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Abstract. Riemann-type definitions of the Riemann improper integral and of the Lebesgue
improper integral are obtained from McShane’s definition of the Lebesgue integral by im-
posing a Kurzweil-Henstock’s condition on McShane’s partitions.
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1. Introduction

Let F : [a, b] → � be a differentiable function and let f be its derivative. The

problem of recovering F from f is called the problem of primitives.

In 1912, the problem of primitives was solved by A. Denjoy with an integration

process (called totalization) that includes the Lebesgue integral and the Lebesgue im-

proper integral. Equivalent solutions are due to O. Perron, J. Kurzweil and R. Hen-

stock (see for example [4], [6], [7], and [8]).

In 1986, A.M. Bruckner, R. J. Fleissner and J. Foran [3] remarked that the solution

provided by Denjoy, Perron, Kurzweil and Henstock possesses a generality which is

not needed for the problem of primitives. In fact the function F (x) = x sin(1/x2) for

x ∈ (0, 1] and F (0) = 0 is ACG∗ (i.e. a primitive for the Denjoy-Perron-Kurzweil-

Henstock integral) but, for any absolutely continuous function G, the function F −G

is not differentiable at x = 0.

Note that the function f(x) = F ′(x) for x ∈ (0, 1] and f(0) = 0 is a Riemann

improper integrable function. So the minimal integral which includes Lebesgue in-

tegrable functions and derivatives (defined descriptively in [3]) does not contain the
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Riemann improper integral. Now this minimal integral can be obtained from Mc-

Shane’s definition of the Lebesgue integral (see for example [4], [5], and [7]) by

imposing a mild regularity condition on McShane’s partitions (see [1] and [2]).

In this note we prove that the Riemann improper integral and the Lebesgue im-

proper integral can be also obtained from McShane’s definition of the Lebesgue

integral by imposing a Kurzweil-Henstock’s condition on McShane’s partitions.

2. Preliminaries

The set of all real numbers is denoted by � . If E ⊂ � then |E| denotes the

Lebesgue measure of E, and E its closure. In this paper [a, b] is a fixed interval

of � . By McShane’s partition of [a, b] we mean any finite collection {(Ah, xh)}p
h=1 of

pairwise disjoint intervals Ah and points xh ∈ [a, b] such that [a, b] =
⋃

h

Ah. We say

that a McShane’s partition {(Ah, xh)}p
h=1 satisfies the Kurzweil-Henstock condition

(br. K-H condition) on a set E ⊂ [a, b] whenever xh ∈ Ah if xh ∈ E.

A McShane’s partition satisfying the K-H condition on [a, b] is called a Kurzweil-

Henstock’s partition of [a, b].

Let δ be a gauge (i.e. a positive function) on [a, b]. A McShane’s partition of [a, b],

say {(Ah, xh)}p
h=1, is said to be δ-fine whenever Ah ⊂ (xh − δ(xh), xh + δ(xh)), for

each h.

We recall that a function f : [a, b] → � is said to be McShane (resp. Kurzweil-
Henstock) integrable on [a, b] if there is a real number I satisfying the following

condition: for each ε > 0 there exists a gauge δ such that

(1)

∣

∣

∣

∣

p
∑

h=1

f(xh)|Ah| − I

∣

∣

∣

∣

< ε,

for each δ-fine McShane’s (resp. Kurzweil-Henstock’s) partition P of [a, b] (see [4],

[5], [6] and [7]).

I is called the McShane (resp. Kurzweil-Henstock) integral of f on [a, b]. The

McShane integral is equivalent to the Lebesgue integral, and the Kurzweil-Henstock

integral is equivalent to the Denjoy-Perron integral (see [4], [7]).

In this paper the Kurzweil-Henstock integral of f on [a, b] is denoted by
∫ b

a
f .

Since the Riemann integral, the Riemann improper integral, the Lebesgue integral

and the Lebesgue improper integral are contained in the Kurzweil-Henstock integral,

then by
∫ b

a
f we also denote each of the mentioned integrals on [a, b].

For simplicity, in the sequel we set
∑

P

f =
p
∑

h=1

f(xh)|Ah|.
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We also recall that a function f : [a, b] → � is said to be Lebesgue (resp. Riemann)
improper integrable on [a, b] if there exist ai ∈ [a, b], i = 0, 1, . . . , k with a = a0 <

a1 < . . . < ak = b such that f is Lebesgue (resp. Riemann) integrable on each

compact subinterval [α, β] of (ai, ai+1), and the limits

(2) lim
α↘ai

β↗ai+1

∫ β

α

f

exist finite, for i = 0, 1, . . . , k − 1.

3. The Lebesgue improper integral

In this section we prove

Theorem 1. A function f : [a, b] → � is Lebesgue improper integrable on [a, b]

if and only if there exists a finite set E ⊂ [a, b] and a real number I such that:

(LI) for each ε > 0 there exists a gauge δ so that
∣

∣

∣

∑

P

f − I
∣

∣

∣
< ε for each δ-fine

McShane’s partition P of [a, b] satisfying the K-H condition on E.

���������
. Assume that f is Lebesgue improper integrable on [a, b]. Then there

exist a = a0 < a1 < . . . < ak = b, such that f is Lebesgue integrable on each compact

subinterval [α, β] of (ai, ai+1), and the limits (2) exist finite for each i.

Given i ∈ {0, 1, . . . , k − 1}, let {αi,j}j∈ � ⊂ (ai, ai+1) be an increasing sequence

such that lim
j→−∞

αi,j = ai and lim
j→∞

αi,j = ai+1.

Fixed ε > 0, i ∈ {0, 1, . . . , k − 1} and j ∈ � , by Henstock’s lemma there exists a
gauge δi,j on (αi,j , αi,j+1) such that

(3)
∑

(A,x)∈Pi,j

∣

∣

∣

∣

f(x)|A| −

∫

A

f

∣

∣

∣

∣

<
ε

k2|j|+3

for each δi,j-fine McShane’s partition Pi,j of (αi,j , αi,j+1).

For x 6= ai, 0 6 i 6 k we set

δ(x) =

{

min{δi,j(x), x − αi,j , αi,j+1 − x}, if αi,j < x < αi,j+1;

min{δi,j−1(x), δi,j(x)}, if x = αi,j .

Moreover, for x = ai, 0 6 i 6 k, we define δ(ai) > 0 such that

(4) δ(ai)|f(ai)| <
ε

8(k + 1)
,
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and

(5)

∣

∣

∣

∣

∫ α

ai

f

∣

∣

∣

∣

<
ε

8(k + 1)

for each α ∈ [a, b] with |α − ai| < δ(ai).

Let {(Ah, xh)}p
h=1 be a δ-fine McShane’s partition of [a, b] satisfying the K-H con-

dition on {a0, . . . , ak}. Then, by (4) and (5) we have

∑

xh∈{a0,...,ak}

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

6
∑

xh∈{a0,...,ak}

(

|f(xh)| |Ah| +

∣

∣

∣

∣

∫

Ah

f

∣

∣

∣

∣

)

6
∑

xh∈{a0,...,ak}

(

2 ·
ε

8(k + 1)
+ 2 ·

ε

8(k + 1)

)

6 (k + 1) ·
( ε

4(k + 1)
+

ε

4(k + 1)

)

=
ε

2
.

So, by (3) we get

∣

∣

∣

∣

p
∑

h=1

f(xh)|Ah| −

∫ b

a

f

∣

∣

∣

∣

6
∑

xh∈{a0,...,ak}

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

+

k−1
∑

i=0

+∞
∑

j=−∞

∑

xh∈(αi,j ,αi,j+1)

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

6
ε

2
+

k−1
∑

i=0

+∞
∑

j=−∞

ε

k2|j|+3
<

ε

2
+

ε

2
= ε.

Therefore condition (LI) is satisfied.

Vice versa, assume that there exist a = a0 < a1 . . . < ak = b, and a real number I

satisfying condition (LI). Then f is Kurzweil-Henstock integrable on [a, b] with I =
∫ b

a
f . Moreover, by an easy adaptation of Henstock’s lemma (see [4, Lemma 9.11])

we have
p

∑

h=1

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

< 2ε,

for each δ-fine McShane’s partition {(Ah, xh)}p
h=1 of [a, b] satisfying the K-H condi-

tion on E. This implies that f is McShane integrable (hence Lebesgue integrable)

on each compact subinterval of (ai, ai+1), i = 0, 1, . . . , k − 1 and, by the continuity
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of the Kurzweil-Henstock integral, the limits

lim
α↘ai

β↗ai+1

∫ β

α

f

exist finite, for i = 0, 1, . . . , k − 1.

In conclusion f is Lebesgue improper integrable on [a, b]. �

4. The Riemann improper integral

In this section we prove

Theorem 2. A function f : [a, b] → � is Riemann improper integrable on [a, b] if

and only if there exists a finite set E ⊂ [a, b] and a real number I such that

(RI) for each ε > 0 there exists a gauge δ so that

(1) δ is continuous on [a, b] \ E;

(2)
∣

∣

∣

∑

P

f − I
∣

∣

∣
< ε, for each δ-fine McShane’s partition P of [a, b] satisfying the

K-H condition on E.

The proof is based on the following lemma:

Lemma 1. If f : [a, b] → � is Riemann integrable on [a, b], then for each ε > 0

there exists a constant η > 0 such that

p
∑

h=1

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

< ε,

for each η-fine McShane’s partition {(Ah, xh)}p
h=1 of [a, b].

���������
. By the definition of Riemann integral, to each ε > 0 there exists a

constant η1 > 0 such that

∣

∣

∣

∣

p
∑

h=1

f(yh)|Ah| −

∫ b

a

f

∣

∣

∣

∣

<
ε

8
,

for each η1-fine Kurzweil-Henstock’s partition {(Ah, yh)}p
h=1 of [a, b]. Then, by an

easy adaptation of Henstock’s lemma, we have

(6)

p
∑

h=1

∣

∣

∣

∣

f(yh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

<
ε

4
,
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for each η1-fine Kurzweil-Henstock’s partition {(Ah, yh)}p
h=1 of [a, b]. Now, for each

natural n, let

En =

{

x ∈ [a, b] : ω
(

f,
(

x −
1

n
, x +

1

n

))

>
ε

4(b − a)

}

,

where ω(f, A) stands for the oscillation of f on the set A.

It is easy to see that En ⊂ En+1. Moreover, since the set of points of discontinuity

of a Riemann integrable function is a Lebesgue null set, we have
∣

∣

∣

∞
⋂

n=1
En

∣

∣

∣
= 0. Hence

|En| → 0. LetM = sup{|f(x)| : x ∈ [a, b]}, and let n0 be such that |En0
| < ε/(4M).

Now, let {(αi, βi)}
∞
i=1 be a covering of En0

with

(7)

∞
∑

i=1

(βi − αi) <
ε

4M
.

Then, there is i0 such that En0
⊂

i0
⋃

i=1

(αi, βi). Set

η2 = inf

{

|x − y| : x ∈ En0
and y 6∈

i0
⋃

i=1

(αi, βi)

}

,

and

η = min{η1, η2, 1/n0}.

Let {(Ah, xh)}p
h=1 be an η-fine McShane’s partition of [a, b], and let yh ∈ Ah for

h = 1, . . . , p. Then (6) holds. Moreover, by definitions of En0
and η, for h = 1, . . . , p

we have

|f(xh) − f(yh)| <
ε

4(b − a)
, if xh 6∈ En0

,

and

An ⊂

i0
⋃

i=1

(αi, βi), if xh ∈ En0
.

Thus, by (7) we get
∑

xh∈En0

|Ah| <
ε

4M
.
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In conclusion

p
∑

h=1

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

6

p
∑

h=1

|f(xh) − f(yh)| |Ah| +

p
∑

h=1

∣

∣

∣

∣

f(yh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

6

p
∑

h=1

|f(xh) − f(yh)| |Ah| +
ε

4

=
∑

xh∈En0

|f(xh) − f(yh)| |Ah| +
∑

xh 6∈En0

|f(xh) − f(yh)| |Ah| +
ε

4

< 2M
∑

xh∈En0

|Ah| +
ε

4(b− a)

∑

xh 6∈En0

|Ah| +
ε

4

<
ε

2
+

ε

4
+

ε

4
= ε.

�

Corollary 1. A function f : [a, b] → � is Riemann integrable on [a, b], if and

only if there exists a real number I satisfying the following condition: for each ε > 0

there exists a positive constant η such that
∣

∣

∣

∑

P

f − I
∣

∣

∣
< ε, for each η-fine McShane’s

partition P = {(Ah, xh)}p
h=1 of [a, b].

���������
of Theorem 2. Assume that f is Riemann improper integrable on [a, b].

Then there exist a = a0 < a1 < . . . < ak = b such that f is Riemann integrable on

each interval [α, β] ⊂ (ai, ai+1), and the limits (2) exist finite, for i = 0, 1, . . . , k − 1.

Given i ∈ {0, 1, . . . , k − 1}, let {αi,j}j∈ � ⊂ (ai, bi) be an increasing sequence such

that lim
j→−∞

αi,j = ai and lim
j→∞

αi,j = ai+1.

For i ∈ {0, 1, . . . , k − 1}, j ∈ � , and ε > 0, by Lemma 1 there exist 0 <

τi,j < min{αi,j+1 − αi,j , αi,j+2 − αi,j+1, αi,j+3 − αi,j+2} such that condition (3)

is satisfied for each τi,j-fine McShane’s partition Pi,j of [αi,j , αi,j+3]. Define δi,j 6

min{τi,j−2, τi,j−1, τi,j} such that δi,j 6 δi,j+1 for j < 0, δi,−1 = δi,0 and δi,j > δi,j+1,

for j > 0. Moreover, for i = 0, 1, . . . , k take δ(ai) > 0 such that conditions (4) and

(5) are satisfied. Finally, for i ∈ {0, 1, . . . , k − 1} and x ∈ (ai, ai+1) define

δ(x) =















δi,j−1 +
x − αi,j

αi,j+1 − αi,j

(δi,j − δi,j−1), if x ∈ [αi,j , αi,j+1) and j < 0;

δi,j +
x − αi,j

αi,j+1 − αi,j

(δi,j+1 − δi,j), if x ∈ [αi,j , αi,j+1) and j > 0.
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Note that δ is continuous on [a, b] \
p
⋃

i=1

{ai} and δ(x) 6 δi,j for x ∈ [αi,j , αi,j+1),

i = 0, 1, . . . , k − 1, j ∈ � .
To verify condition (RI)2, let {(Ah, xh)}p

h=1 be a δ-fine McShane’s partition of

[a, b] satisfying the K-H condition on {a0, . . . , ak}. Then, by (4) and (5) we have

(8)
∑

xh∈{a0,...,ak}

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

6
ε

2
.

Now, whenever xh ∈ [αi,j , αi,j+1] with j > 0, then

Ah ⊂ (xh − δ(xh), xh + δ(xh)) ⊂ (αi,j − δi,j , αi,j+1 + δi,j)

⊂ (αi,j − τi,j−1, αi,j+1 + τi,j−1) ⊂ [αi,j−1, αi,j+2],

and whenever xh ∈ [αi,j , αi,j+1] with j < 0, then

Ah ⊂ (xh − δ(xh), xh + δ(xh)) ⊂ (αi,j − δi,j+1, αi,j+1 + δi,j+1)

⊂ (αi,j − τi,j−1, αi,j+1 + τi,j−1) ⊂ [αi,j−1, αi,j+2].

Therefore the family {(Ah, xh) : xh ∈ [αi,j , αi,j+1]} is a τi,j−1-fine McShane’s partial

partition in [αi,j−1, αi,j+2]. Thus, by (3) and (8) we have

∣

∣

∣

∣

p
∑

h=1

f(xh)|Ah| −

∫ b

a

f

∣

∣

∣

∣

6
∑

xh∈{a0,...,ak}

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

+

k−1
∑

i=0

+∞
∑

j=−∞

∑

xh∈(αi,j ,αi,j+1)

∣

∣

∣

∣

f(xh)|Ah| −

∫

Ah

f

∣

∣

∣

∣

6
ε

2
+

k−1
∑

i=0

+∞
∑

j=−∞

ε

k2|j|+3
<

ε

2
+

ε

2
= ε.

This completes the proof of condition (RI)2.

Vice versa, assume that there exist a = a0 < a1 . . . < ak = b, and a real num-

ber I satisfying condition (RI). Since condition (RI) implies condition (LI), then

f is Lebesgue improper integrable on [a, b], by Theorem 1. Thus we have only

to prove that f is Riemann integrable on each compact subinterval of (ai, ai+1),

for i = 0, 1, . . . , k − 1. Let [α, β] ⊂ (ai, ai+1), i = 0, 1, . . . , k − 1. By (RI)2 and

by an easy adaptation of Henstock’s lemma, we have
∣

∣

∣

∑

P

f − I
∣

∣

∣
< 2ε, for each

δ-fine McShane’s partition P of [α, β]. Now, by continuity of δ on [α, β], we have

η = min{δ(x) : x ∈ [α, β]} > 0. Therefore
∣

∣

∣

∑

P

f − I
∣

∣

∣
< 2ε, for each η-fine McShane’s

(hence Kurzweil-Henstock’s) partition P of [α, β]. Thus f is Riemann integrable on

[α, β], and the proof is complete. �
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