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Abstract. We consider a nonlinear nonhomogeneous Robin equation driven by the sum of
a p-Laplacian and of a q-Laplacian ((p, q)-equation) plus an indefinite potential term and
a parametric reaction of logistic type (superdiffusive case). We prove a bifurcation-type result
describing the changes in the set of positive solutions as the parameter λ > 0 varies. Also,
we show that for every admissible parameter λ > 0, the problem admits a smallest positive
solution.
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1. INTRODUCTION

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following parametric (p, q)-equation with Robin boundary condition:




−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)θ−1 − f(z, u(z)) in Ω,
∂u

∂npq
+ β(z)up−1 = 0 on ∂Ω, u > 0, 1 < q < p < θ < p∗, λ > 0. (Pλ)

Here for any r ∈ (1,+∞) by ∆r we denote the r-Laplace differential operator defined by

∆ru = div(|∇u|r−2∇u) for all u ∈W 1,r(Ω).

So, in problem (Pλ) in the left hand side we have the sum of two differential
operators of different nature. Such situations arise in the mathematical models of many
physical processes. We mention the works of Cherfils–Il’yasov [5] (reaction-diffusion
systems) and of Zhikov [32] (homogenization of composites consisting of two different

c© Wydawnictwa AGH, Krakow 2019 227



228 Nikolaos S. Papageorgiou, Calogero Vetro, and Francesca Vetro

materials with distinct hardening exponents, double phase problems). The differential
operator of problem (Pλ) is nonhomogeneous and this is a source of difficulties in the
analysis of problem (Pλ). Many of the arguments in the study of superdiffusive logistic
equations driven by the Laplacian or p-Laplacian depend heavily on the homogeneity
of the operator (see, for example [8, 18, 19, 22, 24]). So, in the present setting they
have to be modified. Another, new feature in the problem (Pλ) is the presence of the
potential term ξ(z)up−1. The potential function ξ(·) is sign-changing. This adds to
the difficulties of problem (Pλ) since the left hand side of (Pλ) is not coercive and
so various estimations and bounds are more difficult to produce. The reaction (right
hand side) is a generalization of the classical superdiffusive reaction

x→ λxθ−1 − cxr−1

with c > 0,

p < θ < r < p∗ =
{

Np
N−p if p < N,

+∞ if N ≤ p
(the critical Sobolev exponent corresponding to p). Here cxr−1 is replaced by
a Carathéodory function (that is, for all x ∈ R, z → f(z, x) is measurable and
for a.a. z ∈ Ω, x → f(z, x) is continuous) which is (θ − 1)-superlinear in the x ∈ R
variable. However, we do not impose any positivity requirement on f(z, ·) which may
be sign-changing. Logistic equations are important in mathematical biology in the
description of the steady state of the dynamics of a biological population, whose
mobility is state-dependent (see Gurtin–MacCamy [12]). Other physical phenomena
also lead to logistic type equations (see Dong [6]).

In the boundary condition ∂u

∂npq
denotes the conormal derivative of u defined by

extension of the map

C1(Ω) 3 u→ (|∇u|p−2 + |∇u|q−2)∂u
∂n

,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ C0,α(∂Ω)
with 0 < α < 1 and β(z) ≥ 0 for all z ∈ ∂Ω. When β ≡ 0, we recover the Neumann
problem.

In the past almost all the works on logistic type equations, examined Dirichlet
problems driven by the Laplacian or p-Laplacian. To the best of our knowledge this
is the first work dealing with Robin (p, q)-logistic equations. Our aim is to describe
the changes in the set of positive solutions of problem (Pλ) as the parameter λ > 0
varies. In this direction, we prove a bifurcation-type theorem, which produces a critical
parameter value λ∗ > 0 such that
– for all λ > λ∗ problem (Pλ) has at least two positive solutions;
– for λ = λ∗ problem (Pλ) has at least one positive solution;
– for all λ ∈ (0, λ∗) problem (Pλ) has no positive solutions.

Moreover, we show that for all λ ∈ L = [λ∗,+∞) problem (Pλ) admits a smallest
positive solution uλ.
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If we have a p-Laplace equation with a reaction of the form

x→ λxq−1 − xr−1, x ≥ 0, with 1 < q ≤ p < r,

then we have subdiffusive (q < p) and equidiffusive (q = p) logistic equations, which
have a different behaviour than the superdiffusive ones. Subdiffusive and equidif-
fusive equations were examined in Ambrosetti–Lupo [2], Ambrosetti–Mancini [3],
Marano–Papageorgiou [16], Rǎdulescu–Repovš [27], Struwe [28,29] (all dealing with
semilinear Dirichlet equations driven by the Laplacian) and also Kamin–Veron [14],
Marano–Papageorgiou [16], Papageorgiou–Papalini [18, 19], Papageorgiou–Winkert
[22] (nonlinear equations driven by the p-Laplacian). The superdiffusive
case was investigated by Cardinali–Papageorgiou–Rubbioni [4], Dong–Chen [7],
Filippakis–O’Regan–Papageorgiou [8], Papageorgiou–Rădulescu-Repovs̆ [24], Takeuchi
[30,31] (nonlinear equations driven by the Laplacian and p-Laplacian).

2. MATHEMATICAL BACKGROUND – HYPOTHESES

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ satisfies the “Cerami
condition” (the “C-condition” for short), if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and
(1 + ‖un‖X)ϕ′(un)→ 0 in X∗ as n→ +∞, admits a strongly convergent subsequence”.

This compactness-type condition on ϕ leads to minimax theorems for the critical
values of ϕ. We formulate one of them, the so-called “mountain pass theorem” which
we will use in the sequel.

Theorem 2.1. If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X,

‖u1 − u0‖X > r > 0, max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u− u0‖X = r} = mr

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},
then c ≥ mr and c is a critical value of ϕ (that is, there exists û ∈ X such that
ϕ′(û) = 0, ϕ(û) = c).

The analysis of problem (Pλ) involves the Sobolev spaceW 1,p(Ω), the Banach space
C1(Ω) and the boundary Lebesgue space Lp(∂Ω). In what follows by ‖ · ‖ we denote
the norm of W 1,p(Ω) defined by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p for all u ∈W 1,p(Ω).

The Banach space C1(Ω) is ordered with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.
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This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

In fact D+ is also the interior of C+, when C1(Ω) is endowed with the relative
C(Ω)-norm topology.

Also we will use the order cone

Ĉ+ =
{
u ∈ C1(Ω) : u(z) ≥ 0 on Ω, ∂u

∂n

∣∣∣∣
∂Ω∩u−1(0)

≤ 0
}
.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define in the usual way the “boundary” Lebesgue spaces
Lq(∂Ω), 1 ≤ q ≤ +∞.

The theory of Sobolev spaces says that there exists a unique continuous linear map
γ0 : W 1,p(Ω)→ Lp(∂Ω), known as the “trace map”, such that

γ0(u) = u
∣∣
∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω).

So, the trace map gives meaning to the notion of “boundary values” for all Sobolev
functions. The trace map is not surjective and ker γ0 = W 1,p

0 (Ω). Moreover it is
compact into Lq(∂Ω) for all q ∈ [1, p(N−1)

N−p ) when p < N and into Lq(∂Ω) for all
q ∈ [1,+∞) when N ≤ p. In the sequel, to simplify our notation, we drop the use of
the trace map γ0. All restrictions of the Sobolev functions on ∂Ω are understood in
the sense of traces.

Our hypotheses on the potential function ξ(·) and the boundary coefficient β(·)
are the following:
H(ξ) ξ ∈ L∞(Ω),
H(β) β ∈ C0,α(∂Ω) with 0 < α < 1 and β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 2.2. If β ≡ 0, then we recover the Neumann problem.
In what follows by γ : W 1,p(Ω)→ R we denote the C1-functional defined by

γ(u) = 1
p
‖∇u‖pp + 1

q
‖∇u‖qq + 1

p

∫

Ω

ξ(z)|u|pdz + 1
p

∫

∂Ω

β(z)|u|pdσ

for all u ∈W 1,p(Ω).
Let f0 : Ω× R→ R be a Carathéodory function such that

|f0(z, x)| ≤ a0(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r ≤ p∗. We set F0(z, x) =
∫ x

0 f0(z, s)ds and consider the
C1-functional ϕ0 : W 1,p(Ω)→ R defined by

ϕ0(u) = γ(u)−
∫

Ω

F0(z, u)dz for all u ∈W 1,p(Ω).
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From Papageorgiou–Rǎdulescu [21, Proposition 8], we have the following result.
Proposition 2.3. If hypotheses H(ξ), H(β) hold and u0 ∈ W 1,p(Ω) is a local
C1(Ω)-minimizer of ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω), ‖h‖C1(Ω) ≤ ρ1,

then u0 ∈ C1,τ (Ω) for some τ ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer of ϕ0,
that is, there exists ρ2 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω), ‖h‖ ≤ ρ2.

The next result is a strong comparison principle for (p, q)-equations which will
be helpful in producing multiple positive solutions for problem (Pλ). The result is
a special case of a more general result of Papageorgiou–Rǎdulescu [25] (see also
Gasiński–Papageorgiou [11]).
Proposition 2.4. If η ∈ L∞(Ω), η(z) ≥ 0 for a.a. z ∈ Ω, h1, h2 ∈ L∞(Ω) are such
that 0 < c ≤ h2(z)−h1(z) for a.a z ∈ Ω, u ∈ C1(Ω), u 6= 0, v ∈ D+, u ≤ v and satisfy

−∆pu−∆qu+ η(z)|u|p−2u = h1 for a.a z ∈ Ω,
−∆pv −∆qv + η(z)vp−1 = h2 for a.a z ∈ Ω,

then v − u ∈ int Ĉ+.

For r ∈ (1,+∞) let Ar : W 1,r(Ω)→W 1,r(Ω)∗ be the nonlinear map defined by

〈Ar(u), h〉 =
∫

Ω

|∇u|r−2(∇u,∇h)RNdz for all u, h ∈W 1,r(Ω).

The next proposition summarizes the main properties of this map (see
Gasiński–Papageorgiou [10, Problem 2.192, p. 279]).
Proposition 2.5. The map Ar : W 1,r(Ω) → W 1,r(Ω)∗ is bounded (that
is, maps bounded sets to bounded sets), continuous, monotone (hence maxi-
mal monotone too) and of type (S)+, that is, “un

w−→ u in W 1,p(Ω) and
lim supn→+∞〈Ar(un), un − u〉 ≤ 0⇒ un → u in W 1,p(Ω)”.

Suppose that ϕ ∈ C1(X,R) is coercive (that is, ϕ(u)→ +∞ as ‖u‖X → +∞) and
ϕ′ = A+K with A : X → X∗ of type (S)+ and K : X → X∗ completely continuous
(that is, un

w−→ u in X ⇒ K(un)→ K(u) in X∗), then ϕ satisfies the C-condition (see
Marano–Papageorgiou [17, Proposition 2.2]).

Let x ∈ R. We set x± = max{±x, 0} and for u ∈W 1,r(Ω) we define u±(·) = u(·)±.
We know that

u± ∈W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Given ϕ ∈ C1(X,R) by Kϕ we denote the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.
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Consider the following nonlinear eigenvalue problem



−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

Let σ̂(p) denote the spectrum of this eigenvalue problem. From Fragnelli–Mugnai–
–Papageorgiou [9] and Papageorgiou–Rǎdulescu [20], we know that σ̂(p) ⊆ R is closed
and there exists a smallest eigenvalue λ̂1(p) ∈ R such that

(a) λ̂1(p) is isolated (that is, there exists ε > 0 such that (λ̂1(p), λ̂1(p) + ε)∩ σ̂(p) = ∅).
(b) λ̂1(p) is simple (that is, if û, v̂ ∈ W 1,p(Ω) are eigenfunctions corresponding

to λ̂1(p), then û = ϑv̂ for some ϑ ∈ R \ {0}).
(c) λ̂1(p) admits the following variational characterization

λ̂1(p) = inf
[
γp(u)
‖u‖pp

: u ∈W 1,p(Ω), u 6= 0
]
, (2.1)

where γp : W 1,p(Ω)→ R is the C1-functional defined by

γp(u) = ‖∇u‖pp +
∫

Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ for all u ∈W 1,p(Ω).

The infimum in (2.1) is realized on the corresponding one dimensional eigenspace.
Note that if ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a z ∈ Ω and ξ 6≡ 0, then λ̂1(p) > 0.

Now we introduce the hypotheses on the perturbation function f(z, x):
H(f) f : Ω× R→ R is a Carathéodory function such that for a.a. z ∈ Ω f(z, 0) = 0
and
(i) |f(z, x)| ≤ a(z)(1 + xr−1) for a.a. z ∈ Ω, all x ≥ 0, with a ∈ L∞(Ω), p < r < p∗;

(ii) limx→+∞
f(z, x)
xθ−1 = +∞ uniformly for a.a. z ∈ Ω;

(iii) there exist δ ∈ (0, 1) and η0, η̃0 > 0 such that

η0x
q−1 ≤ f(z, x) for a.a z ∈ Ω, all 0 ≤ x ≤ δ,

lim sup
x→0+

f(z, x)
xq−1 ≤ η̃0 uniformly for a.a. z ∈ Ω;

(iv) for every ρ > 0, there exist ξ̂ρ > 0 and d̂ρ > −λ̂1(p) such that

x→ ξ̂ρx
p−1 − f(z, x) is nondecreasing on [0, ρ],

d̂ρx
p−1 ≤ f(z, x) for all 0 ≤ x ≤ ρ.

Remark 2.6. Since we are looking for positive solutions and the above hypotheses
concern the positive semiaxis R+ = [0,+∞), without any loss of generality we assume
that

f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. (2.2)
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If λ̂1(p) ≤ 0, hypotheses H(f)(iv) implies that f(z, x) ≥ 0 for a.a z ∈ Ω, all x ∈ R.
Example 2.7. The following functions satisfy hypotheses H(f). For the sake of
simplicity we drop the z-dependence:

f1(x) = c(xr−1 + xq−1) for all x ≥ 0, c > 0 and c > −λ̂1(p) if λ̂1(p) < 0,
q < p < θ < r < p∗;

f2(x) = c(xθ−1 ln(1 + x) + xq−1) for all x ≥ 0, c > 0 and c > −λ̂1(p) if λ̂1(p) < 0,
q < p < θ < p∗.

3. POSITIVE SOLUTIONS

We introduce the following two sets

L = {λ > 0 : problem (Pλ) admits a positive solution},
Sλ = the set of positive solutions of problem (Pλ).

If u ∈ Sλ, then from Papageorgiou-Rǎdulescu [21, Proposition 7], we have
u ∈ L∞(Ω). Then the nonlinear regularity theory of Lieberman [15, p. 320] implies
that u ∈ C+ \ {0}.

Let ρ = ‖u‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)(iv). We have

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)θ−1 − f(z, u(z)) for a.a z ∈ Ω
(see Papageorgiou–Rǎdulescu [20])

⇒ −∆pu(z)−∆qu(z) + [ξ(z) + ξ̂ρ]u(z)p−1 ≥ 0 for a.a z ∈ Ω
(see hypothesis H(f) (iv))

⇒ ∆pu(z) + ∆qu(z) ≤ [‖ξ‖∞ + ξ̂ρ]u(z)p−1 for a.a z ∈ Ω
(see hypothesis H(ξ))

⇒ u ∈ D+ (see Pucci–Serrin [26, pp. 111 and 120]).

Therefore we can say that
Sλ ⊆ D+. (3.1)

Proposition 3.1. If hypotheses H(ξ), H(β), H(f) hold, then L 6= ∅.
Proof. Let λ > 0, µ > ‖ξ‖∞ (see hypothesis H(ξ)) and F (z, x) =

∫ x
0 f(z, s)ds.

We consider the C1-functional ϕλ : W 1,p(Ω)→ R defined by

ϕλ(u) = γ(u) + µ

p
‖u−‖pp −

λ

θ
‖u+‖θθ +

∫

Ω

F (z, u+)dz for all u ∈W 1,p(Ω).

Hypotheses H(f) (i), (ii) imply that given any η > 0, we can find cη > 0 such that

F (z, x) ≥ η

θ
xθ − cη for a.a z ∈ Ω, all x ≥ 0. (3.2)
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Using (3.2) in (3.1), we obtain

ϕλ(u) ≥ γ(u) + µ

p
‖u−‖pp + 1

θ
[η − λ]‖u+‖θθ − c1 for some c1 > 0

≥ c2‖u−‖pp + 1
p
‖∇u+‖pp + 1

θ
[η − λ]‖u+‖θθ − c3‖u+‖pp − c1

for some c2, c3 > 0 (see hypotheses H(ξ), H(β) and recall that µ > ‖ξ‖∞).
We choose η > λ. Since θ > p, we can find c4 > 0 such that

ϕλ(u) ≥ c2‖u−‖p + 1
p
‖∇u+‖pp + c4‖u+‖θp − c3‖u+‖pp

= c2‖u−‖p + 1
p
‖∇u+‖pp + [c4‖u+‖θ−pp − c3]‖u+‖pp

≥ c5‖u‖p for some c5 > 0, all u ∈W 1,p(Ω) with ‖u+‖p >
(
c3
c4

) 1
θ−p

.

Therefore ϕλ(·) is coercive.
Also, from the Sobolev embedding theorem and the compactness of the trace map,

we have that ϕλ(·) is sequentially weakly lower semicontinuous.
Then by the Weierstrass–Tonelli theorem we can find uλ ∈W 1,p(Ω) such that

ϕλ(uλ) = inf[ϕλ(u) : u ∈W 1,p(Ω)]. (3.3)

Evidently choosing λ > 0 big we can guarantee that ϕλ(uλ) < 0 = ϕλ(0), so uλ 6= 0
for all λ > 0 big.

From (3.3) we have ϕ′λ(uλ) = 0, so

〈Ap(uλ), h〉+ 〈Aq(uλ), h〉+
∫

Ω

ξ(z)|uλ|p−2uλhdz +
∫

∂Ω

β(z)|uλ|p−2uλhdσ

− µ
∫

Ω

(u−λ )p−1hdz =
∫

Ω

[λ(u+
λ )θ−1 − f(z, uλ)]hdz for all h ∈W 1,p(Ω).

(3.4)

In (3.4) we choose h = −u−λ ∈W 1,p(Ω). Then

‖∇u−λ ‖pp + ‖∇u−λ ‖qq +
∫

Ω

[ξ(z) + µ](u−λ )pdz ≤ 0 (see hypothesis H(β) and (2.2)).

Hence c6‖u−λ ‖p ≤ 0 for some c6 > 0 (recall that µ > ‖ξ‖∞). Consequently, uλ ≥ 0,
uλ 6= 0.

Then from (3.4) we have



−∆puλ(z)−∆quλ(z) + ξ(z)uλ(z)p−1 = λuλ(z)θ−1 − f(z, uλ(z)) for a.a z ∈ Ω,
∂uλ
∂npq

+ β(z)up−1
λ = 0 on ∂Ω

(see Papageorgiou–Rǎdulescu [11]). Finally, uλ ∈ Sλ ⊆ D+ for λ > 0 big and so
L 6= ∅.
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Next we show that the admissible set L is an unbounded interval.

Proposition 3.2. If hypotheses H(ξ), H(β), H(f) hold, λ ∈ L and η > λ, then
η ∈ L.

Proof. Since λ ∈ L, we can find uλ ∈ Sλ ⊆ D+ (see (3.1)). As before, let µ > ‖ξ‖∞.
We introduce the Carathéodory function kη(z, x) defined by

kη(z, x) =
{
ηuλ(z)θ−1 − f(z, uλ(z)) + µuλ(z)p−1 if x ≤ uλ(z),
ηxθ−1 − f(z, x) + µxp−1 if uλ(z) < x.

(3.5)

We set Kη(z, x) =
∫ x

0 kη(z, s)ds and consider the C1-functional ψη : W 1,p(Ω)→ R
defined by

ψη(u) = γ(u) + µ

p
‖u‖pp −

∫

Ω

Kη(z, u)dz for all u ∈W 1,p(Ω).

Note that

lim
x→+∞

kη(z, x)
xθ−1 = −∞ uniformly for a.a z ∈ Ω

(see (3.5) and hypothesis H(f) (iii)). Therefore, given any τ > 0, we can find cτ > 0
such that

−Kη(z, x) ≥ τ(x+)θ − cτ for a.a z ∈ Ω, all x ∈ R.

This implies that ψη is coercive (recall µ > ‖ξ‖∞).
Also ψη(·) is sequentially weakly lower semicontinuous. So, we can find uη ∈W 1,p(Ω)

such that

ψη(uη) = inf[ψη(u) : u ∈W 1,p(Ω)].

Hence ψ′η(uη) = 0, and consequently

〈Ap(uη), h〉+ 〈Aq(uη), h〉+
∫

Ω

[ξ(z) + µ]|uη|p−2uηhdz +
∫

∂Ω

β(z)|uη|p−2uηhdσ

=
∫

Ω

kη(z, uη)hdz for all h ∈W 1,p(Ω).
(3.6)
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In (3.6) we choose h = (uλ − uη)+ ∈W 1,p(Ω). Then

〈Ap(uη), (uλ − uη)+〉+ 〈Aq(uη), (uλ − uη)+〉

+
∫

Ω

[ξ(z) + µ]|uη|p−2uη(uλ − uη)+dz

+
∫

∂Ω

β(z)|uη|p−2uη(uλ − uη)+dσ

=
∫

Ω

[ηuθ−1
λ − f(z, uλ) + µup−1

λ ](uλ − uη)+dz (see (3.5))

≥
∫

Ω

[λuθ−1
λ − f(z, uλ) + µup−1

λ ](uλ − uη)+dz (since λ < η)

= 〈Ap(uλ), (uλ − uη)+〉+ 〈Aq(uλ), (uλ − uη)+〉

+
∫

Ω

[ξ(z) + µ]up−1
λ (uλ − uη)+dz

+
∫

∂Ω

β(z)up−1
λ (uλ − uη)+dσ (since uλ ∈ Sλ).

Therefore, uλ ≤ uη (see Proposition 2.5 and recall that µ > ‖ξ‖∞). Then from (3.5)
and (3.6) it follows that uη ∈ Sη ⊆ D+ and η ∈ L.

Let λ∗ = inf L.

Proposition 3.3. If hypotheses H(ξ), H(β), H(f) hold, then λ∗ > 0.

Proof. If λ̂1(p) ≤ 0, then from hypothesis H(f)(iv) it follows that f(z, x) ≥ 0 for a.a
z ∈ Ω, all x ∈ R (see (2.2)). Then using hypothesis H(f)(ii), we see that we can find
λ
∗
0 > 0 small such that

λ
∗
0x
θ−1 − f(z, x) ≤ λ̂1(p)xp−1 for a.a z ∈ Ω, all x ≥ 0.

If λ̂1(p) > 0, then on account of hypothesis H(f)(iii), we have

λxθ−1 − f(z, x) ≤ λxθ−1 − η0x
q−1 for a.a z ∈ Ω, all 0 ≤ x ≤ δ.

Since δ ∈ (0, 1) and q < p < θ, we can find λ0 ∈ (0, λ∗0] such that

λ0x
θ−1 − η0x

q−1 ≤ λ̂1(p)xp−1 for all 0 ≤ x ≤ δ.

Therefore,

λ0x
θ−1 − f(z, x) ≤ λ̂1(p)xp−1 for a.a z ∈ Ω, all 0 ≤ x ≤ δ. (3.7)
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Hypothesis H(f) (ii) implies that we can find M > 0 such that

λ0x
θ−1 − f(z, x) ≤ λ̂1(p)xp−1 for a.a z ∈ Ω, all x ≥M . (3.8)

Finally, for the interval [δ,M ], we choose λ ∈ (0, λ0] small such that

λM
θ−p ≤ d̂M + λ̂1(p) (see hypothesis H(f)(iv)).

Then on account of hypothesis H(f) (iv) we have

λxθ−1 − f(z, x) ≤ λ̂1(p)xp−1 for a.a z,Ω, all δ ≤ x ≤M . (3.9)

From (3.7), (3.8), (3.9) we see that for some 0 < λ ≤ λ0 ≤ λ
∗
0 small, we have

λxθ−1 − f(z, x) ≤ λ̂1(p)xp−1 for a.a z ∈ Ω, all x ≥ 0. (3.10)

Now let λ ∈ (0, λ) and assume that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ D+
(see (2.2)) and we have

〈Ap(uλ), h〉+ 〈Aq(uλ), h〉+
∫

Ω

ξ(z)up−1
λ hdz +

∫

∂Ω

β(z)up−1
λ hdσ

=
∫

Ω

[λuθ−1
λ − f(z, uλ)]hdz for all h ∈W 1,p(Ω).

(3.11)

In (3.11) we choose h = uλ ∈W 1,p(Ω). Then

γp(uλ) ≤
∫

Ω

[λuθ−1
λ − f(z, uλ)]uλdz

<

∫

Ω

[λuθ−1
λ − f(z, uλ)]uλdz (since λ < λ).

It follows that
γp(uλ) < λ̂1(p)‖uλ‖pp (see (3.10)).

This contradicts (2.1). Therefore, λ 6∈ L and so 0 < λ ≤ λ∗.

Proposition 3.4. If hypotheses H(ξ), H(β), H(f) hold and λ > λ∗, then problem
(Pλ) admits at least two positive solutions u0, û ∈ D+, u0 6= û.

Proof. Let η ∈ (λ∗, λ)∩L. Then we can find uη ∈ Sη ⊆ D+ (see (2.2)). Let µ > ‖ξ‖∞
and consider the Carathéodory function eλ(z, x) defined by

eλ(z, x) =
{
λuη(z)θ−1 − f(z, uη(z)) + µuη(z)p−1 if x ≤ uη(z),
λxθ−1 − f(z, x) + µxp−1 if uη(z) < x.

(3.12)
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We set Eλ(z, x) =
∫ x

0 eλ(z, s)ds and consider the C1-functional ψλ : W 1,p(Ω)→ R
defined by

ψλ(u) = γ(u) + µ

p
‖u‖pp −

∫

Ω

Eλ(z, u)dz for all u ∈W 1,p(Ω).

As in the proof of Proposition 3.2, via the direct method of the calculus of variations,
we obtain u0 ∈W 1,p(Ω) such that

ψλ(u0) = inf[ψλ(u) : u ∈W 1,p(Ω)].

This implies that u0 ∈ Kψλ .
Then using (3.12) we conclude that

u0 ∈ Sλ ⊆ D+ and uη ≤ u0. (3.13)

Claim. u0 − uη ∈ int Ĉ+.
Let ρ = ‖u0‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)(iv). We have

−∆puη −∆quη + (ξ(z) + ξ̂ρ)up−1
η

= ηuθ−1
η − f(z, uη) + ξ̂ρu

p−1
η

= λuθ−1
η − f(z, uη) + ξ̂ρu

p−1
η − (λ− η)uθ−1

η

< λuθ−1
0 − f(z, u0) + ξ̂ρu

p−1
0 (see (3.13), hypothesis H(f)(iv) and recall η < λ)

−∆pu0 −∆qu0 + (ξ(z) + ξ̂ρ)up−1
0 .

(3.14)

Since uη ∈ D+, we see that

0 < (λ− η)mθ−1
η ≤ (λ− η)uη(z)θ−1 with mη = minΩ uη > 0.

So, from (3.14) and Proposition 2.4, we infer that u0 − uη ∈ int Ĉ+. This proves
the Claim.

Recall that ϕλ ∈ C1(W 1,p(Ω)) is the energy functional of problem (Pλ) (see
the proof of Proposition 3.1). Let

[uη) = {u ∈W 1,p(Ω) : uη(z) ≤ u(z) for a.a z ∈ Ω}.

From (3.12) it is clear that

ϕλ

∣∣∣
[uη)

= ψλ

∣∣∣
[uη)

+ ĉλ with ĉλ ∈ R. (3.15)

From (3.15) and the Claim, it follows that u0 is a local C1(Ω)-minimizer of ϕλ, so

u0 is a local W 1,p(Ω)-minimizer of ϕλ (see Proposition 2.3). (3.16)
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Now let δ > 0 be as postulated by hypothesis H(f)(iii). Then for u ∈ C1(Ω) with
‖u‖C1(Ω) ≤ δ we have

ϕλ(u) ≥ c7‖u−‖p + 1
p

[γp(u+) + η0‖u+‖pp]−
λ

p
‖u+‖θθ

for some c7 > 0 (see hypothesis H(f) (iii))
≥ c8‖u‖p − λc9‖u‖θ for some c8, c9 > 0 (since η0 > −λ̂1(p)). (3.17)

From (3.17) it follows that by choosing δ ∈ (0, 1) even smaller, we can have

ϕλ(u) > 0 = ϕλ(0) for all u ∈ C1(Ω), 0 < ‖u‖C1(Ω) ≤ δ
⇒ u = 0 is a local C1(Ω)-minimizer of ϕλ
⇒ u = 0 is a local W 1,p(Ω)-minimizer of ϕλ (see Proposition 2.3). (3.18)

We assume that Kϕλ is finite or otherwise we already have an infinity of positive
solutions for problem (Pλ). Without any loss of generality we assume that

0 = ϕλ(0) ≤ ϕλ(u0). (3.19)

The argument is similar if the opposite inequality holds (using (3.18) instead
of (3.16)).

On account of (3.16), we can find ρ ∈ (0, 1) small such that

ρ < ‖u0‖, ϕλ(u0) < inf[ϕλ(u) : ‖u− u0‖ = ρ] = ηλ (3.20)

(see Aizicovici–Papageorgiou–Staicu [1, The proof of Proposition 29]).
The functional ϕλ is coercive (see the proof of Proposition 3.1). Therefore

ϕλ(·) satisfies the C-condition (see Section 2). (3.21)

Then from (3.19), (3.20), (3.21) we see that we can apply Theorem 2.1 (the
mountain pass theorem) and find û ∈ W 1,p(Ω) such that û ∈ Kϕλ , û 6∈ {0, u0}.
Therefore û ∈ Sλ ⊆ D+ and û 6= u0.

We show that the critical parameter value λ∗ > 0 is admissible.
Proposition 3.5. If hypotheses H(ξ), H(β), H(f) hold, then λ∗ ∈ L.
Proof. Let {λn}n≥1 ⊆ L such that λn → λ+

∗ . There exist un = uλn ∈ Sλn ⊆ D+ for
all n ∈ N and we have

〈Ap(un), h〉+ 〈Aq(un), h〉+
∫

Ω

ξ(z)up−1
n hdz +

∫

∂Ω

β(z)up−1
n hdσ

=
∫

Ω

[λnuθ−1
n − f(z, un)]hdz for all h ∈W 1,p(Ω), all n ∈ N.

(3.22)

Hypotheses H(f), (i), (ii) imply that given η > λn, we can find cη > 0 such that

ηxθ−1 − cη ≤ f(z, x) for a.a z ∈ Ω, all x ≥ 0. (3.23)
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In (3.22) we use h = un ∈W 1,p(Ω) (un ≥ 0 for all n ≥ 1). So, (3.23) and hypothesis
H(β) imply

‖∇un‖pp +
∫

Ω

ξ(z)upndz + (η − λn)‖un‖θθ ≤ c10

for some c10 > 0, all n ∈ N
⇒ ‖∇un‖pp + c11‖un‖θp − ‖ξ‖∞‖un‖pp ≤ c10

for some c11 > 0, all n ∈ N (recall θ > p)
⇒ ‖∇un‖pp + [c11‖un‖θ−pp − ‖ξ‖∞]‖un‖pp ≤ c10 for all n ∈ N
⇒ {un}n≥1 ⊆W 1,p(Ω) is bounded.

So, we may assume that

un
w−→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω) and in Lp(∂Ω). (3.24)

In (3.22) we choose h = un − u∗ ∈ W 1,p(Ω), pass to the limit as n → +∞
and use (3.24). Then

lim
n→+∞

[〈Ap(un), un − u∗〉+ 〈Aq(un), un − u∗〉] = 0

⇒ lim sup
n→+∞

[〈Ap(un), un − u∗〉+ 〈Aq(u∗), un − u∗〉] ≤ 0,

(since Aq(·) is monotone, see Proposition 2.5)
⇒ lim sup

n→+∞
〈Ap(un), un − u∗〉 ≤ 0 (see (3.24))

⇒ un → u∗ in W 1,p(Ω) (see Proposition 2.5). (3.25)

We pass to the limit as n→ +∞ in (3.22) and use (3.25). We obtain

〈Ap(u∗), h〉+ 〈Aq(u∗), h〉+
∫

Ω

ξ(z)up−1
∗ hdz +

∫

∂Ω

β(z)up−1
∗ hdσ

=
∫

Ω

[λ∗uθ−1
∗ − f(z, u∗)]hdz for all h ∈W 1,p(Ω).

Hence u∗ ∈ Sλ ∪ {0}.
We need to show that u∗ 6= 0. Arguing by contradiction, suppose that u∗ = 0.

Then from (3.25) and since q < p, we have

un → 0 in W 1,q(Ω). (3.26)

From Papageorgiou–Rǎdulescu [21, Proposition 7], we know that we can find
c12 > 0 such that

‖un‖∞ ≤ c12 for all n ∈ N.
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Then the nonlinear regularity theory of Lieberman [15], implies that we can find
α ∈ (0, 1) and c13 > 0 such that

un ∈ C1,α(Ω), ‖un‖C1,α(Ω) ≤ c13 for all n ∈ N. (3.27)

From (3.25), (3.27) and the compact embedding of C1,α(Ω) into C1(Ω), we infer
that

un → 0 in C1(Ω) as n→ +∞.
Let ‖·‖1,q denote theW 1,q(Ω)-norm and set yn = un

‖un‖1,q
n ∈ N. Then ‖yn‖1,q = 1,

yn ≥ 0 for all n ∈ N. So, we may assume that

yn
w−→ y in W 1,q(Ω), yn ∈ C1(Ω) for all n ∈ N, y ≥ 0. (3.28)

From (3.22) we have

‖un‖p−q1,q 〈Ap(yn), h〉+ 〈Aq(yn), h〉

+ ‖un‖p−q1,q



∫

Ω

ξ(z)yp−1
n hdz +

∫

∂Ω

β(z)yp−1
n hdσ




=
∫

Ω

[
λn‖un‖θ−q1,q y

θ−1
n − f(z, un)

‖un‖q1,q

]
hdz for all h ∈W 1,p(Ω), all n ∈ N.

(3.29)

On account of hypothesis H(f) (iii) and (3.26), we have

f(·, un(·))
‖un‖q1,q

w−→ J(z)yq−1 in Lq
′
(Ω)

(
1
q

+ 1
q′

= 1
)
, 0 < η0 ≤ J(z) ≤ η̃0 for a.a z ∈ Ω

(3.30)
(see Aizicovici–Papageorgiou–Staicu [1, The proof of Proposition 31]).

In (3.29), we set h = yn − y, pass to the limit as n→ +∞ and use (3.26), (3.30).
Then

lim
n→+∞

〈Aq(yn), yn − y〉 = 0

which implies that

yn → y in W 1,q(Ω), ‖y‖1,q = 1. (3.31)

So, if in (3.29), we pass to the limit as n→ +∞, then

〈Aq(y), h〉 = −
∫

Ω

J(z)yq−1hdz for all h ∈W 1,p(Ω) (see (3.30)). (3.32)

In (3.32) we choose h = y ∈W 1,p(Ω). Then

‖∇y‖qq = −
∫

Ω

J(z)yqdz ≤ 0 (see (3.30)). (3.33)
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Then

y = c∗ ∈ (0,+∞) (see (3.28) and (3.31)).

But then from (3.33), we have

‖∇y‖qq = −(c∗)q
∫

Ω

J(z)dz < 0 (see (3.30)),

a contradiction. Therefore u∗ 6= 0 and so u∗ ∈ Sλ ⊆ D+ and λ∗ ∈ L.
Proposition 3.5 implies that L = [λ∗,+∞).
Summarizing our findings in this section. we can state the following bifurcation-type

result describing the set Sλ of positive solutions of problem (Pλ) as λ > 0 varies.

Theorem 3.6. If hypotheses H(ξ), H(β), H(f) hold, then there exists a critical
parameter value λ∗ > 0 such that

(a) for all λ > λ∗ problem (Pλ) has at least two positive solutions u0, û ∈ D+, u0 6= û;
(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ D+;
(c) for all λ ∈ (0, λ∗) problem (Pλ) has no positive solution.

4. MINIMAL POSITIVE SOLUTIONS

In this section, we show that for every λ ∈ L = [λ∗,+∞) problem (Pλ) has a smallest
positive solution.

From Papageorgiou–Rǎdulescu–Repovš [23, The proof of Proposition 7], we know
that

Sλ ⊆ D+ is downward directed, (4.1)

that is, if u1, u2 ∈ Sλ then we can find u ∈ Sλ such that u ≤ u1, u ≤ u2,

Proposition 4.1. If hypotheses H(ξ), H(β), H(f) hold and λ ∈ L = [λ∗,+∞), then
problem (Pλ) admits a smallest positive solution uλ ∈ Sλ ⊆ D+.

Proof. Invoking Lemma 3.10, p. 178, of Hu–Papageorgiou [13], we can find a sequence
{un}n≥1 ⊆ Sλ ⊆ D+ decreasing (see (4.1)) such that

inf Sλ = inf
n≥1

un.

We have

〈Ap(un), h〉+ 〈Aq(un), h〉+
∫

Ω

ξ(z)up−1
n hdz +

∫

∂Ω

β(z)up−1
n hdσ

=
∫

Ω

[λuθ−1
n − f(z, un)]hdz for all h ∈W 1,p(Ω), all n ∈ N.

(4.2)
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Choosing h = un ∈W 1,p(Ω) in (4.2) and recalling that 0 ≤ un ≤ u1 for all n ∈ N,
we infer that

{un}n≥1 ⊆W 1,p(Ω) is bounded.

Arguing as in the proof of Proposition 3.5 (see the part of the proof from (3.24)
and after), we obtain that

un → uλ in W 1,p(Ω), uλ 6= 0.

Hence,
uλ ∈ Sλ ⊆ D+ and uλ = inf Sλ.

Remark 4.2. It is an interesting open problem what are the monotonicity and
the continuity properties of the map λ→ uλ from L = [λ∗,+∞) into C1(Ω).
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