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Abstract. The problem of mass transfer in ducts with transpiring walls is analysed: the concepts of 

“solvent” and “solute” fluxes are introduced, all possible sign combinations for these fluxes are 

considered, and relevant examples from membrane processes such as electrodialysis, reverse 

osmosis and filtration are identified. Besides the dimensionless numbers commonly defined in 

studying flow and mass transfer problems, new dimensionless quantities appropriate to transpiration 

problems are introduced, and their limiting values, associated with “drying”, “desalting” and 

“saturation” conditions, are identified. A simple model predicting the Sherwood number Sh under 

all possible flux sign combinations is derived from the single simplifying assumption that 

concentration profiles remain self-similar (so that the Sherwood number based on diffusion only 

remains unchanged) also under transpiration conditions. The simple model provides not only local 

values of Sh, but also its axial profiles. Predictions are validated against fully predictive CFD results, 

not based on the above simplifying assumption, and a good agreement is demonstrated provided the 

transpiration rate complies with certain limitations, depending on the Schmidt number. 

 

Key words: Mass Transfer; Transpiring Wall; Sherwood Number; Computational Fluid Dynamics; 

Parallel Flow 

 

Self-archived version: 
M. Ciofalo, M. Di Liberto, L. Gurreri, M. La Cerva, L. Scelsi, G. Micale, Mass transfer 
in ducts with transpiring walls, International Journal of Heat and Mass Transfer, 132 
(2019) 1074–1086, https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.059  
 



2 
 

1. General aspects of wall transpiration  

A transpiring wall is a surface, adjacent to a boundary layer or duct flow, through which fluid 

passes either into the main stream (injection, or blowing) or out of it (suction). It is generally 

understood that the transpiration areal flow rate is small compared to the main areal flow rate. 

Transpiration may occur either through a porous (permeable) wall or through physically distinct 

orifices in an otherwise impermeable wall (Figure 1). 

 

 

Figure 1. Transpiring walls with either injection (blowing) or suction: (a) porous; (b) perforated. 

 

Transpiration may modify the distribution of velocity and, if present, temperature or other 

scalars, and thus affect momentum, heat and mass transfer between the main fluid stream and the 

wall. Therefore, it has been studied for a long time, either experimentally or by analytical and 

numerical techniques, in connection with such problems as: 

- boundary layer control, e.g. delaying or avoiding transition to turbulence [1, 2]; 

- transpiration cooling, i.e. protecting solid surfaces (such as turbine blades [3] or re-entry 

vehicles [4]) from a high-temperature gas flow by blowing; 

- prevention of scaling in processes like supercritical water oxidation [5]. 

Also phenomena of evaporation / condensation from / to a wall-adjacent liquid film (Figure 2), 

as may occur, for example, in nuclear reactor containment cooling problems [6], exhibit strong 

analogies with transpiration (blowing / suction) phenomena, so that their prediction can benefit from 

the modelling efforts devoted to these latter. 

 

 

Figure 2. Evaporating (a) or condensing (b) liquid films, approximating blowing / suction conditions. 
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From these studies, the following synthetic conclusions can be drawn: 

a) In laminar boundary layers, suction delays transition to turbulence [2]. 

b) Both in laminar and in turbulent boundary layers, blowing reduces friction and fluid-to-wall 

heat transfer, while suction increases them [1, 7]. For example, Figure 3 (drawn from data 

in [1]) reports the Stanton number Stx (based on the distance x from the leading edge) in a 

flat plate boundary layer as a function of the blowing factor v/U (positive for injection, 

negative for suction) at different values of the Reynolds number Rex. Note that Stx tends to 

zero for v/U (large injection rate), while it tends to v/U (and thus diverges) for 

v/U- (large suction rate). Rex has only a minor influence. 

c) In transpired boundary layers, a similar behaviour is exhibited by the Stanton number and 

the friction coefficient, so that the Reynolds analogy (Stx = Cf/2) continues to hold. 

 

 

Figure 3. x-Stanton number as a function of the blowing factor for three different values of the x-Reynolds 

number (from results in Kays and Moffat [1]). 

 

Most transpiration problems studied in the literature regard heat or momentum transfer. The present 

work focuses on the influence of wall transpiration on mass transfer. Note that: 

a) Wall transpiration is itself a process of mass transfer between a wall and a fluid stream, since 

the transpiration flow carries its own mass. However, by “mass transfer” we denote here a 

separate process involving the transfer of a massive species other than the carrying fluid, i.e. a 

component dispersed in the fluid itself either at molecular/ionic scale (such as salt) or at a 

coarser scale (such as small solid particles). For the sake of simplicity, in all these cases we will 
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call the carrier fluid the “solvent” and the dispersed component the “solute” (for brevity, 

inverted commas will be omitted in the following). Examples include such processes as 

electrodialysis, reverse osmosis or filtration, involving selective membranes. 

b) A well-known analogy exists between heat and mass transfer. However, mass transfer exhibits 

some peculiar characteristics of its own. First, the transfer of a solute, unlike that of heat, affects 

the mass balance of the solution. Second, solutes are generally characterized by Schmidt 

numbers (102-103) much higher than the Prandtl number of most fluids (with the exception of 

oils and other highly viscous media). Finally, selective barriers exist that can prevent the 

passage of the solute along with the solvent through a wall, whereas this is hardly possible for 

heat. 

 

2. Mass transfer with transpiring walls 

2.1 Diffusive and convective mass fluxes 

In the presence of transpiration, the total solute mass flux jS (in kg m-2 s-1) can be expressed as 

the sum of a diffusive component jdiff and a convective component jconv: 

jS = jdiff + jconv = –D(C/y)w + vCw (1) 

in which  is the solution density (in kg m3), D is the solute diffusivity (in m2 s1), C is the solute 

concentration (expressed as a mass fraction, e.g. as kg kg1), the suffix w denotes the transpiring 

wall, y is the direction normal to it and into the fluid, v is the transpiration velocity into the fluid, 

and jS is positive if directed from the wall to the fluid. 

The total mass transfer coefficient k (m s-1) can be defined as the ratio of the total solute mass 

flux jS into the channel and the difference between wall and bulk concentrations per unit volume 

Cw, Cb. It can be made dimensionless as a Sherwood number: 

Sh
( )

eqS

w b

dj

C C D
 


 (2) 

in which deq is the hydraulic diameter of the channel (4×area/wetted perimeter).  

Also diffusive and convective Sherwood numbers can separately be defined as 

Sh
( ) ( )

diff eq eq
diff

w b w b w

j d d C

C C D C C y
 

        
 (3) 

Sh
( ) ( )

eq eqconv w
conv

w b w b

d dj

C C D C C

v

D

C


   

 
 (4) 
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in which the group vdeq/D in Eq. (4) can be regarded as a transpiration Péclet number, Petr. The total 

Sherwood number is then given by 

Sh=Shdiff+Shconv (5) 

Figure 4 compares qualitative concentration profiles and mass fluxes for channels with 

transpiring and non-transpiring walls for a given Cb and a given solute mass flux jS into the fluid.  

 

 

Figure 4. Concentration profiles and mass fluxes for transpiring and non-transpiring walls at the same bulk 

concentration Cb and mass flux jS. (a) No transpiration. (b) Positive transpiration (blowing). (c) Negative 

transpiration (suction). 

 

Graph (a) is for no transpiration; in this case, the mass flux at the wall is purely diffusive. Graph 

(b) is for a channel with positive transpiration (injection, or blowing, v>0). Here Cw, CwCb and the 

diffusive mass flux –D(C/y)w decrease with respect to the non-transpiring case (a), but this 

reduction is compensated by a positive (into the fluid) convective mass flux vCw, so that the 

overall mass transfer coefficient k increases. On the contrary, graph (c) is for a channel with negative 

transpiration (suction, v<0) of the same intensity as in case (b). Here Cw, CwCb and the diffusive 
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mass flux –D(C/y)w increase with respect to the non-transpiring case (a), but this increment is 

compensated by a negative (out of the fluid) convective mass flux –vCw, so that the overall mass 

transfer coefficient k decreases with respect to the no transpiration case. 

 

2.2 Examples of mass transfer processes involving wall transpiration 

As illustrated in Figure 5, electromembrane processes, and in particular reverse electrodialysis 

(RED) and electrodialysis (ED) [8, 9], exhibit the whole possible range of sign combinations for the 

fluxes of solute (salt) and solvent (water) into or from the channels. 

 

 

Figure 5. Concentrations and fluxes in cell pairs for reverse electrodialysis (a) or electrodialysis (b), 

exhibiting all possible sign combinations of solute (salt) and solvent (water) fluxes. 

 

In particular, in reverse electrodialysis, Figure 5(a), electrical energy is harvested from the 

salinity gradient between two solutions. The figure shows a repetitive unit (cell pair) of a RED stack, 

including a concentrate channel (CONC), a diluate channel (DIL), an Anion Exchange Membrane 

(AEM) and a Cation Exchange Membrane (CEM). With ideal membranes, only anions and cations 

(e.g., Cl- and Na+) would flow from CONC to DIL. However, real membranes exhibit a non-null 

osmotic permeability, so that water flows from the dilute to the concentrate solution. Therefore, in 

the concentrate channels salt (in ionic form) flows out of the solution while water enters it 

(injection); on the contrary, in the diluate channels salt flows into the solution while water exits it 

(suction).  
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Conversely, in electrodialysis, Figure 5(b), electrical energy is used to create or enhance a 

salinity gradient between two solutions. The figure shows a cell pair, physically identical to a RED 

one. In the presence of osmotic fluxes, in the concentrate channels both salt and water flow into the 

solution, while, in the diluate channels, both salt and water flow out of the solution. 

There are also processes in which, despite the net solute mass flux being nil, a mass transfer 

problem is involved in design and performance prediction [10]. Figure 6 shows the main mass 

transfer phenomena occurring in cross-flow filtration and reverse osmosis (RO). Here the wall is a 

selective membrane and the driving force is a trans-membrane pressure, pushing the continuous 

phase (solvent) out of the duct while the passage of the dispersed phase (solute) is prevented. The 

solute concentration builds up near the wall, causing a wall-to-fluid diffusive flux of solute jdiff = 

D(C/y). At the same time, the (negative) y-component v of the solvent velocity causes a 

convective flux jconv = vC directed from the fluid to the wall. At the wall (y=0), the two fluxes 

compensate each other (for a perfectly selective membrane), so that 

jS = D(C/y)w+vCw = 0 (6) 

which is just a special case of Eq. (1). 

The main problem is usually that of determining the trans-membrane pressure p to be applied 

to provide a given flux v of solvent (or vice versa). This would be trivial if v depended only on p, 

but is made more complex by the fact that it depends also on the near-wall concentration Cw 

(concentration polarization phenomenon). Eq. (6) can be regarded as a third type (Robin) wall 

boundary condition for the concentration C, allowing – once v is imposed – the solution of a solute 

transport equation and thus the assessment of Cw [11]. If the diffusive mass transfer coefficient kdiff 

(i.e., the diffusive Sherwood number Shdiff) is known, the solution of the C-transport equation is not 

required since one has D(C/y)w = kdiff (CwCb), which, together with Eq. (6), gives Cw = kdiff Cb 

/(kdiff + v). 

Once v is imposed and the resulting near-wall solute concentration Cw is known, an independent 

equation linking the trans-membrane pressure with v and Cw is required. For example, in RO such 

equation can be derived from the Spiegler-Kedem model [11]: 

v = -K [p-Cw)] (7) 

in which K is a permeability coefficient,  is a rejection coefficient (close to 1) and p, are the 

static and osmotic trans-membrane pressure differences (internalexternal), the latter being a 

function of Cw. Together, Eqs. (6) and (7) (in conjunction with either the solution of a transport 
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equation for C or the knowledge of Shdiff) allow the prediction of the value of p necessary to obtain 

a prescribed water flux v, or vice versa. 

In filtration problems (including microfiltration, ultrafiltration, nanofiltration) Eq. (7) is 

replaced by equivalent relations linking the trans-membrane p to the water flux and the near-wall 

concentration, for example by expressing the permeability coefficient K as a function of Cw. 

 

  

Figure 6. Mass transfer in cross-flow filtration and reverse osmosis, with zero net solute flux. 

 

3. Simple model 

3.1 Configuration studied and basic assumptions 

The configuration considered in this study is laminar flow in a constant-cross section straight 

duct, as schematically illustrated in Figure 7. The duct has length l in the x-direction, cross sectional 

area A and wet perimeter P (hence, hydraulic diameter deq=4A/P). The working fluid (solution) 

enters with uniform velocity Ui and concentration (solute mass fraction) Ci. Both solute (with mass 

flux jS) and solvent (with mass flux jW) can cross the transpiring wall; jS and jW are positive for 

inflow, negative for outflow. Generic velocity and concentration profiles are shown. 

Although the problem’s treatment and the results are quite more general, this configuration can 

be regarded as representative of a flat rectangular channel belonging to a stack for electrodialysis, 
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reverse electrodialysis or similar membrane processes, as shown in Figure 5. When dimensioned 

quantities will be considered, the solvent will be assumed to be water and the solute an electrolyte 

such as NaOH with a Schmidt number of 500. The channel thickness H will be assumed to be 300 

m (3·10-4 m) and the length l to be 0.6 m, so that the hydraulic diameter deq (identifiable, in this 

case, with 2H) will be 6·10-4 m (l/deq=1000). 

 

 
Figure 7. Sketch of the configuration studied (straight duct of length l, cross sectional area A and wet 

perimeter P with transpiring walls). Generic velocity and concentration profiles are shown. Both solute and 

solvent fluxes are positive if they enter the duct. Ui, Ci are uniform inlet velocity and concentration. 

 

3.2 Axial velocity and concentration profiles 

Mean velocity U and bulk concentration Cb along the channel can be obtained by elementary 

integral mass balances between the inlet at x=0 and the generic location x, provided jS and jW are 

known. In particular, for uniform jS and jW, the mass flow rates of solute (S) and solvent (W) are: 

 *( ) 1 FlS i i iG X U C A X   (8) 
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 *( ) 1 TrW i i iG X U A C X    (9) 

in which X=4x/deq is a dimensionless axial coordinate and Fl*, Tr* are two dimensionless numbers: 

*Fl S

i i i

j

U C
  (flux number) (10) 

*Tr W

i i

j

U
  (transpiration number) (11) 

Both Fl* and Tr* are defined with reference to the inlet conditions i, Ui, Ci; i is the solution 

density corresponding to the inlet concentration Ci, i.e. i=(Ci). The transpiration number Tr* 

expresses the importance of the transpiration cross-flow with respect to the inlet axial flow, and is 

similar to the “blowing factor” used in the analysis of transpired boundary layers [1]. It is positive 

for blowing (injection), negative for suction. The flux number Fl* expresses the importance of the 

solute mass flux crossing the walls with respect to the solute mass flux entering the channel from 

the inlet; also Fl* is positive for mass flow into the channel, negative for mass flow out of it. 

On the basis of Eqs. (8)-(9) and definitions (10)-(11), the bulk concentration at the generic 

location X can exactly be expressed as: 

 
*

* *

1 Fl
( )

1 Tr Fl
S

b i
S W i

G X
C X C

G G C X


 

  
 (12) 

while the mean velocity of the solution can be obtained as 

 
( )

( ) ( )
i i W SS W U j j XG G

U X
A X X


 

 
   (13) 

in which (X)=(Cb(X)). The dependence of the solution density upon the concentration is an 

empirical issue and is well documented for most common solutes (see for example reference [12]). 

 

3.3 Limits 

In an internal-flow configuration like that considered here, solvent and solute fluxes cannot be 

made to vary arbitrarily, but are subject to precise physical limitations. In particular, in the case of 

suction, jW (<0) is limited by the requirement that the solvent mass flow rate GW must remain positive 

at the outlet x=l. In terms of the dimensionless number Tr*, taking Eq. (9) into account, the above 

limitation becomes 

* 1
Tr iC

L


   (“drying” limit) (14) 
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in which L=4l/deq is the dimensionless channel length.  

Similarly, in the case of solute flux out of the channel, jS (<0) is limited by the condition that 

the solute mass flow rate must remain positive at the outlet x=l. In terms of the dimensionless 

number Fl*, taking Eq. (8) into account, the above limitation becomes 

* 1
Fl

L
   (“desalting” limit) (15) 

For example, for L=4000 and Ci«1, the common lower limit of Tr* and Fl* is 2.5·10-4.  

For positive transpiration (injection) and/or solute flux there are, in principle, no such limits. In 

real applications, however, a further constraint arises by the requirement that the bulk concentration 

does not exceed anywhere some solubility limit (CbCsat). The bulk concentration Cb provided by 

Eq. (12) is constant (=Ci) only for Tr*=Fl*(1Ci) (which includes the trivial case Fl*=Tr*=0), and 

varies monotonically with X otherwise. Therefore, it is sufficient to ensure that CbCsat for X=L, 

which yields 

 
* *1

Fl 1 Tr
1

sat i

i sat sat

C C

C C L C

  
       

 (“saturation” limit) (16) 

The constraints expressed by Eqs. (14)-(16) are schematically illustrated in Figure 8. Note that, 

for Csat<1, the “no saturation” condition implies the “no drying” one, so that this becomes redundant. 

Only if no solubility limit exists, Csat=1 and Fl* in Eq. (1) diverges, meaning that the “saturation” 

limit coincides with the “drying” limit. 

 

 

Figure 8. Constraints on the admissible values of Tr* and Fl* for given Ci and L. 
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Note also that the admissible region is unlimited on the right and that, for a given Csat, the 

specific limiting values depend on Ci and L. Conversely, for given Tr* and Fl*, the limiting 

conditions can be regarded as constraints on the admissible values of Ci and L. 

If the cross-stream concentration profiles were taken into account, the physical requirement that 

the concentration remains limited between 0 and Csat everywhere across the channel would impose 

constraints more stringent than those expressed by Eqs. (14)-(16). 

 

3.4 Simplifying assumption 

In general, transpiration can be expected to distort the cross-stream profiles of both axial 

velocity u and concentration C with respect to the non-transpiring case, making an elementary 

analysis impossible and calling for a two- or three-dimensional computational approach. 

A great simplification is obtained by assuming that concentration profiles across the channel 

are not excessively perturbed by transpiration, so that they remain self-similar at different 

transpiration intensities. Under this assumption, the diffusive Sherwood number Shdiff, Eq. (3), 

coincides with that obtained under no-transpiration conditions, Sh0, which depends on the duct’s 

geometry and on the boundary conditions. In the fully developed region, it is exactly known from 

analytical solutions for parallel flow in simple ducts such as circular pipes or plane channels. 

For physical reasons, the above approximation is the more accurate the smaller the transpiration 

intensity. In section 4, quantitative limits to the validity of the approximation will be derived from 

CFD numerical simulations, and it will be shown that it depends also on the Schmidt number. Here, 

we will draw consequences from the approximation assuming only that the transpiration intensity 

is sufficiently small for it to hold. 

Under the assumption Shdiff=Sh0, from Eqs. (2-5) one has: 

0Sh ( )S diff conv w b W w
eq

D
j j j C C j C

d


      (17) 

For any given Cb, if the transpiration flux jW and the wall concentration Cw are known, then Eq. 

(17) directly provides the total solvent mass flow rate jS. Conversely, if both the solute and the 

solvent mass flow rates jS, jW are known, then the wall concentration can be obtained by solving Eq. 

(17) for Cw: 

0

0

Sh /

Sh /
S b eq

w
W eq

j C D d
C

j D d








 (18) 
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Eqs. (17) and (18) completely solve the problem of determining jS for a given Cw or vice versa, 

once the local bulk concentration Cb is known. 

 

3.5 Dimensionless formulation 

The above results can be cast into a more elegant and physically meaningful form by expressing 

the total Sherwood number Sh as a function of dimensionless parameters.  

To this purpose, let us consider a generic cross section along the channel. Besides the flux and 

transpiration numbers defined by Eqs. (10) and (11), which are based on inlet conditions, it is 

convenient to define local dimensionless numbers 

Pe eqUd

D
  (local Péclet number) (19) 

Fl S

b

j

UC
  (local flux number) (20) 

Tr Wj

U
  (local transpiration number) (21) 

in which  and D are the solution density and the solute diffusivity corresponding to the local bulk 

concentration Cb. 

With some algebraic manipulations and taking account of the definitions in Eqs. (2) and (19)-

(21), Eq. (17) can be written as 

0

0

Sh 1 Tr Pe / Sh

Sh 1 Tr / Fl

 



 (22) 

This shows that, under the assumption of self-similar concentration profiles, Sh/Sh0 is a 

function of the dimensionless numbers Fl, Tr and Pe. For a given value of Pe, an isoline map of 

Sh/Sh0 can be plotted in the (Tr, Fl) plane as shown in Figure 9 for Pe=104.  

The insets surrounding Figure 9 schematically show the direction of solvent and solute fluxes 

and the concentration profile associated to each value, or range of values, of the polar coordinate  

defined by Fl/Tr=tan(). Left and lower boundaries (dash-dot lines) roughly correspond to the 

“drying” and “desalting” limits expressed by Eqs. (14)-(15); the correspondence is not exact because 

these latter limits are expressed in terms of Tr* and Fl* (based on inlet conditions), and not in terms 

of the present (local) numbers Tr, Fl. In the top direction the map would be limited by the 

“saturation” condition expressed by Eq. (16), which was not reported here for simplicity.  

The map can be divided into several regions differing in the sign and relative importance of Tr 

and Fl and in the values correspondingly attained by the normalized Sherwood number Sh/Sh0. 
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Figure 9. Lines Sh/Sh0=constant in the (Tr, Fl) plane for Pe=104. 

 

- For =0, i.e. along the Tr>0 half of the horizontal axis Fl=0, the net solute flux is nil but a 

positive solvent transpiration flux exists (except at the origin), creating a concentration profile 

and a (negative) concentration drop C=Cw-Cb. Therefore, one has Sh=0. The origin itself is 

obviously a singular case in which neither solvent nor solute fluxes exist and Sh is undefined. 

- For 0<<45°, both the solute and the solvent fluxes are positive (Tr>0, Fl>0) but the convective 

solute flux is larger than the diffusive one (Tr>Fl) so that the wall concentration is still lower 
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than the bulk concentration, yielding C<0 and thus Sh<0. 

- For =45°, i.e. along the bisecting line Fl=Tr (with Fl>0, Tr>0), the solute influx is purely 

convective, so that C=0 and Sh diverges to ∞ on the side <45° and to +∞ on the opposite 

side >45°. 

- For 45°<<90°, both the solute and the solvent fluxes are still positive (Tr>0, Fl>0), but the 

convective solute flux is less than the diffusive one (Tr<Fl); C=Cw-Cb is now positive but less 

than it would be for the same jS in the absence of transpiration, so that Sh exceeds Sh0. This is 

the range in which blowing promotes mass or heat transfer from the wall to the fluid. 

- For =90°, i.e. along the vertical axis (Tr=0, Fl>0), the classic condition of mass transfer from 

the wall to the fluid without transpiration is recovered, and Sh attains its reference value Sh0. 

- For 90°<<180°, one has Tr<0, Fl>0. The convective solute flux is negative but less, in absolute 

value, than the diffusive solute flux; for a given total solute flux, the diffusive component and 

C=Cw-Cb (>0) are larger than for =90°, so that Sh becomes less than Sh0. This is the range 

in which suction inhibits mass or heat transfer from the wall to the fluid. 

- The case =180° (left part of the horizontal axis Fl=0) is similar to the case =0: the solute flux 

is nil but a negative solvent transpiration flux exists, creating a concentration profile and a 

(positive) concentration drop Cw-Cb. Therefore, Sh=0. This case is, basically, that discussed in 

Section 2.2 for reverse osmosis or filtration (Figure 6). 

- For 180°<<225°, both the solute and the solvent fluxes are negative (Tr<0, Fl<0) but the 

convective solute flux dominates over the diffusive one (Tr>Fl), so that the wall 

concentration becomes higher than the bulk concentration and Sh<0.  

- For =225°, i.e. along the bisecting line Fl=Tr (with Fl<0, Tr<0), the solute flux is purely 

convective, so that Cw-Cb=0 and Sh diverges to ∞ on the side <225° and to +∞ on the opposite 

side >225°. 

- For 225°<<270°, both the solute and the solvent fluxes are still negative (Tr>0, Fl>0), but the 

solvent inflow is relatively small (Tr<Fl); the result is a reduction of Cw-Cb (with Cw-

Cb negative) and an increment of Sh with respect to the non-transpiring case (Sh>Sh0). This is 

the range in which suction promotes mass or heat transfer from the fluid to the wall. 

- For =270°, i.e. along the vertical axis (Tr=0, Fl<0), the classic condition of mass transfer (from 

fluid to wall) without transpiration is recovered, as in the case =90°, and Sh = Sh0. 

- Finally, for 270°<<360°, one has Tr>0, Fl<0. The convective solute flux at the wall is positive 

but less, in absolute value, than the total (negative) solute flux; for a given total solute flux, the 
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diffusive component and Cw-Cb increase (Cw-Cb is negative) with respect to the no-

transpiration case, so that Sh becomes less than Sh0. This is the range in which blowing inhibits 

mass transfer from fluid to wall (mass transfer analogue of transpiration cooling).  

 

Note that the singularities at =45° and 225° correspond to the condition Fl=Tr. Under this 

condition, the combined effect of solvent and solute inflow or outflow is equivalent to the inflow or 

outflow of solution having a concentration equal to the bulk concentration in the channel, a condition 

for which jS0 but CwCb=0, hence Sh=. 

Figure 9 suggests that not only the qualitative behaviour of the solution, but also the ratio Sh/Sh0 

is mainly a function of the polar coordinate . In fact, an analysis of Eq. (22) shows that, for small 

values of the group Tr·Pe/Sh0, one has Sh/Sh0(1-Tr/Fl)-1, i.e. Sh/Sh0 is a function of the single 

dimensionless number Fl/Tr=tan() (ratio of flow and transpiration numbers). For larger values of 

Tr·Pe/Sh0, Sh/Sh0 in Eq. (22) becomes a function of Tr and Fl separately, and not only of their ratio. 

This behaviour corresponds to the departure of the iso-lines in Figure 9 from straight lines crossing 

the origin, a departure which is particularly visible in the second and fourth quadrants where Fl and 

Tr have opposite signs. 

Figure 10 reports the normalized Sherwood number along a circle of radius 10-4 in the (Tr, Fl) 

plane for Pe ranging from 3103 to 105.  

 

 

Figure 10. Normalized Sherwood number as a function of the azimuthal angle  (see Figure 11) for 

(Tr2+Fl2)=10-8 and different values of the Péclet number, ranging from 3103 to 105. 
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It can be observed that, for Pe up to 3104, Sh/Sh0 does not appreciably depend on the Péclet 

number. Also, for such small values of Pe, the function Sh() is periodic with period 180°, so that 

the simultaneous reversal of Tr and Fl leaves Sh unchanged. Only at higher values of Pe (e.g. 105) 

Sh becomes a function of Pe and the 180°-periodicity is lost. 

 

3.6 Axial profiles and entrance effects 

The simple model has the potential to predict not only local quantities, but also the axial 

(streamwise) profile of the Sherwood number. In fact, if the inlet concentration and velocity Ci, Ui 

are known, Eqs. (12) and (13) can be used to compute bulk concentration and mean velocity Cb, U 

at any location x. Local Péclet, transpiration and flux numbers can be recomputed for each x by Eqs. 

(19)-(21), and then Eq. (22) provides the local Sherwood number Sh.  

Entrance effects can be taken into account by the Graetz theory [14]. For laminar flow in ducts 

with no transpiration, this predicts that the local Sherwood number decreases towards its fully 

developed value Sh∞ as a function of the dimensionless Graetz number, Gz=Pedeq/x (or, in the 

present notation, Gz=4Pe/X). For plane channels one has Sh/Sh∞<1.05 for Gz<50 [8]. In the present 

configuration, due to the high value of Sc (500) and despite the low values of Re (e.g. 8), Pe is 

relatively high (e.g. 4000), so that the condition Gz=50 is attained for x/deq=80. For H=300 m 

(deq=600 m) and l=0.6 m, this value corresponds to a distance of 0.08 l from inlet, which is a 

significant fraction of the channel length. An approximate formula, suitable for plane channels and 

rectangular channels of large aspect ratio [8], is: 

1/ 33
Sh 1

Gz
Sh G

G

C
C

  
    
   

 (23) 

with the constant CG equal to 0.18. Of course, Eq. (23) is not necessarily accurate for channels with 

transpiring walls; an evaluation of the accuracy of this correlation also in the presence of 

transpiration will be given on the basis of CFD results in Section 4. 

 

3.7 An alternative formulation of the simple model 

Eq. (22) can be simplified by observing that, in the light of the definitions given in Eqs. (19)-

(21), the product Tr·Pe reduces to the transpiration Péclet number, Petr = vdeq/D = jWdeq/(D), while 

the ratio Fl/Tr reduces to (jS)/(CbjW). In this last expression, jS/jW can be interpreted as the equivalent 

concentration Ceq that the transpiring flow alone should possess in order to provide the actual solute 
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inflow or outflow jS. Therefore, the ratio Fl/Tr can be interpreted as the ratio Ceq/Cb of equivalent to 

bulk concentration, and can be used as a new dimensionless number Cr (concentration ratio). Note 

that, when jS and jW have opposite signs, Ceq is negative and thus is not physically realizable. 

Using the above definitions, Eq. (22) can be re-written as 

0

0

Sh 1 Pe / Sh

Sh 1 1/ Cr
tr




 (24) 

which expresses the ratio Sh/Sh0 (normalized Sherwood number) as a function of two dimensionless 

numbers only, Petr (transpiration Péclet number) and Cr (concentration ratio). 

Figure 11 reports lines Sh/Sh0=constant in the (Petr, Cr) plane. Petr is normalized by Sh0. 

 

 

Figure 11. Lines Sh/Sh0=constant in the (Petr, Cr) plane. 

 

The line Cr=1 in Figure 11 corresponds to the asymptote Fl=Tr in Figure 9, where the 

denominator of both Eqs. (22) and (24) vanish. On this line the Sherwood number diverges 

everywhere except at the singular point Petr = Sh0, for which also the numerator vanishes in Eqs. 

(22) and (24). Thus, the point (Petr/Sh0 = 1, Cr = 1) in Figure 11 corresponds to the origin in Figure 

9, where Sh is undefined. 

On the whole, despite involving only two dimensionless numbers instead of three, the 

representation of Figure 11, based on Eq. (24), is probably less physically meaningful and easy to 

interpret than the representation of Figure 9, based on Eq. (22). 
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4 CFD approach and comparison with the simplified model 

4.1 Governing equations and boundary conditions 

As far as C can be regarded as the concentration of a massless passive scalar, fluid flow and 

solute transport in the channel are governed by the following continuity, momentum (Navier-

Stokes) and scalar transport equations, written for steady-state conditions and in tensor notation:  

0j

j

u

x





 (25) 

i j ji

j i j j i

u u uup

x x x x x



   

          
 (26) 

j

j j j

u C C
D

x x x




  


  
 (27) 

Dirichlet, Neumann or mixed (Robin) conditions for C can be applied at the wall to simulate 

solute transfer. Transpiration can be described by means of a boundary mass source, either positive 

for injection or negative for suction, located at the wall. By this approach, the contribution of the 

solute to mass balance is neglected, which may become an unacceptable approximation if the solute 

mass flux, integrated over the walls, is a significant fraction of the total mass flow rate. 

An alternative of more general validity is to treat the solution as a variable composition mixture, 

made up of two components: solute, with mass fraction C, and solvent, with mass fraction 1-C. The 

two components share a common velocity field u, so that the momentum equations (26) remain 

valid. The continuity equation (25) is replaced by separate continuity equations for the two 

components. Solute transport is still governed by Eq. (27), including diffusion terms. The flux of 

both components through the wall is described by suitable boundary mass sources expressing the 

mass flow rate of that component entering or leaving the fluid. This treatment allows the 

contribution of the solute to mass balance to be taken into account. 

Both treatments were implemented into the finite volume CFD code Ansys-CFX®. As expected, 

they provided similar results for small inlet-outlet solute mass flow rate variations, but differed 

significantly otherwise; the variable composition mixture approach was preferred for its greater 

generality. Note that neither model distinguishes a “true” solution (i.e., a dispersion at molecular 

level, as may occur with salt water) from a heterogeneous, two-phase, dispersion (as may occur with 

suspended particles), provided the dispersion scale is sufficiently small for inter-phase slip to vanish 

and a single flow field to apply to both components. Therefore, for example, filtration problems at 

various scales can be treated by the same model as electrodialysis or reverse osmosis. 
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In either approach, the solution’s physical properties (density , viscosity ) and the solute’s 

diffusivity D – or, equivalently, the Schmidt number (/)/D – should be expressed as functions of 

the concentration C, especially in the presence of strong spatial variations of this quantity. However, 

as mentioned above, in the present study we assumed constant values of the properties (=1000 kg 

m-3, =0.9·10-3 Pa·s, Sc=500), so as to avoid unnecessary complications in interpreting the results. 

One half of a plane channel of indefinite width was simulated. Only two dimensions, 

streamwise (x) and cross-stream (y) were considered, and symmetry was imposed at the centreline. 

Dirichlet conditions u=Ui, C=Ci were imposed at the inlet for axial velocity and concentration. At 

the outlet, a uniform pressure p0 was imposed for the flow field and fully developed Neumann 

conditions (/x=0) for the concentration field C. As discussed above, at the transpiring wall solute 

and solvent fluxes were represented as boundary mass sources for the two components. 

 

4.2 Validation of the self-similarity assumption 

For the case of a plane channel of thickness H with Re=8 and Sc=500 (Pe=4000), Figure 12 

shows cross-stream C profiles, normalized as (C-Cb)/(Cw-Cb), computed by the CFD approach for 

Fl/Tr=2 and for the local transpiration number Tr increasing from 0 to 10-2. For symmetry reasons, 

only one half of the channel (0y/H0.5) is shown. It can be observed that up to Tr10-3 

concentration profiles remain basically self-similar, while at higher values of Tr they develop an 

inflection point and become flat in the proximity of the wall, in correspondence with the decreasing 

relative importance of the diffusive mass flux. 

A more complete CFD study, including different values of Sc and negative values of Tr, shows 

that the assumption of self-similar concentration profiles holds provided ScTr«1. For example, for 

Sc=1 a significant departure from self-similarity would occur only at unlikely transpiration 

velocities of the same order as the inlet velocity. Similarly, normalized velocity profiles remain very 

close to the Poiseuille profile provided Tr«1. 

 



21 
 

 

Figure 12. Cross stream profiles of concentration, normalized as (C-Cb)/(Cw-Cb), computed by CFD for 

Sc=500, Re=8, Fl/Tr=2 and increasing values of the transpiration number Tr in the range 0 to 10-2.  

 

As long as normalized concentration profiles remain close to that holding in the absence of 

transpiration, also the diffusive Sherwood number Shdiff defined by Eq. (3) remains close to the 

theoretical no-transpiration value Sh0 (e.g. 8.24 for plane channels with uniform imposed wall 

mass flux [13]). Figure 13 shows Shdiff as a function of the transpiration number, computed by 2-D 

CFD under the same conditions as Figure 12 (Re=8, Sc=500, Fl/Tr=2).  

 

 

Figure 13. Diffusive Sherwood number Shdiff as a function of the transpiration number Tr, computed by CFD 

for Sc=500, Re=8, Fl/Tr=2. 
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It can be observed that the diffusive Sherwood number remains approximately constant up to 

Tr10-4, while, for Tr higher than 10-3, it falls rapidly and becomes negligible for Tr=10-2. 

 

4.3 CFD Results and comparison with the simple model 

A comparison of CFD results and approximate predictions provided by Eq. (22) (obtained under 

the assumption of self-similar concentration profiles, i.e. diffusion Sherwood number unaffected by 

transpiration) is shown in Figure 14. Here, for two values of the flux number, namely Fl = 1.5·10-

4 (solute out of the channel) and Fl=1.5·10-4 (solute into the channel), the normalized Sherwood 

number Sh/Sh0 is reported as a function of the transpiration number Tr in the range from 2·10-4 to 

2·10-4. Figure 14 shows that the predictions of the approximate model agree well with CFD results 

in the range considered, which for Sc=500 complies with the above mentioned criterion ScTr«1. 

Predictions (either by the approximate model or by CFD) should be taken with some caution in the 

proximity of the singular lines Tr=Fl. 

 

 

Figure 14. Normalized Sherwood number as a function of the transpiration number for flux numbers  

Fl= ± 1.5·10-4. Approximate predictions provided by Eq. (22) are compared with CFD results. Hollow 

symbols and broken line: Fl = 1.5·10-4; solid symbols and solid line: Fl = 1.5·10-4. 

 

As a comparison of space-dependent results, Figure 15 reports axial profiles of the Sherwood 

number along the channel walls for the same two values of the flux number Fl* as in Figure 14, 

namely 1.5·10-4 (a) or +1.5·10-4 (b), Pe*=4000, and transpiration numbers Tr* increasing from  
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2·10-4 to 2·10-4. The abscissa is the normalized axial coordinate x/L. Results from the simplified 

model (solid lines) are compared with CFD predictions (broken lines), in which no simplifying 

assumption is made on the cross-stream concentration profiles and the diffusive Sherwood number. 

A fair agreement between the predictions of the simple model and CFD results can be observed; the 

largest discrepancies occur for large transpiration numbers and solvent/solute fluxes having the 

same direction. Entrance effects are satisfactorily captured, which encourages the use of Eq. (23) 

also in the presence of transpiration.  

 

 

Figure 15. Axial profiles of the normalized Sherwood number along the channel walls for Pe*=4000, flux 

number Fl* = 1.5·10-4 (a) or 1.5·10-4 (b), and transpiration numbers Tr* ranging from 2·10-4 to 2·10-4. Solid 

lines: present simple model; broken lines: CFD results. 
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The behaviour of Sh for each combination of Fl and Tr can be interpreted in the light of the 

map in Figure 9. A noteworthy feature of the results in Figure 15 is that, in the presence of 

transpiration, the Sherwood number does not tend to a constant value for large x, but continues to 

vary (almost linearly) along the channel. More precisely, as x increases, the Sherwood number 

profiles obtained for different Tr* tend to converge to Sh0 when the flux number Fl* is negative 

(solute flux out of channel), whereas they diverge when Fl* is positive (solute into channel).  

 

5. Conclusions 

Mass transfer between a fluid stream and a wall in the presence of cross-stream flow (wall 

transpiration) was analysed. A suitable notation was introduced, based on separately considering 

the fluxes of two components, a “solvent” and a “solute”, through the wall. All possible 

configurations were classified according to the combined signs of the two fluxes, and special or 

singular conditions (including simple mass transfer with no transpiration) were identified. Examples 

from engineering, notably from membrane-based processes, were given for several of the more 

complex flux combinations; they include, among others, direct and reverse electrodialysis, reverse 

osmosis and filtration. The analogy with heat transfer processes involving transpiration (e.g. 

transpiration cooling) was also briefly discussed. 

In the bulk of the paper, the attention was focussed on a specific configuration, namely, parallel 

flow in a straight duct of constant cross section with simultaneous solute flux and solvent 

transpiration at the walls. Besides the common dimensionless parameters occurring in no-

transpiration problems, such as the Reynolds, Schmidt, Péclet and Sherwood numbers Re, Sc, Pe, 

Sh, new dimensionless numbers appropriate to transpiration problems were introduced. These 

include a transpiration number (Tr) and a flux number (Fl), respectively expressing the importance 

of the transpiration solvent flux and of the total solute flux through the walls with respect to the inlet 

flow rate and advection solute flux. Limiting values of these numbers, associated to what can be 

called the “drying”, “desalting” and “saturation” conditions, were identified as functions of channel 

slenderness and inlet conditions. 

The subsequent analysis was conducted for a high Schmidt number (500) and proceeded along 

two parallel directions. 

On one side, the problem was analysed by computational fluid dynamics using a finite volume 

method. Solute transport was modelled by two different approaches: the former treated the solute 

as a passive and massless scalar, while the latter treated the solution as a variable composition 

mixture with separate continuity equations for solvent and solute. The two treatments converged for 

low concentrations, but only the latter properly accounted for the contribution of the solute to the 
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solution mass balance (important at high concentrations), and thus was preferred in the generality 

of the cases. 

On the other side, a simplifying assumption was adopted, namely, that the transpiration flow 

does not significantly affect normalized concentration profiles and thus diffusive Sherwood 

numbers. By comparison with CFD simulations, this assumption was found to hold to a fair degree 

as far as the product of the Schmidt number and the transpiration number, Sc·Tr, is (in absolute 

value) much smaller than unity. By adopting this approximation, simple algebraic manipulations 

led to an expression relating the Sherwood number to the transpiration, flux, and Péclet numbers. 

The comparison of the approximate theory with CFD results (in which no such approximation was 

used) showed a good agreement provided the condition ScTr«1 was met. 

By using the above approximation, a complete map was drawn of the Sherwood number in the 

(Fl, Tr) plane for a given value of Pe. Different regions were identified, and the directions of the 

diffusive, convective and total solute flux (along with the shape of concentration profiles) associated 

with each region were highlighted. Loci of singularity, associated with Sh diverging to ±∞, occurred 

in correspondence with the line Fl=Tr, where the combined flux of solute and solvent through the 

walls is equivalent to the inflow or outflow of solution at the same concentration as that flowing in 

the channel. 

Finally, using either the simplified theory or CFD simulations, profiles of the Sherwood number 

along the streamwise direction were obtained for different values of the flux and transpiration 

numbers. A noteworthy feature of these curves was that, unlike in channel flow with no 

transpiration, Sh did not settle to a fully developed value but varied along the channel also after 

entry effects vanished. 
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NOMENCLATURE 

 

Symbol Quantity Unit 

A Cross sectional area m2 

Cr Concentration ratio Ceq/Cb - 

C Concentration - (kg kg-1) 

Cf Fanning friction coefficient - 

D Solute diffusivity m2 s-1 

deq Hydraulic diameter (=4A/Pm) m 

Fl Flux number, jS/(UCb) - 

Gz Graetz number, Pedeq/x - 

H Channel thickness m 

j Mass flux kg m-2 s-1 

k Mass transfer coefficient m s-1 

L Dimensionless duct length, 4l/deq - 

l Duct length m 

p Pressure  Pa 

Pe Péclet number, RePr or ReSc - 

P Wet perimeter m 

Re Reynolds number, Udeq/ - 

Sc Schmidt number, /(D) - 

Sh Sherwood number, kdeq/D - 

St Stanton number, Nu/(RePr) or Sh/(ReSc) - 

Tr Transpiration number, jW/(U) - 

U Cross-section-averaged velocity m s-1 

U Free stream velocity m s-1 

uj Generic velocity component m s-1 

u Velocity vector m s-1 

v Transpiration velocity  m s-1 

X Dimensionless distance from inlet, 4x/deq - 

x Distance from inlet or leading edge m 

y Coordinate orthogonal to the wall m 
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Greek symbols 

p Pressure difference Pa 

 Osmotic pressure difference Pa 

 Azimuthal coordinate in (Tr, Fl) plane deg 

 Solution viscosity Pa s 

 Osmotic pressure Pa 

 Solution density kg m-3 

 Rejection coefficient - 

 

Subscripts/superscripts 

  

b Bulk  

conv Convective  

diff Diffusive  

eq Equivalent  

i Inlet  

S Solute  

tr Transpiration  

W Solvent  

w Wall  

0 No-transpiration value  
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