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Abstract: The complexity of biology literally calls for quantitative tools in order to
support and validate biologists intuition and traditional qualitative descriptions.
In this paper, the Replicator-Mutator models for Evolutionary Dynamics are
validated/invalidated in a worst-case deterministic setting.These models analyze
the DNA and RNA evolution or describe the population dynamics of viruses and
bacteria. We identify the Fitness and the Replication Probability parameters of a
genetic sequences, subject to a set of stringent constraints to have physical meaning
and to guarantee positiveness. The conditional central estimate is determined in
order to validate/invalidate the model. The effectiveness of the proposed procedure
has been illustrated by means of simulation experiments while tests on real data
are under concern.
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Introduction and Nowak, 2002) apparently very different for-
In this paper we consider the problem of identi- mulations that have been studied in literature
fying the model of evolutionary dynamics. Dar- are presented as part of a single unified frame-
winian evolution is based on three fundamental work. In particular the two most common mod-
principles, reproduction, mutation and selection, els are the Quasispecies Equation (see (Eigen
which describe how populations change over time et al., 1989)) of molecular evolution and the
and how new forms evolve out of old ones. Replicator-Mutator Equation (see (Hadeler,

The aim is validate/invalidate in a worst-case de- 1981), (Eigen and Schuster, 1979)). Eigens quasi-
terministic setting the Replicator-Mutator mod- species model was developed as a framework for
els. The model is well-known in its structure and studying the dynamics of replicating DNA and
is in general positive and nonlinear. RNA macromolecules. Later it has been used to

describe the population dynamics of more ad-
vanced biological systems such as viruses and

Replicator-Mutator and Quasispecies Models bacteria. It considers an individual as a finite
sequence of elementary building blocks or bases.

There are numerous mathematical descriptions The quasispecies model has proved to be very
of the resulting evolutionary dynamics. In (Page fruitful as a reasonably general model of Dar-

winian evolution that incorporates selection mu-
1Partially supported by MIUR-PRIN "Robustness and tto n eoelnt agrta n.I

optimization Techniques for high performance control sys- has been an excellent theoretical framework to ap-
tems" .



proach RNA virus dynamics. Theoretical as well species equation with the Lotka-Volterra equa-
as empirical research has been used for medical or tion, that takes into account the fact that the
pharmaceutical strategies to face viruses. reproductive fitness fi is function of the abun-

As well described in (Komanova, 2004), the dance of other species and is fi(x), in (Nowak
Replicator-Mutator equation appears in three dif- et al., 2001) or (Wilke et al., 2001) it has been
ferent contexts in biology: derived the Replicator-Mutator equation:

n

Population gentics: V= xf(x)q - fx (4)
see (Hadeler, 1981), (Hofbauer and Sigmund,
1998). Here xi denotes the relative frequen-
cies of allels at the time of mating. Clearly, depending on how the fitness is relatedAutocatalyti'c reacti'on networks: to xi, various model have been developed in lit-
see (Stadler and Schuster, 1992),(Schuster erature. In particular, according to (Komanova,
and Stadler, 2003). Here xi are the concen-
trations of molecules, RNA of DNA, which 2 w
are capable of self-replications. n

Population language learning: wj + +jkk 1 < j nn (5)
see (Nowak et al., 2001),(Komanova, 2004). k=1
Here xi are the relative abundance of indi-
viduals which use a specific grammar. If we keep only the linear terms, then

Let us focus on a specific context and xi denotes f =w + Ix (6)
the relative abundance of a genetic sequence i in
a population. The fitness, fi of this sequence is where F [=jij] and w = [wi ... wn]T.
determined by its replication rate. The average
fitness of the population is given by f = fifixi. Then, the replicator-mutator equation can be re-
We consider n genetic sequences. According to casted as
(Nilsson, 2000), the matrix Q has been introduced = (Q(diag(w) + diag(Fx)) (wTx + xTVTx)I)x
to describe how mutations affect a population. (Q(diag(w) + diag(x))-(wTx+ xTFTX )X(7)
In particular qij is defined as the the probability (Q(diag(w) + diag(x)F) - (wTx)I -xT(
that replication of genome j gives genome i as
offspring. For perfect copying accuracy Q equals Clearly, if yj3= 0 we obtain the quasispecies
the identity matrix. Mutations give rise to the models given in (3), and if qij= 1 for i=j and

* ~~~~~~~~~~~~~qij= 0 for j we obtain the replicator modeloff-diagonal elements in qij. Below, we report an q
explicit expression for Q in terms of the copying (see (Hofbauer and Sigmund, 1998)).
fidelity as given by (Nilsson, 2000),

qij qI( -) i (1) Model Parametrization
q

where hij is the Hamming distance between Quasispecies Models in (3) enjoys the following
genomes j and i, and v is the genome length and properties:
q is the copying accuracy. The Hamming distance P.1 Starting with Ei xi(0) = 1 then Ei xi(t)
hij is defined as the number of positions where 1, Vt > 0. This can be expressed as: 1TX 1
genomes j and i differ. where 1T denotes a row-vector of ones. This

means that the state variables take value in
The Quasispecies Equation describes the dy- the unitary simplex E.
namics of the genomes x.: P.2 The system is positive: starting from any

n_ initial condition x(0) > 0, x(t) > 0 Vt > 0.
Si= ,jfjqij - fXi (2) P.3 qij C [0,1]

j=1 P.4 f > 0

... From the above assumptions, we can derive some
This iS a nonlinear quadratic model exhibiting cosritonhepamesqjadf.
bilinear dependence in the parameters. It can
be equivalently recast in a more concise form as Lemma 1
follows: For the unitary simplex E to be positively invari-

ant conditions P.3, P.4 and
± (Qdiag(f) -(fTx)I)x (3)

1TQ = T(8)

where the state variable is x [z1 ... 1121T and
f [fih2 Jn.f]T. Putting together the quasi- need to be satisfied. D



The models (3) and (7) are overparameterized. In Regressor Form
the next Lemma, it is shown that f is defined up
to simultaneous translation of its entries. In order to identify the parameters qij and fi,

first we must recast the model in a regressor
Lemma 2 form. The model in (3) and (7) is formed by
Let Q and f satisfy n = 2V continuous-time differential equations.

Assume that we discretize it with a standard first-
f = f +Al (9) order Euler approximation with sampling time T.
f1 > O Vi (10) Then the discrete-time system becomes

n n

Q = [Qdiag(f) + Al)] [diag(f) + AI)]1 (11) xi(t + 1) ZcQij(t) + ikxk(t)xi(t)+
j=1 k=1

for a real number A, and j(t) denotes the solution i7 n n
of equation (3) where f and Q are replaced by + j,kXk(t)Xj(t)+
f and Q. Then, starting from the same initial j=1 =l +j
conditions, 7 nk7 12 (14)

k7iiijO) x(0)(12) ~~~~~~~~~-xi (t) 55 ijkXi (t)Xk (t)
j=1 k=1

k:Aj
the systems has the same dynamics: +e((t)

9Qx(t)) + e-i(t)
(t) = zx(t) Vt > 0 (13) for i=1,...,n

D-I where

'iogi = 1I+ Tqii (Wi + "Yii)Identification c+a =Tqij wj + -yj)
Despite the identification methodologies are well -T = a' -T(wi + -yii)
established in many application fields, their use 1= + T(qiiwi - Wk - 'Ykk)+ (15)
in the parameters estimation of the evolutionary +T("Ykiqik + Yikqii - qik3kk)
systems is quite rare. Most of the literature in = T(Yjkqij + "Ykjqik -Ykkqik - jjqij)
this area deals with the modeling of the systems, j, = T(Qy3j - -jk + k - kj)
without a rigorous validation and/or data-based
parameter estimation. In some applications, the We note that in equation (14) we have already
solution is based on statistical approaches like the exploited the condition P.1. In fact if P.1. is
Maximum Likelihood Principle (see (Bielawski satisfied (Ej xj = 1), we have that:
and Z., 2003) for a recent survey, or the parameter

n

estimation based on time-series (i.e. (Bonhoeffer x (t) =x (t) zXk (t)
et al.,1 2002)).k=
On the other hand, if we consider literature on and
identification of positive systems there are some xi(t)x (t) = x (t)x (t) 5 x

t
(t)

results for linear systems. In this case the pos-
itive systems are compartmental. Some results g r t e
are based on statistical approaches (Benvenuti et terms: fo iman olw2.
al., 2002)) with solution based on the Maximum ia ij
Likelihood Principle, other results are based on Notice also that in equation (14) we have con-
the interval literature, (Kieffer and Walter, 2004). sidered a process error ei on which we make the
For nonlinear positive systems (that are not com- following assumption:
partmental), not much can be found in the iden- E.1 The error term is U.B.B.
tification literature.

Almost all these contributions assumYe a statistical e .< (16)
description of the noise and are mainly devoted to Moreover, in order to guarantee the invariance of
point estimation while little attention is devoted the simplex Z, the error term is such that:
to the computation of confidence regions for the
parameter estimates although they are important E.2 5 ei 0.° (17)
for the assessment of the model quality. Con- E.0<g(t)+ ()<1.18
versely, the assumption of Unknown But Bounded E30<(() ~t .(8
(U.B.B.) noise (see (Milanese and Vicino, 1991) Moreover we assume that the state variables are
for an extensive survey) naturally rises the issue measurable without any further noise error; we
of computing the Feasible Parameter Set (FPS). have output variables:



Yi = Xi (19) composed by N * n measurements, and the overall
data is a vector of n * N * m elements:

The system can be recast in a regressor-like form Y(t + 1)
as follows. Let us consider a single measurement. | Y(t + 2) (26)

Y(t + 1) = J(t)8 + E(t) (20) [9{(t+N*m)J

where Y(t) = [Y1(t) Y2(t) ... Y, (t)]T, e(t) (t)
[Cl(t) e2(t) ... e1(t)]T [T(t+ 1) (27)

for t'=I1n..21m
yi(t + 1) - (t)0 + ei(t) (21) (t + N

[1F(t) 0 0 1..) E(t)

0 02 ..(t) 0... E(t+N*m1)() [ b()q(t)t)1 (22) i::[ ( +1 1(28)

= [01 02 ... onjT (23) so that:

y = t(H) + s (29)
Each O' is composed by the n2 parameters defined
in (15) that have to be determined: In order to guarantee the structural identifiability
Oi[_ i.i we notice that at each time t the original para-

0=t1°t-1 Ol+1 °tn i1 ...3n (24) xmeters to be identified (qij and fi) are n + n.
61,2 * n",(n-1)1,22...*/in, (n- 1)] Recalling that the fi parameters are subject to

the constraint (9) and that the qij parameters
and each row component qi5(t) of the regressor is are subject to n constraints corresponding to eq.
a vector defined at time t as (8). The effective number of free parameters to

be determined is n2 + n-1-n = n2 _ 1. InMthe 9-space, we need to estimate n(2n- 1) pa-
>=T | yiy | (25) rameters subject to n constraints obtained from

[i1 the relation (8) and (n- 1)(n - 1) constraints
obtained transforming relation (9) into the new
space. Then, the free parameters to be estimated

where are 2n2 _ n+n+ (n-l)(n-1) = n2 - 1. The

y(i) T[Yi ... Yil Yi± Y TI problem is well posed. The new-constraints in the
9-space have been simply determined, and their

YiY [ylyi Yi-lYiY2 Yi+lYi ... Yn expression is reported hereafter in terms of its
M M( (i) T components. The n constraints (8) are equivalent

Z1 * nZ(-2)(n-1) to the n equality constraints

and for j 1,...,n
h [hi1... h(n 1n-T2

2 Z]+ .=1 (30)
being =(i) for k = 1.n.-2; 1 k + l
1,...,n-1, and hj = YkYl for k = 1,...,n-
1,I = k +1. ... , n. Note that each i-regressor Xi The constraint (9) is equivalent to the (n- 1)(n-
is formed by n2 terms (n + (n- 1) + (n-2)(n-1) + 1) equality constraints:2
n(n-1)

= 2.
2 -n J. for j 2,..., n

for k = 2, ... n (31)
X-i -X + il

0
Experiment setup and constraints

Moreover, we recall that the model must satisfy
For the sake of simplicity, let us consider now the further disequality constraints given in P.3 and
quasispecies models, when tYjj 0.° P.4. In the 9H-parameter space, correspondingly,

In order to guarantee experimental identifiabil- wecnipsth:
ity, the system is initialized from m different for j =1, ... .,n
(randomly generated) initial conditions. For each for i =1, . .. ,nm (32)
initial condition, the identification experiment is cgj >.0i tj



Under the assumption of bounded error given in 9.4354
E.1 it is possible to define an extended Feasible 1.6384
Parameter Set (FPS) as: 7.7782 (39)

Q={9:Y - TI9 . e} (33) 4.7299

Let as define M the set of all the feasible para- Validating the model on a different set-up (dif-
meters subject to the constraints (30), (31) and ferent initial condition and noise) the resulting
(32): dynamics evolution is reported in Fig. 1. In Fig.

2 the difference of true and estimated evolution is
M = : (31), (30) and (32) are satisfied} (34) reported.

The following identification problem have been ___
considered and solved.

m asurements

Problem Least Squares Conditional Central Es- y estmae

timate 0

(9 =argminm®(E|432Y- '(F2 (35)
0.3

The computational burdens of this problem amounts 025

to solving one constrained Quadratic Program- 02
ming (QP) Problem.

0.15 /

Numerical Example 0.50151_ 5

The effectiveness of the proposed Procedure ob- Time

tained by solving Problem 1 and Problem 2 is
now illustrated on some numerical examples. For Fig. 1. Validation: evolution comparison.
sake of clarity we report hereafter only the results
corresponding to the simple case of a genetic se- 10-3
quence obtained considering v = 2 in equation
(1) that gives raise to n = 4 state variables. More 4
complex genetic sequences have been tested. The 2 .
system is sampled with T = 0.01s. In the identifi- --

cation experiment, carried out with N = 151 mea- C

surements using T,O noise bounds with e = 0.015, 2
the system is initialized with m = 60 different -4
randomly generated initial conditions x(0). The -6

overall data are Nmn = 36240. -8

The real parameters are: 0 0.5 1 1.5
Time

-0.1600 0.2400 0.2400 0.36001
0.2400 0.1600 0.3600 0.2400 36 Fig. 2. Validation: error evolution.
0.2400 0.3600 0.1600 0.2400 ( )
0.3600 0.2400 0.2400 0.1600 Given the estimated 9* C M, we should invert re-

lations (15) in order to find a solution in the orig-
9.5013 inal space of parameters. Proposition in (Falugi

F = 2.3114 (37) and Giarre, 2006) gives solution and conditions to
6.0684 the determination of the unique inversion.

[4.8598]
We note that the determination of the central esti-

SolvIngF1Problem we obtain the(2-1>-I 28n mate is very good. This is true also for simulation
O~ opnet of9 examples with greater n.

We carry out the inversion procedure and we find
that h =2. We set f2 =1.6384. The obtained
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