDUCE(α∗j,myid, α
∗
j )

αj =
ρj

(α∗j )
;

7.7 s(1:n2) = rj−1 (1:n2) − αjvj (1:n2);

7.8 z(1:n2) = K−1s (solving z′ = L−1s and z = U−1z′)

Send z(n1+1:n2) / Receive z(n2+1:n3) for IP

Send GCR
z and GCL

z / Receive z(n3+1:n4) for PeP

7.9 t = A z;
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7.10 ω∗j,myid = (t(1:n2), s(1:n2));

call MPI ALLREDUCE(ω∗j,myid, ω
∗
j );

ω∗∗j,myid = (t(1:n2), t(1:n2);

call MPI ALLREDUCE(ω∗∗j,myid, ω
∗∗
j );

ωj =
ω∗j
ω∗∗j

;

7.11 xj (1:n3) = xj−1 (1:n3) + αj y(1:n3) + ωj z(1:n3);

7.12 res(1:n2) = b(1:n2) −A xj ;

7.13 RSQmyid =
[
res(1:n2), res(1:n2)

]
;

call MPI ALLREDUCE(RSQmyid, RSQ);

7.14 Send x(n1+1:n2) / Receive x(n2+1:n3) for IP

Send GCR
x and GCL

x / Receive x(n3+1:n4) for PeP

7.15 Check if convergence is reached:

if (RSQ < tol) then quit .

else rj (1:n2) = s(1:n2) − ωj t(1:n2) and continue.

The vectors x, x0, s, p, y and z (of original length n2) are extended to the sum of the IP
particles generated by the current processor plus the total number of effective particles
received from the neighboring processors. The dimension of these vectors is thus equal to
n4. As for the serial mode, the dimension of the vectors r0, r, b, v, t is equal to the number
of equations n2 (since the current processor myid writes and solves an equation for each
of its effective particles and for each received IP ∗ particle). The sending/receiving actions
are highlighted with red and blue colors for IP and PeP , respectively, in the algorithm
above.
The vector x0 (at points 1, 2 and 3) is an initial solution whose value can be set to:

• zero for the first time step of the simulation (or the psi of the previous time step)
from the positions 1 up to n1 (for the effective particles);

• the psi of the closest effective particles from the position n1 up to n2 (for the IP ∗

particles);

• the received values from the positions n2 + 1 up to n3 (for the IP particles), and
likewise for the positions from n3 + 1 up to n4 (for the PeP particles).

In the sending/receiving procedure for IP , the function MPI ALLTOALLV is used to
send the values of the IP ∗ particles and to receive the values of the IP particles to/from
all the processors (as explained for the velocity system in Sec. 5.3.4). Specifically, the
vectors x0, y, z, x (at points 1, 7.4, 7.8 and 7.14, respectively, of the algorithm above) are
sent from the position n1 + 1 up to n2. The received values are placed from the positions
n2 + 1 up to n3.

In the sending/receiving procedure for the PeP particles (points 2, 7.4, 7.8 and 7.14 of
the algorithm above) the function MPI SENDRECV is used (as explained in Sec. 5.2.5
for the ALGORITHM 5.1). The received values are placed from the positions n3 + 1 up
to n4.

After solving the ψ system, the ψ values of the IP particles are assigned using the
same algorithm explained for the velocity assignment (ALGORITHM 5.5), in which, to
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calculate the position in the x vector, the column of the IP particles in the ψ system is
used.

5.3.6 Flow chart of the PANORMUS-SPH code

The Fig. 5.29 shows the flow chart of the PANORMUS-SPH code with the implemented
parallel MD approach. Each action of the flow chart is performed by each processor (with
reference to its own effective particles) with the exception of the generation of the file
containing the cell classification (sph initialize nn.inp) which is made only by the first
processor in ACTION 2 at the beginning of the simulation.

• ACTION 1: The computational domain is partitioned into non-overlapping blocks
(whose total number is NBlocks) as explained in Sec. 4.2.1;

• ACTION 2: The first processor (id = 0) creates a file containing the cell classifica-
tion for each block (sph initialize nn.inp, nn = 1, .., NBlocks). The other processors
read that file. All the processors read the particle starting file and the boundary
triangles file for each block;

• ACTION 3: The computational domain is distributed among the Nprocs processors
following the procedure described in Sec. 5.3.1. The cells containing the effective
particles to be shared (cells of type 5 and 6) are identified;

• ACTION 4: For each block of the current processor myid, mirror, IO and IP
particles are generated starting from its own effective particles (as explained in Sec.
2.5, Sec. 3.2.1 and Sec. 4.2.2). While generating the IP particles the vector slist is
created;

• ACTION 5: The current processor myid creates the matrix Snum containing the
number of IP particles generated in the domain of each processor id for each block
ib. The values of these particles (whose number is N ib

IP,id) will be obtained by id
using its own particles in the block ib. To send these information the MPI function
MPI ALLTOALL is used. To this aim, the sendbf array must be created. The
processor myid receives from all the processors the corresponding numbers of IP ∗

particles to be solved for each block ib (these data are contained in the recvbf array)
and it records these information in the matrix Rnum. The processor must send to
each id the coordinates of the N tot

IP,id particles. The function MPI ALLTOALLV
is used and the arrays sendbf, scount, sdispl must be created, as explained in the
example of Fig. 5.25. Likewise, the array recvbf, rcount, rdispl must be created
to receive the corresponding values, as explained in the example of Fig. 5.26. The
received information are then saved in the matrix Rx. The number of IP particles
received and their coordinates will be used to build the velocity and ψ system;

• ACTION 6: The processor sends the positions and the velocities of the particles
inside the identified cells of type 5 and 6 and, simultaneously, it receives from the
neighboring processors the particles inside their cells of type 5 and 6 (as in ACTION
5 of Fig. 5.14);

• ACTION 7: The processor identifies the support domain of its own effective par-
ticles;
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Figure 5.29: Flow chart of the PANORMUS-SPH code with the parallel MD procedure.
The actions closely related to the parallelization are highlighted with red color.
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• ACTION 8: If the simulation starts from developed velocities (t0 6= 0), the IP
velocity values must be obtained before the predictor-step. The velocity system is
built (see ALGORITHM 5.3) and solved (see ALGORITHM 5.4) in order to obtain
the u of each IP ∗. Correspondingly, the values of its own IP are received through
the function MPI ALLTOALL and are assigned using the ALGORITHM 5.5;

• ACTION 9: The time marching procedure starts from the initial time t = t0;

• ACTION 10: The intermediate velocities u∗i of the effective particles are calculated
(eqn. 2.20 or eqn. 2.37 if the time step is variable). For the mirror particles the u∗n
value is calculated using eqn. 2.23;

• ACTION 11: The intermediate velocity system is built (see ALGORITHM 5.3) and
solved (see ALGORITHM 5.4) in order to obtain the u∗ of each IP ∗. Correspond-
ingly, the values of the IP are received through the function MPI ALLTOALL and
are assigned using the ALGORITHM 5.5;

• ACTION 12: The intermediate velocities of the parallel particles (PP ) are shared
(see ACTION 9 of Fig. 5.14);

• ACTION 13: The parallel PPE system for multi-domain approach is built and
solved (see ALGORITHM 5.6) in order to obtain the ψ of the effective and IP ∗

particles. At the end of the iterative procedure, the ψ values of the IP particles
are received through the function MPI ALLTOALL and are assigned through the
ALGORITHM 5.5;

• ACTION 14: The pseudo-pressure values of the parallel particles are shared (see
ACTION 11 of Fig. 5.14);

• ACTION 15: The corrected velocities uk+1 of the effective particles are calculated
(eqn. 2.24);

• ACTION 16: The positions of the effective particles are updated (eqn. 2.25);

• ACTION 17: The effective particles crossing external outflow boundaries or inter-
nal block interfaces are deactivated and saved in a storage list of the processor (as
discussed in Sec. 4.2.4);

• ACTION 18: New effective particles are released from inflow boundaries or block
interfaces (see Sec. 3.2.2 and Sec. 4.2.4, respectively) using the scan region proce-
dure;

• ACTION 19: As in ACTION 14 of Fig. 5.14. At the end of the time step the
processor checks if some effective particles have left the domain crossing parallel
interfaces non-overlapping block interfaces (if the parallel interfaces coincides with
the block interfaces the particles are already deactivated in ACTION 17). When
a particle is deactivated it is added in the storage list of the processor and it is
sent to the processor having its cell (by using the variable cell processor of the
cell at the new position of the particle). Moreover, simultaneously the processor
receives, in the same block from which they came from, the values of the effective
particles (positions, velocities, pseudo-pressure, acceleration, etc..) which have left
the domain of the neighboring processors and now lie in cells of the processor domain
(as explained in Sec. 5.2.4);
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• ACTION 20: As in ACTION 4;

• ACTION 21: As in ACTION 6;

• ACTION 22: The processor identifies the support domain of the effective particles
(as in ACTION 7);

• ACTION 23: The corrected velocity system is built (see ALGORITHM 5.3) and
solved (see ALGORITHM 5.4) in order to obtain the uk+1 of each IP ∗. Correspond-
ingly, the values of the IP are received through the function MPI ALLTOALL and
are assigned using the ALGORITHM 5.5;

• ACTION 24: The shifting procedure of Xu et al. (2009) is performed (as explained
in Sec. 2.8);

• ACTION 25: After performing the shifting procedure, it must be checked if some
effective particles have left the processor domain (as in ACTION 19);

• ACTION 26: The mirror, IO and IP particles must be generated again after the
shifting procedure, as in ACTION 4;

• ACTION 27: As in ACTION 6;

• ACTION 28: As in ACTION 7;

• ACTION 29: As in ACTION 23;

• ACTION 30: The simulation time is advanced by one time step (t = t+ dt).

After the ACTION 30 the procedure is restarted with the predictor-step (ACTION 10).

5.3.7 Scalability test

The Parallel Multi-Domain approach has been validated considering the flow in the pipe
shown in Fig. 5.30. The domain has been subdivided into 2 blocks where the same
smoothing length has been used (h1 = h2 = 2.5 · 10−5 m) in order to make the scalability
test independent on the refinement level. Two simulations have been performed using two
different lengths for the block 2: L2 = L1 (in test case 1) and L2 = 2L1 (in test case 2)
corresponding to 303 360 and 606 720 particles, respectively.

Block interfaceBlock 1 Block 2

L1

L2
D

Figure 5.30: Scalability test. Parallel MD algorithm. Computational domain. L1 =
6 · 10−3, D = 1 · 10−3 m; ∆x1 = ∆x2 = 2.5 · 10−5 m; N1 = 303 360.

In both the simulations the block 1 (of length L1) has 303 360 particles. Thus, the total
number of effective particles in tests 1 and 2 are Ne,tot = 606 720 and Ne,tot = 910 080,
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Figure 5.31: Scalability test. Parallel MD algorithm. Results. a) Test 1. L2 = L1;
N2 = 303 360; b) test 2. L2 = 2L1; N2 = 606 720. Red stars: time required with different
Nprocs; dashed black line: trend-line.
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respectively. The time taken to perform one time step of the time marching procedure
has been calculated using the serial mode (Nprocs = 1), and the parallel computing with
2, 4, 8, 16 and 32 processors. The results with different Nprocs have been plotted in the
graphs shown in Fig. 5.31.a and 5.31.b for test case 1 and 2, respectively, using a double
logarithmic scale. The trend-line (dashed black line) is plotted together with the results
showing a slope quite similar in the two simulations (0.83 in the first test case and 0.8 in
the second one). As it is seen in the figures, comparing the slope of the trend-line with
the theoretical slope of −1 (that is the reference value of the perfect linear scalability as
discussed in Sec. 5.2.7) the parallelized code shows very good scalability up to at least
thirty two processors allowing to solve problems which exceed the capability of sequential
calculations.



Chapter 6

Analysis of cerebral aneurysm
hemodynamics

This chapter focuses on numerical simulations of blood flow in cerebral aneurysms. An
ideal aneurysm as well as several real aneurysm geometries are analyzed using the SPH
numerical model with the implemented techniques (discussed in the previous chapters).
Real geometries are taken from the Aneurisk research project (Aneurisk-Team, 2012) which
proposed an integrated analysis of the morphological and fluid dynamics features of patho-
logic vessels reconstructing the vessel geometries from DICOM images of 3D rotational
angiographies. The Aneurisk database provides the surface triangulation in the STL for-
mat.

A portion of a cerebral vessel without aneurysm is also analyzed adopting Dirichlet
pressure BCs (described in Chap. 3) at the inlet and the outlet sections. The non-reflective
properties of the In/OutFlow-BCs technique are shown.

Some numerical results are validated with a commercial finite-volume solver and with
a laboratory experimental application.

6.1 Modeling assumptions

In all the presented test cases, blood has been modeled as an incompressible Newtonian
fluid in a laminar flow regime. The fluid density ρ and dynamic viscosity µ have been
set to 1060 kg/m3 and 0.004 Pa s, respectively, corresponding to a kinematic viscosity
ν = 3.77 · 10−6 m2/s. Although blood is a Non-Newtonian fluid with a shear-thinning
behavior (blood viscosity decreases by increasing shear strain rate), assuming constant
viscosity is appropriate for the considered test cases since the sensitivity of hemodynamic
predictions to different rheology models is negligible in the context of CA hemodynamics
(Morales et al., 2013; Cebral and Lohner, 2005).

Vessel walls have been assumed rigid with adherence boundary condition. This is
a common assumption in the context of CA due to the limited availability of physical
information of arterial wall properties such as elasticity and thickness (Marzo et al., 2011;
Cebral et al., 2005; Cebral and Lohner, 2005). Moreover, Dempere-Marco et al. (2006)
showed that wall motion has only a limited effect on the hemodynamics in CA.

The parent vessel hosting the CA have been cut in order to analyze a limited region of
the domain focused on the CA. In order to reduce the irregularity of the identified inflow
and outflow sections, cylindrical flow extensions have been added. The length of these
extensions is adaptively selected between 0.5÷ 4.5 times the clipped section diameter. It
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should be noted that, due to the vessel irregularity, the term diameter indicates here the
dimension of the equivalent circular section. In this way, the flow profile is allowed to
develop in the cylindrical extensions, prior to entering the vessel domain.

At the inlet and outlet sections the In/OutFlow-BCs technique (described in Chap.
3) has been employed. Specifically, in the first, third and fourth test cases (Sec. 6.2, Sec.
6.4 and Sec. 6.5, respectively) an inflow velocity profile has been set at the inlet, whilst
zero pressure has been imposed at the outlet sections (the incoming and pressure BCs,
respectively). Dirichlet pressure BCs have been used at the inlet and outlet sections of the
second test case (Sec. 6.3) imposing pressure BCs on the triangles at the open-boundaries.

D

Da

Lin

Lout

D

Figure 6.1: Test case - Sec. 6.2. Ideal aneurysm geometry (Gester et al., 2015). D =
4.2 · 10−3 m; Da = 6.4 · 10−3 m; Lin = 1.8D; Lout = 4.3D.

6.2 Ideal aneurysm

The ideal aneurysm geometry shown in Fig. 6.1 with cylindrical parent vessel of constant
diameter D, spherical sac of diameter Da and oval neck has been considered. The vessel
has an angle of 120◦ at the aneurysm neck.

The simplified geometry, that is identical to that of Gester et al. (2015), has been
provided by the research group of Prof. Alejandro Frangi (University of Sheffield, UK ).

A mean flow rate of 220 ml/min has been imposed at the inlet section with a Poiseuille
velocity profile (as described in Sec. 3.2.1, eqn. 3.2). The resulting Reynolds number
Re = ūD/ν = 295 (calculated considering the mean velocity at the inner section ū =
0.2647 m/s) is well within the laminar regime. The mean shear stress on the vessel
walls τ0, which is an important variable for blood flow-related problems, is equal to τ0 =
λ ρ ū2/8 = 2.01 N/m2, where λ is the pipe friction factor that in the laminar regime can
be expressed as λ = 64/Re.

The parent vessel has an inlet length of Lin = 1.8D which has been verified to be
sufficient for developing the imposed velocity profile before entering in the aneurysm sac.
The length of the outlet section has been set larger than that at the inlet, Lout = 4.3D, in
order to allow the flux to become again linear after the aneurysm vortex flow and, thus,
to correctly impose the constant zero-pressure value at the outlet section.
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(a) Nprocs = 4 (b) Nprocs = 20

Figure 6.2: Test case - Sec. 6.2. Domain distribution among several processors.

(a)

impingement 
zone

(b)

(c)

Figure 6.3: Test case - Sec. 6.2. a) Velocity x component in [m/s] at the steady-state;
b) Pressure field in [Pa]; c) Enlargement in the vicinity of the aneurysm neck and sac.
Velocity vectors colored with the velocity magnitude using the same scale of point .a.
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(a) ANSYS simulation. Prof. Frangi’s research
group (University of Sheffield)

(b) PANORMUS-SPH simulation

Figure 6.4: Test case - Sec. 6.2. Velocity magnitude field in [m/s] at the steady-state. A
commercial finite volume solver (ANSYS software) Vs the PANORMUS-SPH code.

A smoothing length h = 1.0 · 10−4 m has been set corresponding to 42 particles along
the vessel inner section with a total number of particles at the beginning Ne = 517 453.
The classical Single-Domain approach has been employed in this test case. The parallel
computing scheme (see Sec. 5.2) has been employed with Nprocs = 20; each processor has
25 872 particles except for the last one having 7 particles less because of the residual in
the allocation of the other processors (the res value in eqn. 5.1). The Fig. 6.2.a shows an
example of domain distribution considering 4 processors, whilst the domain distribution
with Nprocs = 20 is shown in 6.2.b.

The simulation starts from the rest until the steady-state is achieved. The Fig. 6.3
shows the velocity magnitude (Fig. 6.3.a) and pressure fields with indication of the over-
pressure region (Fig. 6.3.b) at the steady-state. In order to highlight the vortex occurring
inside the aneurysm, the velocity vectors are represented in Fig. 6.3.c using one particle
every 10 for the sake of the graphical representation.

The velocity results have been compared with those obtained with a commercial vertex-
centered finite volume solver (ANSY S software). The simulation with ANSYS has been
performed by the research group of the Prof. A. Frangi. The elements of the FVM grid
have size 4 · 10−4 m inside the vessel and the aneurysm, whilst near the wall the mesh
elements have maximum edge size of 1 ·10−4 m with three prismatic layers (about 500 ·103

nodes and 1.3 · 106 elements).

The comparison of the two simulations, shown in Fig. 6.4, proves the very good
performance of the SPH numerical model since a similar pattern has been obtained.

A convergence analysis has been carried out aimed at studying the dependence of the
results on the h value (that in this research study is equal to the starting particle distance
∆x, as discussed in Chap. 2). To this aim, six values of the smoothing length have been
used and the velocity profiles along the lines s1, s2, s3 and s4 (see the scheme in Fig.
6.5.a) are plotted in Figs. 6.5.b,.c,.d,.e, respectively. The value h = 1.0 · 10−4 m (red
continuous line in the figure) allows to obtain a satisfactorily accurate solution with a
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relatively limited number of particles. It should be noted that in SPH sensitivity analyses
involve the ratio h/∆x as well as the smoothing length h. Such issue will be addressed in
future work.

(a) scheme
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Figure 6.5: Test case - Sec. 6.2. Convergence analysis. Velocity profiles along the lines
s1, s2, s3 and s4. The values of the smoothing length h are expressed here with reference
to the smoothing length h0 = 1.0 · 10−4 m used in the present section. Black dashed line:
h = 2

3h0 (Ne = 1 7191 066); red continuous line: h = h0 (Ne = 517 452); blue continuous
line: h = 4

3h0 (Ne = 210 345); black continuous line: h = 2h0 (Ne = 64 134); blue dashed
line: h = 3h0 (Ne = 19 111); red dashed line: h = 4h0 (Ne = 8 045).

6.3 Human cerebral blood vessels

The blood flow through a human cerebral vessel located at the middle cerebral artery
(MCA) has been analyzed.
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pressure BC
cross-section A

pressure BC
cross-section B pressure BC

cross-section C

pressure BC
cross-section D

adherence BC

Figure 6.6: Test case - Sec. 6.3. Vessel geometry with pressure BCs at in/outflow cross-
sections. Taken from: Monteleone et al. (2017), 18, fig. 15.

The geometry of the vessel (shown in Fig. 6.6) is a portion of the C93 test case included
in the dataset repository of the Aneurisk project.

The selected vessel has one inlet and three outlet sections in which pressure BCs (see
Chap. 3) have been imposed. Each branch has been extended in the axial direction adding
a cylindrical tube with constant cross-section. The additional tubes have lengths ranging
between 0.5 and 3 diameters (the latter in the smallest branch). The resulting axial length
of the domain is about 0.02 m.

The vessel diameters range between about 0.15 ·10−2 m in one of the outflow branches
and 0.33 · 10−2 m in the vicinity of the inflow section.

The kinematic pressure at the C outflow section has been set to zero, while the values
0.09, 0.01 and 0.03 m2/s2 have been imposed at the A, B and D sections, respectively, as
shown in Fig. 6.6.

The classical SPH method with constant kh value (Single-Domain approach) has been
employed in this test case. To this aim, in order to obtain a sufficient number of particles
in the smaller branches, the smoothing length has been set to h = 1 ·10−4 m. The resulting
total number of effective particles at the beginning is 177 320. The simulation is performed
starting form the rest till the steady-state is achieved.

In the Fig. 6.7 the velocity magnitude (Fig. 6.7.a) and pressure fields (Fig. 6.7.b)
are shown at the steady-state. For the sake of clarity, the vectors are shown considering
only 1 particle every 10. As it is seen in Fig. 6.7.a, the velocity field in the sections far
enough from the curves (A and D cross-sections) is quite symmetrical, while a significant
asymmetry is obtained in the vicinity of the highest curvature branches (B and C cross-
sections). The velocities in the less irregular branches are coherent with the values obtained
from the Poiseuille’s law in constant diameter pipes with similar geometry and pressure
drops. The pressure distribution is consistent with the imposed values at the in/outflow
boundaries, with a quite smooth pattern. Due to the winding geometry, overpressure zones
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are identified close to the impingement points at the starting of the three outflow branches.
In Fig. 6.7.b one of the overpressure region is highlighted using a yellow rectangle, with
an enlargement to show the correspondent flow patterns inside the area.

cross-sectionA

cross-sectionB

cross-section C

cross-sectionD

(a)

impingement zone

(b)

Figure 6.7: Test case - Sec. 6.3. a) Velocity vectors in the computational domain and
velocity contour-lines in the in/outflow cross-sections; b) Pressure field with an enlarge-
ment of the velocity vectors in one of the impingement zones (yellow area). Taken from:
Monteleone et al. (2017), 19, fig. 16.
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Figure 6.8: Test case - Sec. 6.3. Ratio between the number N of the effective particles
in the computational domain and the initial number N0 = 177 320 during the simulation.
Taken from: Monteleone et al. (2017), 20, fig. 17.

The Fig. 6.8 shows the excellent mass conservation, since the maximum variation
N(t)/N0 of the number of particles at the end of each time step (indicated as N) with
respect to the initial value (N0) is limited well below 0.05 % during the whole simulation.
Specifically, the number of particles in the figure is plotted against the non-dimensional
time t̃ = tUi/Lv, where Ui and Lv are the regime bulk inflow velocity and vessel axial
length, respectively. During the simulation the opening angle β (see Sec. 3.2.2) ranged
between the assigned lower and upper bounds (5◦ and 45◦), stabilizing its value at about
28◦ after the steady-state was achieved.

The evolution in time of the momentum components (indicating with p̃r the projection
in the r-th direction) and kinetic energy Ẽk in the whole domain are plotted in Fig. 6.9.
The plots are obtained summing up the values relative to the whole set of domain particles
and are made non-dimensional with the regime values (the x1 component is used to make
non-dimensional the three momentum projections). The figures show that the regime
conditions are achieved after less than 1.5 Lv/Uv cycles.
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0 1 2 3
0

0.5

1

(b)

Figure 6.9: Test case - Sec. 6.3. a) Dimensionless momentum components (p̃1, p̃2, p̃3); b)
Dimensionless kinetic energy (Ẽk). Taken from: Monteleone et al. (2017), 20, fig. 18.
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pressure BC
cross-section D'

D'

Figure 6.10: Test case - Sec. 6.3.1. Domain with cut branch: pressure BCs at the new
outlet section D′. Taken from: Monteleone et al. (2017), 20, fig. 19.

6.3.1 Verifying non-reflective properties

In order to assess the non-reflective properties of the In/OutFlow-BCs procedure at the
open-boundaries, a second simulation has been performed after having cut the smallest
branch at the D′ cross-section, as shown in Fig. 6.10. The kinematic pressure in the
D′ section in the new simulation is imposed using the corresponding values obtained in
the first simulation at the steady-state, ranging between 0.07 and 0.08 m2/s2. Differently
from the previous case (simulation of Sec. 6.3), in fact, the kinematic pressure is variable
along the outflow section due to the significant flow curvature in the region, as seen in
Fig. 6.7.b.

The second simulation has been started from the rest and carried on till the steady-
state as well, with the aim to compare the pressure and velocity patterns in the two
simulations, in order to identify the effect of the domain cutting.

The velocity magnitude contours at the D′ cross-section are shown in the Fig. 6.11
as obtained in the two test cases: when imposing the constant ψD = 0.03 m2/s2 value
at the D section (Fig. 6.11.a) and the variable ψD′ distribution at the D′ section (Fig.
6.11.b). The figure shows that a quite similar pattern has been obtained. The resulting
differences in both the mean and maximum velocity in the D′ cross-section are lower then
1.5% (specifically 1.1% and 1.5 %, respectively). The pressure distribution (not shown) is
virtually indistinguishable in the common part of the two simulations.

The results show that the In/OutFlow-BCs method allows to obtain quite regular
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pressure BC
cross-sectionD
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pressure BC
cross-section D' D'
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Figure 6.11: Test case - Sec. 6.3.1. Velocity magnitude contours at the D′ cross-section;
a) First simulation (whole domain): pressure BCs at the D outlet section (Sec. 6.3);
b) second simulation (cut branch): pressure BCs at the D′ outlet section. Taken from:
Monteleone et al. (2017), 21, fig. 20.

particle outflow and correct velocity patterns when imposing the pressure distribution,
without regard to the outlet section position.
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Pressure BCs

Figure 6.12: Test case - Sec. 6.4. Domain geometry and boundary conditions.

6.4 Aneurysm C05

The test case C05 of the Aneurisk dataset repository has been analyzed. The Fig. 6.12
shows the computational domain with the boundary triangles which discretize the surface
(an enlargement is shown in the figure inside the black rectangle). Differently from the
previous case, at the inlet section, having diameter D = 0.00366 m, a time-varying flux has
been imposed using a typical waveform of healthy individual (Radaelli et al., 2008; Marzo
et al., 2011) with period T = 0.792 s (plotted in red in the figure) and Womersley velocity
profile (eqn. 3.3). The resulting Womersley number is Wo = 2.65, while the mean value
of the Reynolds number over a cardiac cycle is 112 (which is within the laminar regime).
Zero pressure has been assigned at the outlets. The adaptive time step procedure has
been employed as discussed in Sec. 2.9.

In order to reduce the effect of initial transients, the sixth of six simulated cardiac
cycles has been analyzed.

The Fig. 6.13 shows the instantaneous particle velocity magnitude at the peak systole.
The velocity contours are shown in Fig. 6.14 where the particle velocity (see 6.14.a) and
the velocity vectors (see 6.14.b) are represented in a region near the aneurysm considering
the cross section of Fig. 6.14.c. The velocity vectors clearly show the vortex formed inside
the aneurysm sac.
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inflow

outflow

outflow

Figure 6.13: Test case - Sec. 6.4. Particle velocity magnitude in [m/s] at peak systole.

(a) Particle velocity (b) Velocity vectors

(c) Cutting plane

Figure 6.14: Test case - Sec. 6.4. Velocity contours: particle and vector representations
(subfigure .a and .b, respectively) at the section indicated in the subfigure .c. Same scale
of Fig. 6.13
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A more detailed view of the complex aneurysm hemodynamics are provided at the peak
systole considering different planes. Specifically, four slices have been considered along the
aneurysm dome (see the scheme in Fig. 6.15.e), where the particle velocity (on the left)
and vectors (on the right) are represented with a top view. The vectors are colored with
the scale of the velocity magnitude, while a constant dimension has been chosen for the
arrays in order to clearly show the flow pattern that is very different moving from the
aneurysm neck to the top of the aneurysm sac (see Figs. 6.15.a.b.c.d).

The Fig. 6.16 shows the pressure evolution against the non-dimensional time (t/T )
at selected cross-sections whose intersection points with the centerline are indicated with

(a) Slice 1 (b) Slice 2

(c) Slice 3 (d) Slice 4

slice 1

slice 2

slice 3

slice 4

(e) Slice scheme

Figure 6.15: Test case - Sec. 6.4. Particle velocity on the left and vectors on the right at
the peak systole considering four different slices.
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Figure 6.16: Test case - Sec. 6.4. Time-dependent pressure in [Pa] at different cross-
sections.

the letter S from 1 to 12. The figure clearly shows that the pressure follows the pattern
of the flux. The technique used for calculating the pressure values at selected cross-
sections is explained below. The centerline has been obtained using the Vascular Modelling
Toolkit, a collection of libraries and tools for 3D reconstruction, geometric analysis, mesh
generation and surface data analysis for image-based modeling of blood vessels (available
at http://www.vmtk.org). A FORTRAN code has been created in order to modify the
centerline for obtaining points with the required relative distance equal to kh/100. The
step size of kh/100 has been used to avoid abrupt slope variations between two consecutive
centerline segments. The coefficients of the planes passing through points with step of
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kh (one point every 100) of the centerline and normal to the line connecting the points
immediately on the left (x − kh/100, with x the coordinates of the selected point) and
on the right (x + kh/100) has been obtained. A test file containing the centerline points
with step of kh and the relative coefficients of the plane has been created. This file
is read at the beginning of the simulation by the PANORMUS-SPH code. In each of
these centerline points the pressure has been obtained as the average of the Taylor series
expansions carried out around all the effective particles with distance from the centerline
plane ranging between ±∆x. For the sake of clarity, the representation in the figure is
limited to twelve points of the centerline.

6.4.1 Calculation of Wall Shear Stress variables

Hemodynamics is widely believed to play an important role in the initiation, evolution
and rupture processes of CAs. The characterization of state stress of the vessel walls is an
active research area trying to correlate indices WSS-related with the risk of CA rupture.
In this research study some WSS indices have been calculated.

The concept of WSS refers to the tangential, frictional stress exerted by the action of
blood flow on the vessel walls. On the other hand, the SPH method allows to obtain hy-
drodynamic values at the position of the particles. Therefore, an extrapolation procedure
has been used to obtain wall values starting from the particles ones. Specifically, in order
to obtain the values from the interior of the fluid domain to the surface walls, the WSS
has been calculated in each boundary triangle centroid xc using the Cauchy theorem. To
calculate the stress tensor, the velocity derivatives have been obtained adopting the Basic
Gradient Approximation formula (eqn. 2.6) which allows using only the velocity values
of the particles neighboring the point xc (since the velocity at the xc point is unknown).
Therefore, the derivative of the α-th velocity component in the β-direction at the point
xc has been calculated as

∂uα
∂xβ

= −
N∑
j=1

mj

ρj

∂Wc,j

∂xβ

where the sum is extended to the total number of particles N having distances shorter
than kh from the centroid of the triangle (whose support domain Ωc is represented in Fig.
6.17.a) and Wc,j is the kernel function considering the distance between the point xc and
the neighboring particle j. The stress Φn on the triangle surface of normal direction n
and its magnitude |Φn| can be obtained as follows

Φn,β = 2νρ
3∑

α=1

nα
∂uα
∂xβ

, with β = 1, 2, 3

|Φn| =

3∑
β=1

nβ Φn,β

where nα is the α-th component of the vector n.

Thus, the WSS vector τw (equal to the tangential component of Φn) is calculated by
subtracting from Φn its normal component (|Φn| · n)

τw = Φn − |Φn| · n (6.1)
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Figure 6.17: Triangle t (gray area) with normal vector n and centroid c. a) Support domain
Ωc of the triangle centroid; full and empty black circles: effective and mirror particles,
respectively, in Ωc; b) p- and q-directions.

The magnitude of the instantaneous WSS vector (defined at the surface point xc of
each boundary triangle and at time t) can be easily obtained as

|τw| =

√√√√ 3∑
β=1

τ2
w,β (6.2)

Using the WSS values, five fundamental hemodynamic parameters have been calcu-
lated whose definitions have been taken from Geers et al. (2017). A FORTRAN code has
been created to calculate these variables in post-processing. These parameters have been
determined for each boundary triangle t at the position of its centroid as described for the
WSS. In the following the definitions of the WSS indices and the calculation techniques
in the SPH method are provided.

For pulsatile flow, the time averaged WSS magnitude (TAWSS ) has been calculated
by integrating the WSS magnitude |τw| of the triangle t over the cardiac cycle T

TAWSSt =
1

T

∫ T

0
|τw| dt (6.3)

The gradient of the time averaged WSS magnitude (TAWSSG), parameter indicating
the state of disrupted flow, has been calculated by taking the spatial derivative of WSS
as discussed in Lei et al. (2001) and in Miura et al. (2013)

TAWSSGt =

√(
∂τw,p
∂p

)2

+

(
∂τw,q
∂q

)2

(6.4)

where the p-direction corresponds to the time-averaged direction of the WSS vector and
the q-direction is perpendicular to the p-direction. The unit vectors p̂ and q̂ (in the
direction of and perpendicular to, respectively, the TAWSS vector) can be obtained as

p̂ =

∫ T
0 τw dt∣∣∣∫ T0 τw dt

∣∣∣ , q̂ = p̂× n̂
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where n̂ is unit vector of n.
The derivatives of τw in the p- and q-directions have been obtained assuming a planar

distribution of the WSS on the triangle surface. Specifically, the projections of τw in
the p- and q- directions have been calculated at the three nodes of the triangle and the
coefficients of the planes passing through these points have been determined solving the
following linear systems

• FIRST SYSTEM:

 p1 q1 1
p2 q2 1
p3 q3 1

  ap
bp
cp

 =

 τw,p1
τw,p2
τw,p3


• SECOND SYSTEM:

 p1 q1 1
p2 q2 1
p3 q3 1

  aq
bq
cq

 =

 τw,q1
τw,q2
τw,q3


where p1, p2 and p3 are the coordinates of the nodes 1, 2 and 3, respectively, in the p-
direction. Likewise, q1, q2 and q3 are the coordinates of the nodes 1, 2 and 3, respectively,
in the q-direction. The Fig. 6.17.b shows the projections of the coordinates of the node 3
in the p- and q-direction (p3 and q3, respectively). τw,p1 and τw,q1 are the components of
the WSS vector in the p- and q-directions, respectively, calculated at the node 1 (as well
as τw,p2 and τw,q2 for the node 2 and τw,p3 and τw,q3 for the node 3). ap, bp and cp are the
coefficients of the plane passing through the points τw,p1, τw,p2 and τw,p3. Likewise, aq, bq
and cq are the coefficients of the plane passing through the points τw,q1, τw,q2 and τw,q3.
Therefore, the sought derivatives are equal to

∂τw,p
∂p

= ap ,
∂τw,q
∂q

= aq

The transverse WSS (transWSS ) at the triangle t has been calculated as

transWSSt =
1

T

∫ T

0
|τw · q̂| (6.5)

The temporal variation in the WSS magnitude during the cardiac cycle can be analyzed
through the WSS pulsatility index (WSSPI )

WSSPIt =
max(|τw|)t −min(|τw|)t

TAWSSt
(6.6)

where max(|τw|)t and min(|τw|)t are the maximum and minimum τw at the triangle t
inside the cardiac cycle T .

The oscillatory shear index (OSI ) is a measure of the directional change of WSS during
the cardiac cycle. This index identifies regions of high cyclic departure of the WSS vector
from its predominant axial alignment over the cardiac cycle. OSI is defined as

OSI =
1

2

1−

∣∣∣∫ T0 τw dt
∣∣∣∫ T

0 |τw| dt

 , OSI ∈
[
0,

1

2

]
(6.7)
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(a) eqn. 6.3 (b) eqn. 6.4

(c) eqn. 6.5 (d) eqn. 6.6

(e) eqn. 6.7

Figure 6.18: Test case - Sec. 6.4. Hemodynamic indices distribution.



6.4. ANEURYSM C05 167

The Fig. 6.18 shows the five hemodynamic variables calculated for the C05 aneurysm.
As it is seen in Fig. 6.18.a, a large variations in space-averaged TAWSS is observed
with values ranging from 0.1 to 10 [Pa]. The Fig. 6.18.b shows the distribution of the
TAWSSG where the larger spatial variation in TAWSS is reflected by higher gradients.
The distribution of the transWSS is shown in Fig. 6.18.c, WSS vectors change direction
more strongly when the flow coming out from the sac goes towards the bifurcation at
the outlet. Regions of high WSSPI values (see Fig. 6.18.c) are located at the aneurysm
sac, while the upstream values are relatively low. The distribution of the OSI index is
shown in Fig. 6.18.e. This index allows to identify regions of highly disturbed flow. High
values of OSI are particularly evident at the aneurysm dome due to flow entering into the
aneurysm sac forming vortex (see Fig. 6.15) whose shape can change during the cardiac
cycle. Moreover, elevated values of OSI can be observed at the outlet bifurcation.

section C is closed 

3D printed model

Pressure gauges 
PUMPP

A

A

A

B

B

B

C

C

C

Figure 6.19: Test case - Sec. 6.4.2. Experimental setup.

6.4.2 Comparison with experimental measure

A performance evaluation has been conducted comparing numerical results with laboratory
application. The experimental setup, shown in Fig. 6.19, is made of a 3D printed model
of the aneurysm C05 using a scale factor of 4, a centrifugal pump (operanting in the range
0÷1760ml/min, MICROPUMP), two pressure gauges (MPR 500, Millar Instruments Inc.)
and a software processing the pressure measures (Wintest 7, BOSE). The 3D printed model
has been realized by Prof. Salvatore Vitabile (University of Palermo, BIND department),
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while the laboratory experiment has been carried out with the collaboration of the research
group of Prof. Massimiliano Zingales (University of Palermo, Bio/Nanomechanics for
Medical Science Lab, Aten Center). Differently from the geometry described in Fig. 6.12,
in the printed model one of the outlet sections has been closed (section C in the figure).
The pressure drop between A and B sections has been measured by the pressure gauges
while imposing through the pump a stationary flux of 500 ml/min (the flow rate value
has been chosen in order to maintain the laminar flow regime) and using water as working
fluid. The measured pressure drop was of about 0.8 mmHg.

The simulation of Sec. 6.4 has been repeated using the same scale of the experimental
model and imposing adherence BCs at the cross-section C (in order to simulate rigid
wall), zero pressure at the outlet cross-section B and the same flux of the laboratory
experiment at the inlet cross-section A. Moreover, a Newtonian fluid of ρ = 1000 kg/m3

and ν = 1 · 10−6 m2/s has been used.

The obtained numerical pressure drop at the steady-state has been of 0.86 mmHg.

The comparison between measured and numerical results confirms the excellent perfor-
mance of the SPH method. Future research activities should aim to encompass laboratory
measures of velocity and pressure fields using pulsatile flow.

6.5 Aneurysm C93

The simulation of blood flow inside a human cerebral vessel with small branches and a
giant aneurysm (Morley, 1969) has been performed. Specifically, the geometry C93 of the
AneuRisk project database has been selected.

The geometry is very suitable for applying the Multi-Domain approach due to the dif-
ferent scale between the branch mean diameters and the aneurysm sac. The computational
domain of the C93 aneurysm has been used in Sec. 4.2.1 (see Fig. 4.2) for describing the
partitioning into non-overlapping blocks. A multi-resolution approach is necessary since,
in order to obtain a sufficiently accurate description of the velocity profile, the smoothing
length h in each branch should be at least 20 times smaller than the mean diameter. As
it is seen in Fig. 4.2, the computational domain has been thus subdivided in six blocks,
having different values of kh in the range 1÷ 5 · 10−4 m. Specifically, a quite small value
of kh was required in block 6 (kh6 = 1 · 10−4 m), which would have been excessively small
for the branches of blocks 1 and 5 and even more for the blocks 2 and 4 corresponding
to the aneurysm neck and sac, respectively. Thus, adopting a constant kh in the whole

Bn kh [m] lref [m] lref/kh

B1 2.5 · 10−4 2.30 · 10−3 9.2

B2 3.0 · 10−4 4.82 · 10−3 16.1

B3 1.5 · 10−4 1.15 · 10−3 7.7

B4 5.0 · 10−4 9.66 · 10−3 19.3

B5 2.0 · 10−4 1.86 · 10−3 9.3

B6 1.0 · 10−4 0.86 · 10−3 8.6

Table 6.1: Non-dimensional refinement value lref/kh.

domain would have implied a huge number of particles, with a resolution exceedingly high
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in most of the domain. Moreover, the pathological dilatation is characterized by relatively
low velocities, making even less necessary the fine discretization.

In Tab. 6.1 a reference length lref has been used for each block to make non-
dimensional the refinement value kh. Specifically, the mean diameter of the vessels has
been chosen as reference length for the blocks 1, 3, 5 and 6. Due to the extremely irregular
shape of blocks 2 and 4 (the aneurysm neck and sac, respectively), the diameter of the
sphere having equal volume has been used as the reference distance for these subdomains.

inflow 
section A

outflow 
section B

outflow 
section D

outflow 
section C

flow waveform
BLOCK 1

BLOCK 2BLOCK 5

BLOCK 6

BLOCK 4

BLOCK 3

interface 1

interface 2

interface 3

interface 4

interface 5

Figure 6.20: Test case - Sec. 6.5. Boundary conditions for each block. Taken from:
Monteleone et al. (2018), 973, fig. 17.

The resulting total number of particles Ne,tot = 112 618 is about 2% of the number that
would have been obtained using the smallest kh value (1 · 10−4 m) in the whole domain.

The boundary conditions for each block are shown in Fig. 6.20. At the inlet section A,
having diameter D = 0.0023 m, pulsatile flow condition has been prescribed by imposing
incoming BCs (as described in Sec. 3.2.1) at the inlet triangles. To this aim, the same
waveform used for the aneurysm C05 (see Sec. 6.4) has been employed with period T =
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BLOCK 5

BLOCK 6

interface 5

Figure 6.21: Test case - Sec. 6.5. Particle velocity magnitude in [m/s]. Enlargement
at interface 5 (red rectangle) separating block 5 from block 6. Taken from: Monteleone
et al. (2018), 973, fig. 18.

interface 1
interface 4

interface 2

interface 3

interface 5

Figure 6.22: Test case - Sec. 6.5. Velocity vectors. Enlargements at interfaces 2 and 3
(bold red line) and interfaces 4 and 5 (dashed red line) using different colors to indicate
velocity vectors relative to particles belonging to different blocks (see scheme in Fig. 4.2
for the colors). Taken from: Monteleone et al. (2018), 974, fig. 19.
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0.792 s and time-averaged flow rate of about 0.3 ml/s obtained following the power law
relationship between the flow rate and the cross-sectional area proposed by Cebral et
al. (2008).

The resulting mean value of the Reynolds number over a cardiac cycle is 690. The ve-
locity profile at the inlet has been thus obtained applying the Womersley solution through
eqn. 3.3 (Womersley number Wo = 1.7). A constant pressure has been imposed at the
outlet sections (B, C and D in the figure), while at the five block interfaces (red areas in
the figure) the Multi-Domain procedure described in Chap. 4 has been applied.

The simulation has been performed over six cardiac cycles and the results of the last
cycle have been considered. The adaptive time-step procedure, discussed in Sec. 2.9, has
been employed.

The Fig. 6.21 shows the particle velocity magnitude in the whole domain and an
enlargement in the vicinity of interface 5 which highlights the very good matching of the
solution in the neighboring blocks (5 and 6). Further enlargements are shown in Fig. 6.22
where the velocity vectors are plotted.

slice 1

slice 2

slice 3

(a)

slice 4

(b)

t t1
2 t3 t4 t5 t6

(c)

Figure 6.23: Test case - Sec. 6.5. Particle velocity at different slices and at the peak
systole (time t1 shown in the same figure at point .c).

The Figs. 6.23.a and 6.23.b show the particle velocity considering four different slices
along the aneurysm sac (hence only the fourth block is considered in the figures) at the
peak systole (time t1 in the Fig. 6.23.c). The velocity vectors at time t1 and t2 (indicated
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(a) Slice 1: t1 (b) Slice 1: t2

(c) Slice 2: t1 (d) Slice 2: t2

(e) Slice 3: t1 (f) Slice 3: t2

Figure 6.24: Test case - Sec. 6.5. Velocity vectors at different slices (see the scheme in
Fig. 6.23.a) and instants of time (see Fig. 6.23.c).

in the waveform of Fig. 6.23) and taking into account the three slices of Fig. 6.23.a are
shown in Fig. 6.24 which provides a more detailed description of the flow patterns. The
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vectors are colored with the velocity magnitude (using the same scale of Fig. 6.23), while
the length of the array is constant in order to make it independent from the velocity which
dramatically decreases going from the neck to the top of the aneurysm dome. The figure
helps to highlight the complexity of the flux inside the aneurysm, with patterns varying
markedly throughout the cardiac cycle.

More details are provided in Fig. 6.25 showing the velocity vectors at different times
of the waveform (see Fig. 6.23.c) along the longitudinal slice represented in Fig. 6.23.b.
In the figure it is clearly seen the variability of the flow pattern inside the dome of the
aneurysm where vortices form and rapidly dissolve. A vortex is indicated inside the red
circle in Fig. 6.25.c that disappears in the following Fig. 6.25.d.

The pressure evolution in eight points distributed in the blocks along the vessel cen-
terline is shown in Fig. 6.26 during one cardiac cycle time period using the procedure
described in Sec. 6.4. The plotted patterns are coherent with the imposed velocity flux at
the domain inflow (where the point P1 is placed) and show a correct time evolution of the
pressure values from one block to the others, with correct pressure drops while moving in
the downstream direction along the centerline.

In order to show the satisfaction of the mass conservation, the volume discharges in
different branch cross-sections have been calculated based on the number of particles going
through the corresponding sections during a fixed amount of time (∆t = 0.002 s). The
obtained discharge Q1 in the cross-section S1 of the inflow vessel, shown in Fig. 6.27.a,
has been compared with the sum of the discharges Q3 and Q5 in two cross-sections of
the downstream branches 3 and 5 (S3 and S5 in the figure), showing that the continuity
constraint is correctly obeyed (Q1 = Q3 +Q5).

Since a further bifurcation occurs in block 5 downstream of the S5 cross-section, the
discharge Q5 is compared in Fig. 6.27.b with the sum of the discharges in the downstream
cross-sections S5′ (in the same block 5) and S6 (in block 6), showing again that the mass
conservation is fulfilled. It is worthwhile highlighting that the satisfaction of the continu-
ity equation in cross-sections belonging to different subdomains in a Lagrangian method,
although being a necessary requirement for a reliable solution, is not automatically guar-
anteed, since it is not explicitly enforced in the solved equations.

A further confirmation of the mass conservation satisfaction is obtained in Fig. 6.28
showing the time evolutions of the particle number Nn (n = 1, .., 6) in each of the six
blocks normalized with the corresponding initial number of particles N0n (N01 = 18 241,
N02 = 17 336, N03 = 5 735, N04 = 30 160, N05 = 32 207 and N06 = 9 033). The
maximum amplitude of the oscillations in each block is always lower then 0.1% with the
exception of the initial stages of the first cardiac cycle where values of about 0.2% have
been achieved. This result confirms the effectiveness of the proposed dynamic adjustment
of the cone angle amplitude β at the inlet interface of each block discussed in Sec. 4.2.4.



174 CHAPTER 6. ANALYSIS OF CA HEMODYNAMICS

(a) t1 (b) t2

(c) t3 (d) t4

(e) t5 (f) t6

Figure 6.25: Test case - Sec. 6.5. Velocity vectors at the slice 5 shown in Fig. 6.23.b and
at different time instants (see Fig. 6.23.c).
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P1
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P4

P5

P6

P7

P8

(a) Scheme

(b)

(c)

Figure 6.26: Test case - Sec. 6.5. Pressure in [Pa] over one cardiac cycle in different
points of the centerline (P1, P2, P3, P4, P5, P6, P7, P8). Taken from: Monteleone
et al. (2018), 974, fig. 20.
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S1

S3

S5

(a)

S6

S5
S5'

(b)

Figure 6.27: Test case - Sec. 6.5. Flow rates Q(t) in [ml/s] over the last three cycles
through the sections S1, S3, S5, S5′ and S6 (bold black lines in the domain sketch). a)
Thin grey line: Q1; dash-dot orange line: Q3; magenta bold line: Q5; dotted black line:
Q3 +Q5; b) dash-dot magenta line: Q5′ ; thin green line: Q6; dotted black line: Q6 +Q5′ .
Taken from: Monteleone et al. (2018), 975, fig. 21.
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Figure 6.28: Test case - Sec. 6.5. Time evolution of the number of particles over six
cardiac cycles. The time t is normalized with the cardiac cycle period T while the number
of particles in each block with the starting number of particles N0n. a) block 1; b) block
2; c) block 3; d) block 4; e) block 5; f) block 6. Taken from: Monteleone et al. (2018),
975, fig. 22.
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Chapter 7

Tracer transport, residence time
and mechanical platelet activation
models

In this chapter tracer transport, residence time and platelets mechanical activation models
are presented for Single and Multi-Domain approaches both in serial and parallel com-
puting algorithms. These models are applied to ideal and real aneurysm geometries.

7.1 Background and motivations

Numerical modeling of a virtual contrast agent which passively follows the flow stream-
lines (the so-called virtual angiogram) can be a powerful tool for flow visualization and
prediction of intra-aneurysmal regions prone to thrombus deposition.

Several authors proposed tracer transport models for different purposes. Calamante
et al. (2003) proposed a patient-specific model constructed from anatomical and physio-
logic magnetic resonance data in which the arterial blood flow pattern and the transport
of a bolus of contrast agent were calculated using finite element analysis. The method
was used to characterize the changes in bolus shape due to a stenosis. Kim et al. (2004)
developed a numerical dye method for the visualization of the unsteady flow in the as-
cending aorta by coupling the convection-diffusion equation to the Navier-Stokes equa-
tions using a finite volume projection-like algorithm. Ford et al. (2005) described a virtual
angiographic technique for indirectly validating patient-specific CFD models against the
clinical in vivo data. They simulated, through finite element analysis, the time-varying
injection of contrast agent into a precomputed patient-specific CFD model. Subsequently,
they constructed time-series of images by simulating the attenuation of X-rays through
the computed 3D contrast-agent flow dynamics. Vali et al. (2017) analyzed two basilar
aneurysms considered for surgical treatment using a finite-volume solver. Specifically,
they modeled the transport of contrast agent using two approaches: a passive tracer (for
predicting post-surgical flow regions prone to thrombus deposition) and the transport of
a mixture of blood with an iodine-based contrast agent (for comparing and verifying the
numerical results with in vivo X-ray angiography data).

In this research study a tracer transport model has been implemented in the Lagrangian
SPH method. The model is able to mimic the process of contrast agent injection in the

179
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radiological procedure. Moreover, the analysis of the tracer transport using a Lagrangian
method contains useful information related to the flow and residence time (RT ) patterns
in CAs. The RT parameter gives information on recirculation and stagnation zone and it
can be employed thus to predict platelet activation and aggregation as well as thrombus
deposition. In the endovascular treatment of CAs, such as the employing of flow diverter
(FD) devices, it is important to study the thrombosis process for verifying if the forming
clot can lead to a complete occlusion of the aneurysm sac avoiding, on the other hand, the
formation of thrombi in the parent vessel. Platelets play a key factor in the process of clot
formation. Platelet content of the blood clot promotes the formation of the organized and
stable white thrombi which facilitate the healing process after aneurysm flow diversion.
As discussed in Chap. 1, platelets can be activated by chemical or mechanical stimuli.
Adding the constituents involved in platelet activation, the tracer model could be used to
simulate the biochemical activation of platelets in order to analyze the thrombus formation
inside the aneurysm sac after using endovascular devices. Moreover, the model could be
used for simulating anti-aggregation species that are used in endovascular treatments of
CAs as post-intervention therapy to prevent thromboembolism.

In this research study a different and very important aspect of blood clotting process
has been considered: the mechanical platelet activation. Experiments have shown that
mechanical platelet activation is a function of both the magnitude and duration of ap-
plied stresses (Brown C.H. et al., 1975; Ramstack et al., 1979; Wurzinger et al., 1985).
Further, platelet activation also requires a certain critical level of shear rate to occur.
Hellums (1994) plotted an activation locus that showed a power law relationship between
threshold stress and exposure time. On the other hand, it has been hypothesised that
shear-induced platelet activation near the FD struts and their subsequent attachment
to the forming blood clot inside the CA sac, remarkably affects the clot platelet con-
tent (Xiang et al., 2014). Several studies involved shear-induced platelet activation under
pathological conditions such as arterial stenosis (Bluestein et al., 1997; Holme et al., 1997;
Tambasco and Steinman, 2003; Shadden and Hendabadi, 2013) and abdominal aortic
aneurysms (Hansen et al., 2015). However, to the author’s best knowledge, no study was
focused on shear-induced activation of platelets near the FD struts in CAs treated with
these endovascular devices.

Differently from the Lagrangian particle tracking traditionally used to simulate platelet
transport (Hansen et al., 2015; Shadden and Arzani, 2015), here a mechanical platelet
activation model has been developed in a truly Lagrangian framework. Platelets have
been modeled as property of the fluid particles and the total level of blood shear-stress has
been calculated in each fluid particle following a stress-exposure time model (Bluestein et
al., 1997; Shadden and Hendabadi, 2013; Hansen et al., 2015). Tracer transport, residence
time and particle level of shear stress have been quantified and examined both in ideal
and real aneurysm geometries FD-free. Moreover, in order to qualitatively validate the
mechanical platelet activation model a benchmark test case has been considered (Taylor
et al., 2016). The implemented mechanical platelet activation model could be applied in
CA geometries with FD in order to evaluate the level of activated platelets as the device
porosity changes.
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Figure 7.1: Flow chart of the PANORMUS-SPH code with the tracer transport model.
The actions closely related to the tracer transport module are highlighted with the red
color.
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7.2 Tracer transport model

7.2.1 The model

The tracer (i.e., a biochemical specie or a virtual contrast agent) is numerically injected at
the inlets. Different species, whose total number is indicated as Nspecies, can be simulated
simultaneously.

The transport of each specie through the flow domain has been modeled by solving
the convection-diffusion equation that can be written as

∆C

∆t
− α∇2C − S = 0 (7.1)

where C is the time dependent concentration of the specie, α and S are the diffusivity and
the source term, respectively and ∆C

∆t is the total derivative operator which includes, in the
Lagrangian approach, the convective terms. Eqn. 7.1 is solved for each specie substituting
its own α coefficient and source term.

At each particle i a variable indicating the specie concentration at point xi(t) has
been assigned. Specifically, this new property is indicated as Cnc that is a vector which
contains for each position, from 1 to Nspecies, the concentration of the corresponding specie.
Therefore, for the particle i and the specie s, eqn. 7.1 can be written as

Cnck+1
i,s = Cncki,s + αs

3Dk
i −D

k−1
i

2
∆t+ Ss ∆t (7.2)

where Cnci,s is the component s (corresponding to the specie s) of the vector Cnc assigned
to the particle i and αs and Ss are the diffusive coefficient and the source term, respectively,
of the specie. A second-order discretization scheme is adopted in eqn. 7.2 for the diffusive
term Di that can be expressed, using eqn. 2.10, as

Di =

Ni∑
j=1

2
mj

ρj

(xki − xkj ) · ∇Wij

d2
ij

(Cnci,s − Cncj,s) (7.3)

At solid walls null normal derivatives can usually be imposed

∂Cnci,s
∂n

= 0 (7.4)

The condition of eqn. 7.4 has been assigned by imposing to the mirror particle the
concentration value of its generating particle (Cncm = Cncg where m and g are the
mirror and its generating particle, respectively). This condition has been applied also at
the outlets where its effect is to prescribe vanishing diffusive fluxes.

The Fig. 7.1 shows the flow chart for the SPH code with the tracer module. The
boundary conditions for the tracer concentration (eqn. 7.4) are set after the mirror gener-
ation (ACTIONS 6, 9, 16 and 20), whilst the concentration equation (eqn. 7.2) is solved
before the predictor-step. After the ACTION 21 the procedure is restarted from ACTION
8.

7.2.2 Tracer transport model in parallel computing

The tracer transport model has been included in the parallel computing algorithm. Specif-
ically, the concentration of the particles inside the cells of type 5 and 6 (see the definition
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in Sec. 5.2.2) must be shared to the neighboring processors (as explained in Sec. 5.2.3 for
the sharing of the hydrodynamic variables).

Moreover, the concentration values of the particles going outside the processor domain
through parallel interfaces must be sent to neighboring processors. On the other hand, the
concentration values of the new particles coming from the neighboring processors must be
received (as discussed in Sec. 5.2.4).

7.2.3 Tracer transport model in the MD approach

Concentration value of the IP particles

In the Multi-Domain approach the concentration values of the IP particles are obtained
by solving a system like 4.7 (discussed for the velocities in Sec. 4.2.3) for each specie:

CncAP −
NIP
R∑
j=1

C ′pr Cnc
B
j = RHSP P = 1, · · ·NA

IP

CncBQ −
NIP
S∑
j=1

C ′qsCnc
A
j = RHSQ Q = 1, · · ·NB

IP (7.5)

where Cnc is the specie concentration (Cnc = Cncs), P and Q are IP particles generated
starting from the blocks A and B, respectively, R and S are their closest effective particles
in blocks B and A, respectively (where the IP are contained), the coefficients C ′pr and

C ′qs are expressed through eqns. 4.6 and NA
IP and NB

IP are the numbers of IP particles
contained in the blocks A and B, respectively.

The right-hand-side terms RHSP and RHSQ are

RHSP = CncBR +

Ne
R∑

j=1

C ′pr(Cnc
B
j − CncBR)−

NIP
R∑
j=1

C ′pr Cnc
B
R

RHSQ = CncAS +

Ne
S∑

j=1

C ′qs(Cnc
A
j − CncAS )−

NIP
S∑
j=1

C ′qsCnc
A
S

Concentration value of the new particles generated through block interfaces

As explained for the velocity assignment, the new particles coming from block interface
triangles take the concentration value of the closest effective particle belonging to the
neighboring block. After solving the system (the velocities and concentrations of the IP
particles are known now) the concentration of each new particle i is updated using a linear
extrapolation among i and the two interface particles generated by i.

The ALGORITHM 5.3 of Sec. 5.3.4 can be rewritten as follows:
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ALGORITHM 7.1- Equation velocity and concentration system in parallel MD approach

1. ne = 0 : number of current equation

2. do id = 0, Nprocs − 1

3. ni = 0 : number of the current IP ∗ received by id (named P )

4. do ib = 1, NBlocks

5. do n = 1, N∗ibIP,id

6. ne = ne + 1

7. diagne = 1 (diagonal term)

8. ni = n+N
∗(ib−1)
IP,id

9. Take the coordinates of P from the matrix Rx:

column id and rows from [3 (ni − 1) + 1] to [3 (ni − 1) + 3)]

10. Find the closest particle R in block ib

10.1 fR(1:3) = uR

10.2 fR(4:Nspecies+3) = CncR

11. RHSne = fR (velocity and concentration of R are known terms)

12. do j = 1, NR (cycle on the particles in ΩR)

12.1 if j is effective or mirror then

12.1.1 fj(1:3) = uj

fR(4:Nspecies+3) = CncR

12.1.2 RHSne = RHSne + C ′pr (fj − fR)

12.2 if j is IP then

off diag(ne,j) = C ′pr

RHSne = RHSne − C ′pr fR

where f is a vector containing in the first three positions the velocity vector of the particle
R or of its neighboring particle j (points 10.1 and 12.1.1, respectively). From the forth to
the Nspecies + 3 positions the concentration values of each specie of the particle R or of its
neighboring particle j (points 10.2 and 12.1.2, respectively) are registered. For the other
definitions see Chap. 5.

The global system made of eqns. 4.7 and 7.5 is solved using the Pre-BiCGSTAB
method once for each velocity component m and for each concentration specie s (with
m = 1, 2, 3 and s = 1, .., Nspecies), using the same coefficient matrix and updating the
right-hand-side only. To this aim, the vector solution x (of length n3) becomes a matrix
[n3 x 3 +Nspecies] as well as the known terms vector b [n2 x 3 +Nspecies].

In order to solve the system, the ALGORITHM 5.4 of Sec. 5.3.4 is modified at point
1 including in the first cycle the number of species Nspecies.

7.2.4 Flow chart of the PANORMUS-SPH code

The Fig. 7.2 shows the flow chart of the implemented tracer transport model in the SPH
code with the parallel MD algorithm. In the figure the diagram begins after the ACTION
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Figure 7.2: Flow chart of the PANORMUS-SPH code with the parallel MD procedure
and the tracer transport model. The actions closely related to the tracer transport model
are highlighted with the red color.
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7 of the Fig. 5.29.

If the simulation starts from developed velocities and concentrations (t0 6= 0), the
ACTIONS 8, 9 and 10 must be performed in order to obtain the values (velocity and
concentration) of the IP particles. The concentration and velocities values of the effective
particles are read from the starting particle file.

In the ACTIONS 8, 13 and 25 the boundary conditions for the concentration (eqn.
7.4) are set after the mirror generation by imposing the concentration of each mirror
particle equal to that of the corresponding generating particle.

In the ACTIONS 9, 15 and 28, in order to obtain the velocities and the concentration
of the IP particles, the MD system is built (see ALGORITHM 7.1) and is solved through
the Pre-BiCGSTAB method (see ALGORITHM 5.4).

The current processor sends the concentration values (for all the analyzed species)
of the particles (effective and mirror) inside the cells of type 5 and 6; it simultaneously
receives the corresponding values from the neighboring processors (ACTIONS 10, 29 and
37).

In ACTION 12 the eqn. 7.2 is solved for each effective particle of the processor and
for each specie.

For the ACTION 14 see the descriptions of the ACTION 10 of Fig. 5.29 (described in
Sec. 5.29), as well as for the ACTIONS from 16 to 30 see the corresponding descriptions
in Fig. 5.29 (ACTIONS from 12 to 24).

In ACTION 23 the processor receives the effective particles (positions, velocities,
pseudo-pressure, acceleration and concentration of the analyzed species) which have left
the domain of the neighboring processors and now lie in cells belonging to myid as ex-
plained in Sec. 5.2.4.

t [s]
0 0.05 0.2

C
[%

]

0

50

100

Figure 7.3: Benchmark test case - Sec. 7.2.5. Inflow concentration law. C is expressed
as percentage compared to the maximum value of the new particles generated at the inlet
section.

7.2.5 Benchmark test case: tracer transport in a circular pipe

A cylindrical pipe having diameterD = 1·10−3 m and length L = 10D has been considered
to analyze the transport of a passive tracer. The fluid properties are discussed in Sec. 6.1.

A parabolic velocity profile has been imposed at the inlet (incoming BCs described in
Chap. 3) with a mean velocity of 0.2 m/s. Adherence BCs have been set at the lateral
solid walls, whilst zero pressure (pressure BCs described in Chap. 3) has been imposed at
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the outlet. The initial particle distance has been set to ∆x = 5 ·10−5 m in order to have 20
particles along the pipe diameter; the resulting total number of particles is Ne = 63 200.
A passive tracer with zero source term and diffusive coefficient α = 4 ·10−8 m2/s has been
numerically injected at the inlet with a square wave represented in Fig. 7.3.

In order to simulate the filling patterns, the whole domain has been initialized with
zero tracer concentration.

The simulation has been performed in parallel computing using 10 processors.

The Fig. 7.4 shows the velocity (on the left) and the tracer concentration (on the
right) along a longitudinal section of the pipe at different time instants.

(a) t = 0.01 s

(b) t = 0.05 s

(c) t = 0.07 s

(d) t = 0.1 s

(e) t = 0.125 s

(f) t = 0.15 s

(g) t = 0.175 s

Figure 7.4: Benchmark test case - Sec. 7.2.5. Axial velocity (left) and tracer concentration
(right) at different times.

7.2.6 Benchmark test case: tracer transport in a circular pipe with the
MD approach

The transport of two tracers along a cylindrical pipe has been studied using the MD
approach. The domain has been subdivided into 2 blocks (Fig. 7.5) having ∆x1 =
4.5 · 10−5 m and ∆x2 = 6 · 10−5 m. A parabolic velocity profile with mean velocity of



188 CHAPTER 7. TRACER TRANSPORT, RT AND AP MODELS

inflow

outflow

block interface

Block 1
Block 2

L1
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D

Figure 7.5: Benchmark test case - Sec. 7.2.6. Domain decomposition into 2 blocks.
D = 1 · 10−3 m; L1 = D/2, L2 = 2D.

0.2 m/s has been set at the inlet section of block 1, whilst zero pressure has been imposed
at the outlet section of block 2. At the block interface (represented in red in the figure)
which corresponds to the outflow and inflow section of block 1 and 2, respectively, the
Multi-Domain procedure has been applied in order to obtain velocity, pseudo-pressure
and tracer concentrations of the interface particles.

The tracers have different diffusion coefficient: α1 = 4 · 10−8 m2/s (tracer 1) and
α2 = 4 10−7 m2/s (tracer 2). They are numerically injected at the inlet section of block
1 following, for both the tracers, the same concentration law represented in Fig. 7.3.

The concentration of the two tracers at different times is shown in Fig. 7.6 along a
longitudinal section of the pipe. As it is seen in the figure the tracer concentration follows
the paraboloid shape of the velocity. The different diffusion of the two tracers is more
visible in Fig.7.6.e, where the maximum concentration is about 60 and 100 for the tracer
2 (represented on the left) and tracer 1, respectively. Moreover, in the figure it is clearly
seen the perfect matching of the concentration solution obtained at the block interface.

7.3 Residence time

The residence time (RT in the following) is an important parameter to identify recircula-
tion and stagnation zones and thus to predict platelet activation and thrombus deposition.

As discussed by Rayz et al. (2010) and Menichini and Xu (2016), residence time can
be modeled as a tracer passively transported with the flow solving a convection-diffusion
equation. In this study RT has been treated as an additional specie taking place in the
vector Cnc. For the RT estimation, in eqn. 7.2 αs represents the self-diffusivity of blood
(set to 10−15 m2/s) and Ss is the source term equal to 1 considering an unit increase in
RT for each unit increase in time.

As for the tracer transport, Neumann BCs have been assigned at the solid walls as
well as at the outlet sections, setting the RT of the mirror particles equal to that of the
generating particles. Differently, at the inlet section the RT of the new particles (and of
their mirror) is set to zero.

The RT estimation procedure in Multi-Domain approach and parallel computing is
identical to that explained in Sec. 7.2.3 for the tracer transport model.
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(a) t = 0.002 s

(b) t = 0.004 s

(c) t = 0.005 s

(d) t = 0.006 s

(e) t = 0.008 s

Figure 7.6: Benchmark test case - Sec. 7.2.6. Concentration of the two tracers at different
times along the pipe longitudinal section: Tracer 1 with α1 = 4 · 10−8 m2/s (left) and
Tracer 2 with α2 = 4 · 10−7 m2/s (right). Small and big squares: effective particles of
block 1 and 2, respectively.
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7.4 Mechanical platelet activation

7.4.1 The activation potential model

The platelet activation potential (AP) is the parameter governing mechanical platelet
activation under the action of stress higher than a threshold value that Hellums (1994)
suggests to be equal to 3.5Ns/m2. In this research study platelets have been considered
passive particles moving accordingly to the blood velocity field. Exploiting the Lagrangian
nature of SPH and assuming the same discretization for the fluid and platelet particles,
the activation potential AP has been treated as a new property of each fluid particle.
Therefore, no any new set of particles has been added in the computation to model the
transport of platelets.

AP has been calculated following the stress-exposure time model (Bluestein et al., 1997;
Shadden and Hendabadi, 2013; Hansen et al., 2015). Specifically, for each fluid particle i,
AP can be calculated considering the magnitude of the total rate of deformation acting
on the i particle through its trajectory

APi =

Nt∑
n=1

τi(xi, t)∆t (7.6)

where Nt is the total number of time steps the particle i spends inside the domain and τi
is the scalar stress at the position xi of the particle i and at time t.

The scalar stress τi can be calculated as follows

τi (xi, t) =
√

2µ ||D|| (7.7)

where the Newtonian approximation (s(x, t) = 2µD(x, t) with s the viscous stress tensor)
has been assumed, µ is the dynamic viscosity, D is the rate of deformation tensor (eqn.
7.8) and ||D|| is its Frobenius norm (eqn. 7.9) that allows to obtain a scalar stress measure
direction-independent. The scalar shear stress gives a measure of the total shear stress
acting on a fluid particle.

D (xi, t) =
1

2

(
∇ui(xi, t) +∇ui(xi, t)

T
)

(7.8)

||D|| =
√
tr(D DT ) (7.9)

7.4.2 New particles from block interfaces

Since the AP is a time-dependent parameter related to the particle trajectory, a specific
procedure has been implemented to obtain the AP value of the new particles generated
through block interfaces in the Multi-Domain approach.

When a new particle is created in the block lb, its AP value can be set equal to that
of the closest effective particle leaving the neighboring block ib. Therefore, at each time
step the position and AP value of the particles leaving the block ib through block interface
and ”virtually” entering the domain of the block lb are recorded for 10 time step. When a
new particle is created in the block lb through the block interface separating the block ib,
the particles leaving ib are scanned starting from the current time instant and progressing
toward the previously ones (up to a maximum of 10 step) until the closest particle (whose
distance from the new particle must be less than ∆x/2) is found.
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7.4.3 New particles from parallel interfaces

In parallel computing the processor generating the new particle may not know the effective
particle of block ib. To this aim, the processormyid, while identifying the effective particles
leaving the block ib and ”virtually” entering in the block ib, checks the processor id
owning the cell of these particles. The particles leaving the processor domain through block
interfaces are recorded for processor id in which the particles are ”virtually” contained and
for block. The current processor myid sends coordinates and AP value of these particles
to the corresponding processor id, following a procedure similar to that explained in Chap.
5 to send the coordinates of the IP particles. The received values are sorted for blocks
regardless of the sending processor. When a new particle is created in the block lb, the
processor searches the closest particle using the receiving coordinates related to the block
ib.

In parallel computing the AP values of the effective particles going outside the processor
domain through parallel interfaces must be sent to the neighboring processors. On the
other hand, the AP values of the new particles coming from the neighboring processors
must be received (as explained in Sec. 5.2.4).

7.4.4 Flow chart of the PANORMUS-SPH code

The Fig. 7.7 shows the flow chart of the SPH code in the parallel MD approach with
the implemented mechanical platelet activation model whose actions are highlighted in
red. The ACTIONS from 1 to 16 are the same explained in Sec. 5.3.6 (see Fig. 5.29).
The deactivated particles which have crossed a block interface are recorded in ACTION
17 and sent in ACTION 19, whilst the AP value of the new particles generated through
block interfaces (during ACTION 18) is set in ACTION 20 following the procedure ex-
plained in Sec. 7.4.2. The AP value of each new particle generated at inflow boundaries
(ACTION 18) is set to zero since this parameter is calculated starting from the time in-
stant in which the particle enters into the domain. In ACTION 21 the processor receives
the effective particles (positions, velocities, pseudo-pressure, acceleration and activation
potential) which have left the domain of the neighboring processors and now lie in cells
belongs to myid, as explained in Sec. 5.2.4. In ACTION 32 the AP value at time t of
each effective particle i belonging to the current processor is obtained by summing up the
value τi(xi, t) ∆t to the AP value calculated starting from the previous time step

APi(t) = τi(xi, t)∆t+

nt−1∑
n=1

τi(xi, n)∆t = τi(xi, t)∆t+AP (t− 1)

where nt is the number of iteration the particle i spends in the domain until the current
time t.

7.4.5 Benchmark test case: asymmetric sudden expansion

The study of Taylor et al. (2016) has been considered to qualitatively validate the ac-
tivation potential model. In the selected study, a computational model for macroscopic
predictions of cardiovascular device-induced thrombosis was developed. The authors com-
pared their numerical results with the experimental results of Taylor et al. (2014) (a data
set of time-dependent thrombus size collected in vitro with magnetic resonance imaging).



192 CHAPTER 7. TRACER TRANSPORT, RT AND AP MODELS

START

Shifting procedure

AFTER SHIFT

Send/Receive particles 
LEAVING/ENTERING 

the processor domain

21

23

22

29

27

26

17

18

28

31

8

yes

no

10

12

11
 

13

go to 9

9

Build and solve the 
parallel PPE system
for MD approach 

14
Send/Receive the 
pseudo- pressure

 PP
ψ

Update e
particle positions

15

16

20
Set the AP value of 

the new particle 

25

AP model

33

19
Send/Receive x and AP 

of the deactivated 
particles

Update support domain
24

30

32

Deactivate particles 
crossing outflow Bs or 

block interfaces (Record)

Corrector-step

Predictor-step

Build and Solve the 
parallel MD u system

Build and Solve the 
parallel MD u* system

Send/Receive u* of PP

of

Release new particles
at inflow Bs or block 

interfaces

Generate mirror, IO 
and IP particles

Send/Receive
positions and 

velocities of PP

Build and Solve the 
parallel MD u system
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Figure 7.8: Benchmark test case - Sec. 7.4.5. Channel geometry. H = 10 mm, Hs =
7.5 mm, L1 = 10 mm, L2 = 50 mm.

It should be highlighted that there are some differences between the model implemented
by Taylor et al. (2016) and the platelet model developed in this research study. Specifically,
the research group of Taylor et al. (2016) modeled the platelets activation considering
both mechanical and chemical stimuli. They quantified the mechanical activation with a
simplified form of a Lagrangian power law model of Soares et al. (2013), and the platelet
activation using a function of adenosine diphosphate concentration. Moreover, the authors
considered the thrombus deposition and growth in regions of low wall shear stress assuming
fluid mechanics as the dominant predictor of thrombus formation. In the PANORMUS-
SPH code the thrombus formation and deposition is not modeled and only the mechanical
platelet activation has been included.

Although these differences some qualitative comparisons can be made related to the
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Figure 7.9: Benchmark test case - Sec. 7.4.5. Velocity profiles. Blue diamonds: Taylor
et al. (2016) results; red stars: PANORMUS-SPH results.
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Figure 7.10: Benchmark test case - Sec. 7.4.5. Time evolution of the AP at points
A(0.015, 0.0015) and B(0.018, 0.0015) (blue and red lines, respectively).

velocity field and the location and level of the platelet activation potential.

The considered computational domain is a 2D asymmetric sudden expansion (see Fig.
7.8). This geometry, mimicking the flow separation, is widely used in the literature to
study the thrombosis formation. In this configuration the thrombus growth downstream
of the expansion is enhanced by the capture of activated platelets by the recirculating
flow.

At the inlet section a parabolic velocity profile has been imposed with a mean velocity
of 0.229 m/s, whilst Dirichlet BCs for the pressure have been set at the outlet section.
Periodic BCs have been prescribed at the walls parallel to the flux direction while adher-
ence BCs have been used at the other domain walls. The 2D results have been obtained

(a) (b)

Figure 7.11: Benchmark test case - Sec. 7.4.5. Qualitative comparison of the platelets
activation. Enlargement near the expansion. a) Taylor et al. (2016): normalized
percent increase in the concentration of activated platelets above the background level
(t = 10 min); b) PANORMUS-SPH : AP of the particles whose value is higher than
3.5 Ns/m2 (t = 2 min).
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(a) Velocity vectors

(b) Residence time

Figure 7.12: Benchmark test case - Sec. 7.4.5. Enlargement near the expansion. Velocity
vectors and RT.

considering plane flows with one single layer of particles in the direction normal to the
plane (as explained in Sec. 2.5.1). The smoothing length has been set to h = 2.5 · 10−4 m
with 38 000 total number of effective particles.

The Fig. 7.9 shows the comparison of the velocity profiles at two different cross-sections
(sections 1 and 6 indicated in Fig. 7.9.a). The differences are located at the step where the
Taylor et al. (2016) profiles do not have negative streamwise velocities (which are present
in the SPH results) due to the thrombus deposition.

The Fig. 7.10 shows the activation potential evolution in time at two different points
(A and B in the figure). As it is seen in the figure, the AP reaches the steady-state after
about 80 seconds with a mean value of about 3.7 Ns/m2.

The Fig. 7.11 shows a qualitative comparison of the platelet activation. The results
of Taylor et al. (2016) shown in Fig. 7.11.a represent the normalized percent increase in
the concentration of the activated platelets above the background level after 10 minutes
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Figure 7.13: Test case - Sec. 7.5.1. Inflow concentration law. The concentration C is
expressed as percentage compared to the maximum value of the new particles generated
at the inlet.

of simulation (since it is necessary more time to simulate the thrombus deposition). The
SPH results (Fig. 7.11.b) show the particles whose AP level is higher than the threshold
value suggested by Hellums (1994) at t = 120 s (when the steady-state of the activation
potential has been reached). The location of the SPH particle having AP > 3.5 Ns/m2 is
in agreement with the location of the activated platelets obtained by Taylor et al. (2016).

The recirculation region at the step is shown in Fig. 7.12.a where the RT parameter
achieves the highest values (Fig. 7.12.b).

7.5 Test cases

7.5.1 Ideal aneurysm

The ideal aneurysm described in Sec. 6.2 has been considered to show the performance of
the tracer transport, the residence time and the activation potential models.

A passive tracer with diffusion coefficient α = 1 · 10−8 m2/s and null source term has
been injected at the inlet following the tracer law represented in Fig. 7.13.

The Fig. 7.14 shows the concentration of the tracer at different time instants: during
the tracer injection (Figs. 7.14.a, 7.14.b, 7.14.c, 7.14.d and 7.14.e) and after the injection
when t > 0.4 s (Figs. 7.14.f, 7.14.g, 7.14.h and 7.14.i). In the figure, a threshold value
of 10 % has been selected to define the interface of the tracer-laden and tracer-free flow.
Therefore, only the particles having concentration higher than the selected threshold value
have been represented for each time instant.

At the beginning the tracer takes the paraboloid shape of the velocity (Fig. 7.14.a),
then it curves (Fig. 7.14.b) due to the presence of the sphere (the aneurysm sac) and
impacts in the right intersection between vessel and aneurysm (which is the impingement
area highlighted in Fig. 6.3.b) as shown in Fig. 7.14.c, thus it enters inside the aneurysm
(Figs. 7.14.d and 7.14.e). For t > 0.4 s the new particles are released at the inlet with zero
concentration following the tracer law of Fig. 7.13. These particles moving in the flow
direction acquire a non-null concentration related to diffusive term tanks to the high gra-
dient of concentration. After stopping the injection, the tracer takes again the paraboloid
shape represented in Fig. 7.14.f (having opposite gradient to that shown in Fig. 7.14.a)
since new particles which have been generated with zero concentration at the inlet in pre-
vious instants. In Fig. 7.14.g and, even more, in Fig. 7.14.h all the particles inside the
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(a) t = 0.01 s (b) t = 0.02 s (c) t = 0.03 s

(d) t = 0.05 s (e) t = 0.14 s (f) t = 0.41 s

(g) t = 0.51 s (h) t = 0.61 s (i) t = 1 s

Figure 7.14: Test case - Sec. 7.5.1. Tracer concentration at different time instants. Gray
area: domain contour.

input and output vessels have null concentration value except for those close to the walls
that maintain the highest values due to the low velocities. Non-null concentration values
are inside the aneurysm where the tracer takes the shape of the vortex occurring inside
the aneurysm sac (as it has been shown in Fig. 6.3.c). Here the tracer highest values are
close to left side wall of the vessel since the flux impacting on the right side moves away
from the right wall. The vortex traps the particles to the sphere center allowing to have
non-zero concentration values inside the aneurysm sac for a long time (see Fig. 6.3.i).
After 2 s, the concentration values become zero throughout the domain.

An analysis of the relative weights of convective and diffusion terms has been carried
out. To this aim, Fig. 7.15 shows the percentage ratio Conv/(Conv+Diff) (where Conv
is the sum of the convective terms and Diff is that of the diffusive ones) on the left and the
tracer concentration on the right at different time instants along the longitudinal section
of the ideal vessel. It should be noted that in a Lagrangian framework the convective
terms are not explicitly calculated, therefore, in order to provide this comparison these
terms have been explicitly obtained using the velocity and concentration fields. As it
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(a) t = 0.01 s

(b) t = 0.05 s

(c) t = 0.41 s

(d) t = 0.51 s

Figure 7.15: Test case - Sec. 7.5.1. Left: percentage ratio between the convective term
and the sum of the convective and diffusive terms ( Conv

Conv+Diff ); right: tracer concentration
in %. Longitudinal section of the ideal vessel.
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(a) α1 = 1 · 10−8m2/s (b) α2 = 1 · 10−12m2/s

Figure 7.16: Test case - Sec. 7.5.1. Concentration of two tracers having different diffusion
coefficient. t = 1 s. Same scale of Fig. 7.14.

can be seen, in the regions where the tracer concentration is not negligible the ratio
Conv/(Conv+Diff) ranges between 30% and 70%. Similar results are observed at each
time instant. Thus, no prevailing mechanism exist and both the contributions are relevant.

The Fig. 7.16 shows a comparison at time t = 1 s between the tracer discussed above
and another tracer with α2 = 1 · 10−12m2/s. The assumed shape is similar for the two
tracers, but the second tracer has higher concentration values due to the lower diffusion
coefficient (Fig. 7.16.b ).

The residence time parameter is shown in Fig. 7.17 at different time instants. At
the beginning, when the flow is not yet developed, the particles inside the aneurysm
sac have the same RT (Fig. 7.17.a), then the particles are dragged by the vortex (Fig.
7.17.b) and are trapped inside the aneurysm (Fig. 7.17.c). The process continues until the
steady conditions for the RT are reached (Fig. 7.17.d) when the RT becomes a constant
property of the space representing the so-called blood age. The RT evolution in time has
been calculated at fixed points (points P1, P2, P3 and P4 in Fig. 7.18.a) as average of the
RT of the particles inside a sphere with center in each of these points and radius equal
to 0.2 · 10−3 m (that is two times the initial particle distance). The values are plotted in
Fig. 7.18.b obtaining the mean values of 0.9 s, 0.07 s, 0.78 s and 0.56 s in the center, on
the right wall, on the left wall and on the top of the aneurysm sac, respectively.

The residence time results at the steady-state have been compared with those obtained
by the research group of Prof. A. Frangi (University of Sheffield, UK) using the ANSYS
software (as shown in Fig. 7.19). As it is seen in the figure, the RT value obtained with
ANSYS are higher close to the right wall of the aneurysm and to the outlet vessel wall
than those obtained by the SPH model. This difference is related to the discretization of
the finite-volume simulation where the mesh near the wall is composed by elements with
maximum edge size of 0.1 · 10−3 m (see Fig. 8.2 where the mesh is represented for the
ideal aneurysm with the flow diverter device) with three prismatic layers. However, since
there is a strong boundary layer near the wall, where flow is highly unpredictable, the
comparisons can be considered acceptable.

The Fig. 7.20 shows the activation potential at different times. The AP value of the
particles increases when the particles are trapped by the vortex on the right wall of the
aneurysm that is clearly seen in the Figs. 7.20.a and 7.20.b. Then AP grows in the sac,
while the particles are dragged inside the aneurysm, due to the highest RT values (Figs.
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(a) t = 0.01 s (b) t = 0.1 s

(c) t = 0.5 s (d) t = 3.0 s

Figure 7.17: Test case - Sec. 7.5.1. RT at different time instants. Logarithmic scale.

7.20.c and 7.20.d).
This is confirmed in Fig. 7.21.a where a threshold value of 1.1 Ns/m2 is used and

only the particles whose AP > 1.1 Ns/m2 have been represented. However, adopting the
threshold value of Hellums (1994), no platelets have been activated since the shear stresses
are too low for activating platelets mechanically.
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Figure 7.18: Test case - Sec. 7.5.1. a) Scheme of the points; b) bold red line: P1; blue
line: P2; green line: P3; black line: P4.

(a) ANSY S simulation. Prof. Frangi’s research
group (University of Sheffield)

(b) PANORMUS simulation

Figure 7.19: Test case - Sec. 7.5.1. Residence time at the steady-state. A commercial
finite-volume solver (ANSY S software) Vs the SPH code (PANORMUS-SPH ).
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(a) t = 0.01 s (b) t = 0.1 s

(c) t = 0.5 s (d) t = 3.0 s

Figure 7.20: Test case - Sec. 7.5.1. AP at different time instants. Logarithmic scale.

(a) (b)

Figure 7.21: Test case - Sec. 7.5.1. a) AP threshold: 1 Ns/m2; b) AP threshold:
3.5 Ns/m2 (Hellums, 1994). Same scale of Fig. 7.20.
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7.5.2 Aneurysm C05

The test case discussed in Sec. 6.4 has been used to analyze the transport of a passive
tracer, the residence time and the activation potential parameters. A passive tracer with
α = 4 10−8 m2/s has been numerically injected at the inlet with 100 % of concentration
starting from t = 0 to t = 0.475 s (about 3/5T , where T is the pulsatile flow period
equal to 0.792 s). The Fig. 7.22 shows the concentration at different times: during the
tracer injection (Figs. 7.22.a,b,c,d,e and f) and after that (Figs. 7.22.g,h,i,j,k and l).
As discussed in Sec. 7.5.1, a threshold value of 10% has been adopted to highlight the
interface tracer-laden and tracer-free flow.

The RT development in time has been calculated in two points (A and B represented
in Fig. 7.23.a) as the average of the values of the particles inside two spheres centered in
the points A and B and having radius equal to 2 ∆x. Differently from the trend obtained
in the ideal aneurysm (shown in Fig. 7.18) where a steady flow had been imposed, the
RT evolution plotted in Fig. 7.23.b follows the cardiac cycle since a pulsatile flow has
been considered (as discussed in Sec. 6.4). The highest values are inside the aneurysm sac
(point A) with a maximum value of 0.5 s and minimum of 0.25 s.

The RT has been calculated also in a third point corresponding to the center of the
inflow section (point C in 7.23.a whose result has not been plotted in Fig. 7.23.b), obtain-
ing the same shape of the pulsatile flow (as for the points A and B) but very low values
due to the high velocity in this region. Specifically, the maximum RT obtained at point
C has been 1 · 10−3 s that is 0.2 % of the maximum value at point A (which is equal to
0.5 s as mentioned above).

The activation potential time evolution at point A is plotted in Fig. 7.23.c. As for the
RT evolution, the AP has a pulsatile trend although it presents more fluctuations.
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(a) t = 0.05T (b) t = 0.1T (c) t = 0.125T

(d) t = 0.15T (e) t = 0.25T (f) t = 0.5T

(g) t = 1T (h) t = 1.5T (i) t = 2T

(j) t = 2.5T (k) t = 3T (l) t = 5T

Figure 7.22: Test case - Sec. 7.5.2. Tracer concentration at different times. Gray area:
domain contour.



7.5. TEST CASES 205

B

A

C

(a)

0 1T 2T 3T 4T 5T 6T

R
T

[s
]

0

0.2

0.4

0.6

(b)

0 1T 2T 3T 4T 5T 6T

A
P

[N
s=

m
2
]

0

0.1

0.2

0.3

0.4

0.5

(c)

Figure 7.23: Test case - Sec. 7.5.2. a) Scheme of the points; b) residence time at point A
(red line) and at point B (blue line); c) activation potential at point A.
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Chapter 8

Concluding Remarks and Future
Work

8.1 Conclusions

Although mechanisms of aneurysm rupture have not been completely explained yet, the
effects of blood flow on the vascular walls are widely accepted as risk factors.

Computational fluid dynamics can be a powerful tool for simulating hemodynamics
in patient-specific cerebral aneurysm models. Numerical tools may help to evaluate the
impact of various clinical interventions and to identify hemodynamic factors affecting
treatment outcomes.

In this study the SPH method has been used to study hemodynamics in cerebral
aneurysms. Due to its Lagrangian nature, SPH is able to ease up the treatment of geo-
metrically complex domains such as cerebral vessels. The open-source PANORMUS-SPH
code has been specialized for the analysis of cerebral aneurysm hemodynamics.

The Incompressible SPH approach has been employed which implies the resolution of
a PPE. Since the fast and accurate solution of the PPE is a fundamental issue in the ISPH
approach, a peculiar attention has been paid on the PPE solution method. The numer-
ical model accuracy and efficiency have been improved through the solution of a unique
equation system made of a PPE for each particle of the computational domain. In order
to save memory and to accelerate matrix-vector multiplications, the matrix system has
been saved using the CRS format where only the non-null terms are stored. The iterative
BiCGSTAB method has been implemented due to the non-symmetricity of the coefficient
matrix. In order to speed-up the computation of the solution method, a preconditioning
algorithm has been employed. The performance evaluation (described in Sec. 2.7.2) has
shown that the BiCGSTAB method provides a more accurate solution than those obtained
with the semi-implicit SOR algorithm, where some difficulties to achieve convergence can
occur (see Fig. 2.10). Moreover, the preconditioning algorithm noticeably accelerates
convergence of the optimization procedure (see Fig. 2.11).

An inflow/outflow procedure has been developed to account for the treatment of open-
boundaries in SPH (Chap. 3). This technique allows to set steady and unsteady pressure
boundary conditions in the computational domain inlets and outlets or to impose the
velocity profile (stationary or pulsatile) at the inlet when it is known. The leaving and
entering the domain of effective particles have been dealt with (see Sec. 3.2.2 and Sec.
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3.2.3). An important point is the handling of the frequency of generation that requires a
dynamically adaptive procedure in order to suitably satisfy the continuity constraint.

Flows developing in relatively simple geometric domains have shown a very good agree-
ment of numerical results with analytical solutions available in steady (Fig. 3.13) and
unsteady conditions (Fig. 3.18). Furthermore, in the considered test cases the number
of effective particles has been substantially unchanged during the simulations (Fig. 3.16)
ensuring the global mass conservation. The method has been used to investigate the blood
flow in cerebral vessels (see Sec. 6.3) and in cerebral aneurysms by imposing stationary
(see Sec. 6.2) or pulsatile flow conditions (see Sec. 6.4 and Sec. 6.5).

A multi-resolution technique has been developed in SPH. This procedure allows to al-
leviate one of the main drawbacks of the SPH method related to the high computational
costs with respect to mesh-based methods. With this technique, it has been possible to im-
prove the accuracy of the simulation results while reducing the computational costs at the
same time. The internal interfaces separating neighboring subdomains have been man-
aged as open-boundaries. No particle splitting/coalescing methods have been employed
to take into account the variable smoothing length. The movement of particles from one
block to another has been handled using procedures similar to those employed at the inlet
and outlet sections, as discussed in Sec. 4.2.4. The simultaneous solution of the PPE
sub-systems of each block allowed to obtain a perfectly matched solution among the single
subdomains, where different particle sizes are employed.

The analysis of benchmark test cases has been mostly focused on the checking of the
seamless transition of the results to the interfaces between neighboring blocks (see Figs.
4.10, 4.13, 4.14 and 4.15). The local and global mass conservation have been accurately
checked as well (see Fig. 4.11).

An accurate analysis of the reduction of the particle number achieved through the
Multi-Domain (MD) approach has been performed too. To this aim, a giant cerebral
aneurysm has been considered (see Sec. 6.5) where the reduction was about 50 times with
respect to the corresponding Single-Domain approach. The resulting reduction of com-
putational time is almost proportional to that of the particle number since the overloads
due to the interface management is almost negligible.

The performed parallelization of the numerical solver on multiple CPUs using MPI li-
braries has been aimed again to reduce the computational efforts. The extremely complex
procedures developed in both Single-Domain and Multi-Domain approaches have been
accurately described, showing the good accuracy and computational efficiency of the em-
ployed algorithms. The results of the scalability tests have confirmed this efficiency up to
the available number of processors (32 in the workstations which were available to use),
as shown in Figs. 5.15 and 5.31.

Both the mesh-less feature of SPH and the numerical improvements introduced within
this thesis allowed the employed model to accurately analyze the hemodynamics in cerebral
aneurysms. Ideal and real aneurysm geometries have been investigated. The results have
shown complex hemodynamic patterns in the neck and sac of the aneurysms (Figs. 6.14
and 6.15) where vortices form and rapidly dissolve during the cardiac cycle (Fig. 6.25).
Furthermore, some indices mainly related to the wall shear stress have been calculated in
order to characterize the stress state of the vessel walls (see Fig. 6.18). The solver has
been successfully verified through comparison with other numerical solutions based on the
use of finite-volume solvers (Fig. 6.4). Some comparisons with laboratory experiments
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have been performed too (see Fig. 6.19).

This research lays the foundation for the future development of a blood clot model
in SPH. The SPH method is very suitable to model multi-phase processes like those due
to thrombi formation inside the aneurysm sac and in the parent vessel which can occur
after inserting an endovascular device. Specifically, in this research study a tracer transport
model has been developed in SPH for flow visualization and prediction of intra-aneurysmal
regions prone to thrombus deposition. The tracer transport model has been parallelized
and implemented in the Multi-Domain approach. The model has been applied to analyze
the transport of passive tracers throughout cerebral vessels with aneurysms (Figs. 7.14,
7.22) and the effect of different diffusion coefficients (Fig. 7.16). These simulations have
reproduced the contrast agent injection during angiography tests.

Through the tracer transport model, the residence time (RT ) parameter has been
analyzed. The employed test cases have shown how RT reaches higher values inside the
aneurysm sac where the forming vortex traps the fluid particles (Fig. 7.17). The RT
has been investigated while imposing stationary flow. After some transitory instants, RT
reaches the steady-state becoming a spacial field which indicates the mean blood age in
each region of the domain. When analyzing pulsatile flows, it has been shown how RT
periodically changes following the pattern of the cardiac cycle (Fig. 7.23).

A time-exposure stress model has been implemented too, in order to simulate mechan-
ical platelet activation. Untreated aneurysms has been analyzed. The results have shown
that using the threshold value of 3.5 Ns/m2 (Hellums, 1994) no platelet has been activated
(Fig. 7.20).

8.2 Future developments

CFD is a promising method to study the impact of flow diverter (FD) devices on intra-
aneurysmal hemodynamics. However, a well-known issue in ”classical” numerical simula-
tions of blood flow past FD (or endovascular devices in general) is the meshing process
due to the geometrically complexity of these devices. Moreover, another relevant issue
is the large difference scale between the size of the FD strut thickness and the cerebral
vessels in the vicinity of the aneurysm. The Fig. 8.1.a shows an example of a finite-volume
mesh used to discretize an ideal vessel with a spherical aneurysm and a FD device placed
across the aneurysm neck. As it is seen in the figure (which shows a cross-section whose
scheme is represented in Fig. 8.1.b) the mesh around the FD strut (whose wires are indi-
cated in the figure) is extremely complex. The SPH method, due to its mesh-less nature,
can be considered a very convenient tool for modeling the highly complex geometries of
the FD struts. Future developments of the present work will address the employment of
the SPH method for modeling aneurysms treated with FD devices. Specifically, analyses
can be performed on the hemodynamic changes induced inside the aneurysm sac by the
devices. To this aim, the Multi-Domain approach is fundamental since a simulation per-
formed with a constant smoothing length value in the whole domain would be prohibitive
in term of computational efforts and memory requirements. Moreover, parallel computing
is essential to perform simulations in reasonable time. An example of the suitability of
the Multi-Domain technique is shown in Fig. 8.2 where a domain decomposition into 5
blocks is performed. In order to show the reduction of the particle number allowed by
the MD approach, kh values ranging between 6 · 10−5 m ÷ 4 · 10−4 m are used in the
figure. In this example the lowest kh value of 6 · 10−5 m has been selected to allow the
distribution of at least 15 particles in each direction between the FD wires (Dh in the
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FD wires

(a)

(b)

Figure 8.1: a) Example of mesh for finite-volume simulation of aneurysm with FD device.
From: Prof. Frangi’s research group (University of Sheffield); b) cross-section.
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Figure 8.2: MD decomposition of an ideal aneurysm geometry with FD device.

figure equal to 4.5 10−4 m). The resulting total number of particles is 840 183, about 4%
of the value that would have been obtained using a constant value of the smaller kh value
(equal to khmin = 6 · 10−5 m) in the whole computational domain (as shown in Tab. 8.1).
Much higher reductions of the computational efforts could be achieved using the proposed
Multi-Domain approach with higher values of the ratios of the employed smoothing lengths.

Moreover, it is known that both FD size and compaction level remarkable affect
the treatment outcomes. High content of activated platelets in the clots forming in-
side the aneurysm sac promotes the generation of white thrombi that, due to their sta-
bility and well-organized structure, could facilitate the handling process after aneurysm
flow-diversion. Future research studies could employ the implemented mechanical platelet
activation model in order to predict if blood shear stresses near the FD struts can me-
chanically activate platelets. The effects of different sizes of FD wires and FD compaction
could be investigated analyzing both the flow reduction inside the aneurysm sac and the
level of platelet activation due to shear stress generated near the FD struts.

Furthermore, by including aneurysmal biochemistry in the implemented tracer trans-
port model, future work could be devoted to study the chemical platelet activation process.

Further, interesting applications of the SPH technique are those related to the model-
ing of multi-phase processes of thrombus formation and deposition inside the aneurysm sac.

In this study blood has been modeled as Newtonian fluid (as discussed in Sec. 6.1). Fu-
ture research activities should take into account the shear-thinning behavior of the blood.
Specifically, the particle viscosity (that in the present study has been considered constant)
could be dynamically updated as function of the shear strain acting on the particle.
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Bn Ne,Bn (khBn) Ne,Bn (khmin)

B1 9 835 2 914 075

B2 108 613 2 932 551

B3 538 354 538 345

B4 154 679 4 176 333

B5 28 702 8 504 296

Ne,Tot 840 183 19 065 608

Table 8.1: First column: block number; second column: number of effective particles with
khBn (MD approach); third column: number of effective particles with khmin = khB3 =
6 · 10−5 m (SD approach); last row: total number of effective particles

Finally, since the SPH method is very suitable to model moving boundaries in the
future it could be used to analyze the life cycle of cerebral aneurysms which includes
formation, growth and rupture.



Appendix A
Coupled FVM-SPH method

During the PhD program, the author focused not only on the SPH method but also on
the development of a procedure based on the combining FVM and SPH techniques (the
method will be named Coupled FVM-SPH in the following).

The Coupled FVM-SPH method, that is particularly suitable for studying coastal en-
gineering problem, is discussed in this chapter relying on the paper of Napoli et al. (2016).

As discussed in the Methodological note, the PANORMUS code contains both FVM
and SPH solvers. These solvers have been combined for developing the coupled proce-
dure. The PANORMUS-FVM code is briefly outlined to describe the Coupled technique.
Regarding the SPH solver please refers to Chap. 2.

In order to show the performance of the method in both confined and free-surface flow
and in 3D and 2D approximations, two test cases are shown: the lid-driven cavity problem
and the solitary wave run-up and overtopping on a seawall.

A1 The Coupled FVM-SPH procedure

The Coupled FVM-SPH method combines the larger computational efficiency of grid-based
approaches with the flexibility of the SPH method.

To this aim, the computational domain is partitioned in order to use the finite-volume
method in some portions of the domain, while employing the mesh-less Lagrangian ap-
proach in the regions with the higher geometric complexity and/or the presence of moving
boundaries, rapidly evolving free-surfaces and multiphase processes.

A1.1 The finite-volume solver

The PANORMUS-FVM solver allows to solve the momentum equations for incompressible
flows using curvilinear non-orthogonal structured grids made of hexahedral cells, with a
cell-centered discretization.

The finite-volume approximation of the integral momentum equation in the α-direction
can be written for the generic cell of volume V as

V
uk+1
α − ukα

∆t
+
∑
f

ufαΦf − ν
∑
f

∂uα
∂n

∣∣∣∣
f

Af +

+
∑
f

ψfAfα + V gα = 0 (with α = 1, 2, 3) (A.1)

where the summations with index f (indicating values on the f -th cell face) are extended
to the six cell faces of the hexahedral element, uα is the α-th component of the cell-
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averaged velocity, ∆t is the time step, the index k is used to indicate the variables at the
k-th time step, Φf is the volume flux through the f -th cell face, ν is the fluid kinematic
viscosity, n is the normal direction to the considered cell face pointing outward, ψ is the
kinematic pressure, Afα is the projection in the α-direction of the cell face area and gα is
the α-th component of the gravity acceleration. When considering turbulent flows in the
framework of the statistical approach based on the Reynolds averaging of the momentum
and continuity equations (RANS ), in the eqns. A.1 the velocity uα must be substituted
with the Reynolds average uα and the term∑

f

τfαβAfβ (with α, β = 1, 2, 3)

must be added to the left-hand side of eqns. A.1, where ταβ is the Reynolds stress tensor.
An explicit second-order accurate in time Adams-Bashforth scheme is used for the

solution time marching.
As explained for the SPH solver in Chap. 2, a fractional-step method is used to solve

eqns. A.1 (for α = 1, 2, 3).
In the predictor-step, the intermediate velocity u∗α is obtained removing the pressure

terms from the momentum equations

V
u∗α − ukα

∆t
+
∑
f

ufαΦf − ν
∑
f

∂uα
∂n

∣∣∣∣
f

Af + V gα = 0 (A.2)

In order to correct the u∗α velocities while imposing the continuity constraint for in-
compressible flows (∂uβ/∂xβ = 0), an irrotational corrective velocity field ucα must be
calculated. The potential −ψ∆t of ucα (ucα = −∆t∂ψ/∂xα) is obtained solving a PPE
which in the finite-volume approximation read as∑

f

∂ψ

∂n

∣∣∣∣
f

Af =

∑
f u
∗
fn
Af

∆t
(A.3)

where u∗fn is the intermediate velocity component in the direction normal to the f -th cell
face. The boundary conditions for eqn. A.3 at inflow sections or solid walls are obtained
as

∂ψ

∂n

∣∣∣∣
f

= − 1

Af

Φk+1
f − Φ∗f

∆t
(A.4)

to be imposed on the cell faces lying on the boundaries, where Φk+1 and Φ∗ are the volume
fluxes through the faces at the (k+1)-th time step (null on impermeable walls) and at the
intermediate level (obtained extrapolating the u∗ velocities from the interior flow towards
the wall). The boundary conditions over a free-surface are of Dirichlet type, with null
values of the potential ψ.

In the corrector-step, the divergence-free updated velocity field is obtained as

uk+1
α = u∗α + ucα = u∗α −

∑
f ψfAfα

V
∆t (A.5)

For free-surface flows, the velocity fluxes through the cell faces lying at the air-liquid
interface are obtained from the integral continuity condition

∑
f Φf = 0 applied to the

surface cells. These free-surface faces are thus moved upward or downward at the end of
each time step according to the kinematic condition for the free-surface as discussed by
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(Lipari and Napoli, 2008). The kinematic condition in finite-volume approximation can
be expressed as

ηk+1 − ηk

∆t
− ΦS

ASnSv
= 0 (A.6)

where η is the free-surface level (measured from a reference horizontal plane), the index S
indicates faces lying on the free-surface, AS is the face area and nSv is the projection in
the vertical direction of its normal unit vector.

A1.2 The treatment of hybrid interfaces

The Fig. A3 shows the computational domain subdivision into region discretized through a
structured grid of hexahedral cells (the FVM-domain) and another covered by Lagrangian
particles (the SPH-domain). In the sketch of the figure, the starting particle distance ∆x
is half the kh value and the FVM cells are cubes of side kh.

The FVM-domain and SPH-domain are separated by surfaces named hybrid interfaces
(or simply h-interfaces). The h-interface is composed by the faces of the FVM -grid cells
neighboring to the SPH-domain which are divided into two triangles (the h-interface
triangles represented in the figure with red bold line filled by gray region) following the
procedure discussed in Sec. 2.5.

Effective 
particles

Interface 
FVM cell

Hybrid
Interface 
particles

Hybrid Interface 
Boundary triangles

FVM-domain

SPH-domain

Δx Δx

Δx

2Δx

Δx

Figure A3: Coupled FVM-SPH. Domain decomposition into FVM (bottom-right area)
and SPH (left and top areas) domains. Bold and thin black lines: effective FVM cells
(FVMe) and hybrid interface FVM cells (FVMhi), respectively; full black circles: effective
particles; empty red circles: hybrid interface particles (HI); red bold line: hybrid interface
triangles. Taken from: Napoli et al. (2016), 678, fig. 2.
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Figure A4: Coupled FVM-SPH. Generation of the HI particles. Full black circles: effective
particles; empty red circles: HI particles. Taken from: Napoli et al. (2016), 679, fig. 3.

In order to match the solution in the neighboring domains, a layer of FVM -cells named
hybrid interface FVM (indicated with the symbol FVMhi to distinguish them from effec-
tive FVM cells, FVMe), is placed near the h-interface in the SPH-domain. Moreover, the
hybrid interface triangles are used to generate ghost particles (named h-interface, HI) in
the FVM-domain. The HI particles are generated using a similar procedure explained for
the IO and IP particles (see Chap. 3 and Chap. 4, respectively). Specifically, they are
generated starting from the effective ones with distances from the hybrid interface lower
than ∆x. These ghost particles are placed along the line connecting each of the aforemen-
tioned effective particle and normal to the hybrid interface. In Fig. A4 the particle Q at
the k-th time step lies at a distance lower than ∆x from the h-interface and thus generates
the HI particles Q1 and Q2 at distances from Q equal to ∆x and 2 ∆x, respectively, in
the direction normal to the h-interface. No HI particles are generated with reference to
the particle P lying at distance larger than ∆x from the h-interface.

At the h-interface an interpolation procedure (whose scheme is shown in Fig. A5) is
used allowing to obtain a smooth transition of the solution between the grid-discretized
domain and the particle-covered region.
The set of FVM eqns. (A.2 - A.5) is solved only on the effective FVM cells (bold black line
in the figure). The hydrodynamic variables in the centroids xint of the hybrid interface
FVM cells can be obtained following two different procedure. The former (see scheme in
Fig. A5.b) is based on the SPH kernel approximation at the xint point

f(xint) =

∑
j
mj
ρj
fjWcj∑

j
mj
ρj
Wcj

(A.7)

where the sum is extended to the particles having distance dcj from xint shorter than
kh (particles inside the support domain Ωc of the selected FVMhi cell which is indicated
with a dashed circle in the figure) and Wcj is the kernel function considering the same dcj
distance. An alternative procedure to the eqn. A.7 (not reported in Napoli et al. (2016))
is based on a Taylor series expansion around the closest effective particle (blue particles
in Fig. A5.c)

f(xint) = fR +

NR∑
j=1

mj

ρj
(fj − fR)

∂WRj

∂xα
(xint,α − xR,α) (A.8)
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where R is the closest effective particle to the point xint, the summation convention on
repeated indices is used for the index α, NR is the number of particles inside the support
domain of R (ΩR) and WRj is the kernel function considering the distance (dRj) between
the particle R and its neighboring particle j.

Correspondingly, the SPH eqns. 2.20 - 2.24 (explained in Chap. 2) are solved on the
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Figure A5: Coupled FVM-SPH. Scheme of the interpolation procedure at the h-interface.
Full black circles: effective particles; empty red circles: HI particles; red bold line: h-
interface; bold and thin black line: effective (FVMe) and hybrid interface (FVMhi) FVM
grid cells, respectively; full and empty black squares: centroid of the effective and interface
FVM grid cells, respectively. a) General scheme. Taken from: Napoli et al. (2016), 680,
fig. 4; b) scheme for eqn. A.7. Dashed black circle: support domain Ωc of the centroid
xint; c) scheme for eqn. A.8. Dashed blue circle: support domain ΩR of the closest particle
R.
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effective particles only, while the fi variables at the i-th HI particle are obtained through
an interpolation from the FVM solution based on the second-order accurate Taylor series
expansion

fi = f(xpqr) +
∂f

∂xα

∣∣∣∣
pqr

(xi,α − xpqr,α) (A.9)

where pqr are the indices of the FVM cell nearest to the current HI particle (see Fig.
A4.a).

It is important to highlight that the sums in eqn. (A.7) to obtain the values on the
interface FVM cells involve HI particles, as it is seen in Fig. A5 where the HI particles
are indicated in red. On the other hand, the Fig. A4.a shows that the dashed-line cross
centered in the centroid xpqr (which indicates the cells used to calculate the derivatives
for interpolating the variables on the HI particles close to xpqr through eqn. A.9) involves
the interface cell xint.

In Napoli et al. (2016) an iterative procedure is used at the h-interface for solving the
eqns. A.7 and A.9 for each variable (intermediate and corrected velocities and pseudo-
pressure) till achieving convergence of the solutions on both the interface FVM cells and
HI particles. The iterative procedure is applied first on the predictor-step velocities after
solving the eqn. A.2 on each FVM grid cell and the eqn. 2.20 on each effective particle.
Further, the system made of eqns. A.7 and A.9 is solved to obtain the ψ values of the HI
particles after each internal step of the Poisson resolution on the FVM grid and the SPH
particles (eqns. A.3 and 2.21, respectively). The iterative procedure is applied again, at
the end of each time step, to obtain the corrected velocities.

In this research study another procedure has been implemented in order to solve a
whole system (made of equation for the cells and for the particles) using the preconditioned
BiCGSTAB method. In particular, the values at the interface FVM cell are obtained using
eqn. A.8 rather than eqn. A.7. The procedure allows to speed up the method without
influencing the results. The details of the new procedure related to the velocity and PPE
systems are shown below.

Solution matching at h-interfaces for the velocities

In the new procedure, the velocity system is made by the equations for the hybrid interface
FVM cells and the equations for the hybrid interface particles.

For the velocity system, eqn. A.8 can be rewritten as

uc = uR +

NR∑
j=1

mj

ρj
(uj − uR)∇WRj(xc − xR) (A.10)

where for simplicity the variables at the centroid xint are indicated with the subscript c
(thus uc is the velocity at the point xint) and uR is the velocity of the closest effective
particle R. Some manipulations can be made to eqn. A.10 in order to explicit the coef-
ficient matrix and the right-and-side of the portion of the velocity system related to the
FVMhi cells. To this aim, the particles inside the support domain of R could be effective
(whose number is indicated with N e

R) or HI (whose number is NHI
R ) particles. Therefore,

the summation in eqn. A.10 can be splitted in the following to summations

uc = uR +

Ne
R∑

j=1

C ′cr (uj − uR) +

NHI
R∑
j=1

C ′cr (uj − uR) (A.11)
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where C ′cr =
mj
ρj
∇WRj(xc − xR).

Finally, using eqn. A.11, the equation system for the interface FVM cells can be
written as

uc −
NHI
R∑
j=1

C ′cruj = RHSc , c = 1, .., Nhc (A.12)

with RHSc = uR +

Ne
R∑

j=1

C ′cr (uj − uR)

where Nhc is the number of interface FVM cells and the RHSc is right-and-side.
The eqn. A.9 for the velocity at the centroid of the FVMhi cell can be written as

ui = u(xpqr)−
∑

f ufAf

V
, i = 1, .., NHI (A.13)

where NHI is the total number of hybrid interface particles and uf is a suitable approxi-
mation of the velocity value at the cell face obtained using the values of the surrounding
cells. Obviously, the neighboring cells could be FVMe or FVMhi and thus will effect on
the RHS and on the coefficient matrix of the system, respectively.

Therefore, the velocity system is made of Nhc + NHI unknowns values. The velocity
system is solved after the predictor-step (eqns. A.2 and 2.20) to obtain the intermediate
velocities and after the corrector-step (eqn. A.5 and 2.24).

Solution matching at h-interfaces for the ψ values

The eqns. A.8 and A.9 can be rewritten for the Poisson system as

ψc = ψR +

NR∑
j=1

mj

ρj
(ψj − ψR)∇WRj(xc − xR), c = 1, .., Nhc (A.14)

ψi = ψ(xpqr)−
∑

f ψfAf

V
, i = 1, .., NHI (A.15)

Differently from the velocity system, the values of the effective particles (R and its
neighboring particles j) in eqn. A.14 are unknowns. Likewise, in eqn. A.15 ψf is an
approximation of the pseudo-pressure at the cell faces obtained using the values of the
surrounding cells that are unknowns (both for the effective FVM and for the interface
FVM cells). Therefore, eqns. A.14 and A.15 must be solved simultaneously with the
Poisson eqns. 2.21 and A.3. As a result, the global system that must be solved is made
of the Nec and Ne Pressure Poisson equations (where Nec and Ne are the numbers of the
effective cells and particles in the computational domain, respectively) and Nhc and NHI

Taylor series expansions (related to the hybrid interface cells and particle, respectively).

The inflow/outflow procedure through h-interfaces

The h-interface triangles (as explained for the outflow boundaries in Chap. 3) can be freely
gone through by the particles (thus ”virtually” entering into the FVM-domain). Whenever
it occurs, these particles must be excluded from the computation and are included in a
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Figure A6: Coupled FVM-SPH. Particle leaving the SPH-domain. Full and empty black
circles: effective and HI particles. Taken from: Napoli et al. (2016), 680, fig. 5.

storage list. In Fig. A6 the particle Q during the (k + 1)-th time step goes through the
h-interface and it is deactivated. The distance of the particle P from the h-interface at
the time level (k + 1) becomes lower than ∆x and the HI particles P1 and P2 are thus
generated.

On the other hand, when the velocities near the h-interface are directed from the
FVM- to the SPH-domain, new particles must be released to avoid emptying of the latter
domain and to ensure global mass conservation. In order to save the memory avoiding a
continuous increase of the particle number, the index of the new particles is taken from
the aforementioned storage list.

A similar procedure explained for the new particles generated through inflow bound-
aries and block interfaces (see Chap. 3 and Chap. 4) is used for the inlet at the h-interface.
Specifically, a new particle is released whenever no effective particles are found in the cir-
cular conical region (scan region) with vertex on an effective particle lying at a distance
from the h-interface between ∆x and kh and axis normal to the h-interface, as it is shown
in Fig. A7.a. The position of the new particle (indicated with the symbol S) is shown in
Fig. A7.b, together with its HI particles.

A2 Results and discussion

A2.1 Test case 1: Lid-driven cavity

The lid-driven cavity problem has been considered to show the performance of the Coupled
FVM-SPH model in 3D viscous flows. The domain is made of a cubic box of side d = 1 m,
in which the flow is driven by the top face sliding in its own plane with a velocity us of
0.01 m/s. The fluid kinematic viscosity is set to 10−4 m2/s, thus obtaining a Reynolds
number usd/ν equal to 100. Adherence BCs are applied at all the walls.

The Fig. A8 shows the computational domain partitioned in the SPH-domain and
FVM-domain with the plane x1 = LFVM normal to the sliding direction. A Cartesian
grid of cubic cells with side length equal to 0.04 m is used to discretize the FVM-domain
(box on the left in the figure) into 16 x 25 x 25 elements in the x1, x2 and x3 directions,
respectively. In the SPH-domain the smoothing length has been set equal to the FVM
grid spacing, with a smoothing length h = 0.02 m, resulting in 45 000 particles.

The results of Albensoeder and Kuhlmann (2005) have been used for comparison. The
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Figure A7: Coupled FVM-SPH. Release of new particle through h-interface. Full black
circles: particle Q at time k and k + 1. a) Check inside the scan region; b) Release new
particle scheme. Full blue circle: new effective particle S; empty blue circles: HI particles
generated by S.

(a) (b)

Figure A8: Coupled FVM-SPH. Sketch of the lid-driven cavity. a) FVM cells and La-
grangian particles. The interface cells are indicated in red. LFVM = 0.64 m; LSPH = 0.36
m; L2 = 1 m; L3 = 1 m; b) vertical (a-a) and horizontal (b-b) axes. Taken from: Napoli
et al. (2016), 685, fig. 13.
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Figure A9: Coupled FVM-SPH. Lid-driven cavity results. Non-dimensional velocity pro-
files along the vertical (a-a) and horizontal (b-b) axes; a) u1/us profile along the (a-a)
axis; b) u3/us profile along the (b-b) axis. Continuous red lines: reference data from
Albensoeder and Kuhlmann (2005); stars: FVM results; circles: SPH results.

Figure A10: Coupled FVM-SPH. Sketch of the solitary wave channel. Bold red lines: h-
interfaces. d = 0.255 m; L1 = 0.5 m; L2 = 9.5 m; L3 = 3.6 m; L4 = 0.097 m; L5 = 0.048
m; L6 = 0.3 m; L7 = 5.955 m. Taken from: Napoli et al. (2016), 689, fig. 19.

horizontal (u1) and vertical (u3) velocity profiles along the axes (a-a) and (b-b) (see Fig.
A8.b), respectively, are plotted in Fig. A9, together with the results of Albensoeder and
Kuhlmann (2005). While the axis (a-a) entirely lies into the FVM-domain, (b-b) crosses
the interface, thus allowing to show the matching of the FVM and SPH solutions. In both
cases the velocities are made non-dimensional with the lid velocity us and an excellent
agreement is obtained with the reference results.

A2.2 Test case 2: Solitary wave run-up and overtopping on a seawall

In order to show the performance of the Coupled FVM-SPH with free-surface flow with
moving grid, the generation and propagation of a solitary wave in a channel and the run-
up and overtopping on a seawall have been considered. The Fig. A10 shows the channel
scheme where a seawall is placed on the beach to reduce the run-up. The laboratory
experimental measures of Lin et al. (2012) have been used for comparison. In the first
half of the channel the solitary wave propagates over a horizontal bottom, while a 1 : 20
sloping beach is placed in the second half, with a trapezoidal seawall whose geometrical
features are shown in the figure.



A2. RESULTS AND DISCUSSION 223

Figure A11: Coupled FVM-SPH. First SPH-domain and upstream portion of the FMV-
domain separated by the first vertical interface. The color scale indicates the streamwise
velocity in both the domains. In the detail of the free-surface region the bold red lines
indicate the portion of the FVM-domain covered with HI particles. Taken from: Napoli
et al. (2016), 689, fig. 20.

Two vertical h-interfaces (red lines in the figure) segregate an intermediate FVM-
domain from an upstream and a downstream SPH-domain. The first SPH-domain is close
to the wave-generating paddle that is a moving boundary, whilst the second covers the
sloping beach region containing the seawall. The FVM is employed to propagate the wave
over the horizontal bottom, while the SPH method is used, in addition to the paddle
region, in the wave run-up/overtopping portion of the domain.

The still water depth d is set to 0.255 m as in the experiment, while the solitary wave is
generated by the vertical paddle, moving in the x1 direction according to the law proposed
by Goring (1978) to obtain an offshore wave height of 0.23 d.

The FVM grid is made of 1900 x 51 (in the streamwise and vertical directions, respec-
tively) square cells of side 0.005 m. During the simulation the grid is modified at each
time step updating the cell heights according to the free-surface level changes, as obtained
from eqn. A.6.

In both the SPH-domains the smoothing length is set to h = 0.0025 m (half the cell
side). The number of effective particles in the first SPH-domain (neighboring the moving
paddle) is 20 400, while 97 000 particles are used in the run-up region. Free-slip boundary
conditions are applied at the walls (moving paddle and channel bottom). The 2D results
are obtained considering plane flows with one cell only (in the FVM-domain) and one
single layer of particles (in the SPH-domains) in the direction normal to the plane where
periodic BCs are imposed.

The Fig. A11 shows a portion of the computational domain near the first h-interface
during the passage of the solitary wave; the colors indicate the streamwise velocity com-
ponent. In the figure it is clearly seen the perfect matching of the free-surface levels and of
the streamwise velocity at the h-interface. The free-surface levels (η) near the seawall at
different instants are plotted in Fig. A12. The numerical results are in excellent agreement
with the reference experimental data, showing that the paddle-generated wave correctly
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Figure A12: Coupled FVM-SPH. Free-surface evolution at different time instants close to
the seawall. Bold line: channel bottom. Dashed line: FVM-SPH coupling results; circles:
experimental data of Lin et al. (2012). Taken from: Napoli et al. (2016), 690, fig. 21.

propagates through the SPH- and FVM-domains, without significant perturbations due
to the passage through the two h-interfaces. The Fig. A13 shows the time evolutions of
the bottom dynamic pressure and of the free-surface level at two channel cross-sections
on the seawall. The very good agreement of the numerical results with the experimental
data confirms the optimal performance of the Coupled FVM-SPH method.
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Figure A13: Coupled FVM-SPH. Dynamic pressure and free-surface level time evolution at
two cross-sections (a) and (b) whose position on the seawall is indicated with the red circles.
Dashed and continuous thin lines: numerical and experimental dynamic pressure. Dashed
and continuous bold lines: numerical and experimental free-surface levels (η1 = η − zb
with zb the bottom level). Taken from: Napoli et al. (2016), 691, fig. 22.
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López, Y. R., D. Roose, and C.R. Morfa (2013). “Dynamic particle refinement in SPH:
application to free surface flow and non-cohesive soil simulations”. In: Computational
Mechanics 51.5, pp. 731–741.

Lucy, L.B. (1977). “A numerical approach to the testing of the fission hypothesis”. In: The
astronomical journal 82, pp. 1013–1024.

Mao, W., K. Li, and W. Sun (2016). “Fluid–structure interaction study of transcatheter
aortic valve dynamics using smoothed particle hydrodynamics”. In: Cardiovascular
engineering and technology 7.4, pp. 374–388.

Marrone, S., M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé, and G. Graziani
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Schäfer, M., S. Turek, F. Durst, E. Krause, and R. Rannacher (1996). “Benchmark compu-

tations of laminar flow around a cylinder”. In: Flow simulation with high-performance
computers II. Springer, pp. 547–566.

Shadden, S.C. and A. Arzani (2015). “Lagrangian postprocessing of computational hemo-
dynamics”. In: Annals of biomedical engineering 43.1, pp. 41–58.

Shadden, S.C. and S. Hendabadi (2013). “Potential fluid mechanic pathways of platelet
activation”. In: Biomechanics and modeling in mechanobiology 12.3, pp. 467–474.

Shahriari, S., H. Maleki, I. Hassan, and L. Kadem (2012). “Evaluation of shear stress
accumulation on blood components in normal and dysfunctional bileaflet mechanical
heart valves using smoothed particle hydrodynamics”. In: Journal of biomechanics
45.15, pp. 2637–2644.

Shamloo, A., M.A. Nejad, and M. Saeedi (2017). “Fluid–structure interaction simulation
of a cerebral aneurysm: Effects of endovascular coiling treatment and aneurysm wall
thickening”. In: Journal of the mechanical behavior of biomedical materials 74, pp. 72–
83.

Shi, W., M. Zheng, and P.X. Liu (2017). “Virtual surgical bleeding simulation with navier-
stokes equation and modified smooth particle hydrodynamics method”. In: Information
and Automation (ICIA), 2017 IEEE International Conference on. IEEE, pp. 276–281.

Shibata, K., S. Koshizuka, T. Matsunaga, and I. Masaie (2017). “The overlapping particle
technique for multi-resolution simulation of particle methods”. In: Computer Methods
in Applied Mechanics and Engineering 325, pp. 434–462.

Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi (2009). “Can tem-
poral fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm?
A proposed novel hemodynamic index, the gradient oscillatory number (GON)”. In:
Journal of biomechanics 42.4, pp. 550–554.

Shojima, M., M. Oshima, K. Takagi, R. Torii, K. Nagata, I. Shirouzu, A. Morita, and
T. Kirino (2005). “Role of the bloodstream impacting force and the local pressure
elevation in the rupture of cerebral aneurysms”. In: Stroke 36.9, pp. 1933–1938.



238 BIBLIOGRAPHY

Siddiqui, A.H., P. Kan, A.A. Abla, L. N. Hopkins, and E.I. Levy (2012). “Complications
after treatment with pipeline embolization for giant distal intracranial aneurysms with
or without coil embolization”. In: Neurosurgery 71.2, E509–E513.

Skillen, A., S. Lind, P.K. Stansby, and B.D. Rogers (2013). “Incompressible smoothed
particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian
smoothing applied to body–water slam and efficient wave–body interaction”. In: Com-
puter Methods in Applied Mechanics and Engineering 265, pp. 163–173.

Soares, J.S., J. Sheriff, and D. Bluestein (2013). “A novel mathematical model of activation
and sensitization of platelets subjected to dynamic stress histories”. In: Biomechanics
and modeling in mechanobiology 12.6, pp. 1127–1141.
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