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Abstract

We study a Henstock-Kurzweil type integral defined on a complete
metric measure space X endowed with a Radon measure p and with
a family of “cells” F that satisfies the Vitali covering theorem with
respect to p. This integral encloses, in particular, the classical Henstock-
Kurzweil integral on the real line, the dyadic Henstock-Kurzweil integral,
the Mawhin’s integral [19], and the s-HK integral [4]. The main result
of this paper is the extension of the usual descriptive characterizations
of the Henstock-Kurzweil integral on the real line, in terms of ACG”
functions (Main Theorem 1) and in terms of variational measures (Main
Theorem 2).

1 Introduction

The following descriptive characterizations of the Henstock-Kurzweil integral
on the real line are well known:
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158 D. BoONGIORNO AND G. CORRAO

Theorem A. [13, Theorem 6.12, Theorem 6.13] A function f: [a,b] — R
is Henstock-Kurzweil integrable on [a,b] if and only if there exists a function
F: [a,b] = R such that F is ACG* and F'(x) = f(x) almost everywhere on
[a, b].

Theorem B. [2, Theorem 3] A function f: [a,b] — R is Henstock-Kurzweil
integrable on [a,b] if and only if there exists a function F': [a,b] — R such that
its variational measure is absolutely continuous with respect to the Lebesgue
measure and F'(x) = f(z) almost everywhere on [a,b].

Concerning the n-dimensional Henstock-Kurzweil integral, with n > 1,
theorems of type A were proved by Lee-Leng [14], by Lu-Lee [17], and by
Tuo-Yeong [25]. A theorem of type B was proved by Tuo-Yeong [24], [26],
[27].

Moreover, in contrast with the one-dimensional case, the n-dimensional
Henstock-Kurzweil integral, with n > 1, does not integrate all derivatives.
This was the reason for several modifications of the definition of the n-dimen-
sional Henstock-Kurzweil integral done by some mathematicians, including
Mawhin [19], Jarnik-Kurzweil-Schwabik [12], and Pfeffer [20], [21].

For such above integrals, extensions of theorems of type A and B were
done, by others, by Bongiorno-Pfeffer-Thomson [3], by Buczolich-Pfeffer [5],
by De Pauw [6], by Di Piazza [7], and by Faure [9].

In the more general setting of a generic metric measure space, it is well
known that the biggest difficulty in the definition of a Henstock-Kurzweil type
integral is that of finding a suitable family of measurable sets which plays the
role of “intervals”.

Leng-Yee [16] studied, on a complete metric measure space, the Henstock-
Kurzweil integral generated by the family of all finite intersections of sets that
are the difference of two closed balls.

Later, a theorem of type A for this integral was proved by Leng [15]. Un-
fortunately, his characterization requires, on the primitive function F, besides
an ACG*-type notion, some strong additional conditions (see [15, Theorem
19)).

In this paper we prove that, if the family of “intervals”, used in the def-
inition of a Henstock-Kurzweil type integral on a complete metric measure
space, satisfies, besides the usual conditions, the Vitali covering theorem with
respect to the given measure, then it is possible to obtain natural extensions
of both Theorems A and B.
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AN INTEGRAL ON A COMPLETE METRIC MEASURE SPACE 159

2 Preliminaries

We denote by N and R the sets of all natural and real numbers, respectively.
Let X = (X,d) be a complete metric space. For each z € X and F C X, we
denote by xg, diam(FE), OF, E° and d(z, E) the characteristic function of F,
the diameter of E, the boundary of E, the interior of E and the distance from
x to I, respectively.

Let p be a non-atomic Radon measure on X, let G be a family of non-
empty closed subsets of X and let £ C X. The family G is said to be a fine
cover of I if

inf{diam@: Q € G, Q 3 x2} =0,
for each x € E.
A family F of non-empty closed subsets of X is said to be a u- Vitali family if
it satisfies the following Vitali covering theorem:

Theorem 2.1. For each subset E of X and for each subfamily G of F that is
a fine cover of E, there exists a countable system {Q1,Q2,---,Qj,---} C G
such that Q; and Q; are non-overlapping (i.e. the interiors of Q; and Q; are
disjoint), for each i # j, and such that u(E\ U Q;) =0.

A p-Vitali family F is said to be a family of u-cells if it satisfies the following
conditions:

(a) Given @ € F and a constant § > 0, there exist Q1,Q2, -+ , Qm, subcells
of @, such that @; and @; arc non-overlapping for cach 7 # j, UL, @Q; =
Q, and diam(Q;) < 4, fori =1,--- ,m;

(b) Given A4,Q € F with A C @, there exist Q1,Q2, -, Qm, subcells of @,
such that @; and @; are non-overlapping for each ¢ # j, and A = Q1;

(¢) n(0Q) =0 for each Q € F.

Example 2.1. Let X be the interval [0,1] of the real line endowed with the
Euclidean distance in R and with the one-dimensional Lebesgue measure L.
The system F of all non-empty closed subintervals of X is the simplest example
of a family of L-cells in [0, 1].

In fact, F is a £-Vitali family by the well known Vitali covering theorem
on the real line (see [23, Chapter IV, § 3]), and conditions (a), (b), and (c) are
trivially satisfied.

Example 2.2. Let X be the interval [0,1] of the real line endowed with the
Fuclidean distance in R and with the one-dimensional Lebesgue measure. It
is easy to see that the system Fy of all non-empty closed dyadic subintervals
of [0,1] is also a family of L-cells in [0, 1].
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160 D. BoONGIORNO AND G. CORRAO

Example 2.3. Let n > 1 and let X be the unit cube [0, 1]™ of R™ endowed with
the FEuclidean distance in R” and with the n-dimensional Lebesgue measure
L. For a fixed a € (0, 1], the system F,, of all non-empty closed subintervals
Q of [0,1]™ such that £*(Q) > a L™(B), for some ball B containing @, is a
family of L™-cells.

In fact, F, is a £"-Vitali family by [23, Chapter IV, §3], and conditions
(a), (b) and (c) are trivially satisfied.

Example 2.4. Let X be the interval [0, 1] of the real line endowed with the
Euclidean distance in R, and let K C [0,1] be an s-set; i.e., a closed fractal
subset of [0,1] of positive s-Hausdorff measure H*, with 0 < s < 1. The
system Fx of all non-empty closed subintervals of [0,1] is a family of cells
with respect to the measure pg(-) = H5(- N K).

In fact, the measure py is Radon by [18, Theorem 1.9 (2) and Corollary
1.11], Fx is a p-Vitali family by [18, Theorem 2.8], and conditions (a), (b)
and (c) are trivially satisfied.

In the next definition of the HK-integral on X, a family of u-cells will takes
the role of the usual “intervals” in the classical definition of the Henstock-
Kurzweil integral on the real line.

3 The HK-Integral

Throughout this paper, X = (X, d) is a fixed complete metric space endowed
with a non-atomic Radon measure p and with a family F of p-cells. For
simplicity, in the rest of this paper, we use the name cell instead of the name
of u-cell each time there is no ambiguity.

A gauge on a cell Q is any positive real function § defined on Q. Let
Q € F,let E C Q and let 0 be a gauge on Q. A collection P = {(z;, Q;)} 7™,
of ordered pairs (points-cells) is said to be

e a partition of @, if Q1,Q2, -+ ,Q,, are pairwise non-overlapping ele-
ments of F such that UjX,Q; = Q and x; € Q; fori =1,--- ,m;

e a partial partition of Q, if Q1,Q2, - , Q. are pairwise non-overlapping
elements of F such that U2,Q; C Q and z; € Q; fori=1,--- ,m;

o J-fine, if diam(Q;) < 6(x;) for i =1,--- ,m;
e FE-anchored, if the points z1,- - , z,, belong to E.

The following Cousin’s type lemma addresses the existence of d-fine partitions
of a given cell Q.
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AN INTEGRAL ON A COMPLETE METRIC MEASURE SPACE 161

Lemma 3.1. If § is a gauge on a cell Q, then there exists a §-fine partition

of Q.

PROOF. Let us observe that if @) = U*Q);, with Q; € F, and if Py, ..., Py, are
é-fine partitions of cells Q1, @z, -+ . Qm, respectively, then |JI*, P; is a é-fine
partition of Q). Using this observation we proceed by contradiction.

By condition (a) there exist Q1, Qs2, - - - , Qm, subcells of Q) such that U"Q); =
Q@ and diam(Q;) < diam(Q)/2. Let us suppose that @ does not have a d-fine
partition. Then, there exists an index 7 € {1,2,--+ ,m} such that Q; does not
have a d-fine partition.

Let us say i« = 1. By indefinitely repeating this argument we obtain a
sequence of nested cells:

QDQ13"'DQk3"'

such that diam(Qy) < diam(Q)/2* and Qj does not have a J-fine partition.
Since diam(Qy) — 0, and the cells are closed sets, then there exists a point
£ € @ such that

() Q= {¢}

k=1
So, by §(§) > 0, we can find a natural k such that diam(Qy) < 6(§). Thus,
{(&,Qr)}x is a d-fine partition of Qy, contrary to our assumption. O

Given a partition P = {(x;,Q;)}"; of a cell @ and a function f:Q — R

we set
m

S(LP) =D fla)u(@Qi).

=1
Definition 3.1. We say that a function f: @ — R is HK-integrable on a cell
Q@ (with respect to p) if there exists a number I such that for each € > 0 there
is a gauge d on ) with
IS(f,P) = 1] <,
for each d-fine partition P = {(x;, @)}, of Q. The number I is called the
HK-integral of f on Q (with respect to u), and we write

I= /Qf du.

The collection of all HK-integrable functions on Q (with respect to ) will be
denoted by p-HK(Q), or simply by HK(Q) if it is clear that u is our fixed
non-atomic Radon measure.
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162 D. BoONGIORNO AND G. CORRAO

Remark 3.1. If X, u, and F are defined as in the Example 2.1, then the
p-HK integral is the classical Henstock-Kurzweil integral on [0, 1].

Remark 3.2. If X, u, and F are defined as in the Example 2.2, then the
p-HK integral is the dyadic Henstock-Kurzweil integral on [0, 1].

Remark 3.3. If X, u, and F are defined as in the Example 2.3, then the
p~-HK integral is the Mawhin’s integral on [0, 1]™.

Remark 3.4. If X, yu, and F are defined as in the Example 2.4, then the
p-HK integral is the s-HK integral on a s-set studied in [4].

4 Some properties of the HK-Integral

It is easy to see that the HK-integral is uniquely determined and that for each
cell @ the space HK(Q) is closed under addition and scalar multiplication.
Furthermore, by condition (b), it follows that if f € HK(Q), and if A is a
subcell of @, then f € HK(A) and

/Afdu=/QfXAdu-

Moreover, if f € HK(Q) and if Q1,Q2, - ,Q,, are non-overlapping subcells
of @ such that @ = |J; @i, then

m

/Qfduzg/mfdu-

F:AH‘/ Fdp,
A

defined on each subcell A of @, is called the indefinite HK-integral of f on Q.
Obviously, the indefinite HK-integral is an additive function of cells.

It is useful to remark that each Lebesgue integrable function on a cell @ is
also HK-integrable on @ and the two integrals coincide.

Theorem 4.1. Let Q be a cell and let f: QQ — R. If f is Lebesgue integrable
on Q with respect to u, then f is HK-integrable on @ and

(L)/Qfduz/Qfdu,

where by (L)fQ f du we denote the Lebesgue integral of f on Q with respect
to .

The map
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AN INTEGRAL ON A COMPLETE METRIC MEASURE SPACE 163

PROOF. By the Vitali-Carathéodory Theorem (see [22, Theorem 2.25]), given
€ > 0 there exist functions u and v on () that are upper and lower semicontin-
uos respectively, such that —oo <u < f <v < 400 and (L) [, (v —u) du <e.
Define on @ a gauge § so that

ut) < f(x)+e and  o(t) > f(z) —e,
for each t € Q with d(z,t) < §(z).

Let P = {(z1,Q1),(z2,Q2), ., (Tm,R@m)} be a d-fine partition of Q.
Then, for each i € {1,2,---,p}, we have

() /Q < (D) /Q J < (D) /Q v 1)

Moreover, by u(t) < f(z;) + €, for each t € Q;, it follows that

@ oy @)| s dn

and therefore,

() /Q w2 @) < f) (@),
Similarly, by v(t) > f(z;) — ¢, for each ¢t € @, it follows that
Frdu@) < () [ v duten(@)
So, for i =1,2,--- ,p, we have

() win—en(@) < fn@) < (1) | v dut (@)

Hence,
@) [ wdi—en@) < SUP) < (@) [ vduten),
Q Q
and, by (1),
L ud L d L v du.
H/Q n< )/Qf w<( >/Q f
Thus,

]soﬂm - (L)/Qf du’ < <L>/Q<v—u> dji+ 26 1(Q) < < + 22 u(Q),

and the theorem is proved. O
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164 D. BoONGIORNO AND G. CORRAO

In the sequel, we need the following Saks-Henstock type Lemma, whose
proof is identical to that used in the case X = [0,1]. Therefore, it will be
omitted.

Lemma 4.2. A function f: Q — R is HK-integrable on a cell Q if and only
if there exists an additive cell function © defined on the family of all subcells
of Q such that, for each € > 0, there exists a gauge 6 on Q with

>

(rmQHEP

m(Qi) — fxi)u(Qi)| <e

for each 6-fine partial partition P of Q. In this situation, m is the indefinite
HK-integral of f on Q.

5 Absolutely HK-integrable functions

Let @ be a cell. We recall that a function f: Q — R is said to be absolutely
HK-integrable on Q if |f| is HK-integrable on Q. In this section we study
the absolutely HK-integrable functions. In particular, we prove that these
functions are Lebesgue integrable and that their primitives are differentiable
p-almost everywhere.

Given a cell function F' defined on F and given x € X, we remind the
reader that the upper derivative of F' at x, with respect to u, is defined as
follows

DF(x) = limsup @,
F>B—x :U'(B)
where B — 2 means u(B) # 0, diam(B) — 0, and x € B.

Analogously, lower derivative of F at x is defined, and it is denoted by
DF(x). Whenever DF(x) = DF(x) # oo, then F is said to be differentiable at
z and their common value is called the derivative of F' at x and it is denoted
by F'(x).

Theorem 5.1. If f is a non-negative HK-integrable function on a cell Q and
if F' is its indefinite HK-integral, then F is differentiable p- almost everywhere
on Q and F' = f.

PROOF. To prove that F' = f p-almost everywhere on @, it is enough to show
that DF < f < DF p-almost everywhere on @, since DF' < DF' everywhere.

To this end, we consider positive rational numbers p, ¢ such that ¢ > p and
we set

Apg={r€Q:DF(z) >q>p> f(z)}.
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AN INTEGRAL ON A COMPLETE METRIC MEASURE SPACE 165

If we prove that u(A,,) = 0 for each p and g, then DF(z) < f(z) p-almost
everywhere on (. Similarly, we can prove that DF(z) > f(x) p-almost every-
where on Q.

Given € > 0, by Lemma 4.2 there exists a gauge § on @ such that

m

D_IF(@Q)) = flap)m@) <,

for each d-fine partial partition {(z;, @;)}72, of Q.

Let V be the system of all cells B C @ such that F(B) > qu(B) and that
there exists © € BN A, , with diam(B) < d(z). It is easy to sec that this
system V is a fine cover of A, ,. Therefore, (F being a p-Vitali family) there
exists a system of pairwise non-overlapping cells {B; };":1 C V such that

HlApg) <3 n(B)) +e. @

For j = 1,2,---,m, let z; € B; N A, 4 such that diam(B;) < 6(z;). Since
{(xj, Bj)}jL, is a d-fine partial partition of @, we get

m m

¢y uB)j) <> F(B))
1

Jj= Jj=1

<D IF(B)) = f@)u(By)| + Y fla;)u(B))
P j=1

m
<e —|—pZ/L(Bj).
j=1

Therefore (g — p) E;n:l u(Bj) <e.
So, by (2) and by the arbitrariness of ¢ we obtain u(Ap ) = 0. a

Now, we prove that each absolutely HK-integrable function is Lebesgue
integrable. To this end, we need the following Monotone Convergence type
Theorem.

Theorem 5.2. Let {fr}r be an non-decreasing sequence of HK-integrable
functions on a cell Q and let f = limy, fr. If

lim fr du < o0,
k—o0 Q
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166 D. BoONGIORNO AND G. CORRAO

then f is HK-integrable on @ and

/fd,u: lim/f;€ dpu.

The proof is similar to that for the classical HK-integral on the real line,
and it is omitted.

Theorem 5.3. If f is a non-negative HK-integrable function on a cell Q and
if F' s its indefinite HK-integral, then f is p-measurable.

PRroOF. For k € N, let Py be a 1/k-fine partial partition of @, and let fi be
the simple function defined as follows

We set C' = UpZy Upep, @B and
D = {x € Q: F'(x) does not exist, or F’(x) exists and F’'(x) # f(z)}.

By condition (c¢) and by Theorem 5.1, the set £ = C U D is g-null.

Now, let + € Q \ E. For each k € N there exists Qp, € F such that
(z,Qr,z) € Py, diam(Qy,,) < 1/k and fr(x) = F(Qk»)/1(Qk,z). Then, by
F'(z) = f(z), we obtain fr(x) — f(x). Thus, the claim follows by the pu-
measurability of fi, for each k € N . O

Theorem 5.4. If f is absolutely HK-integrable on a cell Q, then f is Lebesgue
integrable on Q.

PRrROOF. For k € N, let fi(z) = min{|f(z)|, k}, for each x € Q. By Theorem
5.3, |f| is Lebesgue measurable. Therefore, if fj is Lebesgue measurable and
bounded, then it is Lebesgue integrable on Q). Thus, by Theorem 4.1, fy
is HK-integrable on Q. Hence, since {f;}; is an non-decreasing sequence of
non-negative functions convergent to |f|, by Theorem 5.2 we have

(1) /Q (] dir = (L) Jim /Q i du = Jim /Q fo dp = /Q 1] dit < oo,

and the proof is complete. O
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AN INTEGRAL ON A COMPLETE METRIC MEASURE SPACE 167

6 Characterization of the indefinite HK-Integral

Hereafter, we denote by 7 a fixed additive function defined on the family of
all subcells of Q. Given E C @ and a gauge § on E, we set

Vor(E) = sup {Z |w<Qi>|} ,
i=1

where the supremum is taken over all the §-fine F-anchored partial partition

P = {(xlan)v ($27Q2)7 e 7(*Em,Qm)} of Q

The critical variation of m on E is defined as
Vr(E) = inf Vor(E),

where the infimum is taken over all gauges § on E.

It is easy to prove that the extended real-valued function Vr: E 8!V (E)
is a metric outer measures on ). Therefore, by the Carathéodory criterion
([8, Theorem 1.5]), V7 is a Borel measure.

We note that the measure Vr is said to be absolutely continuous with
respect to u (or pu-AC) on @ if, for each F C @ with u(E) = 0, we have
Vr(E)=0.

Theorem 6.1. If f is HK-integrable on a cell Q and if I is its indefinite
HK-integral, then the critical variation VF is u-AC on Q.
PROOF. Let E C @ such that u(E) = 0. We set

| flz), forzeQ\E,
h(z) = { 0, forz € E.

It is clear that F' is also the indefinite HK-integral of h. Then, by Lemma 4.2,
given € > 0 we can find a gauge d on @ such that

D IF(Qi) — hlw)u(@:)| < e,
i=1

for each d-fine partial partition P = {(x1,Q1), (x2,Q2), - , (Tm,@m)} of Q.
In particular, if P is anchored in E, then we have

m

Z [F(Qi)] <e.
i=1

Hence, by the arbitrariness of ¢, it follows that VF(F) = 0. Thus, VI is
u-AC on Q.
O
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168 D. BoONGIORNO AND G. CORRAO

Theorem 6.2. If 7 is differentiable p-almost everywhere on a cell Q and
Vi is u-AC on Q, then w' is HK-integrable on Q, and w is the indefinite
HK-integral of ™ on Q.

PrOOF. We denote by E the p-negligible set of all x € @ at which 7 is not
differentiable, and we define

[ (), forzeQ\E,
flz) = { 0, forx € E.

It suffices to show that f is HK-integrable on @ and that 7 is the indefinite
HK-integral of f. Since Vm is u-AC, given € > 0 there exists a gauge §; on
E such that Y%, |r(4;)] < &/2 for each §;-fine E-anchored partial partition

{(y17A1)7 Y (yp, Ap)} of Q
Moreover, given = € @ \ E there exists d2(z) > 0 such that

9
[m(B) = f(x)u(B)| < mu(BL

for each subset B of @) such that B € F, x € B, and diam(B) < d2(z). Now,
we define a gauge § on @ by setting

| bi(z), forzeF,
o(z) = { 5;(50), forx e Q\ E,

and we choose a é-fine E-anchored partial partition P = {(z;,Q;)}i~, of Q.
Then,

S Q) — feu@)l < 3 @)+ 3 1w(@0) — (@)
i=1 rEE g E
€ €

since f(x;) = 0for z; € Eand 3°, o p p(Qi) = p(Q\ E) = p(Q). Therefore f
is HK-integrable on @ and 7 is the indefinite HK-integral of f. O

Definition 6.1. Let Q be a cell. We say that m is BV on E C Q if there
exists a gauge 0 on E such that V°r(FE) < oco.

We say that 7 is BVG® on Q if there exists a countable sequence of closed
sets {Ey},, such that |J,, Ex = Q and 7 is BV® on Ej, for each k € N.
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AN INTEGRAL ON A COMPLETE METRIC MEASURE SPACE 169

Definition 6.2. Let Q be a cell. We say that 7 is AC® on E C Q if fore > 0
there exists a gauge d on F and a positive constant 7 such that the condition
S w(Q;) < mimplies >0 |7(Q;)| < e, for each é-fine E-anchored partial
partition P = {(z;, @)}~ of Q.

We say that 7 is ACG® on Q if there exists a countable sequence of closed
sets {Ey},, such that J,, B, = Q and 7 is AC® on E, for each k € N.

Theorem 6.3. Let E be a compact subset of a cell Q. If m is AC® on E,
then 7 is BV> on E.

PROOF. Since 7 is AC® on E, there exists a gauge § on @Q and a positive
constant 1 such that Y., |7(Q;)] < 1 whenever P = {(z;,Q;)},~, is a d-fine
E-anchored partial partition of @ with 7" | u(Q;) < 7.

Moreover, since g is non-atomic, for each x € @ there exists an open
neighborhood G of x such that u(G) < 7. Then, by the compactness of F,
there exist open sets G1, Gy, -+ ,G)p with u(G;) <n, for j =1,2,--- ,p, and
EC Ule Gj. Given z € E, let j € {1,---,p} such that 2 € G;, and define
d1(x) = min{d(x),d(z, 0G;)}.

Let {(x;,Q:)}™, be an arbitrary d;-fine E-anchored partial partition, and
let I; = {i: Q; C G;}. Therefore, we have

m

S Ir(@) < 3 In(@)) < p < oo,

j=14i€lr

since p (UieI::Qi) < u(G4) < m. Hence, V°r(E) < oo, and the proof is
complete. O

Theorem 6.4. If [ is HK-integrable on a cell Q and F is its indefinite HK-
integral, then there exists a sequence {Ej}r of closed sets such that Q =
Ui, Ex and that f is Lebesque integrable on Ey, for each k € N.

PRrROOF. By Theorem 5.3, |f] is p-measurable. For each natural number m,
let

An = {z€Q:|f(x)| <m}.

Since p is a Radon measure, we have A,, = N, U Ufil Ay, i where Ny, is
p-null and the A,,;, i =1,2,---, are closed sets.

Now, let N =(J°_, N,, and let {C)}; be a rearrangement of {A,, ;};. More-
over, let

k=1
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170 D. BoONGIORNO AND G. CORRAO

and let

0, for x € N.

We remark that h is still HK-integrable on ) and that F' is its indefinite
HK-integral. Therefore, by Lemma 4.2, there exists a gauge ¢ on @ such that

h(z) = { f(z), forzelUpe, Ch,

m

D IF(@Q0) = hla) (@) < 1, (3)

i=1

for each d-fine partial partition P = {(x;,Q;)}™; of Q. Then, in particular,

1=

m

M IF@i)] <1, (4)

i=1

for each d-fine N-anchored partial partition P = {(&, Q:)}i~, of Q.
For each natural number k, let

Wk:{xeNzé(x)zllg}.

It is clear that N = [J;2, Wj. Hence, N C J, Wi. Then, Q = U, WxUU,, Cs.

The function h is Lebesgue integrable on Cj, for k = 1,2,---, since it is
measurable and bounded. Then to complete the proof, it is enough to show
that h is Lebesgue integrable on Wy, for k& = 1,2,--- . To this aim, for each
g € N, we remark that the function hy(z) = min{|h(z)|,¢q} is measurable
and bounded; therefore, hy 1= hy X377, is Lebesgue integrable on (). Hence,
by Theorem 4.1, hg is HK-integrable on Q). Let F, j; be the indefinite HK-
integral of hyj with respect to u (or the indefinite HK-integral of h, with
respect to g, with pg(E) = p(E N Wy)); then by Lemma 4.2 there exists a
gauge §; on @ such that d;(z) < inf{6(z),1/k}, for each x € @, and

D Fur(@i) = hlwa)me(Qi)] < 1,
for each d;-fine partial partition {(z;,Q;)}; of Q. Let P = {(z;,Qi)}i~, be a
fixed d1-fine partition of @, and let I = {i : W, N QS # 0}. Then,
e Ifi ¢ I, we have (Q; N W) C 9Q;; so, by condition (c),

0= Fu@)= [ <Y [ hydn=o

igl il igl
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o If i € I, there exists £ € Q; N Wy; so {(&,Qi)}, is a 01-fine Wy-anchored
partial partition.

Thus, by (3) and (4) we have
S (&) 1e(@a)] < 3 1) 1(@y)]

i€l i€l
<D 1h(&) Q) = F(Qa)| + Y IF(Q))]
iel iel
<1l+1=2.

Hence,
For(Q) = D_[Fur(@i)l = D 1Fyr(@Q)

icl

< NPk (@1) = hg(§) Q)| + D 1hg(&) 1 (@)
icl icl
<1+2=3.

Thus, 0 < fQ hg dpr, = Fy1(Q) < 3; ie., hq is Lebesque integrable on Q. In
conclusion, since hy — ||, by the Monotone Convergence Theorem, we have

@) 1l d = i (1] g s <3
Q k—o00 Q

i.e., h is Lebesgue integrable on Wy. O

Theorem 6.5. Let [ be HK-integrable on a cell Q and let F' be its indefinite
HK-integral. If f is Lebesgue integrable on a closed subset A of Q, then F is
AC® on A.

ProOOF. By Lemma 4.2, for each € > 0 there exists a gauge §; on @ such that
s €
Z [F'(Qi) — f(x:)p(Qi)] < 3 (5)
i=1

for each d1-fine partial partition P = {(z;, Q;)};~, of Q. Moreover, since f is
Lebesgue integrable on A, the function fy 4 is HK-integrable on Q. We set
fa = fxa, and we denote by F4(Q) the indefinite HK-integral of f4 on Q.
Therefore, by Lemma 4.2, there exists a gauge d2 on @ such that

D IFA(Qi) = fa(€)m(@Qi) =D IFa(@i) — F(&)m(@Qi)] < §; (6)
=1 =1
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172 D. BoONGIORNO AND G. CORRAO

for each dy-fine A-anchored partial partition {(&;,Q;)}i~, of Q. Now, since f
is Lebesgue integrable on A, the function F4 is u-AC on A. Consequently, we
can find a positive n such that the condition p (X, Q:) = Yivy w(Qs) <7
implies

m i m ] [ ) E
SIm@NSY [ s fo i< .

Therefore, by (5), (6) and (7), we infer

SUIF@) <D IF(Qi) = f(&)m(@)
i=1 =1

+ > 1f(E)(Qi) = Fa(@) + Y IFa(Qi)] <&,
i=1

i=1
for each d-fine A-anchored partial partition {(¢;,Q;)},~,, where
0(z) = min{dy (x), d2(z)}.
Hence, F'is AC* on A. O

Theorem 6.6. If f is HK-integrable on a cell Q and if F is ils indefinite
HK-integral, then F is ACG*> on Q.

PROOF. By Theorem 6.4, there exists a sequence {Fj}; of closed sets such
that Q = (J,—, Ex and f is Lebesgue integrable on Ej, for each k € N. More-
over, by Theorem 6.5, F is AC” on E}, for cach k. Therefore, F is ACG” on
Q. O

Theorem 6.7. If w is ACG® on a cell Q, then Vr is p-AC on Q.

PRrROOF. By hypothesis, there exists a sequence of closed sets {Ej}, such that
Uy Er = Q and that 7 is AC? on Ej, for each k € N. Therefore, for € > 0 there
exists a gauge § on Ej, and a positive 7 such that the condition >\, u(Q;) < n
implies >, |7(Q;)| < € for each é-fine Ej-anchored partial partition P =
{(z;,Qi)};2, of Q. Let E C Q be p-null. Since E N Ej, is p-null, for each
k € N, there exists an open set G, such that EN E, C Gy and u(Gg) < 7.
For each x € E N Ey, we define §;(z) = min{6(z),d(z,0G)}. So, if
{(zi,Q:)}.", is a di-fine E N Ej-anchored partial partition of @, we have
Q; C Gy, for each i. Therefore, > ", u(Q;) < p(Gg) < 7m, which implies
S m(Qs)| < e. Then, VOir(E N Ey) < e and Vr(E N Ey) < . By the
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arbitrariness of ¢, it follows that Vr(ENEy) = 0. Hence, since V- is an outer
measure and E = | J;-,(E N E}), we have

i m(ENEy) =0.

Thus, V7 is u-AC on Q. O

We note that a signed measure A, defined on the o-algebra of all pu-
measurable subsets of @, is said to be absolutely continuous with respect to
w, and we write A < p if the condition p(E) = 0 implies |A|(E) = 0 for each
pu-measurable E C A. Here, |A|(E) denotes the variation of A on E.

Lemma 6.8. Let A be a closed subset of Q and let \ be a signed measure on
Q such that A < p. Then, X is AC® on A.

The proof follows easily by [22, Theorem 6.11].

Lemma 6.9. If 7 is an additive function of cells that is AC® on a closed
subset A of a cell Q, then

[7(Q)] } ‘
E=<xeA: 0p is p-null
{ &% @ 7 g
PROOF. Let
E, = {x € E : there exists {Qf}r — 2, with L Eg’%' > — for each k € N}
k

It is trivial to remark that E = |J,, E,: therefore, to end the proof it is enough
to show that p(E,) = 0, for each n € N. Proceeding towards a contradiction,
we can suppose that there exists a natural 7 € N such that u(Ez) # 0. Thus,
there exists a compact set K C Fj, for which p(K) > 0. Less than substracting
from K a p-null relatively open subset, we can assume that u(K NU) > 0 for
each open set U C X with KNU # 0.

Since K is compact there exists a countable dense subset C' of K. Let
H D C be a p-null G set. Therefore, K N H is a p-null G subset of K that
is dense on K. We show that V(K N H) > 0, contradicting Theorem 4.7.

Set D = KN H, and let § be a gauge on D. We define D,,, = {x € D :
d(xz) > 1/m}, for m € N. Then, by D = |J,,, D and by the Baire Category
theorem, there exists an open set U such that D N U # () and there exists a
natural m such that Dy, is dense on D N U, and hence on K NU.

Let B be the system of all cells @ such that |7(Q)| > w(Q)/m, and
diam(®) < 1/m. Therefore, B is a fine cover of K NU. Moreover, since
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(K NU) > 0 and since F is a p-Vitali family, by the previous remark on
the choice of K, there exists a non-overlapping system of cells {Q; € B}; that
covers K NU up to a p-null set. Then,

3 Im(@Q) %Z 0> (KN =

So, there exists an integer p > 1 such that >.%_, |7(Q;)| > M, and, since
w does not charge the boundaries of cells (condition (c)), the interior of
each @; meets K N U. Thus, by the density of D; on K N U, we have
Dy NQ; # 0, and we can select x; € Dy N B; for each natural 7. So,
{(z1, B1), (2, B2),...(xp, Bp)} is a d-fine Dy,-anchored partial partitions of
K NU, and consequently, V.°(D,,) > M. Then, by the arbitrariness of §, we

have V(D) > M, the required contradiction. O

Theorem 6.10. Let w be an additive cell function. If © is AC® on a closed
subset A of a cell Q, then w is differentiable p-almost everywhere on A.

PRrROOF. Given an arbitrary subset Y of @), we define the functions

Vi (Y) = sup {Z(w(@-))*} and  Vm(Y) = sup {Z(W(Qi))_} ;

i=1 =1

where (7(Q;))" = max{7(Q;),0} and (7(Q;))” = max{—m(Q;),0} are the
positive and the negative parts of 7, respectively, and the supremum is taken
over all §-fine Y-anchored partial partition P = {(x;, @)}, of Q.

As for the definition of V', we can define V7 and V_7 by

Vin(Y) =inf Vir(Y) and V_n(Y)=infV2n(Y),

where the infimum is taken over all gauges § on E. It is easy to prove that
Vim and V_7 are finite measures.

For each measurable set E of @, we define v*(E) = Vyn(E N A) and
v (E) = V_r(E N A). Since 7 is AC® on A, given ¢ > 0 there exists
a gauge § on A and 7 > 0 such that the condition Y .~ u(Q;) < 1 im-
plies > |m(Q;)| < e for each d-fine A-anchored partial partition P =
{(@:, Q)2 of Q.

Let £ C @ be p-null. Therefore, £ N A is p-null, and thus, there ex-
ists an open set G such that EN A C G and u(G) < n. By the argu-
ment used in the proof of Theorem 6.7, we have Y ", u(Q;) < p(G) < n,
which implies >/, (7(Q:)T < >, |7(Q))| < e, for each §i-fine (E N A)-
anchored partial partition {(z;,Q;)};~, of Q. Therefore, V_f n(ENA) <e
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and v (E) = Vimr(ENA) <e. Thus, vT < p. Similarly, we can prove that
v- <L W

So, by the Radon-Nikodym Theorem ([11, Theorem 19.23]), there exist
non-negative Lebesgue integrable functions f™ and f~ on @ such that

v (E) = (L) /E fdp and vo(E) = (L) /E Fodp,

for every p-measurable subset F of Q.

We set f = f+ — f~, and we remark that f is Lebesgue integrable on Q.
Therefore, by Theorem 4.1, f is HK-integrable on @, and v = vy — v_ is the
indefinite HK-integral of f. Since f is the Radon-Nikodym derivative of v
with respect to u, we have

X

lim (%) = f(x), (8)

FaR=a (R)

p-almost everywhere on A.

Now, by Lemma 6.8, the signed measure v is AC> on A. Then also, 7 — v
is AC” on A. Hence, by Lemma 6.9, we have limpg . (7(R) —v(R))/u(R) = 0
p-almost everywhere on A, and by (8) we have limg_,, 7(R)/u(R) = f(x),
p-almost everywhere on A; i.e., 7'(z) = f(x) p-almost everywhere on A.

H

Theorem 6.11. Let 7 be an additive cell function. If m is ACG® on a cell
Q, then w is differentiable p-almost everywhere on Q.

PROOF. Since 7w is ACG® on (), then there exists a countable sequence of
closed sets {Ej}, such that J, Fx = Q and 7 is AC® on Ej, for each k € N.
So, by Theorem 6.10, 7 is differentiable p-almost everywhere on Fj, for each
k € N. Thus, it is differentiable p-almost everywhere on Q. 0

Main Theorem 1 (of Type A). Let Q be a cell. A function f: Q — R is
HK-integrable on Q if and only if there exists an additive cell function F that
is ACG® on Q and F'(x) = f(z) p-almost everywhere on Q.

PrOOF. Let f: @ — R be HK-integrable on @, and let F’ be its HK-primitive.
By Theorem 6.6, F' is ACG® on @, then by Theorem 6.11 F is differentiable
p-almost everywhere on . Moreover, by Theorem 6.7, V F' is u-AC on Q. So,
by Theorem 6.2, F'(z) = f(x) p-almost everywhere on Q.

Vice versa, let F' be an additive function of cells that is ACG® on Q
and such that F'(xz) = f(z) p-almost everywhere on @. By Theorem 6.7,
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VFis u-AC on Q, and then, by Theorem 6.2, F' is the HK-primitive of F’.
Thus, the condition f(z) = F’'(z), p-almost everywhere on @, implies the
HK-integrability of f on Q.

0

Main Theorem 2 (of Type B). Let Q be a cell. A function f: Q — R is
HK-integrable on Q if and only if there exists an additive cell function F' such
that VF is u-AC on Q and F'(z) = f(x) p-almost everywhere on Q.

PrROOF. Let f: Q@ — R be HK-integrable on @, and let F’ be its HK-primitive.
By Theorems 6.6 and 6.7, V F'is u-AC. Moreover by Theorems 6.6 and 6.10, F'
is differentiable u-almost everywhere on @, and, by Theorem 6.2, F'(z) = f(x)
u-almost everywhere on Q.
Vice versa, let I’ be an additive function of cells such that V F is u-AC on
Q and F'(z) = f(z) p-almost everywhere on Q. Then, by Theorem 6.2, F
is the HK-primitive of F’ on Q). Thus, the condition f(x) = F'(z), p-almost
everywhere on @, implies the HK-integrability of f on Q.
O
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