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ABSTRACT
Global sensitivity analysis (GSA) is a valuable tool to support the use of 
mathematical models. GSA allows the identification of the effect of model and 
input factor uncertainty on the model response, also considering the effect due to 
the interactions among factors.

During recent years, the wastewater modelling field has embraced the use of 
GSA. Wastewater modellers have tried to transfer the knowledge and experience 
from other disciplines and other water modelling fields. GSA has been adopted for 
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several purposes (optimization, calibration, uncertainty assessment, etc.) with the 
final aim to improve the use of wastewater models. The purpose of this chapter 
is to provide the key issues surrounding GSA. Specifically, this chapter aims at 
identifying, for the most popular GSA methods, their potential use, the critical 
issues to be solved and current limitations.

Keywords: Computational burden, convergence, modelling, numerical methods, 
sensitivity analysis, water modelling

11.1  INTRODUCTION
Over the past 30 years the knowledge on wastewater treatment has enormously 
advanced and matured leading to the setting up of detailed principles for 
describing the key processes (biological, physical, chemical, hydraulic) occurring 
inside a wastewater treatment plant (WWTP) (Henze et al., 2008). Over the years, 
these principles have been codified into mathematical models. The term WWTP 
model is often used to indicate the combination of activated sludge model (ASM), 
hydraulic model, oxygen transfer model and sedimentation tank model (Gernaey 
et al., 2004).

The ASMs introduced by Henze et  al. (2000) represent the most popular 
models describing the biological (and chemical) reactions taking place inside the 
activated sludge tanks. The hydraulic models describe the hydraulic conditions 
inside the tank and the flow rates (internal recycle, return sludge) throughout 
the different tanks. Regarding the settler tank, the most popular models suggest 
the description of the settler as an ideal point (without retention time) or as a 
one-dimensional layered settler (Takacs et  al., 1991). WWTP modelling has 
several scopes (Gernaey et al., 2004): (i) learning, for example the adoption of a 
mathematical model can improve the knowledge on the process under study; (ii) 
design, for example the adoption of a mathematical model allows the comparison 
of different configuration solutions and design alternatives; (iii) process 
optimization and control, for example a mathematical model allows the prediction 
of the WWTP behaviour under different influent conditions and provides the best 
operation conditions to improve the effluent quality. The WWTP models include 
tens of model parameters (physical, kinetic, stoichiometric, influent fractionation 
etc.) for which no universal values exist, thus the correct values are required to be 
identified for each application. With this regard, the model calibration represents 
a key step in the mathematical modelling. The model calibration consists of the 
variation of model parameter values in view of identifying the set that provides 
the best fit between the model response and the set of data obtained from the 
WWTP under study (Gernaey et al., 2004). The need to calibrate a model depends 
on the model purpose. For models aimed at educational purposes the default 
model parameter values can be adopted (Petersen, 2002). Conversely, in the 
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case where the model is aimed at process optimization, an accurate description 
of the processes under study is required and consequently data collection and 
model calibration are needed (Petersen, 2002). Since WWTP models are often 
overparameterized with respect to the available measured data, the parameters 
that are required to be calibrated (in view of improving the model response) are 
not unique (Brun et al., 2002). Therefore, the approaches and or procedures aimed 
at the model calibration often adopt sensitivity analysis (SA) in view of selecting 
the best parameter subset to be calibrated.

One of the most common definitions of SA has been provided by Saltelli et al. 
(2004) who define SA as: “The study of how uncertainty in the output of a model 
(numerical or otherwise) can be apportioned to different sources of uncertainty 
in the model input”. This means that the SA allows identification of the model 
parameters and input variables whose values strongly influence the model response 
(model output). Conversely, it may be of interest to the modeller to see that although 
some model parameters may not be very well established they do not significantly 
contribute to output uncertainty.

SA can have several aims such as model calibration, model diagnosis, decision-
making support, etc. (Mannina et  al., 2011a; Butler et  al., 2014; Norton, 2015; 
Mannina et al., 2017). In the field of mathematical modelling, sensitivity analysis 
represents a very powerful tool as it provides information about how the variation 
in the outputs of the model can be apportioned to the variation of the model (input) 
factors (Saltelli, 2000). This can be of interest, for example to understand which of 
the uncertain (kinetic, stoichiometric or mass transfer-related) model parameters 
are responsible for most of the uncertainty in model predictions, for example 
ammonium effluent concentrations. It may then be possible to conduct dedicated 
experiments (e.g. batch experiments) to reduce uncertainty in the parameters 
that were found to be causing much uncertainty in the predictions (Dochain & 
Vanrolleghem, 2001).

Over the past 15 years, the engineering and scientific communities in the 
environmental water modelling field have improved knowledge on the use of 
sensitivity analysis (SA). SA has been identified as constituting a crucial step in 
any environmental modelling exercise (Jakeman et al., 2006; Norton, 2008).

In the sensitivity analysis literature “Factors” is a term widely used and includes 
model parameters and model input variables. Saltelli (2000) singles out three main 
classes of sensitivity analysis methods:

• screening methods;
• local methods;
• global methods.

Screening methods are economical and qualitative methods. Local methods 
provide a measure of how the model output is affected by factor changes at a 
specific location in factor space by adopting a one-at-a-time (OAT) approach, 
indeed other factors are usually set to their nominal or mean values.
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Global sensitivity analysis (GSA) on the other hand provides information on 
how the model outputs are influenced by varying factors across many possible 
locations over a large range of values (Homma & Saltelli, 1996; Saltelli et  al. 
2004).

GSAs can be conducted for several reasons: (i) to identify factors that mainly 
influence specific model outputs of interest ( factor prioritization); (ii) to select 
which factors interact with other factors (interacting factors); and (iii) to identify 
non-influential factors ( factor fixing) (Saltelli et  al., 2004). Other possible 
objectives of GSA not explored in this review include factors mapping (to search 
which factors are responsible for producing outputs in a certain region, e.g. above a 
threshold value) or variance cutting (identify a minimal subset of factors to fix, in 
order to obtain a prescribed reduction of uncertainty in the output).

By means of GSA, modellers are supported to identify critical regions in the 
factor space, to establish priorities for research and to simplify models (Saltelli 
et al., 2008).

GSA methods are classified into (Saltelli et al., 2008):

(i) global screening methods, for example Morris screening method (Morris, 
1991; Campolongo et al., 2007);

(ii) variance-based methods such as Extended Fourier Amplitude Sensitivity 
Testing (Extended-FAST) (Saltelli, 2000);

(iii) regression/correlation-based methods such as the standardized regression 
coefficients (SRCs) method (Saltelli et al., 2008).

In the environmental modelling field, the majority of SA applications have been 
local and derivative-based due to the fact that these methods are computationally 
very efficient (Saltelli et  al., 2008). However, local sensitivity analysis (LSA) 
methods can be misleading in the case of highly uncertain input factors and non-
linear relationships between model outputs and factors as they provide information 
only at the “nominal point”. The main limits of LSA can be overcome by applying 
GSA. For a priori unknown model behaviour, the GSA should be the preferred 
method to apply (Saltelli & Annoni, 2010).

Due to the high computational cost of running simulations for environmental 
models, the dissemination of GSA applications has been limited (Campolongo 
et al., 2007). Therefore, modellers have often been reluctant to use GSA methods 
instead of local methods (Saltelli & Annoni, 2010).

During recent years, modellers have started spending considerable time in 
understanding the potential of each GSA method applied to complex water 
engineering models (Mannina et al., 2011b; Sin et al., 2011; Benedetti et al., 2011; 
Mannina et al., 2014; Ramin et al., 2014). An increasing trend of GSA applications 
has been found in literature (Figure 11.1). From Figure 11.1 one can observe that 
GSA applications have quickly spread in the water quality and hydrology fields with 
321 and 140 documents in 2017. Moreover, an increasing interest in applications 
even in the wastewater field has occurred in literature (Figure 11.1).
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Figure 11.1  Trend of GSA applications found in literature during the last 10 years 
divided per field of interest (source Scopus, obtained by using the following search 
words: global sensitivity analysis and hydrology, wastewater, water quality, urban 
drainage).

Despite the clear advantages of GSA, several questions are still open on GSA: 
Can the terminology be standardized? Do all model applications require the 
same numerical settings for GSA? How should modellers test whether the SA has 
converged?

The purpose of this chapter is to highlight key issues surrounding GSA 
application in the wastewater modelling field.

Following this introduction, Section 11.2 discusses commonly applied SA 
methods divided into four main classes: (i) derivative-based LSA; (ii) regression-
based; (iii) screening; and (iv) variance-based. Then, the main GSA applications 
in the wastewater field and some relevant applications in other water modelling 
fields are provided in Section 11.3. Issues related with the numerical settings in 
GSA applications (e.g. choice of the criteria for model factor screening in terms 
of importance or convergence analysis) are presented in Section 11.4. In Section 
11.5 details related to the multiple use of GSA methods are presented. Section 11.6 
reports a summary and outlook.

11.2  SENSITIVITY ANALYSIS METHODS
In this section a general overview of the features of the most commonly used SA 
methods is provided. Table 11.1 summarizes the features of each SA method: 
the ability to cope with interaction among factors and with non-linearity, the 
computational cost required to employ the analysis, the ability to provide 
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information in terms of factors fixing (i.e. how many model factors do not affect 
the model outputs) and factors prioritization (i.e. how many model factors have a 
relevant effect on the model outputs variation). The symbols and the definitions in 
Table 11.1 are in accordance with Saltelli et al., (2008).

In Figure 11.2 are reported the most commonly used sensitivity analysis methods, 
grouped into qualitative and quantitative methods (Hong & Purucker, 2018).

Figure 11.2  Most commonly used sensitivity analysis methods (modified from 
Hong & Purucker, 2018).

The scatter plot is a qualitative method which allows visual identification of 
the influence of model factors on model outputs and the possible (non) linear 
or (non) monotonic dependence between an input and output. Therefore, on the 
basis of this dependence the scatter plot method is usually adopted as a first 
step of sensitivity analysis to select the most adequate quantitative method. A 
disadvantage of the scatter plot method is that interpretation of a scatter plot is 
subjective (Frey & Patil, 2002).

Quantitative methods are classified into local and global. LSA methods allow 
identification of the relationship between inputs and outputs by changing the input 
value (model factor value) within a given point while other factors are usually set 
to their nominal or mean values by using an OAT approach (Figure 11.2).

GSA methods are model independent and therefore do not require a specific 
relationship between model factors and model outputs. The proper sampling of the 
entire parameter space with GSA allows handling of non-linear, non-monotonic 
and non-additive models. According to Saltelli et  al. (2004) the application of 
regression/correlation based methods implies the assumption of model linearity. 
The application of the variance-based and global screening methods does not 
rely on special assumptions about the behaviour of the model (such as linearity, 
monotonicity and additivity of the relationship between input factors and model 
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output) (Saltelli et al., 2008). Specifically, the most common screening method, 
Morris screening, is mainly effective in identifying important model factors for 
monotonic models by adopting reasonable computational cost (Table 11.1). The 
adoption of variance-based methods (e.g. Sobol’ or Extended-FAST) is mainly 
effective for selecting important model factors for all kinds of model structure 
(linear, non-linear, monotonic and non-monotonic).

For the sake of completeness, it is important to recall the definitions of linear, 
monotonic and additive models. Specifically, the relationship between Y and an 
input factor X is monotonic if the curve Y = f(X) is either entirely non-decreasing 
or entirely non-increasing over all the interval of definition of X. Further, a 
mathematical model can be defined as monotonic if the rule of monotonicity can 
be applied for all factors of the model. A model Y = f(X1, X2, … , Xk) is additive if 
f can be decomposed as a sum of k functions fi, each of which is a function only 
of the relative factor Xi. A mathematical model can be defined as linear if linear 
equations connect the model state variables and the model factors.

Most local SA methods used in literature are based on derivatives δy/δx (Saltelli 
et  al., 2008). Despite having a low computational cost, the derivate-based SA 
methods can provide information of factor prioritization and interaction (Table 
11.1). In the following sections, the key features of each SA method reported in 
Table 11.1 and Figure 11.2 will be discussed in detail.

11.2.1  Derivative-based
The derivative-based local sensitivity method represents the simplest type of SA. 
The core concept behind this method is the OAT perturbation of the input factors 
from their nominal values and the evaluation of the effect on the model outputs. 
This effect can be visually evaluated by comparing the model responses under 
different input factors perturbation or evaluating a sensitivity measure (Paton 
et al., 2013). The sensitivity of the ith input factor on the model output y can 
be represented by the partial derivative δy/δx evaluated at the nominal value of 
the factors. Since input factors may have different units of measurements, the 
partial derivatives are not comparable. In order to make them comparable they 
can be re-scaled by adopting a scaling factor. In terms of computational demand, 
this kind of method requires 2n + 1 runs, where n represents the number of 
factors. Setting the size of the perturbation is a critical element in its application, 
leading to sensitivity to non-linearity or numerical inaccuracy (De Pauw & 
Vanrolleghem, 2006).

11.2.2  Regression-based
11.2.2.1  Standardized regression coefficients
The rationale of regression/correlation based methods is to perform Monte Carlo 
(MC) simulations of the model output by using a randomly sampled factor matrix. 
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Multivariate linear regression according to Equation 11.1 is then used relating 
model outputs (y) to the factors (xi) (Saltelli et al., 2008).

y b b xi
i

n

i= + ⋅ +
=∑0

1
ε

 
(11.1)

where n represents the number of factors, bi are the regression slopes, and ε is the 
random error of the regression model. For each factor the standardized regression 
coefficient (SRC = bi) of the multivariate linear model is calculated according to 
Equation 11.2.

SRC ( )x bi i i
xi

y
= = ⋅b σ

σ  
(11.2)

where σxi and σy represent the factor and the model output standard deviation, 
respectively. bi is a valid measure of sensitivity if the coefficient of determination 
R2, which indicates the portion of total variance explained by the regression model, 
is higher than 0.7 (Saltelli et al., 2008). A high absolute value of bi indicates a 
relevant effect of the related ith factor on the model output. The sign of bi indicates 
the direction of change. More specifically, the positive sign of bi indicates that 
increasing the value of the ith factor increases the model output and vice versa 
in the case of a negative sign (Saltelli et al., 2004). In the case of a linear model, 
the coefficient of determination R2 is equal to 1 (Saltelli et al., 2008). The SRC 
method does not provide information about the interaction among factors. It allows 
identification of the important model factors ( factors prioritization) if the model is 
not too far from being linear (Table 11.1).

In terms of computational demand, the regression/correlation based methods 
are feasible to be used even for complex models with tens of factors. Indeed, the 
application of these methods requires a limited number of MC simulations, typical 
numbers found in literature are between 500 and 1000 (Neumann, 2012). However, 
the regression/correlation-based methods explore only the first-order effects and 
do not provide any information about the interaction among factors. Thus, these 
methods can be used only for factor prioritization in cases when the effects of non-
linearity are not too strong (R2 > 0.7).

The SRC method has the advantage of being simple to apply. However, it cannot 
be applied when the relationship between model factors and model output is non-
linear or non-monotonic and when interactions are present (Saltelli & Sobol’, 1995).

11.2.3  Screening
11.2.3.1  Morris screening
The Morris screening method represents the most used method belonging to the 
class of global screening methods. It is based on OAT perturbation of the model 
factors under investigation (Morris, 1991). However, in comparison to the derivative 
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based methods, the OAT perturbation is repeated at different locations within the 
factors range before being averaged. For each perturbation, the elementary effect 
(EE) is quantified. The EE represents the relative difference of the model output 
with, y(x1, … , xi−1, xi + Δ, xi+1, … , xn), and without, y(x1, … , xn), a perturbation Δ of 
the ith factor (Equation 11.3).

EE 1 1
i n

i i i n nx x
y x x x x x y x x

( , , , )
( , , , , , , ) ( , , )

1
1 1… = … + … …− +∆ ∆

∆
−

 
(11.3)

The EE is repeatedly computed (r times) at different locations in the factor 
space (considering a p-level sampling grid). For each of the n factors, the measure 
of sensitivity is summarized by the mean (μ) and the standard deviation (σ) of 
the r EEs. The mean μ represents a measure of the importance of the factor in 
determining model output, whereas the standard deviation σ indicates whether the 
factor is responsible for introducing non-linearity or interactions (i.e. whether the 
sensitivity changes for different locations in the factor space) (Table 11.1). A high 
value of σ indicates that the model output variation is influenced by non-linearity 
or interactions. Thus, the Morris screening method is able to detect interactions 
among factors (Table 11.1). In order to avoid the problem that EEs of opposite sign 
cancel each other out, Campolongo et al. (2007) proposed using the mean of the 
absolute EEs (μ*). The main objective of the Morris screening method is factors 
fixing: factors with a low value of μ* or σ are considered non important and can be 
fixed anywhere in the factor space.

Further, as suggested originally by Morris (1991), the line μ σi i r* ( )= +2 / , 
where σ i r/  represents the standard error of the mean, can be used to discriminate 
between interacting and non-interacting factors. Factors which lie below the line 
have a linear effect on the model outputs whereas factors above this line have a 
non-linear effect or are involved in interactions.

As suggested by Campolongo et al. (2007) the required number of simulations 
for the Morris screening application is equal to r*(n + 1). Typical numbers are 
r = 10–20 and p = 4–8 (Campolongo et al., 2007).

11.2.4  Variance-based
Variance-based methods are founded on the variance decomposition theorem. 
The main interesting features of variance-based methods are: (i) independence 
of the model structure; (ii) capability to analyse the influence of each factor 
within its entire range; (iii) capability to quantify the interaction among factors; 
and (iv) groups of factors can be considered as single factors. However, the main 
disadvantage of these methods is their computational cost, as they require a large 
number of simulations per factor (500–1000 according to Saltelli et al., 2005). In 
the application of variance-based methods, modellers are often interested in two 
sensitivity indices: the first-order effect index (Si) and the total effect index (STi) 
(Table 11.1).
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The most frequently used methods are: Extended-FAST and Sobol’ (Cukier 
et al., 1973; Schaibly & Shuler, 1973; Sobol’, 1993; Saltelli, 2002).

11.2.4.1  Sobol’ indices
The core idea behind the Sobol’ indices method is the decomposition of the function 
f(x), which depends on n input factors (x1, … , xn), into summands of increasing 
dimensionality, namely:

f x x f f x f x x fn i i
i

n

i

n

ij i j
i j

n

n( , , ) ( ) ( , ) (, , ,1 0
1 1

1 2… = + + + +
= = ≠ …∑ ∑ ∑ � xx xn1, , )…

 (11.4)

The integral of every summand of any of its own variables must be zero 
and all the summands in Equation 11.4 are orthogonal. Thus, the analysis of 
variance representation of f(x) is based on the satisfaction of the condition of 
Equation 11.5.

f x x dx K i ii i ii k nn n1 1
0 1, , ( , , ) , ,…∫ … = = …for

 
(11.5)

The Sobol’ indices for a subset of model factors are defined as:

S
D

Di i
i i

n

n

1

1
, ,

, ,
…

…=
 

(11.6)

where Di in1, ,…  is the partial variance of f x xi i i in n1 1, , ( , , )… …  and D is the total variance.
For example, S D Di i= /  provides the first-order contribution from the ith input 

parameter to the output variance and S D Dij ij= /  is used to compute the second-
order contribution from interaction between the ith and jth parameters. Finally, 
total effect sensitivity indices, which are defined as the sum of all the sensitivity 
indices as S S S STi i ij i n= + + + … …� 1  quantify the overall effects of one factor on 
the model output. The required number of simulations is N*(n + 2); where N is the 
number of repetitions and n the number of model factors.

11.2.4.2  Extended-FAST
The Extended-FAST method is also based on the variance decomposition. 
Differently to Sobol’ the Extended-FAST evaluates sensitivity independently for 
each factor using just one simulation because all the terms in a Fourier expansion 
related to Equation 11.4 are mutually orthogonal.

In the Extended-FAST method Si, computed according to Equation 11.7, 
measures how the ith factor contributes to the variance of the model output without 
taking into account the interactions among factors.

S
E Y x

Yi
x x ii i=

Var |
Var
( ( ))

( )
−

 
(11.7)
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where E indicates the expectancy operator and Var the variance operator. 
According to the notation used by Saltelli et al. (2004) the subscripts indicate that 
the operation is either applied “over the ith factor” Xi, or “over all factors except 
the ith factor” X−i.

The total effect index STi is computed according to Equation 11.8 considering all 
potential interactions with the ith factor.

S
E Y x

YTi
x x ii i= − − −1

Var |

Var

( ( ))

( )  
(11.8)

The difference between STi and Si quantifies the interaction among factors (SSi). 
Variance-based methods allow identification of important factors (high Si) (factors 
prioritization).

Only if STi is small can the factor be fixed anywhere within its range of 
uncertainty (factor fixing). Indeed, if the Si value is small, it does not necessarily 
mean that the factor may be fixed because a high STi value would indicate that the 
factor is involved in interactions.

11.3  GSA APPLICATIONS FOR WASTEWATER 
ENGINEERING
In Table 11.2 the main relevant studies on GSA related to the wastewater field 
are summarized. Further, Table 11.2 contains key elements of relevant GSA 
applications in other modelling fields.

In the wastewater modelling field the SRC method has often been adopted for: 
(i) factors prioritization (among others, Corominas & Neumann, 2014; Wagner 
et  al., 2016; Mannina et  al., 2017); and (ii) uncertainty analysis (Benedetti 
et al., 2011; Sin et al., 2011). Sin et al. (2011) applied the SRC method in view 
of uncertainty analysis of a model of a conventional activated sludge system 
in which three different scenarios were analysed. In particular, the following 
scenarios were analysed by Sin et al. (2011): scenario 1: stoichiometric, kinetic 
and influent fractionation parameters are uncertain; scenario 2: hydraulics and 
mass-transfer factors are uncertain; and scenario 3: stoichiometric, kinetic and 
influent fractionation parameters, hydraulic and mass-transfer related parameters 
are uncertain. For each scenario, different model inputs (such as bio-kinetic 
model parameters, influent fractions, mass-transfer parameters and the like), were 
considered to be either uncertain or known. The study of Sin et  al. (2011) was 
aimed at selecting the most important factors that contribute to the uncertainty 
of wastewater treatment performance criteria (e.g. effluent quality, sludge 
production and energy consumption). They found a high ability of the SRC method 
in identifying the main sources of uncertainty and quantifying their impact on 
process performance criteria. Conversely, Chen et al. (2012) found that for more 
complex wastewater systems such as membrane bio-reactors the SRC method can 
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lead to erroneous results, due to non-linearity. Studying a similar system, Cosenza 
et al. (2013a) found that the SRC method provided similar results to the Extended-
FAST method in terms of factors prioritization despite the presence of non-
linearity. This result has peculiar interest. Indeed, if the modeller knows to deal 
with a non-linear model and is interested only in factor prioritization he/she can 
apply the less computationally-demanding method (SRC) without creating errors. 
Indeed, Mannina et al. (2017) have recently successfully applied the SRC method 
for the factors prioritization of a complex ASM-based model including greenhouse 
gases as state variable, despite the average R2 model output being equal to only 
0.5. Conversely, Cosenza et al. (2013a) found a low similarity in results obtained 
by applying the Morris screening and Extended-FAST methods, mainly due to a 
convergence problem.

Despite the fact that the core aim of the Morris screening method is to provide 
information in terms of factors fixing, it has often been applied in the wastewater 
field with the aim of factors prioritization thanks to the qualitative knowledge on 
the factor interactions provided by σ.

Few variance-based method applications are found in the wastewater 
modelling field mainly due to their higher computational cost compared to other 
GSA methods. Applications include Cosenza et al. (2014) who found significant 
interactions among the model factors of the ASM2d–SMP model (Cosenza et al., 
2013b). Contrary to previous GSA studies for ASMs, Cosenza et al. (2014) found 
the relationship between variables and factors to be non-linear and non-additive.

Some GSA applications derived from other water modelling fields merit being 
cited here for their peculiarities, which could be of useful interest for future 
applications in the wastewater field.

Vanrolleghem et al. (2015) have applied three GSA methods (SRC, Extended-
FAST and Morris screening) to an urban drainage stormwater quality–quantity 
model. They discussed the issue of sensitivity convergence as further explored in 
Section 11.5. Vanrolleghem et al. (2015) found a considerable deviation of the results 
of Morris screening from that of the other methods, demonstrating that for their 
model the best method was the Extended-FAST. However, they underlined the need 
for using multiple GSA methods and multiple objectives in view of increasing the 
robustness of the results as previously performed by Corominas and Neumann (2014).

Neumann (2012) compared five SA methods (derivative-based local sensitivity 
analysis, Morris Screening, SRC, Extended-FAST and an entropy-based method) 
applied to micropollutants removal in a drinking water model. The author found the 
same parameter ranking results for the different methods. However, for chemicals 
leading to high non-linearity, the approximation of first-order effect indices using 
the local or regression-based methods was poor, leading to different classifications.

Reder et al. (2017) have recently applied GSA to a water quality model aimed 
at evaluating the river water quality in Africa. Specifically, they applied the lowest 
computationally demanding GSA methods: SRC, Pearson correlation coefficients 
(PCC) and the Spearman rank correlation coefficient. Despite obtaining reasonable 
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results using a sampling size larger than that recommended in the literature, they 
pointed out the need to investigate and compare different methodologies. This 
latter statement embraces all fields of GSA applications since no best GSA method 
exists and different methods and sampling strategies have to be applied to obtain 
reasonable results (Pianosi et al., 2016).

Recently Sarrazin et al. (2016) presented a research paper focusing on key issues 
such as the adequate sample size, convergence and the choice of the screening 
threshold. Sarrazin et al. (2016) applied three GSA methods to three hydrological 
models of increasing complexity (with 5, 13 and 50 model factors). Further, as 
discussed below, they also proposed a method for a quantitative assessment of 
the convergence of the sensitivity analysis. They demonstrated the importance of 
assessing convergence analysis with respect to the objective of the modeller, for 
example to obtain stable sensitivity indices, a ranking or a screening.

11.4  NUMERICAL SETTINGS
One of the crucial aspects in the GSA applications is the sample size to be adopted in 
view of obtaining reliable results. Some relevant GSA applications have demonstrated 
that the sample size suggested in Saltelli et al. (2008) can be too low and inadequate 
to obtain reliable results (Vanrolleghem et al., 2015; Sarrazin et al., 2016).

As recently demonstrated by Sarrazin et al. (2016), no relationship exists between 
the number of model factors and the sample size required to reach convergence. 
The number of model simulations to be run for carrying out the sensitivity analysis 
depends on the choice of the sampling repetitions which is therefore crucial. For 
complex models (large model factors) the sample size can be the bottleneck of the 
methodology (long calculation time for running the requested model runs).

The sample sizes suggested in literature are often insufficient; therefore, a 
convergence analysis would be required to ensure that stable results are obtained 
given the limited sample size. However, a dilemma exists: complex models are 
likely to be computationally expensive and therefore require sophisticated (again 
expensive) GSA methods making a convergence analysis unfeasible. In Section 
11.4.3 a convergence pursuing numerical method is proposed to obtain reliable 
results at minimal computational cost.

11.4.1  Open issues
A generally accepted common GSA terminology, permitting ease of comparison 
between the methods, is still lacking (Mannina et al., 2012; Vanrolleghem et al., 2015).

“Sensitivity indices” provide a measure of the importance of a model factor in 
determining variation in the model output. When applying sensitivity analysis, one 
of the most relevant parameters that has to be employed is the so-called “cut-off 
threshold”. The cut-off threshold is a subjective number which allows classification of 
model factors (i.e. factors classified as being important or non-influential). Therefore, 
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the “cut-off threshold value” of the sensitivity indices for establishing whether a model 
factor is important or not has a key role in applying GSA (see below Section 11.4.2).

There is missing terminology for comparing results in view of classification 
(establishing an order of importance of model factors) and for comparing cut-off 
threshold values for sensitivity indices obtained with different methods.

Another issue surrounding GSA, for which no consensus still exists, is the 
convergence of the results obtained for different numbers of simulations. The lack 
of uniformity in the definition of convergence makes it difficult to compare the 
results obtained for models of different complexities when using different GSA 
methods (Sarrazin et al., 2016).

In Figure 11.3, a first attempt to standardize the GSA terminology for 
comparability of results among three classes of methods (i.e. SRC, Morris screening 
and Extended-FAST) is provided (Vanrolleghem et al., 2015).

(b)(a)

(c)

Figure 11.3  Schematic overview of the terminology used for classifying SRC (a), 
mean (b), first-order effect (c) according to different GSA methods: SRC (a), Morris 
screening (b) and Extended-FAST (c) (Vanrolleghem et al., 2015).

On the basis of a cut-off threshold (CT) for the sensitivity indices it is possible 
to classify factors according to their importance (Vanrolleghem et al., 2015). As 
detailed below, each method provides different sensitivity indices which provide 
the entity of the importance of each model factor.
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The SRC method allows calculation of the standardized regression coefficient 
(SRC) or slope (bi) (obtained with respect to the ith model factor and the model 
output standard deviation – see Section 11.2.2.1) of the multivariate linear regression 
model. A CT threshold (CTSRC for bi) has to be defined in view of classifying model 
factors in terms of importance. Once CTSRC is defined, on the basis of its value, 
factors can be classified in the following way (Figure 11.3a):

• important factors: if SRC coefficient > CTSRC;
• non-important factors: if SRC coefficient < CTSRC.

In the case of linear models the non-important factors can be fixed anywhere 
in their space. In the case of non-linear models, non-important factors could be 
involved in interactions with other factors thus they cannot be fixed (see below).

In the case of the Morris screening method, two indices are calculated. 
Specifically, the absolute mean (μ*) and the standard deviation of the elementary 
effect (difference with and without factor variation) computed at different points 
of the input space. These values provide information about the importance of 
model factors. A CT threshold (CTMORRIS for μ*) has to be established in view of 
classifying model factors in terms of importance.

By means of the Morris screening method three different types of factors can be 
distinguished with respect to the mean and the standard deviation of the elementary 
effect function (Figure 11.3b):

• important factors: if absolute mean sensitivity > CTMORRIS;
• interacting factors: if absolute mean sensitivity > CTMORRIS and the standard 

deviation is above a specified cone line;
• non-influential factors: if absolute mean sensitivity < CTMORRIS.

In particular, the Morris screening method as modified by Campolongo et al. 
(2007) basically defines a cone whose edges are set by a CTMORRIS and an oblique 
line called the core line, corresponding to two times the standard error of the 
sensitivity index (Figure 11.3b) (quantitative characteristics are given below).

In the case of the Extended-FAST method, the ith factor contribution to the 
variance of the model output with and without taking into account the interactions 
among factors (STi and Si, respectively) are considered as sensitivity indices. The 
difference between STi and Si represents the contribution of the ith factor in terms of 
interaction. A CT for each of the indices (CTE-FAST1 and CTE-FAST2 for Si and STi − Si, 
respectively) has to be established in view of classifying model factors in terms of 
importance.

The Extended-FAST distinguishes three classes of factors on the basis of two 
CTs (CTE-FAST1 and CTE-FAST2) (Figure 11.3c):

• important factors: if Si > CTE-FAST1;
• interacting factors: if STi − Si > CTE-FAST2;
• non-influential factors: if Si < CTE-FAST1 and STi − Si < CTE-FAST2.



382 Advances in Wastewater Treatment

Non-influential factors which can be identified by both the Morris screening as 
well as the Extended-FAST method can be fixed anywhere within their variation 
range without changing the model output variance. With respect to this, it is 
important to stress once more that non-important does not imply non-influential.

11.4.2  Cut-off criteria for factors classification
In order to classify factors as being important or non-influential or interacting, cut-
off thresholds of the sensitivity indices values (CTs) are required. The choice of 
the cut-off thresholds is arbitrary and depends on the objective of the modeller and 
on the model structure. For example, in the case where the modeller is interested 
only in the factors that contribute significantly to the model variability, a high cut-
off threshold is selected. A general criterion to select the cut-off thresholds is that 
the CT value has to be effective in view of differentiation of model factors (e.g. 
as important or non-influential or interacting). Therefore, a value that classifies 
all involved factors as either important or non-influential is not suitable. Indeed, 
this latter case would make the GSA application un-useful, especially when the 
modellers’ aim is to select the factors that need to be calibrated.

In the following, CT-values typically found in literature are reported (see also 
Table 11.2).

A CT value equal to 0.1 is suggested to select important factors, for the SRC 
(|bi|) and Morris screening (μ*) methods (CTSRC and CTMORRIS, respectively). This 
latter value is equivalent to a CT value of 0.01 for Si obtained in the Extended-FAST 
method (CTE-FAST1) (since for linear models Si i= b 2) (Sin et al., 2011; Neumann, 
2012; Cosenza et al., 2013a; Vanrolleghem et al., 2015).

For the Extended-FAST method a CT of 0.1 (CTE-FAST2) was chosen by 
Vanrolleghem et al. (2015) for the threshold value of the interaction (i.e. STi − Si). 
Neumann (2012) chose a CT of 0.05 for STi and μ* in order to identify non-influential 
factors (factors with STi (or μ*) < 0.05 were considered to be non-influential).

Sarrazin et al. (2016) have proposed the method presented below to validate the 
screening results after applying GSA methods, which could provide support to the 
modeller to investigate the adequacy of the chosen screening threshold.

11.4.3  GSA applications dealing with convergence 
analysis
Convergence analysis represents another crucial aspect when dealing with GSA. 
The high time demand required for convergence analysis is often contrasting 
with the need of a modeller to achieve results as fast as possible. Therefore, 
very few quantitative criteria exist for implementing convergence analysis in the 
wastewater field.

Benedetti et  al. (2011) proposed a method to reduce the computational cost 
of Monte Carlo based GSA methods. The authors used two criteria (the model 
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output variability and the stability of the set of factors classified as important as 
the number of iterations increases) to select the minimum number of simulations 
to be performed. They found that depending on the analysed variable the results of 
the convergence analysis vary, highlighting that the achievement of convergence is 
strongly dependent on the model output considered.

Ruano et al. (2012) investigated the convergence of the Morris screening for a 
wastewater treatment plant model. They proposed a criterion (the position factor) 
for establishing the achievement of convergence. By increasing the number of 
replicates (r) of the OAT sampling from 5 to 70, Ruano et al. (2012) analysed the 
average variation of the sum of the rank of the model factors (position factor). 
Ruano et al. (2012) found that the optimal number of replicates was 60–70, which 
is considerably higher than recommended by Saltelli et al. (2008) (namely 4–10 
as reported in Table 11.1). The work of Ruano et  al. (2012) confirmed that the 
modeller must take care in employing “default” numerical settings proposed in 
literature especially in the case of complex models.

For the sake of completeness, some quantitative criteria adopted in other water 
modelling fields are reported below. These criteria could represent the starting 
point for future convergence analysis applications in the wastewater field.

Recently, Sarrazin et  al. (2016) have defined quantitative criteria to assess 
convergence of sensitivity indices, ranking and screening. They propose to assess 
the maximum width of the confidence intervals of the sensitivity index (Statindices) 
as a summary statistic to assess converge (Equation 11.9).

Stat S S i ni
ub

i
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indices = − = …max( ), , ,1  (11.9)

where Si
ub and Si

lb are the upper and lower bounds of the sensitivity index of ith input 
factor, respectively; n represents the number of the input factors. The convergence 
is achieved when the Statindices value is close to zero. Regarding the convergence in 
terms of ranking, Sarrazin et al. (2016) have proposed a weighted rank correlation 
coefficient (ρs,j,k) (Equation 11.10).
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where Si
j and Si

k relate to the ith input factor evaluated at the jth and kth resample 
of the model factors, respectively; while, Ri

j and Ri
k are the related rank positions. 

Sarrazin et al. (2016) suggested that the convergence can be considered reached 
when the 95% quantile value of the ρs,j,k distribution (obtained over all possible 
resamples) is equal to one. Regarding the convergence of the input factor 
screening, Sarrazin et al. (2016) have proposed as a summary statistic (Statscreening) 
the maximum width of the 95% confidence intervals across the sub-set (X0) of 
the input factors that can be considered “low-sensitivity” (having sensitivity index 
value lower than a fixed threshold) (Equation 11.11).
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Stat S S x Xi
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The screening convergence can be considered reached when Statscreening is close 
to zero.

In the urban wastewater field Vanrolleghem et al. (2015) proposed a quantitative 
method for testing the convergence achievement for SRC, Morris screening and 
Extended-FAST methods. The core idea of the method, is to evaluate the variability 
of the sensitivity indices (SC) as the number of simulations increases. In particular, 
for each model output j, the SSCj is computed as the sum of the sensitivity SC of all 
factors normalized with respect to the number of factors (n).

SSCj = =∑ SC

n
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i j
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(11.12)

The variability of SSCj is analysed for increasing numbers of Monte Carlo 
simulations (nMC). More specifically, for the jth model output the variability of SSCj 
is expressed as the percentage of change of SSCj from nMCi−1 to nMCi (Equation 11.13).
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According to this method, the convergence can be considered achieved if 
Variability (Eq. 13) stays within a selected precision threshold.

In Figure 11.4 an example of a convergence analysis for two different types 
of models (simplified and complex) is reported (Vanrolleghem et al., 2015). The 
results are related to the application of SRC, Morris screening and Extended-
FAST methods. A variability threshold of the results equal to +/− 3% is considered 
for evaluating convergence (Figure 11.4) of the two models. The simple model 
is a rainfall-runoff urban drainage model (Mannina & Viviani, 2010) with five 
model factors. In Figure 11.4a–c two model outputs are reported (i.e. O1 and O2). 
The complex model is able to simulate processes related to quantity and quality 
inside sewer systems and includes 17 model factors. For the sake of conciseness 
only two model outputs of the complex model are considered in Figure 11.4d–f 
(i.e. O3 and O4).

From Figure 11.4 one may observe that the sensitivity index of a simple model’s 
outputs with the simple method achieves convergence at a lower number of 
simulations than with the complex methods. For example, for SRC convergence is 
achieved with 1000 simulations (Figure 11.4a). Conversely, for the complex model, 
convergence is achieved at 4000 simulations (Figure 11.4d). Moreover, by analysing 
Figure 11.4 one may observe that, especially for the complex model, sensitivity 
indices of the two model outputs do not achieve convergence simultaneously.
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11.5  USING MULTIPLE GSA METHODS
11.5.1  Comparison studies
The specific key features of each method compared to the others can be analysed by 
applying different methods to the same model. Cosenza et al. (2013a) have compared 
the SRC, Morris screening and Extended-FAST methods for a membrane bioreactor 
wastewater treatment model. They showed a poor similarity between Morris 
screening and Extended-FAST results in terms of classification into influential/non-
influential factors. In terms of identifying important factors Mannina et al. (2012) 
obtained a good agreement applying SRC, Morris screening and Extended-FAST 
methods to a simple model. In the hydrological field, slight differences of factors 
ranking were obtained by Yang (2011), for the application of regionalized sensitivity 
analysis and non-parametric smoothing methods to the HYMOD model. For the 
regionalized sensitivity analysis method, the different results were debit to the 
dependence on the choice of the adopted filtering criterion to separate parameter sets 
into behavioural and non-behavioural. For the non-parametric smoothing method 
despite the convergence achievement Yang (2011) debited the different results to the 
low number of simulations performed compared to the other methods.

The results of the comparison studies obtained by Mannina et al. (2012) (simple 
model) and Cosenza et al. (2013a) (complex model) are reported in Figure 11.5. 
More specifically, the Venn diagram of Figure 11.5 shows the important factors 
selected by applying SRC, Morris screening and Extended-FAST methods to a 
simple (Figure 11.5a) and a complex model (Figure 11.5b).

(b)(a)

Figure 11.5  Venn diagram related to the comparison of important factors obtained 
by applying SRC, Morris screening and Extended-FAST methods for a simple 
model (a) and a complex model (b); numbers represent the factor order index; 
adapted from Mannina et al. (2012).

By analysing Figure 11.5, one may observe that for the case of the simple model 
the three methods provide the same results in terms of important factors (Figure 
11.5a). Conversely, for the complex model a poor similarity is shown in Figure 11.5b.
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The findings deduced from one GSA method application are often affected 
by the subjectivity of the modeller (e.g. cutting threshold for selecting important 
factors; number of runs; etc.) during the analysis, thus limiting the transferability 
of the knowledge to other models.

Despite the huge efforts aimed at understanding the peculiarities of each GSA 
method “no ideal GSA method exists for all case studies” (Pianosi et al., 2016).

11.5.2  Sequential use
The Morris screening method is often suggested as a first step to discard non-
influential factors and then pursue the GSA by applying a more elaborate method 
with only the selected potentially influential factors. However, care needs to be 
taken to assess the convergence for the Morris screening (among others, Cosenza 
et al., 2013a).

In case of computationally demanding complex models, a general 
recommendation is that of applying a screening method to discard non-influential 
factors before applying more demanding methods such as Extended-FAST. 
Indeed, this is a general recommendation in GSA literature (Saltelli et al., 2008). 
However, to ensure that this procedure works one must ascertain that no factors are 
eliminated wrongly in the screening. Examples of such approaches are reported in 
Sun et al. (2012) who suggested using, in the case of a model with a large number 
of factors, a two-step procedure including first a factors screening step (by using a 
local method) followed by a GSA step to be applied only to the important factors 
identified during the first step. For complex models, Gan et al. (2014) suggested 
first using approximate methods (e.g. SRC or local methods) for a rough factor 
screening and then applying more demanding methods such as Extended-FAST or 
Sobol’s indices.

The problem of the high computational burden can be managed by adopting 
the meta-model approach, typical of the hydrological field (Song et  al., 2015). 
The core idea behind this approach is the adoption of statistical or experimental 
design methods as surrogate models (emulators) to assess the relationship between 
model factors and state variables. However, despite the fact that this approach has 
often been used in the hydrological field several issues still remain, for example 
the truthfulness of the meta-models with respect to the real process that has to be 
described.

11.5.3  Complementary use
The choice of GSA method to apply is not always clear a priori due to unknown 
model behaviour and the unknown relationship between model outputs and factors. 
Only by applying different methods simultaneously, can a robust assessment of 
the impact of model factors on the model outputs and the model’s degree of non-
linearity be obtained (Neumann, 2012; Corominas & Neumann, 2014).
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With this in mind, the complementary use of GSA methods can provide support 
to the modeller. The complementary use of GSA methods can be performed with 
two aims:

(1) Increase robustness of analysis: if the modeller uses four GSA methods 
and three are providing similar results and one is not then he/she has to 
check what is going on;

(2) Studying multiple objectives: since not all methods provide information for 
all objectives, the modeller has to apply complementary methods.

Regarding the multiple objectives, Corominas and Neumann (2014) have 
applied the SRC and the Morris screening methods to an urban wastewater 
system model in order to understand how the operational variables of the system 
(including WWTP) influence the receiving water quality. Specifically, two GSA 
methods have been applied to identify important operational variables (i.e. SRC) 
as well as variables that do not influence (i.e. Morris screening) river water quality. 
The authors have confirmed the recurring statement in the field of water modelling 
that no ideal GSA method exists and that the combination of several methods can 
improve the results.

However, despite the advantage of the complementary use of different GSA 
methods several questions remain to be addressed, such as: Is this really an 
effective practice for overcoming the computational burden? A way to provide an 
answer is to test how the results of the sensitivity analysis change after performing 
a complementary use of GSA methods.

11.6  SUMMARY AND OUTLOOK
This chapter has outlined the application and issues surrounding the use of GSA 
in the wastewater modelling field. Sometimes applications or criteria from other 
water modelling fields have been discussed in view of providing the reader with 
a general overview on GSA. The following summary points can be deduced from 
this chapter:

(1) The adoption of GSA methods for WWTP modelling has several advantages 
with respect to local methods. One of the most significant advantages is 
the capability of GSA methods to take into account interactions among 
factors. This capability makes the selection of important model factors 
more precise than local methods. Consequently, the model predictions are 
more accurate. Moreover, the possibility of identifying the interactions/
relationships among the model factors may also reduce the amount of 
model factors (stoichiometric, kinetic or fractionation) that need to be 
assessed during the experiments or allow a modeller to better interpret the 
measured data.
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(2) Since the WWTP models often contain tens of model parameters, the 
sequential use of several GSA methods represents a way for reducing the 
high computational demand typical of these methods. Therefore, the first 
adoption of a screening method to discard non-influential factor before 
applying more demanding methods (such as Extended-FAST) is suggested.

(3) No single GSA method is ideal for all WWTP models. Therefore, the 
adoption of multiple methods is suggested in view of selecting the best 
method to be adopted on the basis of the model structure (linear or non-
linear, monotonic or non-monotonic). However, a systematic approach to 
verify the effectiveness of running multiple GSA methods is also required.

(4) Some aspects related to GSA still require further investigations in view 
of favouring the adoption of GSA in the WWTP modelling field and of 
improving results of future applications: (i) setting-up of quantitative criteria 
to assess convergence of GSA results; (ii) establishing a methodology to 
support modellers for the identification of an adequate screening threshold 
to be adopted; and (iii) adopting a standardized nomenclature/terminology 
related to convergence and sensitivity thresholds facilitating comparability 
among methods.
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