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Abstract

This work has been inspired by the recent trend in remote sensing and environmen-
tal data acquisition. Remote sensing techniques allow us to measure information
about an object without touching it. In the last decades remote sensing via satel-
lites has been used in various applications such as Earth observation, weather
and storm predictive analysis, atmospheric monitoring, climate change, human-
environment interactions. Sensors on airborne and satellite platforms have been
recording signals from space for many years, giving rise to a huge amount of data.
Some data are processed on-board but others are treated and post-processed in
ground stations. Signal and image processing are widely applied on data coming
from satellites to extract meaningful information for the aforementioned tasks.
Satellites and ground stations communicate with each others by using several
transceivers and techniques.

After acquisition, data has to be processed and correlated to generate forecasts
and detect unusual phenomena. Human attention works very well when detecting
salient patches in an image, and this skill is frequently used to segment areas
of interest in satellite images. Saliency is the quality that makes certain regions
of an image stand out from the rest of the visual field and grab our attention.
Due to the relevance of visual saliency in remote imaging and its applicability to
many other scientific and psychological research areas, the main part of this work
focuses on the study of theoretical saliency models, the research of novel methods
for saliency detection in images and the characterization of human attention on
sub-object details. As an extension of these, investigated the effects of Colour
Vision Deficiencies (CVDs) on attention and new techniques to alter image colours
depending on saliency values have been investigated, in order to restore fixation
point coherence between CVD affected and normal observers.
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In this work we propose two remote sensing systems, composed by low cost
hardware components and portable software solutions, designed to receive mete-
orological satellite signals. We aim at sampling and processing of the modulated
signal entirely in software enabled by Software Defined Radios (SDR) and CPU
computational speed overcoming hardware limitations such as high receiver noise
and low ADC resolution. For this purpose we developed two software-hardware
integrated systems able to perform the following steps: satellite pass prediction,
time scheduling, signal demodulation, image cropping and filtering. Then, cloud
detection is performed by using two well known clustering algorithms, Otsu and
K-means. Although we employed low cost components, we obtained good results
in terms of signal demodulation, synchronization and image reconstruction.

In order to emulate human attention to detect and segment salient patches
in images (such as satellite images) we have developed two saliency algorithms
based on Keypoint Density Maps. Our algorithms work by analyzing the spa-
tial density of keypoints detected in images converted to perceptually uniform
color spaces (CIE L*a*b* and CIE L*u*v*); both scale-aware and multi-scale ap-
proaches have been implemented in our methods. Furthermore, we compared our
methods against the most important and popular saliency detection methods in
the state of the art. It is shown that our approaches achieve good results in all
experiments. As a reference for performance evaluation, we collected a dataset
of eye fixations on objects and sub-object details using eye-tracking technology;
the dataset is called Eye-Tracking Through Objects (ETTO) and it is publicly
available.

As already said, we developed a technique to use the above-mentioned saliency
algorithms to re-color images for individuals affected by color vision deficiencies.
Color vision deficiencies affect visual perception of colors and, more generally, color
images. We eye-tracked the human fixations in first three seconds of observation
of color images to build real fixation point maps, then we detected the main dif-
ferences between the aforementioned human visual systems related to color vision
deficiencies by analyzing real fixation maps among people with and without color
vision deficiencies. In this work we provide a method to enhance color regions of
the image by using a detailed color mapping of the segmented salient regions of
the given image. The segmentation is performed by using the saliency difference
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between the original input image and the corresponding color blind altered image.
A second eye-tracking of color blind people with the images enhanced by using
re-coloring of segmented salient regions reveals that the real fixation points are
then more coherent (up to 10%) with the normal visual system. The eye-tracking
data collected during our experiments are in a publicly available dataset called
Eye-Tracking of Colour Vision Deficiencies (EToCVD).
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Chapter 1

Introduction

1.1 Goals and Scope

My Ph.D. research has been inspired by the recent trend in remote sensing and
environmental data acquisition: affordable real-time data management, process-
ing and dissemination are rapidly becoming the norm, but this only applies to
streams coming from IoT sensors and mobile devices. Real-time weather data
coming from advanced instruments aboard satellites still remains prerogative of
government agencies or private spaceflight companies, and is usually available via
paid subscriptions. This obstacle can be avoided by using free direct dissemina-
tion services, like those offered by NOAA, but those usually require the installation
of expensive ground station hardware accompanied by proprietary software. All
those problems have been overcome with the development of a custom hardware
station and software framework, as it will be explained later in this thesis.

After acquisition, data has to be processed and correlated to generate forecasts
and detect unusual phenomena. Human attention works very well when detecting
salient patches in an image, and this skill is frequently used to segment areas of
interest in satellite images. Due to the relevance of visual saliency in remote imag-
ing and its applicability to many other scientific and psychological research areas,
the main part of my work focuses on the study of theoretical saliency models,
the research of novel methods for saliency detection in images and the character-
ization of human attention on sub-object details. As an extension of these, I also
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investigated the effects of Colour Vision Deficiencies (CVDs) on attention and new
techniques to alter image colours depending on saliency values, in order to restore
fixation point coherence between CVD affected and normal observers.

1.2 Satellite Remote Sensing

Remote sensing techniques allow us to measure information about an object with-
out touching it. In the last decades remote sensing has been used in various
applications such as Earth observation, weather and storm predictive analysis, at-
mospheric monitoring, climate change, human-environment interactions. Sensors
on airborne and satellite platforms have been recording signals from space for many
years, giving rise to a huge amount of data. Some data are processed on-board
but others are treated and post-processed in ground stations. Signal and image
processing are widely applied on data coming from satellites to extract meaningful
information for the aforementioned tasks. Satellites and ground stations commu-
nicate with each others by using several transceivers and techniques; for instance
communication is the largest sector of satellite services. Since the cold war a lot
of scientific progress has been made both in navigation and in signal communica-
tion and processing. We are interested in communicating with satellites equipped
with the Advanced Very High Resolution Radiometer (AVHRR). The AVHRR
is a cross-track scanning system allowing the acquisition of signals by using five
spectral bands having a resolution of 1.1 km and a frequency of two Earth scans
per day. NOAA weather satellites broadcast an APT (Automatic Picture Trans-
mission) and a HRPT (High Resolution Picture Transmission) signal containing a
live weather image of the area overflown by the satellite. The scanning lines are
oriented perpendicular to the motion of the sensor platform. By using a system
that includes a rotating mirror each line is scanned from one side of the sensor to
the other. As the platform moves forward over the Earth, successive scans build
up a two-dimensional image of the Earth’s surface. As said before, the AVHRR
scanning system acquires signal by using five spectral bands and, for instance, the
visible light image and one of the infrared images are combined in a row vector;
the combination is performed using the Automatic Picture Transmission (APT)
system.
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Despite many scientific progresses over last few years, many scientific issues
still affect NOAA satellites: information calibration, physical layer, synchroniza-
tion, data detection, channel coding. Several scientific experiments are ongoing
to overcome those issues, and we focused our efforts to propose a new effective
satellite remote sensing tool for signal processing. In greater detail the tool con-
sists of a low cost receiver subsystem for public weather satellites and a signal and
image processing module for several tasks such as signal and image enhancement,
image reconstruction and cloud detection. Our solution allows to manage data
from satellites effectively with low cost components and lightweight computations.
As we will show in Section 2 the overall performances are very promising in terms
of signal quality and image reconstruction.

1.3 Visual Saliency

The human visual process starts outside the brain with the projection of the light
onto the retina. The retina is a thin layer of neural tissue including the rods and
the cones that, respectively, allow us to perceive day light and dim light vision.
Thanks to the overall architecture of our visual system we are able to receive up
to 10 billion bits of information (Li and Gao, 2014). Scientific studies reveal that
our cerebral cortex includes 10 billion neurons. It is therefore evident the lack of
storage capability of our brain with respect to the huge amount of information
coming from our eyes and directed to the cerebral cortex. However, due to the
limits of our brain, we cannot simultaneously perform complex analysis on all the
input visual information (Li and Gao, 2014). For a given scene, the detection of
the most important visual subset occurs as one of the most important task of the
Human Visual System (HVS). When a person performs any visual task (watching
TV, driving a car) the eyes flick rapidly from place to place to inspect the visual
scene. Saccadic eye movements, while observing a scene, are not random: each
movement allows the central part of vision (fovea) to fall upon the region of interest
of a picture (this is why vision is not uniform across our field of view and acuity
decreases with eccentricity) (Snowden et al., 2012).

Attention can be described as the allocation of cognitive resources to informa-
tion, and it can be divided in five types constituting a hierarchical model (Li and



1. Introduction 4

Gao, 2014):

• Focused attention

• Sustained attention

• Selective attention

• Alternating attention

• Divided attention.

We focused exclusively on selective attention (Sohlberg and Mateer, 1989), that
is defined (Li and Gao, 2014) as “the ability to selectively mantain the behavioral or
cognitive resource on specific stimuli while ignoring the distracting or competing
stimuli”. This is why we conducted experiments and collected results by using
object images without visual distractors.

In our work we used an eye tracker to record the gaze path of 24 observers
while viewing each image from a subset of an object-based dataset (Viksten et al.,
2009a,b) consisting of several images with single objects in the foreground and an
homogeneous background color.

We used the eye-tracking data to create a ground truth made of fixation point
maps showing where viewers look in the first three seconds of observation.

Scientific studies revealed that the genes for the red and green color receptors
are located on the X chromosome, of which males have only one and females have
two; this is why color blindness is more widely diffused among males than females.
Color vision deficiencies are mainly three, they are caused by protan, deutan, and
tritan defects. Deutan color vision deficiencies are by far the most common forms
of color blindness. This subtype of red-green color blindness affects about 8% of
the male population, mostly in its mild form deuteranomaly (Simunovic, 2010).
Red-green color blindness is split into two different types: whereas people affected
by protan color blindness are less sensitive to red light, deuteranopia or deutera-
nomly (the second type of red-green color blindness) is related to sensitiveness on
green light. Actually, color vision deficiencies include the followings: protanopia,
deuteranopia, tritanopia, protanomalia, deuteranomalia, tritanomalia. The first
three are types of dichromacy, which means only two different color receptors
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(cones) are in the retina instead of three (with normal color vision). The second
three (protanomalia, deuteranomalia and tritanomalia) go under the classification
of anomalous trichromacy, which means all three different color receptors (cones)
are present but one of them is shifted in its peak.

In this work we propose a new method for improving the color perception for
people with color vision deficiencies such as protanopia, deuteranopia, protanoma-
lia and deuteranomalia. The main idea behind our work is that saliency maps can
be used as crucial information to detect the most important differences between
the images as perceived respectively by people with normal and deficient vision
systems. We collected eye-tracking observations from people looking at color im-
ages with both normal and deficient vision systems. Eye-tracking data have been
used both as ground truth and as maps to analyze and highlight the drawbacks of
color vision deficient systems with respect to the most important regions accord-
ing to a normal vision system. To detect automatically the perceptual differences
for a given image we first apply a color vision deficiency simulation method and
then we extract the saliency maps of both the original image and the version with
simulated color vision deficiency. The difference between the saliency maps give
us critical information about the regions to be segmented and recolored for the
overall image enhancement for CVD people. Once the images have been enhanced
they have been used as test for eye-tracking experimental sessions with CVD peo-
ple to assess the improvement from a perceptual viewpoint. The eye-tracking data
we gathered during experimental sessions are made publicly available to be used
as a ground-truth under the name of Eye-Tracking of Colour Vision Deficiencies
(EToCVD) (Bruno, A. and Gugliuzza, F. and Ardizzone, E. and Giunta, C. and
Pirrone, R., 2018).

1.4 Contributions

The main contributions of the work presented in this dissertation are:

• A low cost system for the reception of low resolution images transmitted by
NOAA satellite
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• A flexible system for the reception of high resolution images transmitted by
various weather satellites

• A publicly available object attention dataset

• A saliency method based on color Keypoint Density Maps and optimized for
sub-object details

• A multi-scale saliency method based on color Keypoint Density Maps

• A publicly available visual attention dataset of people affected by color vision
deficiencies

• A method to enhance images for people affected by color vision deficiencies
by using a detailed color mapping of the segmented salient regions of the
given image.

1.5 Dissertation Outline

The remainder of the dissertation is organized as follows.
Chapter 2 opens with a short survey of the available techniques for the recep-

tion of data from weather satellites and the segmentation of clouds from images.
Afterwards, it describes our two hardware/software reception systems and the
techniques we used for cloud segmentation. The chapter also reports the exper-
imental results we obtained while developing the low resolution image reception
system.

Chapter 3 lists some well-known saliency algorithms, eye-tracking datasets and
techniques, and methods for the characterization and mitigation of color vision
deficiencies. Afterwards, it describes in detail the eye-tracking sessions we per-
formed and our object attention dataset, Eye-Tracking Through Objects (ETTO);
it continues with an explanation of both our saliency methods based on Keypoint
Density Maps, and ends with a description of our works on color vision deficien-
cies: a dataset and a re-coloring method. Every subchapter includes a report of
the related experimental results and findings.
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Chapter 4 ends the dissertation with the conclusions and some ideas for future
research for each topic covered in this thesis.

1.6 Publications

Parts of the work in this thesis have been published in the following referred
conference proceedings:

• Edoardo Ardizzone, Alessandro Bruno, and Francesco Gugliuzza. Exploiting
Visual Saliency Algorithms for Object-Based Attention: A New Color and
Scale-Based Approach. In International Conference on Image Analysis and
Processing, pages 191–201. Springer, 2017.

• Edoardo Ardizzone, Alessandro Bruno, Francesco Gugliuzza, and Roberto
Pirrone. A Low Cost Solution for NOAA Remote Sensing. In Proceedings of
the 7th International Conference on Sensor Networks (SENSORNETS 2018),
pages 128–134. SCITEPRESS - Science and Technology Publications, Lda.
All rights reserved, 2018.

The following paper has been accepted and is pending publication in a book
series:

• Francesco Gugliuzza1, Alessandro Bruno1, Edoardo Ardizzone, and Roberto
Pirrone. An effective Satellite Remote Sensing tool combining hardware
and software solutions. In Communications in Computer and Information
Science (CCIS), Springer.

The following journal papers have been submitted and are pending review:

• Francesco Gugliuzza1, Alessandro Bruno1, Edoardo Ardizzone and Roberto
Pirrone. A Multi-scale Color and Keypoint Density-based Approach for
Visual Saliency Detection. In Computer Vision and Image Understanding
(CVIU), Elsevier.
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• Alessandro Bruno, Francesco Gugliuzza, Edoardo Ardizzone, Carlo Giunta
and Roberto Pirrone. Image Content Enhancement through Salient Regions
Segmentation for People with Color Vision Deficiencies. In i-Perception,
SAGE Publications.

1Francesco Gugliuzza and Alessandro Bruno contributed equally to this work.



Chapter 2

Satellite Remote Sensing

2.1 State of the Art

In this section we give an overview of the widely adopted techniques for the de-
modulation of signals coming from satellites. Since we perform cloud detection on
remote sensing imagery, we give a brief description of techniques of the state of
the art for cloud detection.

2.1.1 Satellite Communications and Signal Reception

In this section it is our interest to give the reader a brief description of some
aspects related to our research with respect to the satellite communications and
signal reception systems. In the last decades satellites have played a critical role
interconnecting mankind through complex antennas and receiving systems. Sci-
entific literature shows many technical solutions for antenna elements, sensors,
array types, hyperspectral cameras. Depending on the satellite, we can find a low
bandwidth communication system (VHF/UHF) or a high bandwidth communi-
cation system (more recent solutions have been dealing with communications by
using arrays of high bandwidth microwave transponders with the purpose to offer
multimedia services (Farserotu and Prasad, 2000)). Scientific community has paid
particular attention to reconfigurable antennas and ground receiving station, focus-
ing the efforts towards user demands (Rahmat-Samii and Densmore, 2015). In this
respect, several studies have been conducted to assess such aspects as signal prop-
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(a)

(b)

Figure 2.1: (a) APT frame and (b) row format.
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agation, tracking control, higher frequencies, arrays and reflectarrays, mechanical
aspects, frequency selective surfaces (Rahmat-Samii and Densmore, 2015).

Modern communication systems allow satellites to receive and transmit simul-
taneously thousands of signals: radiometers and hyperspectral cameras have been
widely used to analyze Earth’s visible and infrared radiation from the spacecraft,
Synthetic Aperture Radars (SAR) have been used to map surface features and
texture, even through dense cloud cover. Due to the aforementioned reasons, we
are able to analyze soil/vegetation moisture (to detect anomalies and risks) (Al-
Moustafa et al., 2012) or produce 3D models of remote ares of the Earth (up to 1
meter of spatial resolution). Noise and distortions in raw sensor data are usually
linked to the sensor nonlinearities. As a general rule they are usually corrected by
using classification or regression methods (Camps-Valls et al., 2011).

The APT format was developed around 1960 by U.S. National Aeronautics
and Spatial Administration (NASA) as a communication system enabling weather
satellites to take pictures over wide areas and transmit them to ground stations
on Earth (Barnes and Smallwood, 1982; Wallach, 1997). From that time on, APT
has been slightly modified and many stations still keep using analog radio equip-
ment designed in the 1980s or the 1990s. The APT signal is formed by amplitude
modulating a 2400 Hz carrier with each line of pixel data obtained by merging
two images and calibration data, and then frequency modulating the result; the
ease of building a basic receiver composed of a FM demodulator followed by an
AM demodulator and an analog-to-digital converter has sparked the interest of
researchers, scientists and radio operators. Several aspects such as Doppler ef-
fects, free space attenuation (varying with the distance from the satellite) make
the reception and demodulation challenging tasks for signals coming from non-
geostationary satellites. Furthermore, due to satellite’s variable rotation relative
to Earth’s axis, linearly polarized antennas become unsuitable. For this reason
circularly polarized antennas are used to fix the problem, assuring reliable and
effective demodulation and synchronization, as well as a good quality output im-
age. Other than demodulation and frequency tracking, image synchronization
and calibration are usually performed by means of software solutions rather than
hardware systems (Benabadji et al., 2004) because they are non-real time tasks
that require some CPU power; it is also important to say that it would be some-
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what challenging to implement those tasks in hardware (at least for non-experts).
Sensor data can then be further corrected to compensate small sensor alignment
errors, orbit uncertainty and on-board clock offset, by comparing expected and
measured emissivity over land and sea and binning results into a high-resolution
grid (Moradi et al., 2013). Over the last years several researchers have dealt with
satellite remote sensing tools addressing the issue of affordability of hardware com-
ponents and software solutions, to accomplish the tasks mentioned in Chapter 1.
The authors of (Bosquez et al., 2016) designed a land station receiving through the
combination of a software-defined radio (SDR), adaptive antennas on VHF band
and FTP servers for the remote analysis of the obtained images. A satellite receiver
was designed by Mahmood et al. (Mahmood et al., 2016) with the help of Realtek
Software Defined Radio (RTL-SDR), Quadrifilar Helicoidal Antenna (QHA) and
Trifilar Balun. QHA and Balun were designed and constructed under a precise
and controlled environment. The signals were fed to SDR Sharp (generic SDR
software) and were decoded to receive the latest weather image using WXtoImg.
In (Uengtrakul and Bunnjaweht, 2014) the authors proposed an experimental kit
where a radio signal is received into the computer via the digital TV tuner that
operated with the custom driver called RTL-SDR, and then the received signal is
processed with a Python signal processing script. In (Sruthi et al., 2013) a low
cost alternative to USRP (Universal Software Radio Peripheral) was proposed us-
ing RTL-SDR (Realtek Software Defined Radio) which is only used for reception.
Furthermore a mixer circuit maps the baseband signal to the band that can be
received by RTL-SDR.
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(a)

(b)

(c)

Figure 2.2: Examples of (a) a multi-channel SAR image acquired by a Space
Shuttle and enhanced by polarimetry (NASA/Jet Propulsion Laboratory, 1999),
(b) a two-channel NOAA APT image (Group for Earth Observation, 2003) and (c)
one channel of a NOAA HRPT image (Medri, 2005). We are interested in images
(b) and (c): in (b) each pixel covers an area of 4 km x 4 km, while in (c) each
pixel covers an area of 1.1 km x 1.1 km.
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2.1.2 Cloud Detection

Cloud properties such as cloud top height, temperature, infrared radiance have big
impact on atmospheric monitoring results (forecasting of meteorological phenom-
ena) (Feidas et al., 2000). Because of the aforementioned reasons cloud detection
in remote sensing imagery is a very critical step. It is not straightforward to extract
cloudiness mask from a given image from satellite because of several issues with
surface properties such as reflectance and emissivity. Since many satellite mis-
sions are involved into atmospheric monitoring, achieving good results in terms
of detection accuracy is quite important for improving the quality of successive
steps of image analysis. Depending on the satellite product we find several fe-
atures to analyze to detect cloud from an image. In this section we give a brief
overview of the state-of-the-art methods focused on cloud detection in satellite
imagery. Heidinger et al. in (Heidinger et al., 2012) performed a naive Bayesian
approach for cloud detection. This kind of methodology has been adopted for
cloud detection on NOAA AVHRR data. In (Alkhatib et al., 2012) the authors
used the region growing method for dust cloud segmentation. The authors of (An
and Shi, 2015), in order to accomplish the task of cloud detection, proposed an
automatic supervised approach based on the scene-learning scheme. In greater
detail, they simulate a kind of cubic structural data by considering different image
features such as color, statistical information, texture, and structure. In (Ack-
erman et al., 1997) the authors of the document described the methods used to
perform cloud detection in MODIS imagery. Lin et al. (Lin et al., 2015) proposed
a radiometric normalization step to perform cloud detection in optical satellite
images using invariant pixels. In (Karlsson et al., 2015) the authors examined
two probabilistic methods for cloud masking of images from NOAA satellites, ob-
tained with the Advanced Very High Resolution Radiometer. Simpson and Gobat
in (Simpson and Gobat, 1996) used AVHRR Split-and-Merge Clustering (ASMC)
for cloud detection to overcome the problem of spatially and temporally varying
land surface reflectance and emissivity. Split-and-merge clustering allows to seg-
ment the scene in its natural groupings and label them as cloud, cloud-free land,
uncertain. Gonzàlez et al. in (González et al., 2012) performed cloud classification
by using watershed image segmentation, this method has been tested on images
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from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and
Infra-red Imager). The idea behind the method is to segment multispectral im-
ages using order-invariant watershed algorithms computed by a multi-dimensional
morphological operator. In (Yuan and Hu, 2015) after a super-pixel segmenta-
tion step, the authors accomplish the cloud detection task through bag-of-words
and object classification methods. Bai et al. (Bai et al., 2016) performed cloud
detection with machine learning and multi-feature fusion based on a comparative
analysis of typical features such as spectral and texture (Ardizzone et al., 2013b).
A supervised approach using a neural network is proposed in (Yhann and Simp-
son, 1995) for detecting clouds over the ocean using AVHRR data. Other than
the aforementioned methods there are deep learning based techniques such as (Shi
et al., 2016), in which the authors used Convolutional Neural Networks (CNNs)
consisting of four convolutional layers and two fully-connected layers, which can
mine the deep features of clouds.

As already mentioned in Chapter 1, visual saliency has been recently used to
detect regions of interest in remote sensing images: Zhang et al. (Zhang et al.,
2015a) used multi-scale frequency features and pyramids of spatial (color and ori-
entation) features. Techniques based on visual saliency can be used in military
applications, by providing the possibility of automatic segmentation of airports
(Wang et al., 2013b; Yao et al., 2015; Zhu et al., 2015; Zhang and Zhang, 2017),
ships (Wang et al., 2017; Dong et al., 2018) and residential areas (Zhang et al.,
2016) from satellite or aerial images.

Deep learning has also been used in this area of research: Diao et al. (Diao
et al., 2016) implemented and trained a Deep Belief Network to perform object
detection in remote sensing images, while Penatti et al. (Penatti et al., 2015) and
Hu et al. (Hu et al., 2015) investigated the possibility of using commonly adopted
Convolutional Neural Networks for object detection in remote sensing images.

Some surveys on state-of-the-art cloud detection methods for satellite images,
also reporting thorough information on performances and results, can be found in
(Chandran and Christy, 2015; Foga et al., 2017; Le Goff et al., 2017).
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2.2 Low Resolution Method

Our method focuses on the possibility of directly sampling and processing of the
modulated signal entirely in software enabled by recent breakthroughs on Software
Defined Radios (SDR) and CPU computational speed. Our objective was achieving
good results with low cost SDR hardware like RTL-SDR (Sruthi et al., 2013) (a
repurposed DVB-T USB dongle) or LimeSDR: in particular, we had to overcome
hardware limitations present in the RTL-SDR receiver: high noise figure and low
ADC resolution. We also dealt with the inherent drawbacks caused by frequent
tuner saturations. We developed an integrated hardware and software system
able to perform the following steps: satellite pass prediction, time scheduling,
signal demodulation, image cropping and filtering, and implemented two image
processing algorithms to perform cloud detection.

2.2.1 APT Signal

The APT was introduced in 1960s and it shows its age in some respects: it is a
mixed modulation signal (AM+FM) carrying a completely analog payload. The
standard APT format consists of rows made of 2080 pixels, which are divided in
two sub-rows of 909 pixels each belonging to two different sub-images (A and B)
and then padded with synchronization and diagnostic information words. Images
A and B during daytime are recorded in the visible range and in the infrared range
of the electromagnetic spectrum respectively. At night-time, image A is replaced
with one recorded at an infrared wavelength different from that of B. Rows can
be grouped logically in frames of 128 lines each: a complete frame contains image
calibration data and dynamic range references (wedges) (Wallach, 1997). The
payload is used to amplitude modulate a 2400 Hz carrier according to (2.1))

s(t) = [1 + m(t)] A cos(2πfct) (2.1)

where m(t) is the modulating signal, A the carrier’s amplitude and fc the carrier’s
frequency. The amplitude modulated signal is then frequency modulated with a
frequency deviation of about 18-20 kHz and transmitted in the 137 MHz band at
about 5 W EIRP (36.99 dBm) and 4160 sym/s symbol rate. Right hand circularly
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polarized (RHCP) antennas transmit the signal, so particular care had to be taken
when choosing which antenna type to use in the receiving station.

2.2.2 Hardware

Antenna

NOAA weather satellites require a circularly polarized antenna: the "turnstile"
crossed-dipoles design was chosen because of its simplicity and the good perfor-
mance provided when placed over a ground plane. Ease of construction, durability
and suitability of common materials (which can be bought in a hardware store)
compensate the drawbacks of the system: the medium gain offered (6 dBi) and
many nulls present in such a design (Griffiths, 2014). In particular, the antenna
shown here has been built exclusively off PVC pipes, threaded bars as dipole ele-
ments, nuts and bolts and 75 Ω generic coaxial cable.

Low Noise Amplifier

The antenna is directly connected to a repurposed old TV amplifier (SIEL .269 01),
modified to behave like a wide-bandwidth amplifier. The input variable attenuator
and high-pass filter have been removed, and the RF output has been separated
from DC power path, allowing power without a bias tee. The amplifier uses two
active components:

• BFR90A - 16 dB gain, 1.8 dB NF

• BFR91A - 14 dB gain, 1.6 dB NF.

The results are 30 dB gain and ∼ 1.83 dB NF (calculated using Friis’ formula).
Ignoring noise introduced by amplifier’s passive components, and considering

a room temperature of 290 K and 40 kHz bandwidth, the noise output of the
amplifier can be calculated with formula (2.2).

Nin + g + NF (2.2)

Nin is the input noise (-127.95 dBm), g the gain (30 dB) and NF the total noise
figure (1.83 dB). The result is a noise output of -96.12 dBm. Input noise has been
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(a)

(b)

(c)

Figure 2.3: (a) The turnstile antenna built for 137 MHz reception, (b) the modified
TV amplifier, (c) a RTL2832U-based DVB-T dongle with an Elonics E4000 tuner.
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calculated using formula (2.3).

10 log10(kTB) + 30 (2.3)

k is the Boltzmann constant, T is absolute temperature and B is signal bandwidth,
while +30 has been added to convert results from dBW to dBm. Considering
NOAA satellites transmit at 5 W EIRP, when they are at receiving station’s zenith
the signal power at the receiver’s input can be calculated as follows:

36.99 dBm - 133.34 dB + 6 dBi - 3 dB + 30 dB = -63.35 dBm (2.4)

133.34 dB is free space loss and 3 dB is the estimated loss due to cable and
connectors. Output SNR in best-case conditions is then 32.77 dB, more than
enough to ensure good image quality.

Filters

The amplifier’s output is connected to a SAW filter (Tai-Saw TA1581A) centered
on 137.5 MHz to attenuate out-of-band signals and reduce the severe distortion
caused by high-power FM broadcast stations and GSM signals. The TA1581 is a 50
Ω device, but an impedance matching circuit has not been installed because of the
low mismatch loss (0.177 dB from antenna to filter and another 0.177 dB from filter
to next RF device, which has 75 Ω impedance) compared to filter’s 3.5 dB insertion
loss. We added a standard ferrite bead near the receiver to shield common-mode
interference caused by high-frequency equipment (PC, lab instruments, electronic
ballasted lamps, etc.).

SDR Receiver

The SDR hardware is widely available at a very low cost and is built around two
chips: a RF tuner and an ADC/COFDM demodulator combo chip. The first
used to be an Elonics E4000 (zero-IF), but has been replaced on new models with
two superheterodyne alternatives, the Rafael Micro R820T and R820T2. The
demodulator chip, a Realtek RTL2832U, is commonly used to demodulate the
QPSK or QAM DVB-T signal into a MPEG stream and send it to a PC via an
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USB interface, but has a hidden passthrough mode which allows passing the ADC
sample stream instead. The samples are internally filtered by a 32 coefficients FIR
filter. For this study a dongle containing an E4000 tuner has been used.

2.2.3 Software

The RTL2832 and the tuner require specific initialization and tuning commands,
so we decided to rely on a third-party hardware abstraction library coded by
the RTL-SDR team (Osmocom, 2012), used by the official Mathworks RTL-SDR
support package (Sergienko, 2014). The latter allows easy access to the SDR
hardware directly from MATLAB and Simulink environments. As a consequence,
this study has been focused on the development of DSP algorithms on Simulink,
taking advantage of its model-to-code conversion functionality.

We originally decided to use the very efficient Kyle Keen’s rtl_fm (Keen, 2013)
FM demodulator, but we later found that it was very easily saturated probably
due to some issues in its integer math calculations. Therefore, it was necessary to
implement a simple FM demodulation algorithm directly in the Simulink model.

The software we developed consists of the following parts:

• Satellite pass predictor

• Digital down-converter

• FM demodulator

• FIR low-pass filter

• AM demodulators

• Synchronization block

• Pixel dynamic range calibration block

• Model’s parameters generator.
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Figure 2.4: Digital down-converter.

Satellite Pass Predictor

Because most weather satellites follow a polar orbit, they periodically pass on the
same regions of the Earth. Each pass must be precisely predicted to schedule
when to start and stop signal reception and demodulation, so John Magliacane’s
PREDICT (Magliacane, 2001) software has been used to predict start/end times
and maximum elevations of the next satellite passes. In our system this software is
called from a script and configured via command line parameters, and its output
gets parsed to make it compatible with Microsoft Windows’ task scheduler or, in
the future, Linux/UNIX’s cron scheduler.

RTL-SDR Library for Simulink

The Mathworks RTL-SDR library we used includes all the secondary required files,
such as the precompiled low-level hardware abstraction library, sample MATLAB
code and a Simulink signal source block.

Digital Down-converter

In order to mitigate the effects of the DC offset present in the Zero-IF tuner, we
implemented an offset tuning mechanism: the tuner is set 500 kHz lower than the
real signal frequency, and circular frequency shift is performed to shift the satellite’s
signal back to baseband in software. This mechanism works by multiplying the
sampled signal with a complex signal of the type shown in (2.5)

e−jΩ0n = e
−j2πf0n

fs (2.5)
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where f0 is the offset frequency and fs is the sampling frequency.

FM Demodulator

The original implementation of our system included a non-CPU intensive FM
demodulator with automatic output amplitude rescaling (to compensate input
amplitude fluctuations) (Lyons, 2004), but it was prone to uncontrolled phase
shifts in the demoduled output which heavily corrupted the 2400 Hz AM carrier.
Therefore a traditional arcotangent-based FM demodulator (Shima, 1995) with
amplitude rescaling was used in our work.

Low-pass FIR Filter

The high frequency noise present in the FM demodulator output is filtered with
a linear phase FIR filter designed using a Kaiser window and having a cutoff
frequency of 5000 Hz. The latter has been tweaked experimentally by studying
receiver and FM demodulator behavior and output frequency content.

AM Demodulators

In our system two AM demodulators are present: the first is based on a discrete-
time PLL followed by a low-pass filter with a cutoff of 1500 Hz to attenuate 2πfc

frequency components. Being a PLL-based receiver, the choice of Ki and Kp

coefficients influences heavily its stability, performance and frequency tracking
capability, especially when demodulating low SNR signals. We initially considered
the delay of the FIR filter when tweaking the coefficients, as in (Wilson et al.,
2009), but the demodulator was still plagued by frequent losses of lock and low
output SNR. The best results were obtained with the values reported in atpdec’s
(Leconte, 2003) code.

The second demodulator is based on an envelope detector, similar to analog
diode detector demodulators: the absolute value function rectifies the signal and is
followed by a linear-phase FIR filter having steep frequency characteristics. This
filter greatly attenuates the fc component while leaving the modulating signal
intact and having lower computational complexity than a PLL-based approach.
Thanks to the steep characteristics, demodulation is very satisfactory when the
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Figure 2.5: (a) FM demodulator, (b) PLL-based AM demodulator, (c) Envelope
detector AM demodulator.
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input signal has high SNR; when its SNR degrades (as at the start or the end of a
satellite pass) it is recommended to switch to the PLL-based demodulator, which
is also capable to compensate the Doppler effect to a certain extent.

Synchronization Block

APT format is equipped with two synchronization pulses: horizontal synchro-
nization (sync A) is used as a boundary between video lines and inter-channel
synchronization (sync B) is used as a boundary between the two video channels
(Wallach, 1997). Our system includes a DSP block that detects synchronization
pulses and splits the input signal in image lines composed by 2080 pixels; the image
is further decomposed in two sub-images later in the Image Processing code.

The synchronization block requires that the input signal is sampled at a mul-
tiple of the symbol rate (4160 symbols/s) and downsamples it by selecting the
median of an array of N samples, therefore filtering the signal and rejecting im-
pulse noise.

During the experimental stage we also tested a simple interpolation algorithm
for signal sampling, but this solution introduced excessive smoothing to the image
and therefore we preferred the median algorithm solution.

Part (a) of Fig. 2.6 down-samples the signal, while (b) correlates previous part’s
output with a pattern of sync A; synchronization pulses are detected comparing
local correlation peaks with maximum correlation in the last 3/4 seconds (c) (time
during which one and a half video lines get transmitted). If correlation at discrete
instant k-1 is a local peak and is greater than 80% of maximum correlation in said
interval, it is considered as a synchronization pulse and a row formed by the last
2080 samples is inserted as a new element at the end of queue (e). Sometimes,
however, synchronization pulses are lost or are erroneously detected due to signal
fading or noise, so a filtering technique was devised (d): it filters pulses detected
less than 2070 samples after last one. If a pulse has not been detected after
2090 samples the line is inserted at the end of the queue anyway and the 2090
samples counter is reset; the 2070 samples counter is not reset not to interfere
with subsequent synchronization pulses. Finally, the Rate Transition block (f)
outputs two lines of 2080 pixels each per second.
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(c)

(d)

(e)

(f)

Figure 2.6: Synchronization block.
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Figure 2.7: Pixel dynamic range calibration block.

Pixel Dynamic Range Calibration Block

Each frame, composed of 128 rows, contains 16 "wedges": the first nine carry data
about the image dynamic range (wedges 1-8 represent values from 1/8 to 8/8,
while 9 is the zero reference). Our calibration block correlates a column of pixels
of the wedge region with an example pattern, and then finds the exact position of
each wedge. The values of wedges 8 and 9 are sampled and intensity offset and
dynamic range are calculated. Offset is subtracted from pixel values and the result
is divided by the detected dynamic range to normalize pixel values to the [0, 1]
interval: values outside this range are considered noise or saturation and clipped
to 0 or 1.

This block outputs a stream of rows composed of 2080 pixels, which are later
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Figure 2.8: AVHRR image after automatic cropping.

processed using Image Processing algorithms.

2.2.4 Experimental Results

Our system generates a 2080x2·T image, where T is running time in seconds.
Background white noise or artifacts caused by low signal SNR, fading, interferences
and out-of-band intermodulation (Fig. 2.8) are cropped out by an algorithm using
pixel variance in calibration wedges to estimate row reception quality. Only rows
whose calibration wedges have an entropy below a certain threshold are kept. To
further enhance image quality, various Image Processing filters have been applied
to the output images and objective metrics (PSNR, RMSE, SNRrms and SSIM)
have been used to compare the results, which are reported in Table 2.1. The
disk filter is shown to be achieving the best results (Fig. 2.9). The results were
satisfactory during all the 9 signals reception tests we performed: the PLL-based
FM demodulator and processing chain exhibited good performance even under low
SNR conditions.

After image denoising we tried two classical approaches to image segmentation,
in order to isolate cloud pixels both from land pixels and the rest of the image: the
first approach uses the Otsu method (Zhang and Hu, 2008), a global thresholding
based on spatial clustering; the one-dimensional version of the method uses only
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Figure 2.9: Disk filtered remote sensing image from NOAA.
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(a)

(b)

Figure 2.10: (a) Cloud segmentation obtained with Otsu method and (b) cloud
segmentation achieved using the K-means algorithm (K = 3).
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Table 2.1: Objective metrics results for image enhancement filtering.

Method PSNR [dB] RMSE SNRrms SSIM
None (raw image) 17.788 0.129 4.253 0.557

3x3 arithmetic mean filter 17.981 0.126 4.228 0.606
3x3 geometric mean filter 13.655 0.208 2.488 0.472
3x3 harmonic mean filter 13.295 0.216 2.357 0.449

3x3 contraharmonic mean filter
with Q = 1

18.023 0.126 4.499 0.625

3x3 gaussian filter 18.485 0.119 4.551 0.609
3x3 disk filter 18.590 0.118 4.570 0.634

Adaptive median filter
(min: 3x3 - max: 5x5)

18.444 0.120 4.586 0.622

Adaptive filter 3x3 16.298 0.153 3.550 0.563

the gray level information of the pixel, otherwise the 2D version of the method uses
both the gray level information of the pixel and the spatial correlation within the
neighbourhood. It is widely used for its simpleness and effectiveness, and is a good
solution for images coming from NOAA satellites because it is robust against noise
(usually present in APT images); an example of its output is shown in Fig. 2.10a.
The second approach is based on K-means segmentation (MacQueen et al., 1967)
with K = 3, and its results are also satisfactory and are shown in Fig. 2.10b.

2.3 High Resolution Method

Our new high frequency receiving system is designed to receive and demodulate the
signals of various meteorological satellites (not only NOAA) transmitting at 1.7
GHz. At this band the signals can have a larger bandwidth and convey data from
multiple sensors at higher resolution (e.g. High Resolution Picture Transmission -
HRPT (Wallach, 1997)).

Our high frequency system is still in the active development and validation
phase, so no high resolution images have been received and demodulated yet.
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2.3.1 HRPT Signal

HRPT is encoded and trasmitted very differently than APT. It is a native digital
signal modulated using a Phase Shift Keying (PSK) scheme and trasmitted by a
circularly polarized antenna at microwave frequencies, around 1700 MHz (Wallach,
1997). The payload contains various high resolution (1.1 km) satellite images at all
the wavelengths supported by the radiometer (visible, NIR, MWIR, LWIR etc.);
usually it also contains scientific or diagnostic data acquired by other on-board
instruments.

There are some variants of HRPT, like Advanced HRPT (AHRPT) and Chinese
HRPT (CHRPT): main differences are error correction codes (ECCs), bandwidths
and data formats (EUMETSAT, 2013; Zhang et al., 2006). AHRPT is currently in
use on EUMETSAT Metop satellites, while CHRPT is used on Chinese FengYun
satellites.

2.3.2 Hardware

Antenna

The system has been designed around an offset parabolic antenna having a di-
ameter of 1.3 m and an efficiency factor of 0.75 (Fig. 2.11a). Because traditional
systems have been built using prime-focus dishes having an efficiency of 0.6, our
dish can actually have the same performance of a 1.5-1.6 m prime-focus dish, while
being lighter and putting less stress on the antenna rotators. As it can be calcu-
lated using formula (2.6), where k is the efficiency factor, D the diameter and λ
the signal wavelength, our antenna has a theoretical gain of 26 dB at 1.7 GHz
(Fig. 2.11b).

10 log10

[
k
(
πD

λ

)2]
(2.6)

The antenna’s structure holds a helical feed designed for a dish having a fo-
cus/diameter (f/D) ratio of 0.8 (Fig. 2.12).
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(a)

(b)

Figure 2.11: (a) The offset parabolic antenna, (b) theoretical gain vs. diameter of
a parabolic antenna having an efficiency of 0.75.
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Figure 2.12: The helical feed.

Antenna Rotator

In order to rotate and keep the antenna pointed towards the satellites, a Yaesu
G-5500 rotator has been chosen for its durability and reliability, as it has been
observed by various amateur radio operators. It can be controlled by the computer
via the Yaesu GS-232A interface, which also allows to change azimuth rotation
speed to ensure better satellite tracking.

Low Noise Amplifier

In order to amplify the received signal power to an easily demodulable level, we
designed and built a dedicated LNA board. It has two stages: the first stage uses
an ATF-36163 pHEMT transistor having a very high gain (> 20 dB) and low noise
figure (< 0.5 dB) at 1.7 GHz. The second stage further boosts the signal and is
based on a more traditional GaAs MESFET, the ATF-13284, which offers a 16 dB
gain and 0.6 dB noise figure ad 1.7 GHz. Because those are high frequency and
high gain components, PCB design was very critical and we had to take various
approaches to avoiding unwanted emissions, instabilities and impedance mismatch.
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(a)

(b)

(c)

Figure 2.13: (a) The amplifier’s schematic, (b) its gain vs. frequency plot, (c) the
populated PCB.
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The design has also been optimized for minimum noise figure (0.5 dB) at 1.7 GHz,
while also keeping a very high gain (> 35 dB) and being easily reconfigurable by
simply changing discrete inductors and capacitors. The circuit schematic can be
seen in Fig. 2.13a, while a simulation of its performance is reported in Fig. 2.13b.
Finally, the final version of the PCB after it has been populated with components
is in Fig. 2.13c.

SDR Transceiver

The SDR hardware we chose for our system is the LimeSDR, because it has an
extremely wide bandwidth of 61.44 MHz, it is fully open source and it uses the
latest Lime Microsystems RF chip, the LMS7002M. The LimeSDR is capable of
continuous tuning from 100 kHz to 3.8 GHz and its digital design will allow to
offload the computational complexity of the demodulation task from the CPU to
the integrated FPGA in the future.

2.3.3 Software

MathWorks Simulink is not optimized for real-time processing of high bandwidth
signals, so we chose a different and more appropriate framework: GNU Radio (The
GNU Radio Foundation, 2001). GNU Radio offers a flowgraph representation of
signal processing algorithms and its blocks are written in Python or C++. Blocks
can take advantage of fast and efficient low level math functions via CPU abstrac-
tions (VOLK machines (The GNU Radio Foundation, 2015)) or, using third-party
libraries, they can directly use GPU acceleration.

Many SDR transceivers and signal processing blocks are already supported in
GNU Radio.

Flowgraphs for APT or HRPT signal decoding are already available on the
Internet (Csete, 2010; Bülo, 2018) or in the official libraries (The GNU Radio
Foundation, 2009) (Fig. 2.14). Our objectives include adding support for other
signal types, as Color HRPT (CHRPT), Advanced HRPT (AHRPT), Meteor-M
HRPT, High Rate Information Transmission (HRIT), GOES Variable (GVAR)
and GOES Rebroadcast (GRB).
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Figure 2.14: Example flowgraph for HRPT reception in GNU Radio (The GNU
Radio Foundation, 2009).
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Some parts of the legacy software solution, like the satellite pass predictor, are
general purpose and can be reused.



Chapter 3

Visual Saliency

3.1 State of the Art

Models and approaches for visual saliency detection are inspired by human visual
system mechanisms. As shown by (Medathati et al., 2016), there is an intimate
connection between visual attention and eye movements; for this reason in the
last decades, how, why and when we move our eyes is becoming a major topic in
scientific research.

Visual attention is mainly guided by two factors: bottom-up factors and top-
down factors. Bottom-up factors are stimulus driven, derived from the regions of
interest that pop out from the visual scene to our eyes (Snowden et al., 2012). Re-
gions of interest that catch human attention are highly discriminative with respect
to the center-surround principle. Visual Saliency aims to imitate the behavior of
the human visual system by predicting the fixation points of the most important
regions of an image from a perceptual point of view. Visual Saliency is considered
to be a multidisciplinary branch of research, laying on the progress achieved by
different sciences such as Psychology, Neurobiology, Computer Science, Artificial
Intelligence, Medicine. In our work we approach Visual Saliency by using a com-
putational method: we reveal the most salient subset of an image by building the
corresponding saliency map. A saliency map is a grayscale map with each pixel
falling in the dynamic range [0, 255]. The higher the intensity value, the more
salient the location of the visual scene.
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As well as visual attention approaches, visual saliency approaches can be grouped
by considering the visual feature and the visual attention process involved within
the extraction of the saliency map. More in detail, Visual Saliency methods can
be grouped in three main approaches: bottom-up, top-down, hybrid.

Visual Saliency bottom-up methods are stimulus-driven, characterized by the
so-called “visual pop-out” saliency. In these approaches the exogenous attention is
involved with the visual saliency. The center-surround operation (Itti et al., 1998)
and graph-based activation maps (Harel et al., 2006) are examples of implemented
exogenous attention processes. These methods exploit low level features of the
images such as contrast, texture, color, intensity to give rise to saliency maps.

Visual Saliency top-down methods are based on high level visual tasks such as
text, object, face detection. In top-down methods the predefined task is given by
the object class to be detected (Luo, 2007).

Hybrid methods are conceived to work on two levels: a bottom-up layer allows
to extract a noisy saliency map and a top-down layer filters out noisy regions in
saliency maps created by the bottom-up layer.

In (Itti et al., 1998) the authors proposed a bottom-up approach based on
multi-scale analysis of the image. In greater detail, multi-scale image features are
used to create a topographical saliency map, then a dynamical neural network
selects the attended locations with respect to the saliency values. The principle of
center-surround difference is adopted in (Koch and Ullman, 1987) for the parallel
extraction of different feature maps. In (Harel et al., 2006) Harel et al. proposed
a saliency method (well known as GBVS) based on a biologically plausible graph-
based model: the leading models of visual saliency may be organized into three
stages: extraction, activation, normalization. Wang et al. (Wang et al., 2016)
surveyed the corresponding literature on the low-level methods for visual saliency.

An effective method (Sun et al., 2016) for visual saliency detection based on
multi-scale and multi-channel mean has been proposed by Sun et al. The image
is decomposed and reconstructed by using wavelet transform and a bicubic in-
terpolation algorithm is applied to narrow the filtered image in multi-scale. The
saliency values are the distances between the narrowed images and the means of
their channels. SIFT Density Maps and Keypoint Density Maps have been pro-
posed in our previous works to extract saliency maps and texture scale (Ardizzone
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et al., 2011, 2013a,b, 2017a). A bottom-up approach is proposed by Aboudib
et al. (Aboudib et al., 2015): the authors based their method on Itti and Koch
original work in (Itti et al., 1998), but they added a visual angle associated with
the image, simulating the fact that viewing a given image from different distances
changes the visual angles of the image and, as consequence, it might change the
behavior of the Human Visual System (HVS). In (Qian et al., 2013) the authors
detect the salient regions of an image by means of contrast feature calculated with
various surrounding areas. Otherwise, the authors of (Wang et al., 2013a) incor-
porated multi-spectral informations for saliency detection. In (Lie et al., 2017) it
is proposed a low-resolution saliency estimate based on random color sampling.
In (Hou et al., 2013) the non-uniform distribution of the visual information in an
image is computed by employing Independent Component Analysis (ICA) to give
a measure of the saliency. The authors of (Zhang et al., 2015b) obtained initial
saliency seeds by sorting the image boundaries applying a nonlocal anisotropic
diffusion equation to the image. The bright and dark regions are usually within
a texture and play an important role in terms of perceptually salient attributes,
for this reason (Syeda-Mahmood, 1999) specifically analyzed texture features to
obtain a saliency measure. A probabilistic approach, associated with the use of
graph cut and diffusion equation, for salient object detection has been recently pro-
posed by (Aytekin et al., 2018). Tu et al. (Tu et al., 2017) integrate two saliency
maps computed from object proposals and motion-dominated methods, to obtain
a spatio-temporal saliency map.

A saliency detection method based on a Kalman filter is proposed in (Roy
and Mitra, 2016), inspired by biological phenomena such as the visual surprise
and the saccadic eye movement (Bigdely-Shamlo et al., 2008). By adopting the
same approach of Itti et al. (Itti et al., 1998), each features channel is individually
represented with a generated saliency map by using Kalman filter algorithm, then
all of them are combined in a final map.

In top-down approaches (Luo, 2007; Sundstedt et al., 2004), the visual attention
process is considered task-dependent, and the observer’s expectations and wills
analyzing the scene are the reason why a point is fixed rather than others. In (Yang
and Yang, 2017) the authors performed saliency detection with a top-down model
that jointly learns a Conditional Random Field (CRF) and a visual dictionary.
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Kanan et al. (Kanan et al., 2009) adopted the SUN framework to detect the salient
regions of an image by using global features and top-down components.

Generally hybrid systems for saliency use the combination of bottom-up and
top-down stimuli. In many hybrid approaches (Tsotsos and Rothenstein, 2011;
Chen et al., 2003), a top-down layer is used to refine the noisy map extracted
from the bottom-up layer. For example the top-down component in (Tsotsos and
Rothenstein, 2011) is face detection. Chen et al. (Chen et al., 2003) used a com-
bination of face and text detection and they found the optimal solutions through
branch and bound technique. A well known state-of-the-art hybrid approach was
proposed by Judd et al. (Judd et al., 2009a) in addition to a database (Judd et al.,
2009b) of eye-tracking data from 15 viewers. Low, middle and high-level features
of this data have been used to train a model of saliency. Eye-tracking methodology
is widely used for tasks such as Human Computer Interaction (Gentile et al., 2016),
advertising evaluation (Hervet et al., 2011) and different applications (Duchowski,
2002; Oliveira et al., 2017; Li et al., 2018).

Generally speaking, saliency approaches are based on several properties, fe-
atures and notions belonging to psychology, computer vision, neuroscience, biology
and medicine. In (Mahdi et al., 2017) most of these methods are categorized in
seven groups with respect to their computation mechanisms:

• Bayesian models (Zhang et al., 2008)

• Cognitive models (Walther and Koch, 2006)

• Decision theoretic models (Gao and Vasconcelos, 2005)

• Spectral analysis models (Li et al., 2013)

• Graphical models (Salah et al., 2002)

• Information theory models (Wang et al., 2011)

• Learning-based models (supervised learning and unsupervised learning) (Judd
et al., 2009a; Vig et al., 2014b).

Yu et al. in (Yu et al., 2016) used a paradigm based on Gestalt grouping cues
for object-based saliency detection. In (Chang et al., 2011) the authors proposed
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a method based on a graphical model of the relationships between saliency and
objectness.

The authors of (Toet, 2011) reported a comparative study that evaluates the
performances of 13 state-of-the-art saliency models. A new metric is also proposed
and compared with previous models. In (Duncan and Sarkar, 2012) the authors
gave some formal definitions on three different types of approaches (bottom-up,
top-down, hybrid) and an overview on existing methods. Furthermore, the authors
offered a description of publicly available datasets and the performance metrics
used.

In the last few years, because of their success in recognition and classification
tasks, many researchers approached visual saliency by adopting deep learning tech-
niques (LeCun et al., 2015). Deep learning methods allow to extract simple and
complex structures in large data sets by using backpropagation algorithm to tune
the representation parameters.

For the aforementioned reasons, visual saliency models can be learned by using
deep Convolutional Neural Networks (CNNs). For instance, in (Li and Yu, 2016)
the authors introduced a neural network architecture, containing a CNN with
fully connected layers responsible for feature extraction at different scales. (Das
et al., 2017) try to answer the question: do humans and deep networks look at
the same regions? For this purpose they conduct qualitative and quantitative
comparison of the maps generated by state-of-the-art attention-based models and
a task-independent saliency baseline.

The model proposed in (Kruthiventi et al., 2017), called DeepFix, is based on
hierarchical learning, and detects semantic features at several levels of abstraction
while the large receptive fields in network layers allow to reveal the global context.

In (Cornia et al., 2018) the authors proposed a saliency map method based
on deep learning technique achieving good results with respect to the accuracy
metrics. In a few words, the saliency prediction architecture proposed in (Cornia
et al., 2018) incorporates an Attentive Convolutional Long Short-Term Memory
(Attentive ConvLSTM) network, focusing on relevant locations of the image to
refine saliency features.

(Johnson-Roberson et al., 2015) used the view frustum and a Hidden Markov
Model for calculating saliency. (Zhang et al., 2017) proposed a method for con-
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structing a primitive saliency dictionary: they used representation coefficients and
reconstruction errors to count saliency measures. (Chakraborty and Mitra, 2016)
detect multiple salient objects in a scene with dense subgraph computation. (Rigas
et al., 2015) extract features via local sparse coding on image patches. An over-
complete dictionary is trained using natural images, and a bio-plausible scheme
based on the Hamming distance is used to compare patch representations.

A description of the three levels of saliency (Visual Attention Modeling, Salient
Object Detection and Salient Object Segmentation), as well as a comparison of the
performances of various saliency algorithms and a description the characteristics
of the most relevant evaluation datasets can be found in (Furnari et al., 2014).
The authors explain why it is necessary to test a saliency algorithm on multiple
datasets, and they also show that there is a connection between different saliency
levels: eye fixations are suitable for detecting and segmenting salient objects. This
leads to the conclusion that saliency algorithms designed to perform those two
tasks using bottom-up features could still be improved.

We have recently concentrated our efforts on studying the performance of sev-
eral visual saliency approaches with respect to the object attention task. We al-
ready knew that visual selective attention includes, among others, location-based
and object-based attention (Matsukura and Vecera, 2009). Thus, we aimed to
analyze visual saliency performance with respect to how attention selects features
that are part of an object. In line with this, several experiments conducted over
the years demonstrated that observers prefer to make an eye movement to the
other end of the same fixated object rather than to an equidistant end of a differ-
ent object, that is, a preference to make eye shifts within the same object rather
than between objects (Theeuwes et al., 2010).

As revealed by findings and researches over last decade (Kim and Lui, 2011;
Cheng et al., 2015; Chen et al., 2016a), the relations between low level features of
the image and visual attention processes need to be further investigated. For this
purpose our investigations addressed in particular the roles played by color and
scale features in detecting the visual saliency of a given image. Furthermore, it is
observed that most recent saliency detection methods are based on deep learning
approaches and achieve high accuracy level in detecting saliency maps but they
need high performance systems as a background. In this respect, we investigated
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several architectures and methods to be compared considering how convenient
a solution is in terms of saliency detection performance and software-hardware
architecture.

3.1.1 Eye-tracking Technologies and Datasets

Eye-tracking technology offers a direct measure of visual attention by recording two
kinds of eye movement, fixations and saccades (Duchowski, 2017). Eye-tracking
is widely used in many different task such as the analysis of user behavior in
marketing, advertising effectiveness evaluation, neuroscience, human-computer in-
teraction, gaming, medicine, visualization research and other related disciplines
(Blascheck et al., 2014). Fixations indicate where the observer actually looks,
while saccades are movements between two fixations. Saccades and fixations to-
gether form the scanpath. Scanpaths data are used to show which regions of an
image catch the observer attention. Visual saliency can be used in several topics
and different methods of acquiring fixation points and scanpath data are available
in the state of the art.

Eye-tracking technology has improved through the years with the introduction
of more accurate instruments and more reliable equipment. Eye-tracking methods
can be grouped in four generations (Duchowski, 2017):

• First generation - eye-in-head measurement of the eye consisting of tech-
niques such as scleral contact lens/search coil, electro-oculography

• Second generation - photo and video-oculography

• Third generation - analog video-based combined pupil/corneal reflection

• Fourth generation - digital video-based combined pupil/corneal reflection,
augmented by computer vision techniques and digital signal processors (DSPs).

The eye-trackers of the fourth generation that have recently appeared on the
market make use of digital optics.

Eye-tracking technology improved its performance in usability, accuracy, and
speed by equipping trackers with on-chip Digital Signal Processors (DSPs).
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Modern eye-trackers are based on infrared emitters and cameras: the infrared
light reflects on the corneas and they appear very bright in the camera image; the
position of pupils and reflections can be analyzed and further correction can be
applied to account for head position, distortion caused by prescription glasses or
small misalignments of the eye-tracker itself. The data is finally converted to x
and y positions on the screen and made available through a software API. The
devices are usually accompanied by drivers and SDKs that allow integration in
video games and other software.

Modern eye-trackers can be grouped in three categories: low, middle and high-
end. Low-end devices like the GazePoint GP3, the Tobii EyeX and 4C and the
EyeTribe are typically under $1000 and are mainly marketed as gaming peripherals:
they have low refresh rate (60 Hz) and require all the calculations to be performed
in software on the computer.

Middle-end eye-trackers like the GazePoint GP3 HD and EyeTech VT3 mini
are under $10000, are typically aimed at research and incorporate higher FPS
cameras and on-board processing. The latter is required to offload mathemati-
cal computations at high refresh rates (up to 200 Hz) and avoid saturating the
communication bus.

High-end eye-trackers like the Tobii TX 300, the EyeLink 1000 and the Smart
Eye Pro are over $10000 and boast features like higher refresh rates (300 Hz and
beyond), compensation for large head movements and extreme accuracy and pre-
cision. In this range we can also find some glasses-mounted trackers (e.g. the
Tobii Eye Tracking Glasses 2), which allow integration with head mounted dis-
plays or data acquisition in situations where a user is not sitting behind a screen
but, instead, he/she is roaming around in an environment.

The recent progresses in eye-tracking technology allow scientific researchers to
collect a large quantity of eye gaze data for different purposes.

Jiang et al. collected (Bappy et al., 2016) a dataset named EyeCrowd by record-
ing the eye movements of 16 subjects watching images with various levels of crowd.
Judd et al. (Judd et al., 2009a) created the MIT dataset, composed of 1003 land-
scape and portrait images and the corresponding fixation point maps, collected
during a free viewing session.

Some recent datasets such as (Lin et al., 2014) and (Shen and Zhao, 2014) are
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respectively focused on domains like visual saliency in low resolution images and
web pages.

The authors of (Ramanathan et al., 2010) focused on the eye-tracking of face,
portrait, nude, action, affect-variant groups giving rise to a dataset composed of
99 fixation point maps. The aforementioned datasets are collected during free
viewing session, that is, the subjects were not assigned any specific visual task
when watching. On the other hand, task driven eye-tracking data are found in
such works as (Ehinger et al., 2009).

A very popular fixation data set containing 2000 images from 20 different cat-
egories has been proposed in (Borji and Itti, 2015).

In our experiments we followed the same data gathering protocol used by Tor-
ralba et al. (Judd et al., 2009a).

3.1.2 Image Content Enhancement through Salient Regions
Segmentation for People with Color Vision Deficien-
cies

Biological science focused on molecular genetics underlying color vision (Neitz and
Neitz, 2011). Machado et al. (Machado et al., 2009) simulated color vision by using
a physiologically-based model and handling normal color vision and color vision
deficiencies such as anomalous trichromacy and dichromacy in a unified way.

A lot of water passed under the bridge since Shinobu Ishihara proposed the
series of plates as test tool for color-blindness consisting of 38 isochromatic plates
(Ishihara, 1960): the plates form an easy method of establishing the diagnosis and
distinguishing cases of red-green deficiencies. The plates are held 75 cm from the
subject and tilted so that the plane of the paper is at right angle to the line of
vision. Since then, several models have been proposed as tool to detect color vision
deficiencies.

The Farnsworth-Munsell 100-Hue (FM100) tests (Farnsworth, 1957) is a stan-
dardized measure of chromatic discrimination, based on colored cap-sorting, which
has been widely used in both adults and children. During FM100 test it is asked
to order the shown color plates in the correct order, any misplacement can be
related to a sort of color vision deficiency (Vingrys and Cole, 1983). The RGB
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Anomaloscope color blindness test consists of two different lamps with different
lights to be matched and it is a well known and accurate tool to classify color
blindness. It was developed by a German ophthalmologist more than 100 years
ago and it is still being used internationally to check color vision deficiencies and
specific subtypes (Lakowski, 1969).

A pseudoisochromatic color plate test called Color Vision Testing Made Easy
(CVTMET) has been proposed by Cotter et al. (Cotter et al., 1999). It was de-
signed for all age groups, it uses the identification of simple shapes and objects
to detect red-green color deficiencies. Bimler et al. quantified variations in color
spaces with respect to sex differences (Bimler et al., 2004). A web application
written in JavaScript has been presented in (Gambino et al., 2016) by Gambino et
al. implementing a digital Ishihara-like test for pre-school aged children. In (Chen
et al., 2016b) Chen et al. delivered a color-blindness image (CBI) in order to de-
liver direct and effective information to dichromats by transforming color-blindness
images into the pattern-highlighted image. Transform is made by means of color
component analysis, pattern attention as well as thresholding. The experiments
confirmed the improvements of processing steps on CBI by means of Ishihara test
plates.

A lot of progress has been made in the last decades on simulating color vision
deficient systems (Meyer and Greenberg, 1988; Brettel et al., 1997; Kondo, 1990;
Walraven and Alferdinck, 1997; Ichikawa et al., 2003, 2004). Machado and Oliveira
(Machado et al., 2009) proposed a method aimed at simulating the loss of chromatic
contrast transforming the RGB image into a orthogonal dichromatic color space.
Tajima and Komine (Tajima and Komine, 2015) developed a method based on
visual saliency for quantifying and visualizing information loss and gain resulting
from individual differences in spectral sensitivity. An algorithm (Rasche et al.,
2005) that transforms color to grayscale preserving image detail by maintaining
distance ratios during the reduction process is proposed by Rasche et al.

Some methods of the state the art focused on the enhancement of colored
regions with respect to visual attention perspective. Huang et al. (Huang et al.,
2009) approach is based on grouping the colors on CIE L*a*b* space through a
Gaussian Mixture model.

eyePilot (Perception Data Inc., 2006) is a fairly useful technique developed to
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assist color blind people in understanding and working with color-coded informa-
tion. Jeong et al. (Jeong et al., 2012) proposed an image re-coloring method based
on color clustering with an information preserving property for color-blind people.

We focused our attention on how effective the enhancement of salient regions
of an image is with dichromatic vision systems. We used visual saliency like a tool
to detect the most important differences between normal and color vision deficient
systems.

3.2 Eye-Tracking Through Objects (ETTO)
Dataset

An experimental session has been conducted to record the eye-tracking data and
therefore to validate our research. We focused our experimental session on the
analysis of the object attention, 5 objects have been selected from the Object Pose
Estimation Database (OPED) (Viksten et al., 2009a,b) to be observed by 24 sub-
jects (males and females between 21 and 34 years old). The database consists of
several images with single objects in the foreground and an homogeneous back-
ground color, but any dataset with a single main object (target) and a limited
number of distractors in each image would have been appropriate as well. We se-
lected 19 views having a 130◦ fixed vertical angle and an horizontal angle ranging
from 0◦ to 180◦ in 10◦ increments. The resulting 95 images have been processed
to filter the noise that could grab human attention. Then a padding operation
has been applied to the images to fill the 22 inch screen at 1920x1080 resolution.
During the experimental session the subject was placed at approximately 70 cm
from the screen (Fig. 3.1). To ensure an accurate recording of the eye movements,
the Tobii EyeX (running at 60 Hz sampling rate) has been calibrated to each user.
Each image was shown for 3 s while the eye-tracker was capturing all user’s sac-
cades and fixations, then a neutral gray screen was shown for 1 s before showing
the next image. This protocol allowed us to keep the results consistent to those of
other works in literature (Judd et al., 2009a).

The data acquired from the eye-tracker consist of three arrays of the same
length: an array with the coordinates of the fixation points of the left eye, an
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array with the coordinates of the fixation points of the right eye, the sampling
time values are stored in a third array.

We computed the coordinates of the fixation points by averaging the coordi-
nates of the first two arrays, that is, the coordinates of both eyes. The results
have been converted to screen coordinates, then the real fixation points map (at
full resolution) have been computed by adding one to the pixel value, each time a
subject looked at that pixel.

The data collected with the eye-tracker needed to be in a continuous form
to be compared with saliency maps. Therefore the real fixation maps have been
convolved with a Gaussian filter and then normalized to [0, 1] (Fig. 3.2).

Our Eye-Tracking Through Objects (ETTO) dataset is publicly available
(Ardizzone et al., 2017b) and contains the the coordinates of each fixation and
with all the corresponding real fixation point maps.
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Figure 3.1: The setup used for eye fixation data acquisition.
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(a)

(b) (c)

Figure 3.2: (a) An image from the OPED and its fixation map (b) before and (c)
after Gaussian blurring.

3.3 Color SIFT Density Map Method

We aimed to improve the method developed in 2011 (Ardizzone et al., 2011) by
adding chroma information to the saliency map generation algorithm based on
SIFT (Lowe, 2004) Density Maps (SDMs). A SDM is built by counting the number
of detected SIFT keypoints inside a sliding window of size k x k centered on each
pixel of the image. To obtain a valid saliency map, the SDM is further processed
by taking the absolute difference of each pixel with the most frequent value (mode)
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of the map, rescaling the values to [0, 1] and blurring the result with an average
filter which has a window size that is half of that used to build the map (k).

Color-based saliency has been implemented in two ways by harnessing the
power of HSV and CIE L*a*b* color spaces. We early found that the optimal
SDM window size equation we used in (Ardizzone et al., 2011):

k = 2blog2 (min (M, N)
4 )c (3.1)

where M and N represent the horizontal and vertical resolution of the image, is
unsuitable in object attention because it is calculated on entire image size, while
the object only takes a small central portion of it, causing excessive loss of detail in
the generated saliency maps. We overcame the problem by first taking the mean
of the dimensions of the object bounding boxes in all images used during the data
acquisition phase, then applying (3.1) to the calculated values.

3.3.1 HSV Color Space Saliency

In HSV an image is expressed using cylindrical coordinates, where hue is an angular
dimension that goes from 0◦ to 360◦ and then back to 0◦, while saturation and
value are linear dimensions. 8-bit RGB images can be easily converted to HSV by
projecting the RGB cube on a chromaticity plane in such a way that an hexagon



3. Visual Saliency 53

is formed:

Cmax = max(R,G,B)
Cmin = min(R,G,B)

∆ = Cmax − Cmin

H =



0 if Cmax = 0(
60× G−B

∆ + 360
)

mod 360 if R = Cmax

60× B−R
∆ + 120 if G = Cmax

60× R−G
∆ + 240 if B = Cmax

S = ∆
Cmax

V = Cmax

255

(3.2)

We convert hue and saturation from polar coordinates to cartesian coordinates1,
in order to eliminate the discontinuity around zero in hue values:

X = S ◦ cos(H)
Y = S ◦ sin(H)

(3.3)

then we rescale the X, Y, V channels to the [0, 1] range for convenience of pro-
cessing and separately calculate statistically processed SDMs. The three maps are
combined into the final saliency map using the following formula:

SMHSV = 1
3(SMH + SMS + SMV ) (3.4)

where SMH , SMS and SMV are the saliency maps of hue, saturation and value,
respectively.

3.3.2 CIE L*a*b* Color Space Saliency

HSV space still shows some shortcomings, namely hue and saturation channels
are dominated by noise when brightness is low; furthermore, it is not biologically

1Not to be confused with CIE XYZ.
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(a) (b)

Figure 3.3: (a) An image from the OPED and (b) its SIFT saliency map calculated
in HSV space.

(a) (b)

Figure 3.4: (a) An image from the OPED and (b) its SIFT saliency map calculated
in L*a*b* space.

inspired, and does not model the HVS color opponent process (Engel et al., 1997).
Therefore, we decided to implement SDM calculation also in the CIE L*a*b*
space, which is perceptually uniform and designed with color opponency in mind
(Sharma, 2002).

The processing steps are essentially the same as the previous method: RGB
→ L*a*b* conversion (D65 illuminant used as reference), channel range rescaling,
SDM calculation, statistical processing and fusion. Coordinate transformation has
been omitted because this color space does not have mathematical discontinuities.
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3.3.3 Experimental Results

We generated saliency maps using various methods, as our legacy work (Ardiz-
zone et al., 2011), Itti-Koch-Niebur (Itti et al., 1998), GBVS (Harel et al., 2006),
Judd (Judd et al., 2009a), our two new color-based methods and a fixed centered
Gaussian distribution as a baseline (Judd et al., 2009a). We ran tests on our 95
image dataset and its related fixation point and fixation map database, on an
Intel Core i7-4770 computer with 4 cores (8 threads) and 16 GB of RAM. For
the calculation of GBVS and Itti-Koch-Niebur saliency maps the GBVS Toolbox
(Harel, 2012) has been used, as it includes an enhanced implementation of Itti’s
algorithm; Judd saliency maps were instead generated running Judd’s code (Judd
et al., 2009b) with its original trained parameters. We binarized saliency and
fixation maps at various percentiles (Judd et al., 2009a; Ardizzone et al., 2011)
(between 0.95 and 0.5) and evaluated the performance of our method in terms of
F-measure values:

P = |MD ∩MR|
|MD|

;R = |MD ∩MR|
|MR|

F1 = 2 P ·R
P +R

(3.5)

where MD is the binary version of the detected saliency map, while MR is the
binary version of the reference fixation map. We also calculated Normalized Scan-
path Saliency (NSS) values, which is a well balanced, binarization-independent
metric (Bylinskii et al., 2018).

From Fig. 3.5, we note an opposite trend with respect to natural image saliency
model performances reported in other works: in object attention, as saliency
threshold reduces the F-measure tends to reduce as well, instead of increasing.
The performances of both our models, instead, increase slightly with threshold
until they reach a plateau at 90% saliency levels. Our CIE L*a*b*-based method
always gets best results in both metrics, while the HSV-based method underper-
forms at high saliency levels with respect to GBVS and our previous work.

The execution time required for calculating a HSV or L*a*b* saliency map is
about 12 s for a 1920x1080 image.
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(a)

(b)

Figure 3.5: Performance graphs of various saliency models in terms of (a) F-
measure vs. threshold and (b) NSS values.
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3.4 Multi-scale Color SURF Keypoint Density
Map Method

3.4.1 Keypoint Density Map

In this subsection we introduce the concept of Keypoint Density Map (KDM),
which is the evolution of the SIFT Density Map. The following explanation has
been adapted from (Ardizzone et al., 2013b), the paper in which the KDM has
been first introduced.

A KDM is a representation of the density of a distribution of the key-points in
an image and can give essential information about the regularity of its structure.

Let us consider a M x N image I, with an extremely regular distribution of
keypoints. The average number of pixels per keypoint, NP , is:

NP = M ·N
n

(3.6)

where n is the number of image keypoints. Given

s1 =
√
NP (3.7)

a squared area of size s1 x s1 will include only one keypoint, regardless of its
position within the image. In general, a squared area of size sk x sk, where

sk =
√
k ·NP (3.8)

(as a matter of facts, all the values sk are rounded to their nearest integer values)
on the average will include k keypoints. Due to construction, actually the window
will include exactly k keypoints only when

√
k is integer. Otherwise the number

of keypoints included in the window will depend on its position (e.g. a window
of size s2, that is the square root of 2Np, may include 1, 2 or 4 keypoints of the
image.

A Keypoint Density Map KDMk is built by counting the number of keypoints
into a sliding window of size sk. Each point in the KDMk indicates the number
of keypoints falling into a squared area of size sk, centered in the corresponding
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point of the image. kmax is limited by the image size:

kmax = 1
NP

· s2
kmax

skmax = 1
2 min(M,N)

(3.9)

3.4.2 Multi-scale KDMs and KDM Improvements

Here we extend our previous works (Ardizzone et al., 2011, 2017a) in which we
investigated the relationships between local keypoint detectors (Ardizzone et al.,
2013b) and the behavior of the human visual system when a person looks at an
image.

In this section we report our findings and studies with some methodological
novelties based on color features and a new multi-scale inspection. Furthermore,
we report a complete comparison study with respect to the best and most popular
saliency detection methods and techniques.

Here we would like to highlight some noteworthy aspects: we develop compu-
tational methods for the extraction of saliency based on pattern recognition and
image processing techniques. As mentioned above, we already proposed (Ardiz-
zone et al., 2013b) the Keypoint Density Maps (KDMs) for texture scale detection
in grayscale images which show regular and near regular textures.

We created a small sample dataset composed of 100 images for test and exper-
imental purposes, using 20 randomly selected images from each of these datasets
(Ardizzone et al., 2017a; Judd et al., 2009a; Borji and Itti, 2015; Bylinskii et al.,
2015a; Jiang et al., 2014).

As already said in Section 3.3, to improve the effectiveness of our algorithm,
in the past we added color information (Ardizzone et al., 2017a) from two color
spaces such as HSV and CIE L*a*b* and experimental evidence showed several
drawbacks in HSV space, thus we did not notice the improvements we expected
by adding HSV color information. Scientists noticed that HSV is not biologically
inspired and does not take into account the color opponent process (Engel et al.,
1997).

The higher performance achieved through the use of CIE L*a*b* space prompted
us to undertake a deeper investigation on perceptually uniform color spaces (CIE
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L*a*b*, CIE L*u*v*).
In this work we compare the performances of two local keypoint detectors,

SIFT and SURF, when extracting saliency maps by means of KDMs method and
adopting two perceptually uniform color spaces (CIE L*a*b* and CIE L*u*v*).
We also improved KDM generation and smoothing by adding a circular mask to
the sliding window and a Gaussian filter in place of the arithmetic mean filter. A
multi-scale approach was implemented, as it will be explained below.

Local keypoints are extracted on each channel of the color space, then KDMs
are computed as a measurement of the spatial distribution of keypoints over the
entire image.

The KDM algorithm needs a scale factor to work: this parameter is function
of the size of the image (Ardizzone et al., 2017a).

The keypoint spatial distribution gives a measure of the behavior of texture
inside the image. Texture allows us to read the behavior of the image with respect
to several features such as contrast, scale, orientation, edges, object boundaries.
According to our method, we extract salient regions by emphasizing rare events
in textured regions. One of the basic concepts is that the spatial distribution of
keypoints inside an image allows to describe texture variations all over the im-
age. In our previous works we applied this principle by using SIFT keypoints only
on grayscale images (the standard SIFT algorithm (Lowe, 2004) is suitable for
grayscale images only). Encouraging results prompted us to approach a method
including color information because of its importance in cognitive terms. As ex-
plained above, in (Ardizzone et al., 2017a) we tried to use HSV space color and
it did not allow us to achieve the expected results in terms of effectiveness and
accuracy, then we concentrated our efforts on the extraction of saliency maps by
using KDMs in all the three channels of two perceptually uniform color spaces:
CIE L*a*b* and CIE L*u*v*.

We measured the performance of our legacy algorithm on the sample dataset
in both CIE L*a*b* and CIE L*u*v* spaces, with and without circular masking
and Gaussian filtering. As shown in Fig. 3.8, the CIE L*u*v* method with cir-
cular masking and Gaussian filtering had the best results, therefore subsequent
improvements were only tested on this method.

We extended the KDMs used to detect the texture scale in regular and near
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regular textures, to the extraction of the saliency maps of an image by applying
them to all of the three color channels. Once the keypoints are found in each color
channel, four KDMs having different k are calculated for each channel by selecting
a "main" scale factor, as in equation (3.1); the other three k are selected by simply
subtracting 1, 2, 3 to the main k. If k = 1 is reached before calculating all the
four maps, no more maps are calculated for that channel.

For each KDM, a saliency map is calculated by taking the difference between
the KDM and its mode value (3.10)

SMi,j(x, y) = |KDMi,j(x, y)−MV (KDMi,j)| (3.10)

where i is the index of the color channel and j is the scale index.
Then, inspired by the fact that human gaze patterns follow a normal distribu-

tion in the natural viewing condition (Sugano and Bulling, 2015) we combined the
saliency maps by using polynomial regression in the 2D subspace. In order, the
twelve saliency maps (3 ·4) are passed to a third degree polynomial without mixed
terms to perform pixel-by-pixel multi-channel and multi-scale fusion, as shown in
(3.11)

SM(x, y) = a0 +
3∑

i=1

4∑
j=1

3∑
l=1

ai,j,l [SMi,j(x, y)]l (3.11)

where i and j represent the same indices as in (3.10).
The result is finally multiplied with a center bias map (Fig. 3.6).
The coefficients of the polynomial in (3.11) have been trained by performing a

regression on the reference fixation maps of the sample dataset. A 10-fold cross-
validation (9 training subsets - 1 validation subset) has been used and the best
of the 10 models has been selected; during training, the multi-scale maps have
been pre-weighted by a center bias map and scaled to the same spatial resolution
(512x512) before passing them as an input to the polynomial. The algorithm has
been implemented in MathWorks MATLAB and the polyfitn toolbox (D’Errico,
2012) has been used to perform the regression and evaluate the polynomial.

Our objective was, therefore, to analyze how color information and a multi-
scale approach help to improve the effectiveness of our method with respect to
different ground truth datasets composed of real fixation maps (Ardizzone et al.,
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Figure 3.6: The block diagram of the overall steps of saliency map extraction for
a given RGB input image.

2017a; Judd et al., 2009a; Borji and Itti, 2015; Bylinskii et al., 2015a; Jiang et al.,
2014).

Furthermore, we investigated the effectiveness of our method focusing on two
processes: visual object attention and free viewing. To do this, we tested our
approach on several datasets, some of which are dedicated to the processes cited
above.

We remark that the spatial distribution of keypoints inside an image can be
used in texture variation description. The levels of roughness of both fine and
coarse regions can be very different (in a fine region we will find a larger number
of keypoints than in coarse regions), so we used keypoint density maps, to find
various texture events and to identify the most salient regions.

We also added a center bias module to tackle the human-gaze center bias, that
is, a simple Gaussian blob centered in the middle, as described in (Judd et al.,
2009a). As we will show in the Experimental Results section, the performances of
our methods definitely improve by adding the center bias module.
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(a) (b)

Figure 3.7: (a) An image from the OPED and (b) its saliency map calculated
in L*u*v* space using the SURF keypoint detector, multi-scale map generation,
polynomial fusion and center bias weighting.

3.4.3 Experimental Results

In this section we compare our saliency methods both to classical algorithms and
more recent methods based on deep learning, using our own dataset and generic
image datasets. Our aim is to show the performance of our methods with various
image types contained in generic datasets, as emotional photos, landscapes, hand-
drawn sketches, etc. The attention datasets we used for this study, all accompanied
by eye-tracked fixation locations, are the following:

• ETTO (Eye-Tracking Through Objects - our dataset) (Ardizzone et al.,
2017a)

• MIT1003 (Judd et al., 2009a) - it is a collection of eye-tracking data of 15
viewers (males and females between the ages of 18 and 35 years) on 1003
images collected from Flickr and LabelMe that have a maximum resolution
of 1024x768

• MIT CAT2000 (Borji and Itti, 2015) - it is a collection of eye-tracking data
of 120 viewers (40 male, 80 female with an overall mean age of 20.1 years)
on a set of 2000 images from 20 different categories; each image has been
viewed by 24 different observers. Publicly available data is limited to the
fixation maps of only 18 observers
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• FIGRIM Fixation Dataset (Bylinskii et al., 2015a) - it is a collection of eye-
tracking data of 40 observers (16 male, 24 female with an overall mean age of
21.2 years) on a set of 2787 images from 21 different categories; each image
has been viewed on average by 16 different observers

• EyeCrowd (Jiang et al., 2014) - it is a collection of eye-tracking data of 16
observers (10 male and 6 female, between the ages of 20 and 30 years) on a
set of 500 natural crowd images with a diverse range of crowd densities.

The saliency algorithms used for comparison are the following:

• Our new multi-scale CIE L*u*v* SURF-based method

• Our legacy CIE L*a*b* SIFT-based method (Ardizzone et al., 2017a)

• Itti-Koch-Niebur (Itti et al., 1998)

• GBVS (Harel et al., 2006)

• ConvLSTM-based Saliency Attentive Model with a VGG-16 network (SAM-
VGG) (Cornia et al., 2018)

• ConvLSTM-based Saliency Attentive Model with a ResNet-50 network (SAM-
ResNet) (Cornia et al., 2018)

• Ensembles of Deep Networks (eDN) (Vig et al., 2014b).

We also report the performance of a fixed centered Gaussian distribution as a base-
line and choose Normalized Scanpath Saliency (NSS) as our comparation metric
as before, because it is well balanced and binarization-independent (Li and Gao,
2014); we report other metrics (Bylinskii et al., 2018) to better show the improve-
ments and the effectiveness of our method.

The Itti-Koch-Niebur algorithm we chose for comparison is an enhanced ver-
sion released with the GBVS Toolbox (Harel, 2012), which also contains the official
GBVS code. The reference implementations of ConvLSTM-based and eDN mod-
els have been downloaded respectively from (Cornia et al., 2017) and (Vig et al.,
2014a). All the algorithms reported above have been used with their default pa-
rameters. As explained in the previous section, the main scale factor k in our
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method is computed according to equation (3.1), while the coefficients of the poly-
nomial in equation (3.11) are learned through the regression.

All the saliency maps have been calculated on an Intel Core i7-4770 computer
with 4 cores (8 threads) and 16 GB of RAM without the use of GPU computing.

As reported in Tables 3.1, 3.2, 3.3, 3.4, 3.5, our method always got excellent
NSS results when compared to traditional unsupervised methods on MIT1003,
CAT2000 and EyeCrowd dataset, and exceeded Ensembles of Deep Networks’ NSS
on the same datasets; comparable results as the other saliency methods have been
achieved on ETTO dataset.

We also point out that the new changes we proposed in this work allowed
us to outperform our previous results. The CIE L*u*v* + SURF + center bias
algorithm performed equally or better than other variations on the sample dataset
because it manages to detect salient features with a reduced number of keypoints
(Fig. 3.8).

The performances of “mixed” methods (CIE L*a*b* + SURF and CIE L*u*v*
+ SIFT) have not been reported in the Tables because they were always lower
then those of the above-mentioned method.

Furthermore, we want to remark that, despite the different composition of the
image datasets we used for our experiments, our method showed quite consistent
performances over them and with respect to the various comparison methods.

On average, the execution time required to calculate the saliency map of a
1920x1080 RGB image is 15.4071 s (the algorithm runs as a single thread without
any GPU assistance, and its speed could be increased taking advantage of faster
mathematical libraries, multiprocessing and GPU computation).
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Figure 3.8: Performance graphs of some variations of our saliency model on the
sample dataset.

Table 3.1: Results in various metrics on ETTO dataset.

Saliency method AUC-
Borji

AUC-
Judd

CC KL1 NSS SIM

Our new method 0.9363 0.9518 0.6844 0.8904 4.4399 0.4993
Our previous method 0.8253 0.9208 0.6982 2.0256 4.9197 0.5987

Itti-Koch-Niebur 0.9296 0.9257 0.4670 2.0465 3.1424 0.2050
GBVS 0.9344 0.9511 0.7158 0.8468 4.7342 0.5062
eDN 0.9494 0.9556 0.4171 2.3551 2.8225 0.1480

SAM-VGG 0.9089 0.9520 0.7061 0.7705 4.8767 0.5685
SAM-ResNet 0.9164 0.9534 0.7814 0.6412 4.9985 0.6134

Gaussian center 0.8807 0.9356 0.2080 3.2756 1.3563 0.0726

1 Lower is better.
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Table 3.2: Results in various metrics on MIT1003 dataset.

Saliency method AUC-
Borji

AUC-
Judd

CC KL1 NSS SIM

Our new method 0.7953 0.8151 0.4169 1.3739 1.4071 0.3519
Our previous method 0.7304 0.7459 0.2971 1.5973 1.0065 0.3206

Itti-Koch-Niebur 0.7623 0.7750 0.3307 1.4805 1.1029 0.3226
eDN 0.8471 0.8579 0.4096 1.5453 1.2969 0.2976
GBVS 0.8151 0.8288 0.4175 1.2969 1.3819 0.3627

SAM-VGG 0.8409 0.9197 0.8322 0.7745 3.1733 0.6733
SAM-ResNet 0.8442 0.9267 0.8689 0.7363 3.3384 0.7126

Gaussian center 0.7988 0.8162 0.3288 1.6990 1.0089 0.2691

1 Lower is better.

Table 3.3: Results in various metrics on CAT2000 dataset.

Saliency method AUC-
Borji

AUC-
Judd

CC KL1 NSS SIM

Our new method 0.7800 0.8005 0.4946 1.0046 1.2644 0.5073
Our previous method 0.7536 0.7660 0.4157 1.1018 1.0658 0.4850

Itti-Koch-Niebur 0.7578 0.7667 0.4131 0.9715 1.0625 0.4647
GBVS 0.7900 0.8012 0.4864 0.8615 1.2458 0.4982
eDN 0.8426 0.8510 0.4933 0.9990 1.2145 0.4477

SAM-VGG 0.7516 0.8394 0.6280 1.1121 1.7642 0.5764
SAM-ResNet 0.7619 0.8438 0.6550 1.1586 1.8256 0.5910

Gaussian center 0.8134 0.8363 0.4504 1.1785 1.0805 0.4021

1 Lower is better.
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Table 3.4: Results in various metrics on EyeCrowd dataset.

Saliency method AUC-
Borji

AUC-
Judd

CC KL1 NSS SIM

Our new method 0.7737 0.7842 0.4959 0.7852 1.1020 0.5144
Our previous method 0.7251 0.7333 0.3745 0.9294 0.8324 0.4742

Itti-Koch-Niebur 0.6544 0.6993 0.2786 1.0463 0.5843 0.4442
GBVS 0.7562 0.7641 0.4444 0.8420 0.9671 0.4940
eDN 0.7832 0.7902 0.4709 0.9517 1.0068 0.4552

SAM-VGG 0.7409 0.8429 0.7064 1.5619 1.8898 0.6397
SAM-ResNet 0.7495 0.8466 0.7242 1.4527 1.9682 0.6533

Gaussian center 0.7285 0.7373 0.3770 1.0631 0.7788 0.4242

1 Lower is better.

Table 3.5: Results in various metrics on FIGRIM dataset.

Saliency method AUC-
Borji

AUC-
Judd

CC KL1 NSS SIM

Our new method 0.7794 0.8022 0.4315 1.1692 1.2567 0.4065
Our previous method 0.7094 0.7270 0.2932 1.5519 0.8601 0.3718

Itti-Koch-Niebur 0.6700 0.7470 0.2820 1.3278 0.8220 0.3717
GBVS 0.8076 0.8197 0.4470 1.0519 1.2599 0.4300
eDN 0.8621 0.8721 0.5031 1.2348 1.3795 0.3735

SAM-VGG 0.7739 0.8699 0.6166 1.1518 2.0299 0.5373
SAM-ResNet 0.7835 0.8696 0.6242 1.1524 2.0538 0.5397

Gaussian center 0.8297 0.8577 0.4291 1.3717 1.1409 0.3435

1 Lower is better.
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(a) (b)

(c) (d)

Figure 3.9: (a) An image from the ETTO dataset, (b) its fixation map, (c) its
saliency map generated with our multi-scale color SURF KDM method, and (d)
its saliency map generated with the eDN method.
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(a) (b)

(c) (d)

Figure 3.10: (a) An image from the MIT1003 dataset, (b) its fixation map, (c) its
saliency map generated with our multi-scale color SURF KDM method, and (d)
its saliency map generated with the SAM-ResNet method.
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(a) (b)

(c) (d)

Figure 3.11: (a) An image from the CAT2000 dataset, (b) its fixation map, (c) its
saliency map generated with our multi-scale color SURF KDM method, and (d)
its saliency map generated with the SAM-VGG method.
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(a) (b)

(c) (d)

Figure 3.12: (a) An image from the EyeCrowd dataset, (b) its fixation map, (c)
its saliency map generated with our multi-scale color SURF KDM method, and
(d) its saliency map generated with the Itti-Koch-Niebur method.
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(a) (b)

(c) (d)

Figure 3.13: (a) An image from the FIGRIM dataset, (b) its fixation map, (c) its
saliency map generated with our multi-scale color SURF KDM method, and (d)
its saliency map generated with the GBVS method.
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3.5 Image Content Enhancement through Salient
Regions Segmentation for People with Color
Vision Deficiencies

In this section we describe the steps of our work, starting from the eye-tracking
session we aim at determining the most peculiar differences between normal and
color deficient vision systems with respect to a fixed number of images, then we
tackle the segmentation and the re-coloring of the regions with different saliency
levels; at last a further eye-tracking session assesses the enhancement of the im-
ages. We point out that we are interested in detecting differences in human visual
system behavior among people with normal vision system and people affected by
color vision deficiencies (in Fig. 3.14 only dichromatic people will be able to easily
recognize the word NO standing out from the background).

Figure 3.14: Unlike people with normal vision system, people with dichromatic
vision system are able to easily recognize the word "NO".

3.5.1 Eye-tracking Session

The experimental sessions involved 8 subjects with normal vision system and 8
subject with color deficient vision system. More in detail, 3 subjects were affected
by deuteranopia and 5 subjects were affected by protanopia. We conducted two
experimental eye-tracking sessions, the first is focused on detecting how different
are the fixation points among color blind and normal people, the second is needed
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to assess the effectiveness of our method in enhancing the images for color blind
people.

Figure 3.15: Images taken during the eye-tracking session: starting from the cali-
bration (the far-left image) the eye-tracker records the eye movements, the saccadic
movements and the scanpaths.

Both eye-tracking sessions consist of repeating the same procedures, but the
first session also includes a test with Ishihara plates in advance to evaluate which
kind of color vision deficiency the subjects (EnChroma Inc., 2010) are affected by.
The experimental sessions have been conducted in a half-light room, the subjects
were kept at a distance of almost 70 cm from a 22 inches monitor with a spa-
tial resolution of 1920 x 1080 pixel (Fig. 3.15). During the eye-tracking session
a Tobii EyeX device recorded the eye movements, the saccadic movements and
the scanpaths of each subject while he or she was looking at the images shown on
the screen. For each subject a calibration step was needed to minimize saccadic
movement tracking errors. Each image was shown on the screen for a time of 3 s
during which the Tobii EyeX acquired spatial coordinates of the eye movements
(at a mean rate of 160 spatial coordinates per 3 s because of the sampling of about
55 Hz). Before switching to the next image the screen was turned gray for one
second to refresh the observer retina from the previous image signal. The eye-
tracking session procedures follow the same overall scheme of previous scientific
works (Ardizzone et al., 2011, 2013a, 2017a) focused on visual saliency studies.
Each session lasted approximately for 7 minutes per subject. For the purpose of
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our experiments, we created an ad-hoc dataset by merging almost 90 images from
different public datasets (MIT1003 (Judd et al., 2009a), CAT2000 (Borji and Itti,
2015); NUSEF (Ramanathan et al., 2010); MIT300 (Bylinskii et al., 2015b)): it
consists of images containing meals, plants, objects, fruits, people, portraits, an-
imals, pets, synthetic pictures showing texture patterns. All the images have in
common a prevalence of red-green chromatic contrasts (of interest for protanopia
and deuteranopia deficiencies); we did not take into account images with yellow-
blue chromatic contrast because we did not have available people affected by tri-
tanopia vision deficiency. All the fixation point maps we collected during two
experimental sessions have been gathered into a public available ground-truth un-
der the name of Eye-Tracking of Colour Vision Deficiencies (EToCVD) (Bruno, A.
and Gugliuzza, F. and Ardizzone, E. and Giunta, C. and Pirrone, R., 2018).

Figure 3.16: RGB to CIE L*a*b* conversion allows us to manage with color map-
ping within color frequencies well perceived by color blind people.

The eye movement data reveal the locations of the images looked at by the
observer during the experimental session. The fixation points are computed by
averaging the spatial x and y coordinates of each eye movement (left and right eye
movements). The coordinates are converted to the range of the spatial resolution of
the screen. Each time a pixel is observed its value is incremented starting from zero.
Then the saliency map is smoothed through a Gaussian convolution. In Fig. 3.17
it is shown how different the fixation points are between observers affected by
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protanopia and observers with normal color vision system. It is remarkable how
people affected by protanopia miss several details because they fall within the color
spectrum they are not able to discriminate. We want to point out that we aim
to enhance the content of the image to make both people affected by protanopia
and deuteranopia able to detect details they cannot detect because of the color
blindness constraint.



3. Visual Saliency 77

Figure 3.17: The visual perception of an image can be represented by the fixation
points (red diamonds overlaid on the images) for both normal vision system (left
column) and color blind vision system (right column). Some details are missed
by people with color vision deficiencies and this is revealed by the lack of fixation
points on the details noticed by people with normal vision system.



3. Visual Saliency 78

3.5.2 Proposed Method

For our purpose we put our effort on assessing the usage of visual saliency in
content enhancement for color blind people.

In our approach, for instance, the saliency map is extracted from an image by
using the algorithm we proposed in our previous work (Ardizzone et al., 2017a)
based on the spatial distribution of local keypoints. Since we wanted to investigate
the relation between the saliency and the color information, we tackled the saliency
detection on CIE L*a*b* color space because of the independence of the luminance
channel from color channels (a* and b*). A saliency map is computed along each
channel of the CIE L*a*b*, then the output saliency map is obtained by averaging
the saliency maps of each channel.

A color vision deficiency simulation method (Milić et al., 2015), in the same
way of Vienot et al. (Viénot et al., 1999), is applied to have a dichromatic version
of the original image. Vienot’s method allows us to choose the color deficiency
to be simulated through a function parameter. Afterward, the saliency map of
the simulated dichromatic version of the image is extracted by using the same
procedure as above (Ardizzone et al., 2017a). The saliency error is computed as
the absolute differences between the two saliency maps. We consider the saliency
error as a computational measure of how color vision deficient system behavior is
different from normal vision system behavior. The saliency error is used as a weight
and multiplied with the difference between the original image and the simulated
dichromatic version, then the result is converted to the RGB space. A correction
vector is multiplied with the resulting RGB image and an average function is
applied along the three RGB channels giving rise to a single map, furthermore a
3x3 sized Gaussian filter is applied to smooth the map noise.

The smoothed map is segmented by using the adaptive Otsu segmentation
(Otsu, 1979). The saliency error is then represented as segmented regions. For the
enhancement purpose only the segmented regions have been taken into account,
that is, the pixels of the segmented regions are transformed with a negative map-
ping as in the equations reported in (3.12), that represent a rotation of 180◦ of the
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a* and b* channels in CIE L*a*b* space:

L∗
′ = L∗

a∗
′ = −a∗

b∗
′ = −b∗

(3.12)

Figure 3.18: (b) The saliency error is computed as the difference of the saliency
maps of (a) the original image and the color blind version of the image. (c) The
saliency error regions are segmented and color boosted on CIE L*a*b* color space
by using the opposite value with the a* and b* channels, (d) the enhancement is
also mapped in the color blind domain.

Using the above equations and then converting the resulting image back to RGB
color space we noticed that at first sight color blind people were able to perceive
more details from the regions with pixels falling within the color frequency that
they were not able to discriminate before. More in detail, as you can see from
Fig. 3.16 and the equations reported above, hues close to red are mapped to hues
very close to blue spectrum. Before the aforementioned processing steps people
affected by protanopia and deuteranopia were not able to discriminate red edges
over green background. A new eye-tracking session has been conducted to assess
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the effectiveness of the aforementioned enhancement and processing steps with the
visual perception of color blind people.

Figure 3.19: Perceptual differences highlighting. For a given image (left) some en-
hancement methods use the average of the differences of L*a*b* channels between
the original image and the version with simulated color vision deficiency (center).
We adopted the difference of L*a*b* channels between the original image and the
version with simulated color vision deficiency, weighted by the saliency difference
(right).

3.5.3 Experimental Results

In this section we want to describe our findings with respect to the behavior
of people affected by protanopia and deuteranopia, after the we performed the
enhancement processing steps highlighted in the previous section. Once the images
had been enhanced, after 20 days we repeated the eye-tracking session with subjects
affected by color vision deficiencies. The idea behind a second experimental session
is to assess the effectiveness of our enhancement approach by comparing the real
fixation points acquired before and after the enhancement step. We considered
the real fixation point maps of the observers with normal color vision system as
our ground truth. First we analyzed the differences between the real fixation
point maps of color blind people and our ground truth, both acquired during
the first eye-tracking experimental session, and we used that as reference for our
comparison studies. Then we analyzed the differences between real fixation point
maps acquired during the second eye-tracking session and the ground truth. We
conducted experiments with people affected by protanopia and deuteranopia and
we collected the real fixation point maps to be evaluated with metrics such as NSS
and AUC focused on visual perception processes.
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Very interesting results can be observed from the images in Fig. 3.20. The
observers affected by protanopia were able to discriminate and notice some de-
tails they did not look at before (Fig. 3.16). In spite of some imperfections in
the re-coloration of the segmented region (Fig. 3.20a) we noticed that the overall
distribution of the fixation points (Fig. 3.20b, 3.20c, 3.20d) acquired during the
second eye-tracking session is closer to the corresponding ground truth map than
the distribution of the fixation points acquired during the first session.

As shown in Fig. 3.21a, 3.21b, 3.21c, 3.21d the eye movements of the ob-
servers affected by protanopia and deuteranopia can be really different to those of
people with normal color vision system. The interesting thing is that, analyzing
the improvements obtained with our enhancement method by observing the fixa-
tion points map of subjects affected by protanopia (Fig. 3.22c) and deuteranopia
(Fig. 3.22d), the improvement is noticeable because the fixation points are quite
closer to our ground truth (Fig. 3.21a).
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Figure 3.20: The fixation points (red diamonds overlaid on the images) of observers
with normal color vision system (left column) and the fixation points of people
affected by protanopia. The images from the right column are from the second
eye-tracking session when observing the images enhanced by our method.
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Figure 3.21: For (a) a given image we collected the fixation points from (b) a nor-
mal observer, (c) an observer affected by protanopia and (d) an observer affected
by deuteranopia.
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Figure 3.22: The enhancement assessment on (a, b) the images is supported by
the fixation point maps for observers with (c) protanopia and (d) deuteranopia.

The performance of our method is shown by using metrics such as AUC and
NSS well suited for quantifying how close are the fixation point maps of color blind
people to the fixation point maps of people with normal vision system. For the
sake of clarity, we studied the performance of our method on people affected by
protanopia and deuteranopia separately.
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We want to point out that scientific literature on visual attention revealed that
during the first 200 ms of image observation humans tend to fix locations around
the image center, and this results in a center biased fixation point map. It is of
our interest to analyze the experimental results by distinguishing two case studies:

• Collecting fixation point data of the observer over the entire time interval
for each image (3 s)

• Collecting fixation point data from 200 ms to 3 s.

The objective of excluding the first 200 ms from the fixation point data is to have
unbiased data to be analyzed.

Normalized Scanpath Saliency (NSS) allows us to give a measure of how close
a saliency map is to a real fixation point map. The metric was originally devised
to compute the distance between a computational saliency map and a real fixation
point map. In our method we used NSS to compute the distance between the real
fixation point map of people with normal vision system and the real fixation point
map of people with color vision deficiencies. NSS metric gives us a scalar value.
A NSS value of zero means the maps are very different, conversely, a higher NSS
value means higher similarity between the maps.

Area Under Curve metric (AUC) is computed as the area of the ROC curve
(Receiver Operator Characteristic). It is a scalar representation of the predicted
performances of a classifier. AUC value falls within the range [0, 1].

Looking at the AUC and NSS results of the protanopia case study (Fig. 3.23,
3.24) we noticed that the enhancement of the images allowed observers to detect
more details previously falling in the color blind spectrum. Excluding the data ac-
quired during the first 200 ms for the reasons explained above, our results reached
an average score increase of approximately 0.08 AUC and 0.5 NSS. In Fig. 3.27 we
show some examples with different AUC and NSS values related to quite mean-
ingful images with the corresponding eye-tracking fixation point map of the first
eye-tracking session and the fixation point map related to the second eye-tracking
session, giving us a visual and qualitative demonstration of the improvement we
achieved.
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Figure 3.23: Average AUC score increase of the best 10, 20, 30, 50 cases.
Protanopia case study.
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Figure 3.24: Average NSS score increase of the best 10, 20, 30, 50 cases. Protanopia
case study.

In Fig. 3.25, 3.26, 3.28 we plot the histogram graph of AUC and NSS average
score increase with respect to the deuteranopia case study and we show meaningful
images and the corresponding fixation point maps. It is noticeable that in the
case of observers affected by protanopia we reached an average score increase of
approximately 0.05 AUC and 0.3 NSS (both excluding the first 200 ms).

As can be deduced from the histogram bars, there are a lot of differences
between including and excluding the first 200 ms in our case study. It is evident
that observers affected by protanopia show a more peculiar center bias in their
visual attention path.
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Figure 3.25: Average AUC score increase of the best 10, 20, 30, 50 cases. Deuter-
anopia case study.
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Figure 3.26: Average NSS score increase of the best 10, 20, 30, 50 cases. Deutera-
nopia case study.
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Figure 3.27: For a given image (first column) we collected the fixation points from
normal observer (second column), from observers affected by protanopia (third
column), from observers affected by protanopia looking at the enhanced image
(fourth column).
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Figure 3.28: For a given image (first column) we collected the fixation points from
normal observers (second column), from observers affected by deuteranopia (third
column), from observers affected by deuteranopia looking at the enhanced image
(fourth column).

The experiments have been conducted by using a Tobii EyeX eye-tracker record-
ing the eye movements at a sampling rate of about 55 Hz; the data have been pro-
cessed in MathWorks MATLAB: in greater detail we dealt with Tobii EyeX cali-
bration and eye-tracking parameter tuning inside TobiiMatlabToolbox 3.1 (Gibaldi
et al., 2017, 2016). We used a workstation with a quad-core 2.4 GHz processor
and 16 GB of RAM for our experiments.



Chapter 4

Conclusions

4.1 Satellite Remote Sensing

In this work we proposed a complete system for weather satellite data reception.
It is able to predict and track satellite passes, receive and demodulate both legacy
NOAA APT signals and high resolution data contained in newer signal formats
transmitted by various satellites. Despite the new system being still a work in
progress, its specifications already match or exceed those of commercially available
solutions (Dartcom Systems Ltd., 2018), while being very easily reconfigurable to
support new signal and data formats. In the future we want to improve our solution
with modular upgrades, thus adding the following:

• Multiple feeds and LNAs for multiple frequency bands

• Support for various meteorological signal and payload formats

• Support for error correction codes (where available)

• An algorithm for thermal maps generation based on the analysis of multi-
spectral infrared images

• Noise profiling based on long time analysis of the radio frequency interfer-
ences when the interferences are located near the receiver.

We aim to develop a modular solution for the prediction of atmospheric phenom-
ena, based on the analysis of the images retrieved from several satellites (each
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one transmitting at its own frequency and with its own modulation scheme) at
different times of the day. As far as it concerns cloud detection we proposed a
solution that is mainly based on a simple and straightforward clustering method,
that is, K-means. The method performs well with K = 3 but, generally speaking,
the performance of a segmentation method based on clustering depends on the
elements inside the image. We think that a a fixed number K = 3 for K-means
algorithm could not be sufficient for cloud detection whether the image contains
elements such as soil, sea, cirrus, aerosols and clouds as well. In future works we
want K cluster number to be adaptive with respect to the image we deal with.
We could analyze the histogram of a patch to count the number of distribution
modes, trying to establish a correspondence with the number of elements inside
the image.

All the hardware and software improvements described above will allow us to
receive multiband signals from space to enable more complete information to be
extracted as infrared, visible and ultraviolet channels.

4.2 Visual Saliency

In this work we reported our findings and research on visual saliency with some
methodological novelties with respect to our previous works. We conducted several
experiments to evaluate the effectiveness of our method with respect to different
state-of the-art methods. The performances have been evaluated over the most
popular datasets such as MIT1003, CAT2000, EyeCrowd, FIGRIM, as long as our
own dataset, ETTO. We investigated the relationships between saliency and vi-
sual attention by comparing the saliency maps and the real fixation point maps,
the objective was to show how accurate is the detection of the most important
regions from a perceptual viewpoint by using a method based on pattern recog-
nition and image processing techniques. In order to evaluate the accuracy and
the effectiveness of our method, we compared the results of our approach on the
above mentioned datasets to those of the most popular methods belonging to
different classes (deep learning, bottom-up, supervised, unsupervised), getting ex-
cellent NSS results against other unsupervised methods and even outperforming a
method based on deep learning. The main novelties of this work are the extension
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of our approach by using multi-scale KDMs on the CIE L*u*v* color space and the
comparisons with the other state of the art methods on both generic and specific
image categories. Last but not least, we tried to answer the following questions: do
saliency methods perform better with respect to general visual attention processes
than the specific object attention processes (or vice-versa)? Which method does
perform best for eye movement prediction? By comparing the experimental re-
sults on ETTO dataset, it has been shown that our approach achieves comparable
results as the other saliency methods with respect to the object attention process.

We also believe that it is still worth to investigate cues for visual saliency de-
tection improvements in spite of the excellent accuracy achieved by many state
of the art methods. We need to focus on methods who provide a well balanced
trade-off between an overall good detection accuracy and acceptable hardware re-
quirements. We have been working on the reimplementation of our novel method
in Python, taking advantage of GPU computation frameworks like CUDA (sup-
ported by OpenCV). We expect that this code rewrite would greatly speed up
the algorithm’s execution. This would make it feasible for on-the-fly intra-frame
video saliency extraction when used in conjunction with state-of-the-art inter-
frame saliency extraction techniques.

We also would like to extend our saliency studies and findings to other visual
perception tasks related to focused and sustained attention tasks. For this pur-
pose we will collect different eye-tracking data from viewers performing tasks of
the aforementioned types. Furthermore, we have used only traditional supervised
learning methods so far, but in the future we will be able to train deep learning
systems by using our datasets as training and validation sets. In this case we will
focus our research on finding the best network architecture and hyperparameters
to achieve the highest accuracy in saliency detection.

4.2.1 Image Content Enhancement through Salient Regions
Segmentation for People with Color Vision Deficien-
cies

The Human Visual System tends to fix some specific points and regions of the
image in the first seconds of observation summing up the most important and
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meaningful parts of the scene. In this work our findings are related to the differ-
ences of eye movements with respect to normal and color vision deficient visual
systems. Two eye-tracking experimental sessions allowed us to detect and analyze
the image details that are not well perceived and fixed by color blind observers.
We provided a method to enhance color regions of the image based on CIE L*a*b*
color mapping of segmented salient regions. The segmentation is performed by us-
ing a saliency weighted difference between the original input image and the corre-
sponding color blind altered image. A second eye-tracking session with color blind
people on the enhanced images revealed that the real fixation points are then more
coherent with the normal visual system: up to 10% for people with protanopia, up
to 5% for people with deuteranopia. The method we proposed makes color blind
people able to detect some more red-green details from the images with respect
to the original image. We are now working to improve the method solution for
protanopia color deficiency, by investigating the entire spectrum on CIE L*a*b*
color space. We need to find a more specific color mapping to deal with protanopia.
We also want to optimize our code and develop a lightweight version that can in-
stalled on wearable devices (glasses at first) aiming to assess how comfortable and
ecological it could be having an enhanced visual experience in everyday life. We
also provided a new public dataset under the name of EToCVD gathering the real
fixation point maps for both normal and CVD affected people involved during our
experimental sessions.
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