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Abstract
Background Radiation-induced health risks are broadly questioned in the literature. As cone beam computed tomography 
(CBCT) is increasingly used in non-dental examinations, its effective dose needs to be known. This study aimed to review 
the published evidence on effective dose of non-dental CBCT for diagnostic use by focusing on dosimetry system used to 
estimate dose.
Materials and methods A systematic review of the literature was performed on 12 November 2017. All the literature up to 
this date was included. The PubMed and web of science databases were searched. Studies were screened for inclusion based 
on defined inclusion and exclusion criteria according to the preferred reporting items for systematic reviews.
Results Fifteen studies met the inclusion criteria and were included in our review. Thirteen and two of them examined one 
and two anatomical areas, respectively. The anatomical areas were: ear (6), paranasal sinuses (4), ankle (3), wrist (2), knee 
(1), and cervical spine (1). Effective dose was estimated by different methods: (i) RANDO phantom associated with ther-
moluminescent dosimeters (6), metal oxide semiconductor field-effect transistor dosimeters (3), and optically stimulated 
luminescent dosimeters (1). (ii) Scanner outputs, namely computed tomography dose index (1) and dose area product (2). 
(iii) Monte Carlo simulations (2).
Conclusion CBCT of extremities, cervical spine, ears and paranasal sinuses was found to be a low-dose volumetric imaging 
technique. Effective doses varied significantly because of different exposure settings of CBCT-units and different dosimetry 
systems used to estimate dose.

Keywords Radiation dosage · Effective dose · Cone beam computed tomography · Head and neck imaging · Skeletal 
imaging
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Introduction

Cone beam computed tomography (CBCT) is a volumetric 
imaging technique extensively used and well established 
in all areas of dental diagnostics [1–5]. Recently, it is 
increasingly used in the study of ears, paranasal sinuses, 
and extremities [6–8]. Numerous manufacturers today 
offer a wide range of CBCT-units with technical features 
which differ greatly [9]. There are horizontal and vertical 
units that examine patients in supine, seated, or upright 
positions. CBCT devoted to the study of ears and parana-
sal sinuses or designed to assess the extremities in weight-
bearing position (i.e. under load) have newly entered the 
market as well [10].

The success of CBCT is mainly due to a relatively low 
radiation dose [11], limited metal artefacts [12], high spa-
tial resolution (0.075–0.4 mm isotropic voxel) [13], and 
low maintenance and operating costs [14]. Nevertheless, 
CBCT is not used for contrast-enhanced examinations, 
does not have a high contrast resolution [15], and the scan 
time is long with non-negligible motion artefacts [16].

X-ray imaging for diagnostic purposes has gradually 
increased, which may have led to an increase in radiation-
induced health risks [17–19]. For this reason, both in the 
USA (Senate Bill 1237) and Europe (Euratom directive 
59/2013) legislations have been published that intensely 
request from operators to record the estimated patient 
dose of each radiation exposure in every radiology report 
[20, 21]. This may be useful not only for estimating the 
potential risk of radiation exposure but also for assessing 
protocol optimisation, standardisation, and quality assur-
ance [22].

Currently, effective dose is the most commonly metric 
used to track patient dose and represents the stochastic 
health risk to the whole body, which is the probability to 
induce cancer and/or genetic damage from ionising radia-
tion. It involves comparing dosimetric values from differ-
ent examinations and modalities [23].

Radiation dose of CBCT in dental use was already dis-
cussed by different papers [24]. However, no review on the 
field of dosimetry of the latest non-dental CBCT applica-
tions has been carried out. Therefore, the purpose of this 
study was to investigate the existing literature concerning 
the effective dose of non-dental CBCT used for diagnostic 
aims. An additional purpose is to analyse the methods used 
to measure and estimate the effective dose.

Materials and methods

Literature searches

The literature review was carried out in conformity with 
the preferred reporting items for systematic reviews 
(PRISMA) statement for studies focused on the dosimet-
ric evaluation of CBCT, except in dental applications. 
PRISMA is an evidence-based minimum set of items 
that helps authors to improve the reporting of systematic 
reviews, although it is not a quality assessment tool to 
estimate the merit of a research [25].

The search strategy was restricted to English-language 
papers via the PubMed and web of science databases. The 
following combined terms were investigated: radiation 
dosage, radiation protection, dose, effective dose, absorbed 
dose, and cone beam computed tomography (Table 1). 
For the aims of this review, these terms were defined as 
follows:

• Radiation dosage and radiation protection according to 
medical subject headings (MeSH).

• Dose a generic term including all kinds of doses 
described by the International Commission on Radio-
logical Protection (ICRP) [26].

• Effective dose the sum of the products of the tissue 
weighting factors and the absorbed dose within the 
exposed tissues and organs of the body—established 
by the ICRP.

• Absorbed dose the quantity of ionising radiation 
absorbed by a body, measured as the energy absorbed 
per unit mass—established by the ICRP.

• Cone beam computed tomography a volumetric imag-
ing technique with a conic/pyramidal X-ray beam of 
radiation.

The search in Pubmed included both MeSH and free-
text terms, whereas the searches in Web of Science included 
only free-text terms. An additional manual search was per-
formed using the reference lists of the examined studies. The 
searches were conducted on 12 November 2017.

Inclusion and exclusion criteria

We included studies published in international peer-reviewed 
journals that examined effective dose of non-dental CBCT 
for diagnostic use. Anatomical areas in the facial region 
which can have a relationship with tooth, such as temporo-
mandibular joints, nose and sinonasal cavities were included. 
Original articles, case reports, short communications, letters 
to the editor, and conference proceedings were included.
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The exclusion criteria were:

• anything focusing on teeth;
• papers that did not focus on CBCT;
• papers that focused on CBCT for non-diagnostic pur-

poses (e.g. guidance for radiotherapy);
• papers that did not relate to dose;
• papers in the field of dosimetry that did not estimate 

the effective dose.

Study selection and data extraction

Three reviewers independently examined the titles and 
abstracts of studies to determine their eligibility for 
inclusion. Screening the full text was done whenever the 
abstract did not give enough information to define eligi-
bility. Moreover, the full text was read when at least one 
of the authors claimed that the study met the inclusion 
criteria. Data were individually extracted from each study 
on (1) the type of endpoint, (2) the anatomical area, (3) 
the physical and technical features of CBCT-units, espe-
cially scanning protocols, (4) the method to measure and 
estimate radiation dosage, (5) the features of dosimeters 
and phantoms, and (6) the effective dose.

In case of disagreement over the study selection or data 
extraction, the issue was solved by consensus discussion 
among the reviewers.

Results

Study selection

Fifteen studies met our inclusion criteria. Each stage 
of the search and screening processes with the number 
of papers identified, included, and excluded is shown 
in Fig. 1. The screening of the found articles, based on 
title and abstract reading, revealed 27 papers which were 
potentially eligible and consequently selected for full-text 
reading. After examination of the full texts, 12 papers 
did not meet the inclusion criteria. The main reasons for 
exclusion were that the studies did not focus on the field 
of dosimetry or did not report the effective dose. Among 
the 15 papers selected (14 original papers [27–40] and 1 
conference proceeding [41]), two of them analysed two 
anatomical areas; all the others analysed only one ana-
tomical area (Table 2). The following anatomical areas 
were analysed: ear [27–32], paranasal sinuses [27, 33, 34, 
41], ankle [35–37], wrist [38, 39], knee [40], and cervical 
spine [32].

Features of CBCT‑units

In the 15 studies examined, 16 CBCT-units (seven differ-
ent models) were used, of which five were from the USA 
[29, 33, 34, 36, 41], Finland [31, 35, 37, 38, 40], and Italy 
[27, 28, 32, 35, 39], and the remaining one from Japan 
[30]. One study [31] used a modified specific acquisi-
tion system that involved a pause during each exposure of 
the multiple frames to reduce potential motion artefacts 
generated by the rotating “C” arm. No physical/technical 
parameter was referred to in the three studies [34, 37, 41]. 
The tube voltage was mentioned in all the other studies, 
whereas some of them did not report field of view (FOV) 
[28, 29], mAs [30, 38, 39], and voxel size [27, 28, 40].

Features of dosimetry systems for calculating 
effective dose

The studies analysed in the current review measured or esti-
mated the effective dose by using the following methods 
(Table 3):

• RANDO Phantom associated with three different kinds 
of dosimeters thermoluminescent dosimeter (TLD) 
[27–29, 32, 33, 41], metal oxide semiconductor field-
effect transistor (MOSFET) dosimeter [31, 35, 40], and 
optically stimulated luminescent dosimeter (OSLD) 
[36]. The features of dosimeters and phantoms were 
generally described in detail.

Table 1  Search strategy

Indexing terms Publications (N)

Pubmed
#01 Radiation dosage [MeSH terms] 76,952
#02 Radiation dosage 128,749
#03 Radiation protection [MeSH terms] 19,449
#04 Radiation protection 36,398
#05 Dose 1,236,797
#06 Effective dose 144,960
#07 Absorbed dose 16,388
#08 Cone beam computed tomography [MeSH 

terms]
6520

#09 Cone beam computed tomography 9875
#10 = #01 OR #02 OR #03 OR #04 OR #05 OR 

#06 OR #07
1,281,659

#11 = #08 OR #09 9875
#12 = #10 AND #11 2136
Web of science
Dose 1687
AND
Cone beam computed tomography
NOT
Dental
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• Scanner outputs Computed tomography dose index 
(CTDI) [39] and dose area product (DAP) [37, 38], each 
of which was multiplied by a conversion factor.

• Monte Carlo simulations [27, 34].

One study [27] compared the effective dose calculated 
by Monte Carlo simulations and the effective dose meas-
ured by TLD, while another [30] did not even mention the 
method used to calculate the effective dose.

In addition, the dosimetric study was the primary end-
point in 10 studies [27, 28, 31–36, 40, 41] and the second-
ary endpoint in 5 studies [29, 30, 37–39].

Finally, although it is beyond the purpose of the review, 
two studies [32, 33] provided a quantitative assessment of 
image quality. They are the only two studies published in 
2017. All the others are older.

Discussion

The large variability in both the physical/technical features 
of the CBCT-units—especially tube voltage, tube current, 
exposure time, and FOV—and the different methods used 
to measure or estimate the effective dose produced sig-
nificant differences in the dosimetric values, thus making 
analysis of the results somewhat difficult. Furthermore, 
since the description of the exposure parameters and scan-
ning protocols was often incomplete, realising the reasons 
for the different results on the effective dose was hard.

Analysis of dosimetry systems for calculating 
the effective dose

TLDs inserted in a RANDO phantom represent the con-
ventional reference method for assessing the effective 
dose. Nevertheless, TLDs need to be replaced within the 
phantom after every exposure.

Fig. 1  Flowchart consist-
ent with preferred reporting 
items for systematic reviews 
(PRISMA) statement

PRISMA 2009 Flow Diagram

Records iden�fied through 
database searching
Pubmed n = 2,136

Web of Science n = 1,687

Sc
re

en
in

g
In

cl
ud

ed
El

ig
ib

ili
ty

Id
en

�fi
ca

�o
n

Records iden�fied 
through reference lists

n = 2

Records a�er duplicates removed
n = 2,141

Records screened, �tles and abstracts
n = 2,141

Records that did not meet inclusion criteria 
a�er assessing �tles and abstracts

n = 2,114

Full-text ar�cles assessed for eligibility
n = 27

Full-text ar�cles excluded
n = 12

Dental applica�ons n = 1
No CBCT n = 1
No dosimetry field n = 3
Effec�ve dose not men�oned n = 7

Studies included in our systema�c review
n = 15



769La radiologia medica (2018) 123:765–777 

1 3

Ta
bl

e 
2 

 N
on

-d
en

ta
l C

B
C

T 
ap

pl
ic

at
io

ns
. A

na
to

m
ic

al
 a

re
as

, p
hy

si
ca

l a
nd

 te
ch

ni
ca

l f
ea

tu
re

s o
f t

he
 C

B
C

T-
un

its
, a

nd
 e

ffe
ct

iv
e 

do
se

St
ud

y
A

na
to

m
ic

al
 

ar
ea

C
B

C
T-

un
it

Eff
ec

tiv
e 

do
se

 (µ
Sv

)
M

od
el

X
-r

ay
 

em
is

si
on

 
ty

pe

D
eg

re
es

 
of

 ro
ta

-
tio

n

Sc
an

 
di

am
et

er
 

(c
m

)

Sc
an

 
le

ng
th

 
(c

m
)

Re
co

n-
str

uc
tio

n 
FO

V
 (A

P,
 

LL
 ×

 C
C

) 
(c

m
 ×

 cm
)

Vo
xe

l s
id

e 
(m

m
)

Tu
be

 
cu

rr
en

t 
(m

A
)

Sc
an

 ti
m

e 
(s

)
Ex

po
-

su
re

 
tim

e 
(s

)

C
ur

-
re

nt
  ×

 ex
po

-
su

re
 ti

m
e 

(m
A

s)

Tu
be

 
vo

lta
ge

 
(k

V
)

K
oi

vi
sto

 
et

 a
l. 

[4
0]

K
ne

e
Pl

an
m

ed
 

 Ve
rit

ya
Pu

ls
ed

21
0

13
16

13
 ×

 16
N

A
7.

5
N

A
6.

0
45

.0
80

5.
6

84
7.

2
88

8.
3

90
9.

4
92

9.
9

96
12

.6
K

oi
vi

sto
 

et
 a

l. 
[3

5]
A

nk
le

Pl
an

m
ed

 
 Ve

rit
ya

Pu
ls

ed
21

0
13

16
13

 ×
 16

0.
20

8.
0

N
A

6.
0

48
.0

90
6.

0

N
ew

To
m

  5
G

g
Pu

ls
ed

36
0

18
16

18
 ×

 16
0.

30
0.

6
N

A
3.

6
2.

3
11

0
1.

9
15

12
15

 ×
 12

0.
30

1.
5

N
A

3.
6

5.
3

11
0

4.
0

12
8

12
 ×

 8
0.

15
11

.0
N

A
5.

4
59

.0
11

0
14

.3
Lu

dl
ow

 
et

 a
l. 

[3
6]

Fo
ot

 a
nd

 
an

kl
e

Pe
dC

A
T b

Pu
ls

ed
N

A
35

20
35

 ×
 20

0.
37

N
A

19
4.

3
4.

5
10

0
2.

6

4.
3

4.
5

12
0

3.
8

6.
5

6.
8

12
0

5.
8

20
20

20
 ×

 20
0.

37
N

A
19

4.
3

4.
5

10
0

1.
4

4.
3

4.
5

12
0

2.
3

6.
5

5.
6

12
0

2.
7

6.
5

6.
8

12
0

3.
7

10
10

10
 ×

 10
0.

37
N

A
19

4.
3

4.
5

12
0

0.
9

Pu
gm

ire
 

et
 a

l. 
[3

7]
Fo

ot
 a

nd
 

an
kl

e
Pl

an
m

ed
 

 Ve
rit

ya
Pu

ls
ed

21
0

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

13

K
os

ki
ne

n 
et

 a
l. 

[3
8]

W
ris

t
Pl

an
m

ed
 

 Ve
rit

ya
Pu

ls
ed

21
0

13
16

13
 ×

 16
0.

40
8.

0
18

N
A

N
A

88
7

de
 C

ha
rr

y 
et

 a
l. 

[3
9]

R
ad

iu
s

N
ew

To
m

  5
G

g
Pu

ls
ed

N
A

N
A

8
5 ×

 5
0.

07
5

N
A

28
N

A
N

A
11

0
≈

10

N
ar

di
 e

t a
l. 

[3
2]

C
er

vi
ca

l 
sp

in
e

N
ew

To
m

  5
G

g
Pu

ls
ed

36
0

18
16

18
 ×

 16
0.

30
N

A
18

N
A

13
.0

8
11

0
24

8

Ea
r

N
ew

To
m

  5
G

g
Pu

ls
ed

36
0

15
5

15
 ×

 5
0.

15
N

A
36

N
A

14
1.

92
11

0
36

1
Zo

u 
et

 a
l. 

[3
1]

Ea
r

Pl
an

m
ed

e
Pu

ls
ed

N
A

6
6

6 ×
 6

0.
2

11
N

A
15

16
5

88
35

.2
*,

 4
5.

9҂



770 La radiologia medica (2018) 123:765–777

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

St
ud

y
A

na
to

m
ic

al
 

ar
ea

C
B

C
T-

un
it

Eff
ec

tiv
e 

do
se

 (µ
Sv

)
M

od
el

X
-r

ay
 

em
is

si
on

 
ty

pe

D
eg

re
es

 
of

 ro
ta

-
tio

n

Sc
an

 
di

am
et

er
 

(c
m

)

Sc
an

 
le

ng
th

 
(c

m
)

Re
co

n-
str

uc
tio

n 
FO

V
 (A

P,
 

LL
 ×

 C
C

) 
(c

m
 ×

 cm
)

Vo
xe

l s
id

e 
(m

m
)

Tu
be

 
cu

rr
en

t 
(m

A
)

Sc
an

 ti
m

e 
(s

)
Ex

po
-

su
re

 
tim

e 
(s

)

C
ur

-
re

nt
  ×

 ex
po

-
su

re
 ti

m
e 

(m
A

s)

Tu
be

 
vo

lta
ge

 
(k

V
)

22
.5

24
7.

5
88

70
.4

*,
 9

1.
7҂

45
49

5
88

10
5.

6*
,  1

38
҂

2
N

A
35

N
A

70
7.

35
*,

 9
.7
҂

Pe
lto

ne
n 

et
 a

l. 
[3

0]
Ea

r
3D

  A
cc

ui
to

m
of

N
A

36
0

4
3

4 ×
 3

0.
12

5
2

N
A

17
.5

N
A

70
13

Ru
iv

o 
et

 a
l. 

[2
9]

Ea
r

i-C
A

T d
Pu

ls
ed

36
0

N
A

N
A

N
A

0.
2

N
A

20
N

A
46

.7
2

12
0

80

Fa
cc

io
li 

et
 a

l. 
[2

8]
Ea

r
M

ax
is

ca
ng

Pu
ls

ed
36

0
N

A
N

A
N

A
N

A
N

A
N

A
N

A
22

6.
13

11
0

11
0

D
ie

rc
kx

 
et

 a
l. 

[2
7]

Ea
r

N
ew

To
m

  5
G

g
Pu

ls
ed

36
0

15
5

15
 ×

 5
N

A
N

A
36

N
A

14
5

11
0

40
0^ ,  1

90
†

12
8

12
 ×

 8
N

A
N

A
36

N
A

N
A

11
0

29
0†

Pa
ra

na
sa

l 
si

nu
se

s
N

ew
To

m
  5

G
g

Pu
ls

ed
36

0
15

12
15

 ×
 12

N
A

N
A

18
N

A
27

.5
11

0
10

0^ ,  9
0†

18
16

18
 ×

 16
N

A
N

A
36

N
A

N
A

11
0

11
0†

A
lm

as
hr

aq
i 

et
 a

l. 
[3

3]
Pa

ra
na

sa
l 

si
nu

se
s

i-C
A

T d
Pu

ls
ed

N
A

13
10

13
 ×

 10
0.

25
5.

0
N

A
4.

0
20

.0
12

0
13

0

0.
30

5.
0

N
A

4.
0

20
.0

12
0

10
9

0.
30

5.
0

N
A

2.
0

10
.0

12
0

65
A

l A
bd

uw
an

i 
et 

al.
 [3

4]
Pa

ra
na

sa
l 

si
nu

se
s

C
ar

es
tre

am
 

 93
00

c
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
27

0

B
ac

he
r 

et
 a

l. 
[4

1]
Pa

ra
na

sa
l 

si
nu

se
s

i-C
A

T d
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
30

A 
av

ai
la

bl
e,

 N
A 

no
 av

ai
la

bl
e,

 A
P,

 L
L,

 C
C

 a
nt

er
o-

po
ste

rio
r, 

la
te

ro
-la

te
ra

l, 
an

d 
cr

an
io

-c
au

da
l d

ia
m

et
er

s. 
Si

ze
 o

f A
P 

an
d 

LL
 w

as
 e

qu
al

^  Eff
ec

tiv
e 

do
se

 m
ea

su
re

d 
by

 d
os

im
et

er
s i

n 
co

m
bi

na
tio

n 
w

ith
 a

 p
ha

nt
om

†  Eff
ec

tiv
e 

do
se

 c
al

cu
la

te
d 

by
 M

on
te

 C
ar

lo
 si

m
ul

at
io

ns
*M

ag
ni

fic
at

io
n 

of
 1

.4
҂  M

ag
ni

fic
at

io
n 

of
 1

.7
a  Pl

an
m

ed
 O

y,
 H

el
si

nk
i, 

Fi
nl

an
d

b  C
ur

ve
B

ea
m

 In
c.

, W
ar

rin
gt

on
, P

A
, U

SA
c  C

ar
es

tre
am

 H
ea

lth
 In

c.
, R

oc
he

ste
r, 

N
Y,

 U
SA

d  Im
ag

in
g 

Sc
ie

nc
es

 In
te

rn
at

io
na

l, 
H

at
fie

ld
, P

A
, U

SA
e  Pl

an
m

ed
, H

el
si

nk
i, 

Fi
nl

an
d.

 It
 w

as
 a

 P
la

nm
ec

a 
O

y 
hi

gh
-r

es
ol

ut
io

n 
ac

qu
is

iti
on

 sy
ste

m
f  M

or
ita

, K
yo

to
, J

ap
an

g  Q
R

, V
er

on
a,

 It
al

y



771La radiologia medica (2018) 123:765–777 

1 3

Since several exposures are recommended to attain 
more reliable dosimetric values, measuring the effec-
tive dose by TLD is very laborious, time-consuming, and 
prone to mistakes. To overcome these limitations, MOS-
FET dosimeters have been introduced lately. MOSFETs 
are purely electronic dosimeters connected to a reader that 
transfers data to a computer. They can perform multiple 
real-time measurements without having to repeatedly dis-
assemble and reposition the phantom. The drawback of 
MOSFETs is that they are visible on the radiographs and 
produce a heel effect [42, 43].

OSLDs consist of crystals whose electrons collect 
the energy released from X-rays. At the dosimeter read-
out, the crystal is stimulated with a light-emitting diode, 
allowing the electrons to fall back to their original energy 
state while emitting a characteristic light proportional to 
the amount of the absorbed radiation dose. OSLDs have 
a small size and can be positioned on the patient skin. 
Although several considerations and conditions—such 
as beam energy and spectrum, dose range, geometrical 
arrangement, and reading protocol—theoretically warrant 
the use of specific correction factors, these factors and the 
related uncertainties are mostly in the single-digit per cent 
in the typical conditions of medical diagnostic CT. The 
most significant practical correction factor (easily determi-
nable) may be the one to account for the beam average kV. 
Contrary to the perception by some, signal fading is not a 
significant issue over a period of several days or weeks if 
the OSLDs are handled properly [44, 45].

CTDI and DAP are radiation dose outputs that indicate 
the amount of radiation directed towards the patient and 
allow one to compare the radiations of different CT sys-
tems. Three papers [37–39] under the current review used 
a scanner output to calculate the effective dose of extremi-
ties by using conventional X-ray conversion factors. CTDI 
calculates the dose by a pencil ionisation chamber that is 
only 100 mm long. Therefore, it neither detects the scat-
tered dose over this length nor collects the primary beam 
in CBCT with a large FOV [46]. The DAP measures the 
radiation dose to air (without backscatter) multiplied by 
the area of the X-ray field.

The Monte Carlo simulation is a software-based tech-
nique used to simulate photon interactions with living 
matter since it tracks the trajectories of each individual 
photon and calculates the amount of energy released point 
by point. Monte Carlo algorithms are very demanding in 
computational resources and may require a long time to be 
performed (depending on the computing power). Although 
up to  109 photons can typically be simulated with the com-
puting power of current hardware and software resources, 
CT examinations involve a larger number of photons (up to 
 1016 photons). This may limit the accuracy of the dose esti-
mations [47]. The only paper [27] which compared Monte 

Carlo simulations and TLD, while keeping unchanged all 
CBCT-unit scanning parameters, found that Monte Carlo 
simulations underestimated the effective dose by more than 
50% in the ears study and by 10% in the paranasal sinuses 
study, with respect to TLD.

Radiation dose of extremities and cervical spine

Knee

Koivisto et al. [40] used MOSFET dosimeters inserted in 
a custom-made RANDO phantom. They did not alter the 
exposure settings, except for the tube voltage, which was 
changed from 80 to 96 kV with a proportionate increase in 
the effective dose from 5.6 to 12.6 µSv.

Ankle

Koivisto et al. [35] and Ludlow et al. [36] used three differ-
ent CBCT-units and two different dosimeters (MOSFET e 
OSLD) inserted in a custom-made RANDO phantom. Seven 
different FOVs with variable exposure time, mAs, and kV 
resulted in effective doses from 0.9 to 14.3 µSv. Pugmire 
et al. [37] calculated the effective dose of 13 µSv in the pae-
diatric human ankle using the DAP-to-effective dose conven-
tional X-ray conversion factors [48]; however, no CBCT-unit 
physical/technical parameter was reported.

Wrist

Koskinen et al. [38] and de Charry et al. [39] calculated 
effective doses of 7 µSv and approximately 10 µSv in adult 
human wrist and cadaveric distal radius using the DAP- and 
CTDI-to-effective dose wrist conventional X-ray conversion 
factors [49], respectively.

The overall mean effective dose for the studies on the 
extremities was 7.1 µSv.

Cervical spine

Nardi et al. [32] measured the effective dose of 248 µSv 
by using TLDs in combination with an Alderson-RANDO 
phantom.

Radiation dose of ear and paranasal sinuses

Ear

Dierckx et al. [27], Nardi et al. [32], Faccioli et al. [28], and 
Ruivo et al. [29] examined the ear by using TLDs inserted 
in an Alderson-RANDO phantom. The resulting effective 
doses were 400, 361, 110, and 80 µSv, respectively. The 
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first two aforementioned authors [27, 32] used a large FOV 
including both ears, whereas the other two authors [28, 29] 
did not mention the size of the FOV. Dierckx et al. [27] also 
used Monte Carlo simulations, obtaining an effective dose 
that was less than half compared to the effective dose meas-
ured by TLD. Zou et al. [31] used MOSFET dosimeters and 
a small FOV; they changed the exposure time and found that 
the effective dose varied from 7 to 138 µSv. Peltonen et al. 
[30] reported an effective dose of 13 µSv in the cadaveric 
temporal bone without specifying the dosimetry system and 
adapting a dental CBCT-unit with a small FOV.

The overall mean effective dose for the studies on the ear 
was 178.2 µSv.

Paranasal sinuses

Dierckx et al. [27] measured the effective dose via a spe-
cific FOV (15 × 12 cm) for the paranasal sinuses study using 
both TLDs inserted in an Alderson-RANDO phantom and 
Monte Carlo simulations. The effective dose was 100 and 
90 µSv, respectively. They also estimated the effective dose 
of 110 µSv using a larger FOV (18 × 16 cm) by Monte Carlo 
simulations. Almashraqi et al. [33] investigated the paranasal 
sinuses by TLDs inserted in an Alderson-RANDO phantom. 
They used a slightly smaller FOV (13 × 10 cm) than Dierckx, 
and changed both the voxel size (0.25 or 0.30 mm) and the 
exposure time (2 or 4 s). The effective dose varied from 65 
to 130 µSv. Al Abduwani et al. [34] and Bacher et al. [41] 
estimated effective doses of 270 and 30 µSv by using Monte 
Carlo simulations and TLDs, respectively, without mention-
ing any protocol parameter. The overall mean effective dose 
for the studies on the paranasal sinuses was 119.0 µSv.

Among all the aforementioned authors, only Nardi et al. 
[32] and Almashraqi et  al. [33] provided a quantitative 
assessment of image quality that represents a key element 
which should be associated with a dosimetric study. In fact, 
each physical/technical parameter of every CBCT-unit must 
be optimised in order to limit the exposure, reach a diagnos-
tically acceptable image quality in relation to the clinical 
query, and allow the comparison of doses using different 
imaging techniques.

The ear study requires a high resolution to detect the tiny 
structures of which it is constituted; consequently, a high 
radiation dosage is needed [32]. The dose can be generally 
reduced in the paranasal sinuses, cervical spine, and extrem-
ities studies, where the image quality is adequate even with 
low-dose protocols [32, 33, 50]. Low-dose protocols should 
be set in all imaging techniques with ionising radiation, 
especially in CBCT, because of several units with extremely 
variable acquisition parameters and therefore very different 
exposures, as shown in the current review. The parameter 
optimisation has already been discussed in dental CBCT, 

but further research shall be carried out in non-dental CBCT 
applications. Furthermore, although CBCT is considered 
to be a low-dose volumetric imaging technique, in clinical 
practice the repetition rate of examinations due to motion 
artefacts is not insignificant (0.9–5.4%) [12, 51, 52]; this 
increases the mean radiation dose administered to patients.

Overall, the mean CBCT effective dose for the extremi-
ties (7.1 µSv) was a little more than double and seven times 
the amount of one projection X-ray effective dose for the 
knee (3.0 µSv) [40] and the foot–ankle (1.0 µSv) region [35, 
36], respectively. The study of extremities by radiographs 
needs more than one plain film, and a bone fracture is not 
always detectable by two-dimensional medical imaging 
because of the geometric distortion effect and the superim-
position of three-dimensional complex skeletal structures 
[53, 54]. Therefore, we suppose that CBCT may sometimes 
replace a conventional X-ray examination in extremity bone 
trauma turned into a first-level imaging since CBCT assures 
high diagnostic accuracy in the detection of bone fractures 
[55–58] with an acceptable radiation dose.

Using a standard RANDO phantom or a computational 
patient model has important limitations because neither 
system takes into account the constitutional nature of any 
individual patient and the wide range of scan protocols. It 
is incorrect to employ a one-size-fits-all phantom to accu-
rately estimate the dose to all patients. In fact, a typical adult 
phantom does not represent an individual patient-specific 
habitus; consequently, it will underestimate the dose for a 
paediatric patient and overestimate the dose for an obese 
patient because the X-ray beam is attenuated to a greater 
extent in large patients than in small patients [59].

We noticed that the physical/technical parameters nec-
essary to make the value of an effective dose meaningful 
were reported more thoroughly in the studies in which 
the primary endpoint was represented by a dosimetric 
study. We firmly believe that an accurate report of the 
effective dose must always be combined with a detailed 
description of both the physical/technical parameters of 
any unit and the dosimetry system adopted. Otherwise, the 
value of the effective dose has poor relevance as it is not 
reproducible. Similarly, reporting only the scanner output 
value is not appropriate since scanner outputs are not a 
real measurement of the patient dose, not unless they are 
combined with the conversion factors, taking into account 
the patient’s size/age/gender, irradiated organ, body com-
position, scan range, mAs, and tube voltage [60–62].

Currently, there are no conversion factors for non-dental 
CBCT. Therefore, using dental CBCT conversion factors is 
technically inaccurate since they concern a different ana-
tomical area with different tissues and organs irradiated. 
Even more so, it is debatable to use the conversion factors 
of different technology systems as conventional X-rays or 
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multislice CT. For that reason, future investigations on 
non-dental CBCT conversion factors are recommended.

We wonder whether it is proper to report the scanner 
output value for the estimation of patient dose in the radi-
ology report as required by the latest international provi-
sions. Scanner outputs do not take into account of vari-
ability in tissue weights; therefore, they are an unreliable 
surrogate for patient dose. We think that mentioning the 
scanner output value in the radiology report is just the first 
step towards monitoring both the exposure to the popula-
tion and the dose to the individual patient. It is desirable 
for the future to achieve a fast, easy, accurate, cost-effec-
tive, and unambiguous system for estimating the effective 
dose since dosimeters cannot be placed within the organs 
of a human being. The ideal solution to ensure reliable 
patient dose measurements would be to have every CT-
unit displaying the effective dose directly on the computer 
screen at the end of each examination by innovative soft-
ware Monte Carlo simulation-like or reliable conversion 
factors in combination with scanner outputs. This is a hard 
challenge for research.

The main limitation of our study was the impossibility 
of making a meta-analysis because of both the heteroge-
neity of the methods used to estimate the dose and the 
limited papers available on the various non-dental CBCT 
applications. A further limitation was discarding all papers 
that did not relate to the effective dose, even though they 
were related to dosimetry. Furthermore, although effective 
dose represents the most reliable metre used to track the 
dose for individual patients, effective dose is believed not 
to be an excellent parameter of patient risk per se [63–65] 
and the stochastic radiation damage may be underesti-
mated [66, 67].

Conclusions

The current review proved that CBCT of the extremities, 
cervical spine, ears, and paranasal sinuses was a low-dose 
volumetric imaging technique. Nevertheless, the effective 
dose varied considerably among authors due to both the 
large number of different exposure settings of the several 
CBCT-units and the various dosimetry systems repre-
sented by scanner outputs, Monte Carlo simulations, and 
different kinds of dosimeters associated with RANDO 
phantom. Therefore, further studies are required to make 
the measurement methods uniform with more reliable and 
consistent estimations of the effective dose values.
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