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Abstract

Small-scale magnetic reconnection processes in the form of nanoflares have become increasingly hypothesized as
important mechanisms for the heating of the solar atmosphere, driving propagating disturbances along magnetic
field lines in the Sun’s corona, and instigating rapid jetlike bursts in the chromosphere. Unfortunately, the relatively
weak signatures associated with nanoflares place them below the sensitivities of current observational
instrumentation. Here we employ Monte Carlo techniques to synthesize realistic nanoflare intensity time series
from a dense grid of power-law indices and decay timescales. Employing statistical techniques, which examine the
modeled intensity fluctuations with more than 107 discrete measurements, we show how it is possible to extract and
quantify nanoflare characteristics throughout the solar atmosphere, even in the presence of significant photon noise.
A comparison between the statistical parameters (derived through examination of the associated intensity
fluctuation histograms) extracted from the Monte Carlo simulations and Solar Dynamics Observatory (SDO)/
Atmospheric Imaging Assembly (AIA) 171 and 94Å observations of active region NOAA11366 reveals evidence
for a flaring power-law index within the range of 1.82�α�1.90, combined with e-folding timescales of
385±26 and 262±17 s for the SDO/AIA 171 and 94Å channels, respectively. These results suggest that
nanoflare activity is not the dominant heating source for the active region under investigation. This opens the door
for future dedicated observational campaigns to not only unequivocally search for the presence of small-scale
reconnection in solar and stellar environments but also quantify key characteristics related to such nanoflare
activity.

Key words: methods: numerical – methods: statistical – Sun: activity – Sun: chromosphere – Sun: corona – Sun:
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1. Introduction

Magnetic reconnection is a common process within solar
and stellar atmospheres. During reconnection phenomena,
magnetic fields are rearranged into a stable state of lower
energy, thus releasing a considerable excess in the form of
increased kinetic energies of the embedded plasma, the
acceleration of charged particles, and extreme localized
heating (Priest 1986; Hudson 1991, 2011; Priest & Schrijver
1999). It is the deposition of thermal energy that has been
postulated as one of the main mechanisms for supplying the
background heat flux necessary to maintain the multimillion-
degree temperatures present in the outer solar atmosphere.
The signatures of such events can readily be observed
during the impulsive stages of large-scale flares, which can
often release in excess of 1031erg of energy within a
compact volume. However, the relative rarity of large flares,
particularly during periods of solar minima, means that they
cannot solely provide the sustained heating required. As a
result, nanoflares were proposed whereby smaller (individual
energies on the order of 1024 erg) yet more frequent magnetic
reconnection events may be able to remain active throughout
the extremities of the solar cycle while also providing
continued basal background heating (Parker 1988).

In order for such a mechanism to be dominant, the
occurrence rate of nanoflares must be substantially higher than

those for larger-scale flaring events. The continuous spread of
flaring energies is believed to be governed by a power-law
relationship, whereby the frequency, dN/dE, of flaring events
with an associated energy, E, is described by

dN

dE
E ,~ a-

where α is the power-law index. It is required that α� 2 for
nanoflares to play an important role in the heating of the solar
atmosphere (Parker 1988; Hudson 1991). Unfortunately, while
measurements of the power-law index for large-scale flares are
relatively straightforward, observational constraints can often
introduce significant errors in the calculation of a power-law
index applicable to lower-energy events. Such constraints have
been documented by Hannah et al. (2008), who suggested that
frequency turnovers at low energies may be caused by
instrumental effects as a consequences of missing (or failing
to detect) the smallest events. As a result, often the largest
uncertainties in the derived power-law indices are associated
with nanoflare-type events, with estimations spanning 1.35�
α� 2.90 (Berghmans et al. 1998; Krucker & Benz 1998;
Aschwanden 1999; Parnell & Jupp 2000; Benz & Krucker
2002; Winebarger et al. 2002; Aschwanden & Freeland 2012;
Aschwanden et al. 2014, 2015).
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Furthermore, López Fuentes et al. (2007) demonstrated that
the intensity of an impulsively heated coronal loop must be a
direct indication of the nanoflare occurrence rate, whereby
small-scale energies could be injected frequently or larger
energies may be introduced more intermittently, thus opening
up the possibility that individual structures may be governed by
either a traditional range of flare energies and occurrence rates
(i.e., following a power law) or a narrow range of energies
being applied more regularly in time. As a result, it is presently
unclear whether nanoflare energies and occurrences are
significant enough to be a dominant contributor to atmospheric
heating. Nevertheless, in more recent years, nanoflares have
also been proposed as viable mechanisms to initiate magneto-
hydrodynamic wave activity in the chromosphere (Klimchuk &
Bradshaw 2014) and corona (Wang et al. 2013), while more
extreme examples of nanoflare activity may be responsible for
heating chromospheric plasma to transition region temperatures
in the form of Type II spicules (Bradshaw & Klimchuk 2015).

As highlighted above, the energetics associated with
nanoflares places them on or below the sensitivity limits of
current telescope facilities and instrumentation. As a result,
ongoing research is attempting to devise novel ways to
diagnose, extract, and characterize nanoflares from data that
often display no clear impulsive signatures. Current approaches
include the use of spectroscopic techniques to compare the
scaling between kinetic temperatures and emission measures of
coronal plasma (e.g., Klimchuk & Cargill 2001; Bradshaw
et al. 2012). Sarkar & Walsh (2008, 2009) employed a
multistranded loop model and folded their synthetic outputs
through EUV instrumental response functions to examine
whether the resulting emission measure–weighted temperature
profiles could be conclusively examined for the presence of
nanoflare activity. The authors found that broad differential
emission measures were produced, but that any potential
observational signatures may be below the detection thresholds
of current EUV imaging instrumentation. Such limitations may
result from what is termed the “isothermal bias,” where Weber
et al. (2005) utilized a flat differential emission measure
distribution to mimic an inherently multithermal plasma and
revealed that filter ratio methods used to construct the
differential emission measures are biased toward the temper-
ature response functions of the imaging channels used. Then, as
a result of the electron temperatures and thermal energies being
statistically correlated during flare processes, Aschwanden &
Charbonneau (2002) also demonstrated how emission measure
approaches spanning a limited temperature range naturally
introduce a bias in the frequency distribution of flare energies,
thus affecting the derived power-law index. As a consequence,
the reliability of such approaches hinges upon the accurate
diagnosis of isothermal and multithermal plasma when
constructing the emission measures, as well as the number of
optically thin magnetic strands superimposed along the
observational line of sight. Indeed, Cargill (2014) recently
demonstrated how the flare energy power law derived from
differential emission measure techniques is sensitive to the time
between individual nanoflares, suggesting that the associated
energies may be smaller than previously envisioned. Further-
more, Reale & Orlando (2008) employed simulations to
document how nonequilibrium ionization effects during the
heating stages of nanoflare activity may result in the
undetectability of heat pulses shorter than approximately

1minute in duration, which naturally affects the ability of
differential emission measure techniques to extract the
signatures of short-lived nanoflare events. Nevertheless, Reep
et al. (2013) utilized a hydrodynamic model to reveal how
steady heating (i.e., where the timescale between events is
shorter than the cooling timescale) may be able to replicate
86%–100% of active region core emission measures where
nanoflare heating may be prevalent. Reep et al. (2013) also add
a caveat that the slopes of the emission measures deduced from
observations alone are not sufficient to provide information
about the specific timescales associated with heating. However,
more recently, Ishikawa et al. (2017) employed differential
emission measure techniques on hard X-ray observations from
the second flight of the Focusing Optics X-ray Solar Imager
(FOXSI–2; Krucker et al. 2009; Christe et al. 2016) sounding
rocket and revealed plasma heated above 10MK, thus
providing yet more evidence for the existence of solar
nanoflares.
Sakamoto et al. (2008) and Vekstein (2009) compared

cotemporal intensity time series obtained at EUV and X-ray
wavelengths and estimated that a “hot” corona could be
maintained with nanoflare filling factors on the order of 10%.
Subsequent theoretical modeling by Joshi & Prasad (2012)
provided corroborating evidence that the X-ray fluctuations
observed by Katsukawa & Tsuneta (2001) and Sakamoto et al.
(2008) could be representative of 1023–1026erg events released
over timescales of ∼100 s. Importantly, the results of Sakamoto
et al. (2008) demonstrate a lag time between soft X-ray and
EUV time series (corresponding to the cooling timescale),
which suggests that soft X-ray loops may require higher
nanoflare energies than their EUV counterparts, thus perhaps
indicating a wavelength dependence on the nanoflare power-
law index. However, the observations employed by Sakamoto
et al. (2008) and Vekstein (2009) were previous-generation
TRACE (Handy et al. 1999) and Yohkoh/soft X-ray telescope
(Ogawara et al. 1991; Tsuneta et al. 1991) images with reduced
(by modern standards) spatial and temporal resolutions, which,
as a result, limited the statistical significance of their results.
Employing modern EUV image sequences acquired by the
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
onboard the Solar Dynamics Observatory (SDO; Pesnell et al.
2012), a series of papers by Viall & Klimchuk (2011, 2012,
2013, 2015, 2016, 2017) examined the intensity fluctuations
captured in the high-resolution EUV time series. Viall &
Klimchuk (2011) documented fluctuations in the associated
light curves on timescales of ∼20 minutes and concluded that
this was inconsistent with a steady heating model as a result of
the clearly impulsive nature of the extracted time series.
Furthermore, time delays between the impulsive signatures
found by Viall & Klimchuk (2012) in the temperature-sensitive
EUV observations corroborated the cooling plasma interpreta-
tion of Sakamoto et al. (2008) and also further suggested the
presence of impulsive nanoflare heating.
Terzo et al. (2011) and Jess et al. (2014) offered an

alternative approach to identifying nanoflare signatures
embedded within long-duration solar time series. These authors
utilized direct-imaging techniques to build up a statistical
picture of small-scale fluctuations contained within the pixel
light curves. Through comparison with Monte Carlo simula-
tions, subtle asymmetries of the measured intensity fluctuations
could be interpreted as the signatures of successive impulsive
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events embedded within an inherently cooling plasma. Since
large-number statistics were employed in the studies by Terzo
et al. (2011) and Jess et al. (2014), instrumental effects due to
calibration uncertainties are likely to be minimized due to their
very small fluctuations around the relevant mean. Hence, such
instrumental effects are very unlikely to introduce large-scale
intensity fluctuations that produce the broad (and often
asymmetric) tails of the corresponding intensity fluctuation
histograms. As a result, Terzo et al. (2011) and Jess et al.
(2014) both linked such statistical signatures to the presence of
real nanoflare events, something that was previously put
forward by Katsukawa & Tsuneta (2001).

Importantly, this technique does not rely on the presence of
optically thin observations (i.e., coronal observations), nor does
it require the accurate fitting of multithermal plasma properties,
thus also making it suitable for studies of the lower solar
atmosphere. In a series of publications examining whether such
small-scale flare events could heat stellar coronae, Güdel
(1997), Kashyap et al. (2002), Güdel et al. (2003), and Arzner
& Güdel (2004) compared a similar time-dependent Poisson
process of impulsive events to Extreme Ultraviolet Explorer/
Deep Survey (EUVE/DS; Malina & Bowyer 1991) observa-
tions of the flaring star ADLeo. Time series of ADLeo have
shown continuous variability (e.g., Ambruster et al. 1987),
which has been suggested as the observational signature of a
large number of superimposed flares characterized by similar
decay timescales. The simulated EUV and X-ray time series of
Arzner & Güdel (2004) revealed that the expected count rates
(extracted from the Fourier transform of the flare probability
densities) were related to the mean flaring interval, suggesting
that the occurrence of small-scale events may have a (quasi-)
periodic dependency. Furthermore, the comparison of such
synthetic time series to the EUVE/DS observations indicated a
flaring power-law index of ∼2.3, suggesting that nanoflares
may play an important role in the heating of both solar and
stellar coronae.

Unfortunately, one drawback of statistical approaches is the
fact that the inferred nanoflare characteristics only become
most accurate in the limit of large-number statistics. Since the
solar atmosphere is constantly evolving through oscillatory
phenomena, structural dissipation, and feature drifts alongside
new magnetic flux emergence, such approaches naturally
require a combination of a well-defined region of interest, in
addition to large-number statistics to help remove the
contributions of non-nanoflare phenomena from the resulting
intensity distributions. Thankfully, high-cadence and long-
duration imaging sequences are now commonplace, particu-
larly from ground-based observatories that are not limited by
the same telemetry restrictions as space-borne instrumentation.
Specifically, the work of Terzo et al. (2011) utilized
approximately 2×107 individual measurements by employing
the X-Ray Telescope (XRT; Golub et al. 2007) on board
Hinode, while Jess et al. (2014) increased this limit to over
1×109 discrete values by employing the Hydrogen-Alpha
Rapid Dynamics camera (HARDcam; Jess et al. 2012) on the
Dunn Solar Telescope. More recently, Tajfirouze et al. (2016a,
2016b) utilized EUV image sequences captured by SDO/AIA
to examine small-scale intensity fluctuations using probabilistic
neural networks and cross-correlation techniques. Tajfirouze
et al. (2016a, 2016b) concluded that maps of pixel intensity
fluctuations, as previously demonstrated by Terzo et al. (2011)
and Jess et al. (2014), may provide excellent diagnostic

capabilities for deducing nanoflare characteristics in the solar
atmosphere.
Even with such large measurement numbers, several

unresolved statistical features manifested as a result of the
analyses of Terzo et al. (2011) and Jess et al. (2014). While
both intensity fluctuation histograms were negatively offset
from the mean, they also displayed a degree of positive
skewness in their composition. Furthermore, the widths of the
distributions were not completely aligned with a standardized
Gaussian profile, something that would be expected for time
series entirely comprised of photon-noise statistics. Therefore,
a significant number of questions arose and remain unanswered
as a result of the abovementioned work. While many of these
issues have not been directly addressed, Jess et al. (2014)
suggested that larger impulsive events (e.g., perhaps related to
the lower-energy microflares documented by Jess et al. 2010a)
may result in more contributions to larger-intensity fluctua-
tions, causing them to remain elevated over a wider range of
values and thus inducing a degree of positive skewness in the
statistical distributions. Here we take the hypotheses put
forward by Jess et al. (2014) one step further by analyzing a
series of Monte Carlo simulations that are designed to replicate
the intensity perturbations (both impulsive and decay signa-
tures) caused by small-scale nanoflare activity in the solar
corona. Such synthesized time series are constructed using a
dense grid of input parameters, which includes the underlying
power-law index and the associated decay timescales, to
ascertain the plasma and nanoflare characteristics responsible
for pronounced asymmetries in the resulting statistical
distributions. In addition, we utilize high-resolution multi-
wavelength SDO/AIA observations of a quiescent active
region to investigate how the modeled statistical parameters
and synthetic time series compare to their observational
counterparts.

2. Observations

The active region employed throughout this study is
NOAA11366, with a time sequence spanning 15:30–18:00UT
on 2011 December 10 and comprising 750 171Å images
alongside 750 counterpart 94Å images, each with a cadence of
12 s. A 210″×210″ (350× 350 pixels2) field of view is
employed to encapsulate the majority of the active region core.
These data products have been extensively documented in
previous published work, with further details available in Krishna
Prasad et al. (2015, 2017) and Jess et al. (2016). A time-averaged
171Å image, visible in the upper left panel of Figure 1, depicts a
collection of loop and fan structures extending outward from
the underlying sunspot, with the surrounding areas displaying
quiescent moss and background coronal plasma. Similar coronal
features, albeit with reduced signal, are visible in the time-
averaged 94Å image displayed in the upper left panel of
Figure 2. The SDO/AIA 171 and 94Å channels were chosen for
this preliminary study due to their dominant sensitivities to
coronal plasma below and above, respectively, a temperature of
1MK (Boerner et al. 2012). During the 2.5hr observations, no
large-scale (macroscopic) flare brightenings were observed in the
SDO/AIA data, highlighting the quiescent nature of the active
region under investigation.
The particular active region was chosen because it was a

decaying (McIntosh classification Cao; Hale class βγδ) sunspot
group that did not provide any large-scale (i.e., GOES C class
or above) activity both during and immediately prior to the
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Figure 1. A 210″×210″ (350 × 350 pixels2) SDO/AIA 171 Å snapshot averaged in time across 15:30–18:00UT on 2011 December 10 (upper left panel), which is
used as the base science image for the Monte Carlo simulations. The upper right panel displays the magnitude of Gaussian–Poisson noise fluctuations estimated from
the 171 Å time series. The middle left panel depicts the standard deviations of the SDO/AIA 171 Å intensity time series, while the middle right panel reveals the
standard deviation

mean
ratios across the same field of view. Regions demonstrating a ratio larger than 0.20 are removed from the present study, with those pixels masked out

using blue contours. All images are displayed on the solar heliocentric coordinate system using a log scale to better reveal fine-scale structuring that would otherwise
be swamped by the large intensity ranges between the brightest and darkest features. The lower panel displays the corresponding intensity fluctuation distribution
(black line; in units of σN), normalized to its maximum, for the SDO/AIA171 Å field of view. A standardized Gaussian profile is also plotted as a red dashed line for
reference.
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Figure 2. In an identical way to Figure 1, the upper left panel displays a time-averaged SDO/AIA 94 Å image, while the upper right panel depicts the magnitude of
Gaussian–Poisson noise fluctuations estimated from the 94 Å time series. The middle left panel highlights the standard deviations of the SDO/AIA 94 Å intensity time
series, while the middle right panel reveals the standard deviation

mean
ratios across the same field of view. Regions demonstrating a ratio larger than 0.35 are removed from the

present study, with those pixels masked out using blue contours. The lower panel displays the corresponding intensity fluctuation distribution (black line; in units of
σN), normalized to its maximum, for the SDO/AIA94 Å field of view. A standardized Gaussian profile is also plotted as a red dashed line for reference.
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observations being acquired. Studies undertaken by McIntosh
(1990) and Jaeggli & Norton (2016) estimate the occurrence of
McIntosh Cao and Hale βγδ sunspot classifications as ∼7%
and ∼5%, respectively. Therefore, they are not rare sunspot
groups and indeed form regularly throughout the solar cycle,
but with a slight preference for the stages leading up to solar
maxima (Jaeggli & Norton 2016). The last detected activity
from NOAA11366 was when this active region produced a
small C1.9-class flare on 2011December5 (when the sunspot
group was McIntosh class Hsx, or Hale class αγδ), some 5 days
prior to our observational data set. The relative quietness of the
active region was deemed important when attempting to
undertake a statistical study of nanoflare activity. Large
macroscopic flaring events would need to be either removed
from the time series (reducing the usable time intervals and
therefore affecting the statistical distributions) or masked out
from the subsequent data cube (decreasing the number of
available pixels for analysis). Applying such processes would
naturally reduce the statistical significance of the derived
interpretations. As such, we opted for a quiescent active region,
in the form of NOAA11366, that demonstrated no macro-
scopic flaring events.

In order to better quantify the quiescence of the SDO/AIA
active region core time series, we followed the methodology
put forward by López Fuentes & Klimchuk (2016). Here the
authors calculated ratios between the light-curve standard
deviations and means corresponding to SDO/AIA 171Å time
series, and through comparisons with Enthalpy-based Thermal
Evolution of Loops (EBTEL; Klimchuk et al. 2008; Cargill
et al. 2012) models, they demonstrated how a ratio within the
range of 0.08–0.20 is typical of SDO/AIA 171Å image
sequences displaying no large-scale flaring or obvious long-
term variations. Therefore, an upper limit for the standard
deviation–to–mean ratio of 0.20 is placed upon our 171Å time
series, where regions displaying a ratio larger than 0.20 are
masked out using blue contours in the middle right panel of
Figure 1. In total, 4309 pixels (∼3% of the field of view) are
excluded from subsequent analysis, leaving the remaining
118,191 spatial pixels for subsequent statistical investigation.
Due to the much weaker signal-to-noise associated with the
SDO/AIA 94Å channel, a standard deviation–to–mean ratio of
0.20 resulted in too much of the field of view being excluded.
As a result, a standard deviation–to–mean ratio of 0.35 was
adopted for the SDO/AIA 94Å channel to allow more pixels
within the vicinity of the active region to be incorporated while
still remaining close to the threshold values put forward by
López Fuentes & Klimchuk (2016). This value resulted in
17,460 pixels (∼14% of the field of view) being excluded from
subsequent SDO/AIA 94Å analysis, which can be identified
by the blue contours in the middle right panel of Figure 2.

Following the extraction of the SDO/AIA 171 and 94Å
pixels that conformed to the upper standard deviation–to–mean
ratios put forth by López Fuentes & Klimchuk (2016), the time-
resolved intensity fluctuations, dI, are computed similarly to
Terzo et al. (2011) and Jess et al. (2014),

dI t
I t I t

, 1
N

0

s
=

-( ) ( ) ( ) ( )

where I(t) and I0(t) are the registered count and value of a linear
least-squares fit used to detrend the data, respectively, at time t,
and σN is an estimate of the time-series noise, which in the limit

of Poisson statistics is approximately equal to the standard
deviation of the normalized pixel light curve. This is consistent
with the natural shot-noise distribution that arises from the
particle nature of incident photons (i.e., Terrell 1977), which is
based around Poisson statistics (for an in-depth overview, see,
e.g., Delouille et al. 2008). Note that the normalization
performed above is similar to the Z-scores statistical transfor-
mation, which has widespread applications in physical and
social sciences (Sprinthall 2012).
A histogram of all dI values is then computed, which by

definition has a statistical mean equal to zero (see, e.g., the
bottom panels of Figures 1 and 2). In order to best characterize
the resulting distributions, a number of statistical parameters
are evaluated, including the median offset, Fisher and Pearson
coefficients of skewness, and a measurement of the kurtosis
and variance of the histogram, along with the width of the
distribution at a variety of locations, including at half-
maximum, quarter-maximum, eighth-maximum, etc. Such
statistical parameters have been employed in a variety of
astrophysical research, including that linked to cosmological
density fields (e.g., Gaztanaga & Bernardeau 1998), quantify-
ing polarization signals in radio observations (e.g., Farnes et al.
2018), examining planetary orbits (e.g., Fatuzzo et al. 2006),
and uncovering the temporal evolution of large-scale solar
flares (e.g., Šimberová et al. 2014). The ratio between the width
of the distribution at eighth-maximum to that at half-maximum
(i.e., FW M1

8
-to-FWHM ratio) is defined here as “ζ” for

simplicity. A standardized Gaussian distribution has a natural
ratio of ζ=1.73. It must be stressed that the ζ measurement is
distinctly different from the value of kurtosis, since kurtosis is a
descriptor of the shape of the entire intensity fluctuation
distribution, while the ζ parameter defines the relative widths of
the distribution at distinct locations, in this case at the FWHM
and FW M1

8
. Figure 3 provides a graphical overview of the key

statistical measurements employed here, alongside a standar-
dized Gaussian distribution for comparison.
For the SDO/AIA 171Å data set under current invest-

igation, it is clear from the lower panel of Figure 1 that a
negative median offset (−0.059± 0.006) is combined with
a distribution that is narrower than that of a standardized
Gaussian (i.e., ζ<1.73, or, more precisely, ζ=1.717±
0.012). Furthermore, the intensity fluctuation distribution is
also leptokurtic (providing a positive value for the kurtosis;
0.4010± 0.0010) and slightly positively skewed (Fisher value
of 0.3410± 0.0005). The SDO/AIA 94Å data set displays
similar overall characteristics (lower panel of Figure 2) but with
a reduced median offset (−0.051± 0.006) and a slightly larger
standardized width (ζ=1.722±0.016). When compared to
that from the SDO/AIA 171Å channel, the SDO/AIA 94Å
intensity fluctuation distribution is more leptokurtic with a
kurtosis value of 0.4962±0.0011, as well as more heavily
skewed with a Fisher value equal to 0.3630±0.0005.
It must be noted that the median offset values have a high

degree of precision, which is a consequence of both the large
overall number statistics (approaching 108 individual measure-
ments) and the leptokurtic distributions placing the vast
majority of fluctuations close to the natural mean of zero. To
remain consistent with proven statistical methods (e.g., Kendall
& van Lieshout 1998; Tabachnick & Fidell 2006), we adopt the
standard skewness errors as n6 , while the standard kurtosis
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errors are given by n24 , where n is the sample size used in
the calculations. Thus, an individual SDO/AIA light curve,
consisting of 750 discrete data points, provides Fisher
skewness and kurtosis errors equal to ±0.175 and ±0.351,
respectively, adopting a 95% confidence interval. When the
Fisher skewness and kurtosis errors are combined with the
included 118,191 SDO/AIA 171Å pixels and 105,040 SDO/
AIA 94Å pixels, these errors drop to ±0.0005 and ±0.0010
(171Å) and ±0.0005 and ±0.0011 (94Å), respectively. As
one would expect from the work of Kendall & van Lieshout
(1998) and Tabachnick & Fidell (2006), the standard errors
associated with the measurement of kurtosis are larger than
those related to the Fisher skewness. The distributions depicted
in the lower panels of Figures 1 and2 clearly deviate from
those of standardized Gaussians in terms of width, position,
and shape and thus provide ideal test beds to compare with the
statistical fluctuations intrinsic to Monte Carlo nanoflare
simulations.

3. Monte Carlo Simulations

In this section, we present a time-series synthesis code that
employs a traditional power-law distribution to govern the
energetics and occurrences of time-series signatures associated
with nanoflares.6 The use of well-documented flare energy
values naturally requires the implementation of a conversion

mechanism to directly relate (nano)flare energetics to physical
light-curve intensity fluctuations. However, in order to
maximize the usefulness of the Monte Carlo code to data sets
obtained from a vast assortment of ground- and space-based
instruments, the code does not rely on the error-prone
stipulation of crucial atmospheric (e.g., wavelength-dependent
transmission profiles) and instrumental (e.g., telescope through-
put, detector quantum efficiencies, etc.) profiles that directly
affect the calibration process. Instead, as described in detail in
the Appendix, the user can estimate the (nano)flare energy
corresponding to the noise threshold of the chosen instrument,
which will then be used to calibrate the resulting synthesized
time series. Hence, the light curves output by the code will
already be in data number (DN) units, often equally labeled as
“counts,” which are synonymous with the data products found
in flagship observatories such as SDO. Such DN values are
applicable not just to space-based observatories but also to
leading ground-based imaging and spectroscopic science data
products, such as those from the Dunn Solar Telescope (e.g.,
Cavallini 2006; Jaeggli et al. 2010; Jess et al. 2010b, 2012) and
the Swedish Solar Telescope (e.g., Scharmer et al. 2008).

3.1. Input Parameters Selected for the Current Study

In order to ensure the synthetic time series produced by the
Monte Carlo code are representative of and comparable with
the SDO/AIA active region core, the time-averaged 171 and
94Å snapshots (upper left panels of Figures 1 and 2) formed
the base science input images. For each simulation run, the

Figure 3. Collection of synthetic distributions detailing the shapes associated with leptokurtic (red; upper left), platykurtic (green; upper right), positively skewed
(blue; lower left), and negatively skewed (orange; lower right) histograms. Each distribution is plotted as a function of the standard deviation but labeled as σN to
remain consistent with the nomenclature used in the lower panels of Figures 1and2. The leptokurtic and platykurtic distributions are plotted relative to a standardized
Gaussian (dashed black line) to better show the changes to occurrences these distributions induce, while the skewed and Gaussian distributions (lower panels) are each
normalized by their own maximum occurrence for clarity. The pink arrows highlight the full widths associated with each distribution at half- and eighth-maxima,
while the red arrows reveal how the ζ (FW M1

8
-to-FWHM ratio) term is calculated, which equals 1.73 in the case of a standardized Gaussian.

6 A copy of the code can be obtained directly from D. B. Jess (d.jess@qub.ac.
uk) or by visiting http://star.pst.qub.ac.uk/~dbj.
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base 171 or 94Å science image defines the background count
rates for each synthesized pixel, ensuring that the reconstructed
intensity fluctuation histograms from the Monte Carlo simula-
tions are consistent with those generated directly from the
SDO/AIA time series (see the Appendix for more in-depth
information). Furthermore, instead of assuming that the noise
fluctuations embedded within the SDO/AIA light curves are
purely photon-based, we generated dedicated noise estimates
following the methods detailed by Kirk & Young
(2014a, 2014b), which are visible in the upper right panels of
Figures 1 and 2 and discussed in detail below.

3.1.1. SDO/AIA Noise Modeling

Many techniques exist for estimating and removing
noise from images. First, the point-spread functions (PSFs) of
the SDO/AIA imaging channels were generated following
the methods detailed by Poduval et al. (2013), which are
commonly available within standard SSWIDL preparation
routines. Once generated, the PSFs were deconvolved from
the corresponding images using the standard and well-
documented Richardson–Lucy algorithm (Richardson 1972;
Lucy 1974). Such deconvolution assists with the removal of
fringes that are caused by bright active regions but also has the
effect of modifying the fundamental statistical distribution of
the residual noise. To account for this, we assume a model for
calibration errors, instrumental resolution effects, and compres-
sion artifacts as a combination of Gaussian and Poisson
distributions. This is a reasonable assumption for the imaging
detectors utilized by SDO/AIA, including the use of Rice
compression that is often applied when transmitting the data
(Pence et al. 2009).

Denoising images affected by Poisson noise is commonly
performed by first applying a variance-stabilizing transforma-
tion (VST) to standardize the image noise, then denoising the
image using an additive white Gaussian noise filter before
returning the image to its original range via an inverse
transformation (e.g., Azzari & Foi 2016). In this work, we used
the same procedures. However, in the case of images with
Poisson–Gaussian noise, such as with SDO/AIA (González
et al. 2016), the generalized Anscombe transformation was
used for stabilizing the noise variance (Starck et al. 1998;
Makitalo & Foi 2013). This transformation generalizes the
classical VST (i.e., the Anscombe transformation), which was
designed for a purely Poisson noise mixture (Anscombe 1948).

For SDO/AIA images, the high resolution and large number
of pixels per image provides an advantage over other solar-
imaging platforms. We exploited the large field of view of our
full-disk SDO/AIA time series to estimate the remaining noise
through the application of a nonlocal estimation technique.
Termed “block-matching,” the noise present in a small region
of an image is estimated from other locations that are found to
be statistically similar to the region of interest (Buades et al.
2005). Block-matching methods of denoising, unlike trans-
form-based ones such as wavelet denoising, introduce very few
artifacts in the resulting estimates. We employed the BM3D
(Dabov et al. 2006) block-matching algorithm because of its
high prevalence and good characterization abilities in signal-
processing communities. Preliminary tests (see, e.g., Kirk &
Young 2014a, 2014b) found BM3D to be stable over a large
range of intensities, which is important for examining the active
region in the present study. Hence, we employed BM3D, an
iterative block-matching routine with hard noise cutoff

thresholds of the image in the sparse domain, to estimate the
remaining noise in the SDO/AIA time series.
Importantly, it must be noted that the spatial structuring

present in the derived noise images maps very closely to the
corresponding time-averaged 171 or 94Å snapshots, verifying
that the Poisson statistics associated with shot-noise distribu-
tions remains consistent with photon noise being a dominant
source of error in SDO/AIA intensity measurements (see also
DeForest 2017).

3.1.2. Additional Model Parameter Definitions

For the synthesis of subsequent SDO/AIA 171 and 94Å
time series, we employed a cadence of 12 s, and due to the
SDO/AIA pixel size of 0 6×0 6, we set the surface area per
synthetic pixel equal to 1.89225×1015 cm2 to accurately
reflect the SDO/AIA plate scale. In order to cover the vast
assortment of suggested power-law indices, a grid of 51 indices
spanning 1.5�α�2.5 (in intervals of 0.02) was submitted as
input. Similarly, to cover e-folding times spanning both
chromospheric (e.g., ∼51 s; Jess et al. 2014) and coronal
(e.g., ∼360–1000 s; Terzo et al. 2011; Marsh et al. 2018)
values, we chose a grid of decay timescales, τ, equal to [10, 20,
30, 40, K, 1000] s. A wide range of e-folding times has been
chosen to span the entire spectrum reported in the literature,
which includes values from as short as ∼50 s (Simões et al.
2015) to long-duration (∼1000 s) decay times linked to low-
frequency nanoflare models (Marsh et al. 2018). Importantly,
Christe et al. (2008) showed that decay timescales are not
always constant between successive flaring events. As such, the
e-folding time, τ, for each modeled impulsive event is allowed
to vary randomly (yet following a normal distribution centered
on the relevant mean) by ±10%, which allows for some
fluctuation in the specific decay times as a result of varying
quiescent plasma parameters. The physics of a cooling plasma
will not necessarily follow an exponential decay, but a confined
spread (i.e., ±10%) of decay times will help cover small-scale
permutations in the mechanisms that govern the rates of
evaporative, nonevaporative, conductive, and radiative cooling
processes (Antiochos & Sturrock 1978). Since we are primarily
concerned with intensity fluctuations arising as a result of
small-scale (nano)flare events, we restricted the range of
energies simulated to 1022erg �E�1025 erg, where the
resulting frequency distribution (for a power-law index of
α=2.24) can be viewed in the upper left panel of Figure 4.
Finally, the flare energy corresponding to an average 1σN
intensity fluctuation was set as 5×1024 erg, meaning that flare
energies in the range of 5×1024erg <E�1025 erg will
exhibit intensity fluctuations greater than 1σN, while all other
flaring energies will be represented by intensity fluctuations
that are contained within the standardized noise envelope.
Following the analysis of López Fuentes & Klimchuk (2016),

background intensities spanning a range of 120–5700DN,
which is synonymous with the present SDO/AIA active region
core observations (see, e.g., upper left panels of Figures 1 and 2),
may be expected to have standard deviations of approximately
10–1140DN, which is consistent with the maps displayed in
the lower left panels of Figures 1 and 2. Price et al. (2015)
showed that nanoflare energies∼2×1024 erg may demonstrate,
when passed through appropriate forward-modeling software
(e.g., Bradshaw & Klimchuk 2011), SDO/AIA 171Å intensity
fluctuations on the order of 300–600DN, which is in the
middle-to-lower end of the standard deviation range derived
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following the work of López Fuentes & Klimchuk (2016).
Therefore, the (nano)flare energy corresponding to the full
magnitude of a time-series standard deviation (i.e., 1σN) is likely
to be higher than the ∼2×1024 erg modeled by Price et al.
(2015). Hence, we have adopted a (nano)flare energy of
5×1024 erg that corresponds to an average 1σN intensity

fluctuation in the SDO/AIA 171Å synthetic time series, which
is consistent with the minimum thermal energy (∼7×1024 erg)
predicted by Aschwanden & Shimizu (2013) to provide
measurable nanoflare signatures. However, neither Price et al.
(2015) nor López Fuentes & Klimchuk (2016) investigated the
SDO/AIA 94Å channel. Therefore, for consistency, we adopt

Figure 4. Flare energy frequency distribution following a power-law index α=2.24 (upper left), where the occurrence of flaring events (in units of
10−50 erg−1 cm−2 s−1) is displayed as a function of the flare energy (in units of erg) using a log–log scale. The upper right panel depicts the derived relationship
between the nanoflare energy and the resulting simulated intensity amplitude (solid black line), which is given by DN ∝ E4/3 (see Equation (12)) and subsequently
normalized to the background noise level, σN, for a nanoflare energy equal to 5×1024 erg. A solid red line is drawn for comparison that indicates a linear (1:1)
relationship between nanoflare energies and the corresponding intensity fluctuations, which overestimate and underestimate the true intensity perturbations at lower
and higher nanoflare energies, respectively. The dashed black line highlights the background noise normalization process, whereby a 1σN intensity fluctuation equates
to a 5×1024 erg nanoflare. The lower four panels display the median offsets, FW M1

8
-to-FWHM (i.e., ζ) ratios, Fisher skewness, and kurtosis characteristics as a

function of the nanoflare e-folding time, τ, and the power-law index, α, used to generate the synthetic time series (see, e.g., Table 1).
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the same 1σN=5×1024 erg condition for the generation of
synthetic SDO/AIA 94Å time series. All input parameters
employed for the current study are listed in Table 1.

3.2. Nanoflare Energy and SDO/AIA Intensity Scaling

An important aspect to consider is how the SDO/AIA
observables (i.e., the pixel count rates) scale with the
magnitude of a flaring event. Due to the fact that nanoflares
are small-scale (in terms of their relative individual total
energies) and presently unresolvable by current imaging
instruments, there is no direct evidence available to say
whether they extend beyond the ∼190,000 km2 spatial scales
captured by an SDO/AIA pixel. Furthermore, since the power-
law index governs the number of flaring events per SDO/AIA
pixel (i.e., dN/dE), any leakage of nanoflare emission between
pixels would need to be negated by a reduction in flux from a
neighboring region in order to satisfy a particular global power-
law index, α. Thus, as a first-order approximation, we assume
that a single nanoflare event occurs in a magnetic strand that is
one SDO/AIA pixel wide. In these more simplistic terms, the
total energy provided by a nanoflare contributes directly to
intensity fluctuations captured by the SDO/AIA detectors.
However, determining how different nanoflare energetics
contribute to measurable intensity fluctuations requires a more
in-depth examination of the inherent flaring plasma
relationships.

Although loop scaling laws (Rosner et al. 1978a) were
derived for loops at equilibrium between energy input and
losses by radiation and conduction, Reale (2007) showed that
the equilibrium temperature is reached soon after the heating
pulse commences, and that cooling starts immediately once the
heating pulse finishes. According to the scaling laws, the

maximum loop temperature, T, is defined by

T a pL , 21 3= ( ) ( )

where a is a constant, p is the pressure, and L is the loop half-
length. The heating rate per unit volume, H, is given by

H bp L b
p

L
, 37 6 5 6= ~- ( )

where b is a constant. Combining Equations (2) and (3), it is
possible to further simplify to

H c
T

L
, 4

3

2
= ( )

where c is a constant. The accumulated SDO/AIA detector
counts (DN) per pixel can be given by

Gn zDN , 52= D ( )

where n is the plasma density, Δz is the thickness of the
emitting plasma along the line of sight, and G is the SDO/AIA
channel sensitivity per unit emission measure (similar to, e.g.,
Raftery et al. 2009). Here we assume that the SDO/AIA
channels detect the cooling plasma predominantly at the
temperatures where they demonstrate maximum sensitivity.
Therefore, for the purpose of scaling, we assume for G its
maximum value. From the equation of state,

p nk T2 , 6B= ( )

where kB is the Boltzmann constant, under the assumption that
the maximum loop density is not far from that at equilibrium
(Reale 2007), it is possible to combine this with Equation (2) to

Table 1
Input Parameters Selected for the Monte Carlo Simulation Runs Discussed in Section3

Input SDO/AIA SDO/AIA
Variable 171 Å 94 Å

Background intensity (DN) Time-averaged SDO/AIA 171 Å image Time-averaged SDO/AIA 94 Å image
(upper left panel of Figure 1) (upper left panel of Figure 2)

Standard deviation of the noise (σN) Gaussian–Poisson noise estimationa,b Gaussian–Poisson noise estimationa,b

(upper right panel of Figure 1) (upper right panel of Figure 2)

Dimensions of the simulated data set (pixels) [350, 350, 750] [350, 350, 750]
(original SDO/AIA 171 Å data cube size) (original SDO/AIA 94 Å data cube size)

Flare energy power-law indices (α) 1.5�α�2.5 1.5�α�2.5
(steps of 0.02) (steps of 0.02)

Nanoflare e-folding times (s) 10�τ�1000 10�τ�1000
(steps of 10) (steps of 10)

Minimum simulated energy (erg) 1022 1022

Maximum simulated energy (erg) 1025 1025

1σN flare energy (erg) 5×1024 5×1024

Surface area per pixel (cm2) 1.89225×1015 1.89225×1015

Notes.
a Kirk & Young (2014a).
b Kirk & Young (2014b).
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obtain

n d
T

L
, 72

4

2
= ( )

where d is a constant (Reale 2007). Combining with
Equation (4), we obtain

T fH L 84 4 3 4 3= ( )/ /

and

n g
H

L
, 92

4 3

2 3
= ( )

where f and g are constants. Therefore, if we assume that the
density decreases much more slowly than the temperature
(Reale 2007), then DN, measured by an SDO/AIA detector
when the cooling plasma crosses its temperature sensitivity, can
be written as

h
H

L
zDN , 10

4 3

2 3
= D ( )

where, again, H is the heating rate per unit volume, L is the
loop half-length, Δz is the thickness of the emitting plasma
along the line of sight, and h is a constant. Classically, the
injected nanoflare energy, E, can be written as

E H t V , 11= D D ( )

where Δt and ΔV are the duration and encompassing volume,
respectively, of the nanoflare heating pulse. Bowen et al.
(2013) showed that the total radiated energy of a flaring event
is proportional to the radiation produced during the rise phase
alone. As such, the impulsive rise of the flare is the most crucial
component when determining the relationship between flare
energy and the resulting intensity fluctuation. In addition, Reale
et al. (2005) demonstrated through one-dimensional hydro-
dynamic modeling that nanoflare heating can provide temper-
ature enhancements on the order of 1–1.5 MK, which is well
within the response functions of the SDO/AIA channels
(Boerner et al. 2012). Furthermore, storms of nanoflares with
relatively small ranges of energies and durations have been
shown to accurately reproduce single-pixel loop light curves in
the SDO/AIA imaging bands (Tajfirouze et al. 2016b). We
therefore do not expect the volume, ΔV (in which the energy is
produced), to change much from one event to another. Thus,
for our estimates, we can assume that the length of the strands,
L, and the thickness of the emitting plasma along the line of
sight, Δz, also remain relatively constant within the same
active region.

To a first-order approximation, this provides a relationship
between the peak detector counts, DN, and the energy, E, of the
injected nanoflare events equal to

EDN . 124 3µ ( )

Hence, doubling the nanoflare energy will result in ≈2.5 times
the peak intensity fluctuation captured by the SDO/AIA
imaging detectors. For example, a baseline 5×1024 erg
nanoflare will correspond to an intensity fluctuation of 1σN
(see the definition in Table 1), while a nanoflare of energy
1×1025 erg will provide an intensity perturbation equal to
≈2.5σN. The relationship between the injected nanoflare

energies and the resulting peak intensity fluctuations is
documented in the upper right panel of Figure 4, which is
used in the Monte Carlo software to convert the randomized
power-law nanoflare energies into modeled intensity
perturbations.
It must be noted that the presented energy/intensity scaling

law is for a plasma that is pulse-heated; i.e., the plasma gets
heated rapidly (instantaneously, in the case of our Monte Carlo
simulations) to its maximum temperature and is then allowed to
cool. Thus, each SDO/AIA channel captures the plasma during
the cooling phase, which occurs as soon as it crosses the
(relatively narrow) temperature range that it is sensitive to. This
is especially true for the 171Å channel but also for the hot
peak of the 94Å channel if the heat pulse is sufficiently strong.
In this scenario, the plasma density is assumed not to change
much during the fast plasma cooling phase and is the important
parameter when determining the corresponding SDO/AIA
emission when the plasma becomes visible in the selected
channel (i.e., intensity is proportional to the square of the
density in an optically thin plasma). This density is, in turn,
determined exclusively by the magnitude of the heat pulse (see,
e.g., the discussion in Cargill et al. 2015).

3.3. Simulation Outputs

Only two graphical axes are required to visualize the
statistical parameter space provided by the Monte Carlo
simulation outputs, corresponding to the power-law index
and the e-folding timescale. This is due to the power-law index
containing information related to both the energy-based
intensity fluctuations and the frequency-based occurrence
distributions. As a result, it is straightforward to display the
statistical relationships arising from the interplay between the
power-law indices and the decay timescales. The lower panels
of Figure 4 depict the statistical outputs of the Monte Carlo
simulations as a function of the nanoflare e-folding timescale,
τ, and the power-law index. The variations in the parameters
are quite remarkable, with significant trends visible in the
median offset, FW M1

8
-to-FWHM ratio (here defined as “ζ” for

simplicity), Fisher skewness, and kurtosis plots.
As documented by both Terzo et al. (2011) and Jess et al.

(2014), the median offset increases to larger negative values
with increasing fractions of higher-energy nanoflares (i.e.,
smaller power-law indices). A more energetic nanoflare
provides a larger-intensity amplitude, which results directly in
a rise in the mean intensity of the light curve. However, the
relatively rapid exponential decreases in the light-curve
intensities increases the separation between the statistical mean
and median, hence increasing the magnitude of the median
offset. It must also be noted that under no circumstances does
the median offset become positive (middle left panel of
Figure 4), an indication that all possible permutations
demonstrate some aspect of impulsiveness followed by rapid
(i.e., exponential) decay. Such a light-curve shape is consistent
with previous flare observations (e.g., Qiu et al. 2012),
including those close to the nanoflare energy regime (e.g.,
Terzo et al. 2011), and therefore reiterates the usefulness of the
statistical median offset as a proxy for asymmetric behavior
trapped within the background noise. From Figure 4, it is clear
that time series less heavily dominated by small-scale
energetics (i.e., lower power-law indices resulting in less
low-energy nanoflares) display more significant median offsets.
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This is due to the larger flare energy inputs being more isolated
within the synthetic light curves, resulting in their associated
intensity fluctuations becoming more pronounced in the
subsequent statistical distributions, hence inducing a larger
negative median offset. Due to the rapid changes in the median
offset around a power-law index ∼2, this statistical parameter
is a significant marker for determining the prevalence of small-
energy nanoflares in observational time series.

The ζ ratio map displayed in the middle right panel of
Figure 4 reveals a bifurcated trend as both the nanoflare
e-folding time and power-law index are increased. A
standardized Gaussian distribution has a natural ratio of ζ=
1.73, so from the middle right panel of Figure 4, it is clear that
both narrower (i.e., ζ<1.73) and wider (i.e., ζ>1.73) widths
are present, depending on the values of the input parameters. In
general, increases in the nanoflare decay timescales result
in broader tails of the corresponding intensity fluctuation
histograms (i.e., ζ>1.73). Such increased widths are a direct
consequence of the injected nanoflare amplitudes being
coupled with larger decay timescales, which allows the
inclusion of significantly high positive σN intensity fluctuations
in the resulting statistical distributions, thus providing high
values of the ζ ratio. The bifurcated signal displayed in the
middle right panel of Figure 4 shows reduced distribution tail
widths in the presence of increasing nanoflare decay timescales
and large power-law indices. Now rapidly injected impulsive
events (i.e., corresponding to large power-law indices) provide
the superposition of new nanoflare signals existing on top of
previously decaying signatures. This reduces the contributions
from large σN intensity fluctuations (both negative and
positive), which causes the tails of the statistical distributions
to be pulled inward, thus making them appear narrower than a
standardized Gaussian (i.e., ζ<1.73). Of course, very rapid e-
folding timescales negate this effect, since the rapid disap-
pearance of previously injected nanoflares alleviates the
continued superposition between new and existing nanoflare
signals; hence, the ζ ratio at locations of low e-folding times
and larger power-law indices returns to standardized values.

The Fisher skewness of the intensity fluctuation distributions
is increased as a result of progressively smaller power-law
indices (lower left panel of Figure 4). Since a reduction in the
power-law index promotes more isolated nanoflare signals, this
will result in larger measurable σN intensity fluctuations, hence
providing elevated (and therefore skewed) tails in the statistical
distributions. Measurements of the kurtosis remain positive
across all e-folding timescales and power-law indices, as
demonstrated in the lower right panel of Figure 4. Here the
leptokurtic (i.e., narrow) nature of the intensity fluctuation
distributions, corresponding to small power-law indices, can
easily be related to the prevalence of small-scale fluctuations
resulting from the ubiquity of the lower-energy (and therefore
lower-σN) intensity perturbations. For diminishing power-law
indices, these small-scale σN fluctuations begin to dominate the
resulting intensity fluctuation distributions, hence becoming
statistically leptokurtic and promoting positive values of
kurtosis. Importantly, the Fisher skewness and kurtosis values
displayed in the lower panels of Figure 4 demonstrate their
importance as a diagnostic tool, especially since they document
significant statistical changes as the power-law index
approaches a value of 2.

The ultimate goal is to be able to identify key nanoflare
characteristics in real observational data by comparing their

statistical distributions with those of synthesized (and well-
defined) nanoflare activity. In essence, the median offset, ζ
ratio, Fisher skewness, and kurtosis values measured from
observations could be used to pinpoint the specific power-law
index, α, and nanoflare e-folding time, τ, parameters that
correspond to identical simulated signatures. Previously, Terzo
et al. (2011) and Jess et al. (2014) utilized a negative median
offset as the sole determining parameter in the estimation of
observational nanoflare characteristics. However, from the
examination of Figure 4, it becomes clear that a level of
ambiguity arises as a result of the same median offset value
being produced from a range of different nanoflare attributes.
Thus, employing not just one but four (median offset, ζ ratio,
Fisher skewness, and kurtosis) independently measured
statistical signatures will help reduce this ambiguity, since all
four parameters must intersect their corresponding parameter
space at the same α and τ values to remain self-consistent with
one another. This benefit is further maximized by the fact that
each statistical signature displays parameter maps (e.g.,
Figure 4) that do not follow identical shapes or trends as their
other statistical counterparts.

3.4. Comparing the Monte Carlo Statistical Parameter Space
with SDO/AIA Data

The median offset, ζ ratio, Fisher skewness, and kurtosis
coefficients established in Section2 for the SDO/AIA 171Å
observations, including the fitting errors stipulated in the lower
panel of Figure 1, are used as contour thresholds on each of the
parameter-space windows displayed in the bottom four panels
of Figure 4. The extracted contours relating to the median
offset (blue), ζ ratio (green), Fisher skewness (red), and
kurtosis (pink) are plotted in the lower panel of Figure 5, with
yellow contours depicting the regions where all four statistical
parameters overlap. It can be seen from the lower panel of
Figure 5 that the number of matches for the median offset (blue
contours; 167 values) is fewest, while the number of matches
related to the ζ ratio (green contours; 339 values) is largest.
This is a consequence of the errors associated with each
statistical parameter, hinting that future studies, which employ
even more significant number statistics, will be able to reduce
the number of matching and overlapping parameter values
extracted from the lower panels of Figure 4. Here there are nine
independent overlapping matches, which suggests that for these
specific synthetic input parameters, the power law–based
Monte Carlo simulations accurately depict the statistical
processes occurring within the SDO/AIA171Å time series.
All viable input parameters are within the ranges of 1.88�
α�1.90 and 354 s�τ�410 s (see Table 2 and the yellow
contours in the lower panel of Figure 5), with average values of

1.89 0.01171a = ¯ and 385 26171t = ¯ s. The typical nano-
flare decay timescale of 385 26171t = ¯ s is very similar to
that put forward by Terzo et al. (2011), even though their
approach did not hinge upon the use of power law–based
synthetic models.
A sample detrended and normalized SDO/AIA171Å light

curve is displayed in the upper panel of Figure 5. A synthetic
power law–based light curve, generated using a nanoflare
e-folding timescale τ=380 s±10% and a power-law index
α=1.88, is displayed in the middle panel of Figure 5. Both
time series are remarkably similar to one another, highlighting
that (I) an average 1σN intensity fluctuation likely corresponds
to a nanoflare energy of ∼5×1024 erg, (II) the noise
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distribution is accurately modeled by Poisson-based terms, and
(III) the detrending and normalization approaches applied to
both real and synthetic light curves (see Equation (1)) are able
to produce visually similar time series that can be directly
compared in statistically significant ways.
Similarly, the median offset, ζ ratio, Fisher skewness, and

kurtosis coefficients established in Section2 for the SDO/AIA
94Å observations were also investigated by contouring their
respective values on each of the parameter-space windows
displayed in the bottom four panels of Figure 4. In an identical
way to the bottom panel of Figure 5, the extracted contours
relating to the median offset (blue), ζ ratio (green), Fisher
skewness (red), and kurtosis (pink) are plotted in Figure 6, with
yellow contours depicting the regions where all four statistical
parameters overlap. From inspection of Figure 6 and Table 3,
the input parameters for the Monte Carlo simulations providing
viable overlapping values are within the ranges of 1.82�α�
1.86 and 240 s�τ�290 s (see the yellow contours in the
lower panel of Figure 6), with average values of 94a =¯
1.85 0.02 and 262 1794t = ¯ s.

4. Discussion

Following a comparison between the statistics linked to the
intensity fluctuations of the SDO/AIA channels and those
generated via our Monte Carlo nanoflare models, we find that
the power-law index and e-folding timescale are both smaller
for the 94Å channel when compared to the 171Å filter

Figure 5. Time series extracted from the SDO/AIA171 Å data set (top), contrasted with a synthetic power law–based Monte Carlo light curve for a power-law index
of α=1.88, coupled with a decay timescale of τ=380 s± 10% (middle). Both time series are normalized to the standard deviation of their respective noise (σN).
The lower panel contours are the matching statistical parameters obtained from the Monte Carlo simulations when compared to the SDO/AIA171 Å observational
distributions, with the decay timescale range cropped between 0 and 500 s for clarity. The blue, green, red, and pink contours representing the median offset, ζ ratio,
Fisher skewness, and kurtosis matches, respectively. Yellow contours indicate locations where the Monte Carlo outputs provide overlap of all possible statistical
parameters.

Table 2
Statistical Parameters Extracted from the SDO/AIA171 Å Time Series That
Intersect with the Contour Curves Provided by the Power Law–based Monte

Carlo Simulations Depicted in the Lower Panel of Figure 5

Output Estimated Power-law Estimated
Matches Index (α) τ (s)

1 1.88 340
2 1.88 350
3 1.88 360
4 1.88 370
5 1.88 380
6 1.88 390
7 1.88 400
8 1.88 410
9 1.88 420
10 1.88 430
11 1.90 360
12 1.90 370
13 1.90 380
14 1.90 390
15 1.90 400
16 1.90 410

Average value 1.89 385
Standard deviation 0.01 26

Note.Here the power-law indices and e-folding timescales are most
representative of the statistical parameter space deduced from the SDO/
AIA171 Å observations.
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( 1.85 0.02;94a = ¯ 262 1794t = ¯ s versus 1.89171a = ¯
0.01; 385 26171t = ¯ s). In terms of the smaller e-folding time
associated with the SDO/AIA 94Å channel, this may be a
natural consequence of the hotter plasma temperatures sampled
by this imaging filter. Reduced decay timescales for hotter
channels have been demonstrated previously for observations
and models of large-scale flaring events (e.g., Petkaki et al.
2012; Qiu et al. 2013; Cadavid et al. 2014). Indeed, Simões
et al. (2015) found short e-folding timescales on the order of
50s for very hot (∼13MK) postflare plasma. This may be a
consequence of more significant thermal conduction at greater
temperatures above the coronal background (Battaglia et al.
2009), particularly in the presence of weaker flares (Warmuth
& Mann 2016), up to the point of saturation (Simões et al.
2015). However, on the other hand, McTiernan et al. (1993),
Jiang et al. (2006), Li et al. (2012), and Wang et al. (2015)
showed evidence for the suppression of thermal conduction in
the vicinity of large-scale flares. As a result, if thermal
conduction has the ability to be suppressed at small (nanoflare)
energies, then radiative and/or collisional cooling may play an
important role. Utilizing EUV observations obtained with the
TRACE satellite, Aschwanden et al. (2000) provided evidence
that the geometric and physical properties of EUV nanoflares
represent miniature versions of larger-scale flare processes.

This has important implications, especially since Aschwanden
et al. (2000) suggested that nanoflares can be characterized by
much smaller spatial scales and rapid heating phases, some-
thing that agrees with our modeling hypotheses put forward in
Section3.2. However, Aschwanden et al. (2000) also high-
lighted that while the observed cooling times are compatible
with theoretically calculated radiative cooling timescales, the
theoretically calculated conductive cooling times are signifi-
cantly shorter, thus requiring either high-frequency heating
cycles (e.g., similar to that documented by Warren et al. 2011)
or reduced temperature gradients between the flaring loop tops
and their corresponding footpoints. Nevertheless, our results
clearly indicate that, at least for nanoflares, the decay
timescales for plasma sampled in cooler SDO/AIA imaging
bands are smaller than those found in the hotter channels.
Theoretical work is still required to address the specific roles of
conductive and radiative cooling in postflare plasma (e.g.,
Cargill et al. 1995; Dai & Ding 2018), particularly in a regime
dominated by small-scale nanoflare events.
An important outcome of this work is the fact that a smaller

power-law index of 1.85 0.0294a = ¯ is estimated for the
SDO/AIA 94Å time series when compared to 1.89171a = ¯
0.01 for the cospatial and cotemporal 171Å observations. This
effect may be related to the fraction of nanoflare events able to
provide sufficient emission in the hotter SDO/AIA 94Å
channel. If the weakest nanoflare events (e.g., those closest to
the lower energy limit of 1022 erg) do not provide either
sufficient thermalization of the plasma or a large enough filling
factor of the corresponding SDO/AIA pixel to manifest as
detectable signal in the SDO/AIA 94Å channel, then these
low-energy events will be absent from the statistical parameters
extracted from the observational time series. As a result, the
estimated power-law index will be shifted to lower values,
simply as a result of the hotter SDO/AIA 94Å channel not
adequately capturing the signal from the weakest of nanoflare
events. This effect will become even more prevalent for regions
that demonstrate an elevated excess of low-energy nanoflare
events, e.g., α2.
The range of compatible power-law indices for both the

SDO/AIA 171 and 94Å channels is concentrated within the
range of 1.82�α�1.90. This is consistent with Aschwanden
et al. (2015), who employed differential emission measure
techniques on SDO/AIA observations to deduce multithermal
energies that are consistent with RTV scaling laws (Rosner
et al. 1978b). This suggests that, for this particular active
region, nanoflares may not provide the dominant source of
thermal energy in the corona, a natural consequence of α<2
(Parker 1988; Hudson 1991). However, the active region
studied for the present analysis is a decaying sunspot group,
where the free magnetic energy responsible for reconnection
phenomena may be substantially diminished. As a result, other
heating processes (such as wave heating) may be responsible
for the elevated temperatures found in the immediate vicinity of
active region NOAA11366.
Interestingly, the average power-law index found here is

larger than that presented by Berghmans et al. (1998;
α≈1.35), who employed EUV observations from the Solar
and Heliospheric Observatory (SOHO; Domingo et al. 1995)
to examine the occurrence rates and radiative losses of flares
down to ∼1024erg. The work of Berghmans et al. (1998) was
in close agreement with the power-law index found by Shimizu
(1995; α∼1.5), who employed X-ray observations of

Figure 6. Graphical representation identical to the lower panel of Figure 5,
whereby the matching median offset, ζ ratio, Fisher skewness, and kurtosis
statistical parameters obtained from a comparison between the Monte Carlo
simulations and the SDO/AIA94 Å observational distributions are shown in
blue, green, red, and pink contours, respectively. As per the lower panel of
Figure 5, yellow contours indicate locations where the Monte Carlo outputs
provide overlap of all possible statistical parameters.

Table 3
Same as Table 2 but for the Most Representative Statistical Parameters

Extracted from the SDO/AIA94 Å Time Series

Output Estimated Power-law Estimated
Matches Index (α) τ (s)

1 1.82 240
2 1.84 240
3 1.84 250
4 1.84 260
5 1.84 270
6 1.86 260
7 1.86 270
8 1.86 280
9 1.86 290

Average value 1.85 262
Standard deviation 0.02 17

14

The Astrophysical Journal, 871:133 (21pp), 2019 February 1 Jess et al.



transient coronal brightenings from Yohkoh (Ogawara et al.
1991) to examine reconnection events in the range of
1025–1029 erg. Importantly, the work documented here, along-
side the findings of Berghmans et al. (1998) and Shimizu
(1995), provides evidence that small-scale (1022–1029 erg)
flaring events may not be the dominant source of thermalization
in the solar corona. On the other hand, work by Krucker &
Benz (1998; α≈2.59), Parnell & Jupp (2000; α≈2.52), Benz
& Krucker (2002; α≈2.31), and Winebarger et al. (2002;
α≈2.9) provides observational evidence to the contrary,
whereby the derived power-law indices suggest dominant
heating by small-scale nanoflare activity. Of particular note is
the work by Krucker & Benz (1998), who examined emission
measure fluctuations corresponding to small-scale reconnection
events in the range of 8.0×1024–1.6×1026 erg that were
captured by the EUV imager on board SOHO. The authors
found that at least 85% of the pixels within the field of view
demonstrated significant fluctuations in their corresponding
emission measures, which provided an estimated power-law
index in the range of 2.3<α<2.6. With this power-law index
in mind, Krucker & Benz (1998) estimated that at least 28,000
reconnection events would need to take place across the whole
Sun each second (down to an energy of 3×1023 erg) in order
to balance the known radiative losses. Such widespread
coverage of pixels demonstrating statistical fluctuations (i.e.,
the 85% put forward by Krucker & Benz 1998) is consistent
with our global picture of NOAA11366, whereby the
fluctuation histograms depicted in Figures 1 and 2 correspond
to ∼97% and ∼86% of the field of view for the SDO/AIA
171 and 94Å channels, respectively.

Of course, these seemingly contradictory results (i.e., those
documenting α<2 and those identifying α>2) are asso-
ciated with a wide range of different active regions, sunspot
types, parts of the solar cycle, wavelengths, resolutions, etc.,
which makes each measurement of the power-law index
unique. As such, the observational evidence presented to date
suggests that the local plasma conditions dictate whether
nanoflare activity plays a dominant role in supplying thermal
energy to maintain the multimillion-degree coronal conditions.
Establishing whether a global preference exists will require
more statistical analyses across a number of solar cycles.

Moving away from observational studies, there has also been
a plethora of theoretical work undertaken to estimate the
power-law index associated with flaring events. Recently,
Mullan & Paudel (2018) created a model whereby convective
flows in granules force randomized motions to be generated at
the footpoints of coronal loops, which produces twist in the
magnetic fields, hence driving flaring events. The model of
Mullan & Paudel (2018) indicates an energy-dependent power-
law index, whereby larger flares demonstrate shallower indices
(E∼T1.0, where T is the time interval between events) when
compared to smaller-energy events (E∼T1.5). This change in
the power-law index as a function of flare energy has been
witnessed in observations by a number of authors (see, e.g., the
review by Aschwanden et al. 2016a). Employing a multi-
threaded hydrodynamic simulation, Reep et al. (2018) forward-
modeled the flare emission typically observed in the SiIV and
FeXXI spectral lines. A power-law index of α=1.5 (similar to
that employed in the Monte Carlo models of Wheatland 2009)
provided good agreement between the modeled Doppler shifts
and event durations when compared to those observed for the
M-class flares captured by the Interface Region Imaging

Spectrograph (IRIS; De Pontieu et al. 2014) spacecraft on 2015
March 12. Recently, Allred et al. (2018) employed one-
dimensional hydrodynamic models alongside a three-dimensional
reconstruction of an active region magnetic field to examine how
coronal temperatures and densities respond to nanoflare heating.
The authors found that an energy power-law index of α=2.4
was required to bring modeled emission in line with EUV
spectroscopic observations. Hence, the range of power-law
indices provided by modern theoretical work spans the values
estimated in our present analysis. As such, more numerical (and
statistical) modeling of nanoflare activity is required to see
whether the diverse power-law indices currently predicted
converge to more definitive values.
Additionally, our average power-law indices are slightly

lower than those found for active stars in the range of
α∼2.2–2.3 (Audard et al. 1999; Kashyap et al. 2002). For
stellar cases, Arzner & Güdel (2004) undertook an analytic
approach to determine the amplitude distribution of flares that
are commonly visible in the light curves from active stars.
Comparing the computed histograms of counts and photon
waiting times to real stellar flare distributions, Arzner & Güdel
(2004) found the best agreement with a relatively steep power-
law index of α∼2.3, implying that small-scale reconnection
events are important for the heating of stellar atmospheres.

5. Future Directions

The Monte Carlo methods presented here are suitable for
modeling all atmospheric layers of the Sun. As a result, the work
will naturally be applicable to ground-based observations of the
upper photosphere and chromosphere using, e.g., the Rapid
Oscillations in the Solar Atmosphere (ROSA; Jess et al. 2010b),
HARDcam (Jess et al. 2012), Interferometric BIdimensional
Spectrometer (IBIS; Cavallini 2006), and CRisp Imaging Spectro-
Polarimeter (CRISP; Scharmer et al. 2008) instruments. These
simulations can also be directly compared to transition region
observations using IRIS, in addition to broad-temperature optically
thin coronal images acquired by, e.g., SDO/AIA and the
upcoming Extreme UV Imager on board the Solar Orbiter (Halain
et al. 2014). Furthermore, Labonte & Reardon (2007) revealed
that measurements of the variance in intensities from an X-ray
source allows the mean energy per photon to be determined,
hence allowing the methods presented here to be incorporated into
similar photon spectroscopy studies.
As observational resolutions, particularly temporal cadences,

become much higher, the “bottleneck” associated with
achieving large-number statistics no longer arises as a result
of a small field of view. This has important consequences, since
it means that imaging data sets can be subdivided into regions
of interest for further analysis, rather than being examined as an
entire collective that may encompass a vast assortment of
different solar features. Thus, a natural step would be to employ
magnetograms of the photosphere to isolate various regions of
distinct magnetism, including unipolar, bipolar, and mixed-
polarity regions. Furthermore, utilizing magnetic field extra-
polations (e.g., Wiegelmann 2004, 2007; Guo et al. 2012;
Aschwanden 2013; Aschwanden et al. 2016b) and magneto-
hydrodynamic-based coronal magnetic field estimates (e.g.,
Jess et al. 2016) would allow users to estimate the degree of
nonpotentiality in their preselected subfields, something that is
often used as an indicator of the flaring capabilities of the
plasma. Following these steps would allow the nanoflare
characteristics associated with distinct solar structures and
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degrees of magnetic complexity to be investigated with high
levels of precision.

A natural progression would be to employ multiwavelength
observations spanning the radio domain (e.g., ALMA;
Wedemeyer et al. 2015) to X-rays (e.g., Hinode/XRT; Golub
et al. 2007) to provide a multiheight investigation of nanoflare
activity from the photosphere to the outer corona. Even within
the EUV environment sampled by SDO/AIA, the self-similar
and complementary plate scales and cadences may be utilized
to examine the multiwavelength, and hence multithermal,
effects associated with flaring events (e.g., furthering the work
of Viall & Klimchuk 2011, 2012, 2013, 2015). Here the
intensity fluctuations associated with nanoflare processes
contained within the same field of view yet spanning a
multitude of different temperatures can be probed, with the
corresponding statistical parameter space examined to better
understand the prevalence of nanoflares in the solar corona.
Combining such observations with magnetic field extrapola-
tions demonstrating low levels of field misalignment would not
only highlight the atmospheric layers where nanoflare activity
is most prevalent but also provide crucial insight into the
magnetic topologies required for heightened nanoflare signa-
tures. For example, do nanoflares in the solar corona require
increased magnetic field braiding to support small-scale
reconnections in an inherently low plasma-β (i.e., dominated
by magnetic tension) environment? Similarly, do nanoflares in
the chromosphere exist more readily in less magnetic locations,
where increased plasma pressure may promote the volume
filling of the magnetic fields? These types of questions, among
others, can be addressed through the comparison of our Monte
Carlo simulations to multiwavelength observations of high-
cadence subfields.

The Monte Carlo nanoflare simulations themselves are
readily suitable for future upgrades once new physical insight
is uncovered following future comparisons with high-resolu-
tion observations. For example, since the noise levels in our
simulated light curves are, by default, entirely comprised of
Poisson-based shot noise, a natural question arises as to
whether other noise sources may contribute to subtleties often
displayed in the observational histograms. The intensity
fluctuation histograms generated by Terzo et al. (2011) and Jess
et al. (2014) for pure shot noise closely follow a standardized
Gaussian distribution, as one may expect in the limit of large-
number statistics. This simply means that shot noise may not be
responsible for some of the offsets and asymmetries pertaining
to our observational histograms. Instead, other less symmetric
noise sources, especially in the realm of large-number statistics,
may be partly responsible for the visible variations. In
particular, other types of noise, such as Brownian or violet
noise, which have a frequency-dependent amplitude, may play
a role when attempting to model the quasi-periodic (i.e., almost
frequency-dependent) injection of nanoflares. Indeed, Ireland
et al. (2015) and Milligan et al. (2017) recently performed
Fourier analysis on SDO time series and revealed that the
resulting power spectra may be comprised of both flaring
power-law signatures and a wave-based leakage term linked to
the underlying p-mode spectrum. Therefore, a natural piece of
follow-up work would be to precisely characterize the noise
contributions embedded within the observational data and more
precisely incorporate these into the Monte Carlo simulations.

The layer of the solar atmosphere attempting to be quantified
also has important implications for the underlying pixel

intensities and, therefore, their intensity fluctuation distribu-
tions. For example, Lawrence et al. (2011) demonstrated how
positive values of kurtosis may also suggest the presence of
localized turbulence. As a result, turbulent motions occurring
within the observed plasma layers may adversely affect the
statistical analysis of the intensity fluctuations. In order to more
accurately constrain the nanoflare parameters, it may become
imperative to include turbulent modeling in the simulated light
curves. Since modern-day observatories and instrumentation
are constantly improving the spatial, temporal, and spectral
resolutions available, small-scale turbulence, perhaps even
down to Kolmogorov length scales, may be necessary to
model.
Further, the methods and approaches presented here may

also be useful in the studies of propagating disturbances (PDs)
within coronal loops, fans, and plumes (e.g., DeForest &
Gurman 1998; Ofman et al. 1999; De Moortel et al. 2002; De
Moortel & Hood 2003, 2004; Klimchuk et al. 2004; Wang
et al. 2009; Jess et al. 2012; Krishna Prasad et al. 2015, to name
but a few). Wang et al. (2013) employed simulations to indicate
that PDs, which are ubiquitously observed in coronal SDO/
AIA observations, may be produced by small-scale impulsive
heating events (e.g., nanoflares) at the loop footpoints.
However, the models employed by Wang et al. (2013) utilize
a more straightforward cosine-based impulsive functional form,
rather than the traditional impulsive rise and gradual decay
found in many small-scale flare studies. Furthermore, since
Keys et al. (2011) also documented how the velocity evolution
of small-amplitude flares closely matches the intensity fluctua-
tions, the Monte Carlo–based nanoflare time series presented
here could equally be employed to model intensity or velocity
impulses at the base of coronal loops. These more traditional
impulsive rises and exponential decays could then be fed into
magnetohydrodynamic modeling codes, such as that used by
Wang et al. (2013), to investigate in more detail whether
nanoflares can contribute to the creation of PDs in coronal
loops, fans, and plumes. Additionally, Hudson & Warmuth
(2004) revealed evidence to support the earlier work of Uchida
(1968), whereby wave motion in coronal loops can be
associated with weakly nonlinear effects originating in metric
Type II bursts. Therefore, the inherent “sawtooth” shape of the
nanoflare light curves may be able to help probe some of the
weakest oscillating structures, especially since chromospheric
and coronal fluctuations are becoming increasingly ubiquitous
with continual improvements in instrument spatial and
temporal resolutions (Jess et al. 2015; Grant et al. 2018;
Houston et al. 2018).
Finally, the nanoflare characterization approaches described

here can also be directly applied to high time resolution
observations of stellar sources (e.g., modernizing the work of
Audard et al. 1999; Kashyap et al. 2002). For example, the
photometric precision of high-cadence Kepler observations
(Koch et al. 2010), or those taken through an assortment of
optical filters by ULTRACAM (Dhillon et al. 2007) at very
high cadences, would be ideal to test the nanoflare signatures
on variable dwarf stars. Indeed, developing from the work of
Hawley et al. (2014), Pitkin et al. (2014), Balona (2015), and
Lurie et al. (2015), the initial Monte Carlo simulations could be
extended to larger-amplitude values to expand the “nanoflare”
coverage into more macroscopic sources that demonstrate
intensity fluctuations exceeding 3σN. With larger-scale impul-
sive events being much more evident in the resulting light
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curves, the user would have a much better grasp of the
e-folding timescales associated with the flaring activity. As a
result, the occurrence rates of (quasi-)periodic activity could be
much more reliably constrained, thus better revealing the
energy output of such flaring events on distant stellar sources.
In addition, high temporal resolution (∼0.1 s) observations of
the most active flare stars have revealed some extremely short-
duration events lasting for 5s or less. Unlike the nanoflare light
curves examined here, these events often exhibit highly
symmetrical light curves with very similar rise and decay
times (Andrews 1989, 1990a, 1990b; Tovmassian et al. 1997;
Schmitt et al. 2016). Such characteristics are likely to modify
the statistical distributions depicted in the lower panels of
Figure 4, since these events can no longer be defined by
impulsive rise times. As a result, we plan to investigate such
phenomena in detail in a future publication.

6. Overview and Concluding Remarks

The creation of dedicated Monte Carlo simulations with
dense input parameter grids has been shown to be a powerful
tool that may greatly assist with the characterization of
nanoflare activity manifesting in observational data sets. In
the present work, we have documented statistical relationships
as a function of the Monte Carlo input parameters, specifically
the nanoflare power-law index, α, and the e-folding times, τ.
We have shown how specific statistical measurements,
including shifts in the median offset, fluctuations in the degree
of skewness, and variations of the histogram width (e.g., the ζ
ratio) can result in significant ambiguities, since identical
values can be created through a wide range of different
nanoflare power-law indices and e-folding timescales. This
simply means that an observational data set cannot be
accurately quantified by comparing a single extracted statistical
measurement to that output by a Monte Carlo simulation.
Instead, the only way to accurately constrain the true
observational makeup is to explore more detailed parameter
space and compare a wealth of statistical parameters simulta-
neously, including the median offset, level of distribution
skewness, histogram widths (e.g., the ζ ratio), and values of the
kurtosis, to identical statistical measurements output by the
simulations. Such relationships are applicable to all layers of
the solar atmosphere, including the chromosphere and corona.
We have demonstrated how our methods are suitable for
comparison to current (and future) CCD/CMOS detectors with
high dynamic ranges, including those that will be implemented
on the upcoming 4 m Daniel K. Inouye Solar Telescope
(formerly the Advanced Technology Solar Telescope; Keil
et al. 2003; Rimmele et al. 2010).

Through comparisons of the statistical outputs derived from
the Monte Carlo nanoflare simulations with SDO/AIA EUV
imaging observations, we have provided evidence that hotter
SDO/AIA observations (e.g., from the 94Å channel) demon-
strate smaller power-law indices and e-folding timescales than
their cooler SDO/AIA imaging counterparts (e.g., the 171Å
channel). This may be a consequence of increased conductive
cooling and fewer registered nanoflare signals (through, e.g.,
weaker thermalization for the small-energy nanoflare events) in
the hotter (>1MK) plasma captured by the SDO/AIA 94Å
filter. From the figures presented in this work, it is clear that the
statistical methods employed here are useful for accurately
quantifying nanoflare characteristics manifesting in observa-
tional data. However, the next important step is to apply these

techniques to a multitude of observational data sets spanning a
wide range of wavelengths, atmospheric heights, and magnetic
field complexities and attempt to probe the small-scale
nanoflares therein that lie beneath the noise envelope.
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Appendix
Monte Carlo Simulations

A.1. Code Overview and User Inputs

As documented by Jess et al. (2014), the Monte Carlo
nanoflare code is written in IDL but is now parallelized to run
simultaneously on all of the locally available CPU cores, as
well as implementing a power law–based occurrence of
nanoflares with different energetics. The main task of the
software is to generate a series of impulsive events, which are
governed by individual decay timescales and occurrence rates,
before superimposing these intensity signatures onto a back-
ground level and adding realistic noise characteristics to the
resulting light curve. Thus, a synthetic time series is produced
that is subsequently statistically analyzed. By employing a
dense grid of input parameters that have underlying similarities
with the observables under investigation (e.g., background
count rates, noise levels, etc.), the outputs can then be
compared statistically to the observables, whereby closely
matching statistics allows the quantification of the underlying
impulsive nature of the observations, which may not have been
readily visible through direct inspection of the raw light curves
due to small-scale fluctuations becoming swamped by instru-
mental and/or photon noise.
A significant difference between the current Monte Carlo

nanoflare code and that first used by Jess et al. (2014) is the
substitution of a flare energy frequency distribution in place of
(nano)flare amplitudes and occurrence rate distributions. Since
traditional flare energy power-law distributions contain infor-
mation on both the flare energies (i.e., related to the amplitude
of the time-series fluctuations) and the occurrence rates at
which they occur, the stipulated power-law index naturally
replaces two of the initial variables required for the Monte
Carlo code used by Jess et al. (2014), hence making it much
more computationally efficient. The user has the option to
supply a dense grid of input parameters that have underlying
similarities with the observables under investigation, thus
allowing the quantification of the underlying impulsive nature
of the observations following comparison with the simulation
outputs. Once the code has been initialized, a grid of input
parameters can now be specified, allowing the program to
continually process and output data without further operator
input. Specifically, the input parameters required consist of the
following.
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1. The quiescent background intensity, in DNs, on top of
which impulsive signatures are injected. This is typically
the time-averaged value of the observational region of
interest, such as 4500 DN in an SDO/AIA 171Å active
region core or 28,000 DN for a ground-based 16-bit
detector examining chromospheric plage.

2. The standard deviation of the noise level (σN), in units of
DN, superimposed on top of the impulsive time series,
which is assumed to be dominated by photon noise unless
otherwise stipulated.

3. The dimensions of the data set you wish to simulate,
consisting of the x and y sizes, number of successive
frames, and cadence of the final synthetic time series.

4. The flare energy power-law indices, α, which are
specified as a numerical value that follows the relation
dN/dE∼E−α. The input indices can cover a very
large range and thus span previous work documenting
shallow (e.g., α=1.35; Berghmans et al. 1998) and
steep (e.g., α=2.90; Winebarger et al. 2002) power-law
distributions.

5. The nanoflare e-folding time(s), τ, defined as the typical
time frame in which the nanoflare intensity will decrease
by a factor 1/e.

6. The minimum and maximum flare energies wishing to be
simulated, provided in units of erg. As users may only
wish to study the effect of small-scale impulsive events,
they have the ability to stipulate an upper cutoff for the
energetics simulated, while to minimize CPU run times,
users may also wish to place a lower-energy cutoff to
reduce the number of simulated events to a range that
becomes statistically significant.

7. The flare energy that corresponds to a 1σN intensity
fluctuation. A user may feel that a highly sensitive imager
has the ability to visually highlight 1025 erg events
through readily apparent intensity rises above the
quiescent (photon) noise level, either through predictive
forward modeling or previous inspection. As a result, this
value can be used to renormalize the synthesized flare
energies to σN fluctuations for the purposes of statistical
representation and analysis.

8. The surface area of one synthesized pixel, provided in
units of cm2. Since the area of the solar surface occupied
by the synthetic time series (i.e., governed by the x and y
dimensions, as well as the surface area of each pixel) will
directly affect the number of flaring events expected, this
value is important to accurately scale the flare energy
frequency distribution to realistic values.

9. Optional: a base science image that will form the initial
starting conditions of the simulated time series. Here the
simulated x and y sizes will be identical to those from
the input base image, and for each pixel iteration, the
background intensity, n (and subsequent photon-noise
level, n , unless an optional noise image (see below) is
also submitted), will be extracted from the value provided
by the base image. This base image could be, for
example, a time-averaged cropped field of view from an
SDO/AIA channel (see, e.g., the upper left panels of
Figures 1 and 2), allowing the final synthesized time
series to be readily compared to the true observational
data. Submission of a base science image overrides
inputs 1–3.

10. Optional: a base noise image that spatially represents the
noise complexion of the image sequence wishing to be
simulated. This image should be comprised of the same
pixel dimensions as the base science image, with each
pixel representing the standard deviation of the noise as
measured from the original time series (see, e.g., the
upper right panels of Figures 1 and 2). If only a base
science image is submitted, then by default, a synthetic
noise image will be generated that mimics Poisson-based
photon statistics (i.e., science image ). Providing a noise
reference image naturally overrides input 2.

While these form an extensive list of input parameters, they
allow the best possible tailoring of the Monte Carlo simulations
to physical data. Of particular interest is the ability to stipulate
optional base science and noise images, which means that
fluctuations and noise levels can be automatically and
individually tailored to specific pixels within the field of view.
This is very useful for observations that contain a vast
assortment of features and structures that give rise to diverse
background intensities spanning many orders of magnitude.

A.2. Analysis and Output of the Numerical Code

The first important aspect to consider when attempting to
synthesize a time series is how many flare events one may
expect to populate the final light curves. Of course, while a
standardized power-law distribution of the form dN/dE∼E−α

may provide the frequency relationship between one flare
energy and the next, it unfortunately does not provide specific
occurrence values. Therefore, to accurately calibrate the
expected occurrences of the (nano)flare activity, the first step
is to employ the user-defined pixel sizes and time-series
duration to map the expected number of events. Previous work
(e.g., Berghmans et al. 1998; Krucker & Benz 1998;
Aschwanden 1999; Parnell & Jupp 2000; Benz & Krucker
2002; Winebarger et al. 2002; Aschwanden & Freeland 2012;
Aschwanden et al. 2014, 2015, to name but a few) quantifies
the flare energy frequencies in units of erg−1 cm−2 s−1 (see,
e.g., the upper left panel of Figure 4). Therefore, it is clear that
the surface area simulated (i.e., cm2) and the duration of the
time series (i.e., s) play a pivotal role in the expected number of
flaring events.
As a result, the power law–based Monte Carlo code takes the

x and y dimensions of the simulated field of view and multiplies
by the pixel area to calculate the total surface area being
synthesized. Then, the user-defined cadence and desired
number of modeled frames are used to calculate the total time
duration of the final data set. From here, it is now possible to
resample the flare frequency distribution into quantified
occurrences of the various flare energies. However, an
important point is at what energy does the normalization
occur? From inspection of, e.g., Figure 10 in Aschwanden et al.
(2000) and the review article by Aschwanden et al. (2016a), it
is clear to see that different flare frequencies have been found
for identical flare energy values. This issue is further
exacerbated by the fact that different power-law indices
naturally cause the divergence of flare frequencies across a
range of energies. Importantly, since flare occurrence rates are
more accurately quantified at higher energy values as a result of
better-defined observational measurements, there is a reduced
spread of frequency values found at larger flare energies. As a
result, and because this Monte Carlo code is designed with
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small-scale flaring events in mind, the normalization process is
undertaken at a value of 1025 erg, which is believed to be on the
upper end of traditional nanoflare energetics. Here we adopt the
flaring frequency of ∼2000×10−50 erg−1 cm−2 s−1 found by
Parnell & Jupp (2000) for energy of 1025 erg. Thus, our power-
law distributions are subsequently renormalized to this value,
allowing a quantified number of flaring events to be computed
for the field of view and time-series duration specified.

Using the flare energy value that corresponds to a 1σN
intensity fluctuation (estimated by the user during the
initialization sequence of the code), each flaring event can be
normalized by the energy-dependent intensity fluctuation
relationship provided by Equation (12) (and subsequently
displayed in the upper right panel of Figure 4) to produce an
intensity fluctuation amplitude in terms of σN. It would not be
practical for the Monte Carlo software to select an energy value
corresponding to a 1σN intensity fluctuation on an automatic
basis. Since this code is applicable to a wide range of
atmospheric layers, solar features, input wavelengths (and
associated photon fluxes), cadences, camera architectures, and
measurement units, it would not be reliable to preselect an
energy value for the user. Therefore, we allow the user to
employ a priori knowledge (e.g., through forward-modeling
approaches; Price et al. 2015; Viall & Klimchuk 2015) or
previous examinations of similar light curves (e.g., Kowalski
et al. 2016) to provide a σN normalization factor that is useful
for statistical purposes.

The use of an optional base image (see, e.g., item 9 in
Appendix A.1) modifies the injected intensity fluctuation
process when compared with a more simplistic constant
background value. As one would expect, for each pixel, the
background intensity, n, is simply extracted from the corresp-
onding pixel in the base image with (unless otherwise defined)
the magnitude of the noise following photon-noise statistics
with a standard deviation equal to n (for an in-depth overview
of shot-noise processes, see, e.g., Delouille et al. 2008). This
results in many different background intensity values alongside
an equally diverse assortment of Poisson noise profiles. Then,
for example, if an impulsive event with an energy of 1024 erg
was synthesized, it would contribute to the light curves in
slightly different ways, perhaps making a clear brightening in a
previously relatively dark region of the field of view or
remaining swamped by the higher natural photon-noise
fluctuations synonymous with a brighter solar feature. Thus,
in order to ensure that the injected intensity fluctuations are
consistent with both the flare energy frequency distributions
and what would be expected of the background pixel values, a
baseline normalization is required. To do this, the spatially
averaged intensity (i.e., n̄) within the field of view provided by
the base image is computed, with the user-specified flare
energy corresponding to a 1σN intensity fluctuation calculated
in relation to n̄ (again, assuming photon-noise statistics).
Alternatively, if the user also submits an independent noise
image containing the pixel-by-pixel noise standard deviations,
then the average of these standard deviations will be used when
equating the chosen energy value to a 1σN intensity fluctuation.
It must be stressed that this form of normalization is undertaken
because the Monte Carlo program makes no assumptions
regarding what features within the simulated field of view will
be more prone to (nano)flare activity. Therefore, before
submitting the Monte Carlo processing call, it is important
that users identify what types of structures they wish to

investigate. It may be more advantageous, as well as less CPU-
intensive, if users further crop the simulated field of view to
more directly encompass the features they wish to simulate,
since including a vast assortment of irrelevant structures with
vastly differing background intensities may adversely affect the
resulting simulated outputs.
While three-dimensional inputs (x and y sizes plus the

number of consecutive frames) are fed into the numerical code,
each time series is processed individually before finally being
combined into an average statistical distribution. Following the
creation of a power law–based intensity distribution for the
entire field of view, the code then subsequently computes
additional distributions based upon the specified input para-
meters as follows.

1. Decay times for individual impulsive events are gener-
ated by computing a normal distribution, ranging from
90% to 110% of the selected e-folding time, τ, which
allows for some fluctuation in the specific decay times as
a result of varying quiescent plasma parameters. The
physics of a cooling plasma will not necessarily follow an
exponential decay, but a confined spread (±10%) of
decay times will help cover small-scale permutations in
the mechanisms that govern the rates of evaporative,
nonevaporative, conductive, and radiative cooling pro-
cesses (Antiochos & Sturrock 1978).

2. Noise amplitudes for each time step are generated by
creating a Poisson distribution centered on the value of
the predefined noise, which, without external input, is
deemed to tend to shot noise (i.e., n ) in the limit of
adequate light levels.

Next, using randomized values for each distribution, which
are themselves governed by a constantly evolving seed
function, we introduce a series of impulsive intensity rises on
top of the quiescent background, followed by exponential
decays, before superimposing noise fluctuations to replicate a
typical time series embedded with nanoflare activity. Remain-
ing consistent with the processing steps of observational time
series, the time-resolved intensity fluctuations, dI, are com-
puted in an identical fashion to Equation (1),

dI t
I t I t

,
N

0

s
=

-( ) ( ) ( )

where I(t) and I0(t) are the count rate and value of a linear least-
squares fit, respectively, at time t, and σN is the magnitude of
the noise superimposed on top of the time series, which in the
limit of Poisson statistics (i.e., for shot noise–dominated light
curves) is approximately equal to the standard deviation of the
normalized pixel light curve. The middle panel of Figure 5
represents a synthetic nanoflare time series generated for
relatively small-energy impulsive events. It is clear from
Figure 5 that small-scale nanoflare amplitudes are visually lost
within the photon noise, which is consistent with the small-
amplitude and “low-frequency” nanoflare scenario discussed
by Cargill (1994) and Cargill & Klimchuk (1997, 2004).
Poisson noise statistics will naturally introduce a degree of
asymmetry to any photon-based signal distribution as a result
of discrete data sampling. However, as documented by Terzo
et al. (2011) and Jess et al. (2014), large-scale sample sizes
result in the typically asymmetric Poisson distributions
becoming more Gaussian-like, and hence more symmetric.
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Thus, when an operator selects increasingly large numbers of
frames to simulate, any resulting asymmetries present in the
statistical output cannot be directly attributed to Poisson noise
statistics alone.

A histogram of all dI values is then computed, which, by
definition, has a statistical mean equal to zero (see, e.g., bottom
panels of Figures 1 and 2). The numerical code then continues
to loop over the number of chosen x and y values, cumulatively
adding each subsequent histogram until the desired spatial size
has been simulated. If the user has specified an optional base
science image, then the program will automatically output a
sample three-dimensional time series to convey the visual
representation of the synthetic nanoflare fluctuations. To
conserve the amount of disk space required, which becomes
important when performing possibly millions of individual
iterations of the code across all stipulated input parameters,
the total amount of saved pixels is limited to 106, which, for a
base science image of dimensions 350×350 pixels2, provides
a saved image sequence 50 frames long. These synthetic data
products are important, as one can play the simulated time
series side-by-side with the observational data in order to
visually ascertain the degree of similarity between the two
image sequences.

In order to best characterize the resulting distribution, a
number of statistical parameters are evaluated and saved to disk,
including the median offset, the Fisher and Pearson coefficients
of skewness, a measurement of the kurtosis and the variance
of the histogram, and the width of the distribution at a variety
of locations, including at half-maximum, quarter-maximum,
eighth-maximum, etc. These measurements are contained within
a single IDL save file alongside a sample light curve for display
purposes. Taking an observational subfield as an example, a
typical 350×350 pixel2 field of view with 750 consecutive
frames (i.e., containing almost 1×108 individual pixels) takes
on the order of 1.4×105 s (∼1.7 days) on a 16-core 2.90GHz
Intel Xeon processor to fully generate, process, analyze, and
save the resulting output. The majority of this time is associated
with the generation of the Poisson noise distributions, which, to
ensure a randomized sequence, are produced for each new time
series and require 122,500 (i.e., 350× 350) consecutive
generations, each with 750 individual values.

ORCID iDs

D. B. Jess https://orcid.org/0000-0002-9155-8039
M. S. Kirk https://orcid.org/0000-0001-9874-1429
F. Reale https://orcid.org/0000-0002-1820-4824
M. Mathioudakis https://orcid.org/0000-0002-7725-6296
S. D. T. Grant https://orcid.org/0000-0001-5170-9747
D. J. Christian https://orcid.org/0000-0003-1746-3020
P. H. Keys https://orcid.org/0000-0001-8556-470X
S. Krishna Prasad https://orcid.org/0000-0002-0735-4501
S. J. Houston https://orcid.org/0000-0001-5547-4893

References

Allred, J., Daw, A., & Brosius, J. 2018, arXiv:1807.00763
Ambruster, C. W., Sciortino, S., & Golub, L. 1987, ApJS, 65, 273
Andrews, A. D. 1989, A&A, 210, 303
Andrews, A. D. 1990a, A&A, 229, 504
Andrews, A. D. 1990b, A&A, 239, 235
Anscombe, F. J. 1948, Biometrika, 35, 246
Antiochos, S. K., & Sturrock, P. A. 1978, ApJ, 220, 1137

Arzner, K., & Güdel, M. 2004, ApJ, 602, 363
Aschwanden, M. J. 1999, SoPh, 190, 233
Aschwanden, M. J. 2013, SoPh, 287, 323
Aschwanden, M. J., Boerner, P., Ryan, D., et al. 2015, ApJ, 802, 53
Aschwanden, M. J., & Charbonneau, P. 2002, ApJL, 566, L59
Aschwanden, M. J., Crosby, N. B., Dimitropoulou, M., et al. 2016a, SSRv,

198, 47
Aschwanden, M. J., & Freeland, S. L. 2012, ApJ, 754, 112
Aschwanden, M. J., Reardon, K., & Jess, D. B. 2016b, ApJ, 826, 61
Aschwanden, M. J., & Shimizu, T. 2013, ApJ, 776, 132
Aschwanden, M. J., Tarbell, T. D., Nightingale, R. W., et al. 2000, ApJ,

535, 1047
Aschwanden, M. J., Xu, Y., & Jing, J. 2014, ApJ, 797, 50
Audard, M., Güdel, M., & Guinan, E. F. 1999, ApJL, 513, L53
Azzari, L., & Foi, A. 2016, ISPL, 23, 1086
Balona, L. A. 2015, MNRAS, 447, 2714
Battaglia, M., Fletcher, L., & Benz, A. O. 2009, A&A, 498, 891
Benz, A. O., & Krucker, S. 2002, ApJ, 568, 413
Berghmans, D., Clette, F., & Moses, D. 1998, A&A, 336, 1039
Boerner, P., Edwards, C., Lemen, J., et al. 2012, SoPh, 275, 41
Bowen, T. A., Testa, P., & Reeves, K. K. 2013, ApJ, 770, 126
Bradshaw, S. J., & Klimchuk, J. A. 2011, ApJS, 194, 26
Bradshaw, S. J., & Klimchuk, J. A. 2015, ApJ, 811, 129
Bradshaw, S. J., Klimchuk, J. A., & Reep, J. W. 2012, ApJ, 758, 53
Buades, A., Coll, B., & Morel, J.-M. 2005, in Proc. 2005 IEEE Computer

Society Conf. Computer Vision and Pattern Recognition (CVPR’05) 2
(Washington, DC: IEEE Computer Society), 60

Cadavid, A. C., Lawrence, J. K., Christian, D. J., Jess, D. B., & Nigro, G. 2014,
ApJ, 795, 48

Cargill, P. J. 1994, ApJ, 422, 381
Cargill, P. J. 2014, ApJ, 784, 49
Cargill, P. J., Bradshaw, S. J., & Klimchuk, J. A. 2012, ApJ, 752, 161
Cargill, P. J., & Klimchuk, J. A. 1997, ApJ, 478, 799
Cargill, P. J., & Klimchuk, J. A. 2004, ApJ, 605, 911
Cargill, P. J., Mariska, J. T., & Antiochos, S. K. 1995, ApJ, 439, 1034
Cargill, P. J., Warren, H. P., & Bradshaw, S. J. 2015, RSPTA, 373, 20140260
Cavallini, F. 2006, SoPh, 236, 415
Christe, S., Glesener, L., Buitrago-Casas, C., et al. 2016, JAI, 5, 1640005
Christe, S., Hannah, I. G., Krucker, S., McTiernan, J., & Lin, R. P. 2008, ApJ,

677, 1385
Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. 2006, Proc. SPIE,

6064, 354
Dai, Y., & Ding, M. 2018, ApJ, 857, 99
DeForest, C. E. 2017, ApJ, 838, 155
DeForest, C. E., & Gurman, J. B. 1998, ApJL, 501, L217
Delouille, V., Chainais, P., & Hochedez, J.-F. 2008, SoPh, 248, 441
De Moortel, I., & Hood, A. W. 2003, A&A, 408, 755
De Moortel, I., & Hood, A. W. 2004, A&A, 415, 705
De Moortel, I., Ireland, J., Hood, A. W., & Walsh, R. W. 2002, A&A, 387, L13
De Pontieu, B., Title, A. M., Lemen, J. R., et al. 2014, SoPh, 289, 2733
Dhillon, V. S., Marsh, T. R., Stevenson, M. J., et al. 2007, MNRAS, 378, 825
Domingo, V., Fleck, B., & Poland, A. I. 1995, SoPh, 162, 1
Farnes, J. S., Heald, G., Junklewitz, H., et al. 2018, MNRAS, 474, 3280
Fatuzzo, M., Adams, F. C., Gauvin, R., & Proszkow, E. M. 2006, PASP,

118, 1510
Gaztanaga, E., & Bernardeau, F. 1998, A&A, 331, 829
Golub, L., Deluca, E., Austin, G., et al. 2007, SoPh, 243, 63
González, A., Delouille, V., & Jacques, L. 2016, JSWSC, 6, A1
Grant, S. D. T., Jess, D. B., Zaqarashvili, T. V., et al. 2018, NatPh, 14, 480
Güdel, M. 1997, ApJL, 480, L121
Güdel, M., Audard, M., Kashyap, V. L., Drake, J. J., & Guinan, E. F. 2003,

ApJ, 582, 423
Guo, Y., Ding, M. D., Liu, Y., et al. 2012, ApJ, 760, 47
Halain, J.-P., Rochus, P., Renotte, E., et al. 2014, Proc. SPIE, 9144, 914408
Handy, B. N., Acton, L. W., Kankelborg, C. C., et al. 1999, SoPh, 187, 229
Hannah, I. G., Christe, S., Krucker, S., et al. 2008, ApJ, 677, 704
Hawley, S. L., Davenport, J. R. A., Kowalski, A. F., et al. 2014, ApJ, 797, 121
Houston, S. J., Jess, D. B., Asensio Ramos, A., et al. 2018, ApJ, 860, 28
Hudson, H. S. 1991, SoPh, 133, 357
Hudson, H. S. 2011, SSRv, 158, 5
Hudson, H. S., & Warmuth, A. 2004, ApJL, 614, L85
Ireland, J., McAteer, R. T. J., & Inglis, A. R. 2015, ApJ, 798, 1
Ishikawa, S.-n., Glesener, L., Krucker, S., et al. 2017, NatAs, 1, 771
Jaeggli, S. A., Lin, H., Mickey, D. L., et al. 2010, MmSAI, 81, 763
Jaeggli, S. A., & Norton, A. A. 2016, ApJL, 820, L11
Jess, D. B., De Moortel, I., Mathioudakis, M., et al. 2012, ApJ, 757, 160

20

The Astrophysical Journal, 871:133 (21pp), 2019 February 1 Jess et al.

https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0002-9155-8039
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0001-9874-1429
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-1820-4824
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0002-7725-6296
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0001-5170-9747
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0003-1746-3020
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0001-8556-470X
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0002-0735-4501
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
https://orcid.org/0000-0001-5547-4893
http://arxiv.org/abs/1807.00763
https://doi.org/10.1086/191225
http://adsabs.harvard.edu/abs/1987ApJS...65..273A
http://adsabs.harvard.edu/abs/1989A&amp;A...210..303A
http://adsabs.harvard.edu/abs/1990A&amp;A...229..504A
http://adsabs.harvard.edu/abs/1990A&amp;A...239..235A
https://doi.org/10.1093/biomet/35.3-4.246
https://doi.org/10.1086/155999
http://adsabs.harvard.edu/abs/1978ApJ...220.1137A
https://doi.org/10.1086/381026
http://adsabs.harvard.edu/abs/2004ApJ...602..363A
https://doi.org/10.1023/A:1005288725034
http://adsabs.harvard.edu/abs/1999SoPh..190..233A
https://doi.org/10.1007/s11207-012-0069-7
http://adsabs.harvard.edu/abs/2013SoPh..287..323A
https://doi.org/10.1088/0004-637X/802/1/53
http://adsabs.harvard.edu/abs/2015ApJ...802...53A
https://doi.org/10.1086/339451
http://adsabs.harvard.edu/abs/2002ApJ...566L..59A
https://doi.org/10.1007/s11214-014-0054-6
http://adsabs.harvard.edu/abs/2016SSRv..198...47A
http://adsabs.harvard.edu/abs/2016SSRv..198...47A
https://doi.org/10.1088/0004-637X/754/2/112
http://adsabs.harvard.edu/abs/2012ApJ...754..112A
https://doi.org/10.3847/0004-637X/826/1/61
http://adsabs.harvard.edu/abs/2016ApJ...826...61A
https://doi.org/10.1088/0004-637X/776/2/132
http://adsabs.harvard.edu/abs/2013ApJ...776..132A
https://doi.org/10.1086/308867
http://adsabs.harvard.edu/abs/2000ApJ...535.1047A
http://adsabs.harvard.edu/abs/2000ApJ...535.1047A
https://doi.org/10.1088/0004-637X/797/1/50
http://adsabs.harvard.edu/abs/2014ApJ...797...50A
https://doi.org/10.1086/311907
http://adsabs.harvard.edu/abs/1999ApJ...513L..53A
https://doi.org/10.1109/LSP.2016.2580600
http://adsabs.harvard.edu/abs/2016ISPL...23.1086A
https://doi.org/10.1093/mnras/stu2651
http://adsabs.harvard.edu/abs/2015MNRAS.447.2714B
https://doi.org/10.1051/0004-6361/200811196
http://adsabs.harvard.edu/abs/2009A&amp;A...498..891B
https://doi.org/10.1086/338807
http://adsabs.harvard.edu/abs/2002ApJ...568..413B
http://adsabs.harvard.edu/abs/1998A&amp;A...336.1039B
https://doi.org/10.1007/s11207-011-9804-8
http://adsabs.harvard.edu/abs/2012SoPh..275...41B
https://doi.org/10.1088/0004-637X/770/2/126
http://adsabs.harvard.edu/abs/2013ApJ...770..126B
https://doi.org/10.1088/0067-0049/194/2/26
http://adsabs.harvard.edu/abs/2011ApJS..194...26B
https://doi.org/10.1088/0004-637X/811/2/129
http://adsabs.harvard.edu/abs/2015ApJ...811..129B
https://doi.org/10.1088/0004-637X/758/1/53
http://adsabs.harvard.edu/abs/2012ApJ...758...53B
https://doi.org/10.1088/0004-637X/795/1/48
http://adsabs.harvard.edu/abs/2014ApJ...795...48C
https://doi.org/10.1086/173733
http://adsabs.harvard.edu/abs/1994ApJ...422..381C
https://doi.org/10.1088/0004-637X/784/1/49
http://adsabs.harvard.edu/abs/2014ApJ...784...49C
https://doi.org/10.1088/0004-637X/752/2/161
http://adsabs.harvard.edu/abs/2012ApJ...752..161C
https://doi.org/10.1086/303816
http://adsabs.harvard.edu/abs/1997ApJ...478..799C
https://doi.org/10.1086/382526
http://adsabs.harvard.edu/abs/2004ApJ...605..911C
https://doi.org/10.1086/175240
http://adsabs.harvard.edu/abs/1995ApJ...439.1034C
https://doi.org/10.1098/rsta.2014.0260
http://adsabs.harvard.edu/abs/2015RSPTA.37340260C
https://doi.org/10.1007/s11207-006-0103-8
http://adsabs.harvard.edu/abs/2006SoPh..236..415C
https://doi.org/10.1142/S2251171716400055
http://adsabs.harvard.edu/abs/2016JAI.....540005C
https://doi.org/10.1086/529011
http://adsabs.harvard.edu/abs/2008ApJ...677.1385C
http://adsabs.harvard.edu/abs/2008ApJ...677.1385C
https://doi.org/10.1117/12.643267
http://adsabs.harvard.edu/abs/2006SPIE.6064..354D
http://adsabs.harvard.edu/abs/2006SPIE.6064..354D
https://doi.org/10.3847/1538-4357/aab898
http://adsabs.harvard.edu/abs/2018ApJ...857...99D
https://doi.org/10.3847/1538-4357/aa67f1
http://adsabs.harvard.edu/abs/2017ApJ...838..155D
https://doi.org/10.1086/311460
http://adsabs.harvard.edu/abs/1998ApJ...501L.217D
https://doi.org/10.1007/s11207-008-9131-x
http://adsabs.harvard.edu/abs/2008SoPh..248..441D
https://doi.org/10.1051/0004-6361:20030984
http://adsabs.harvard.edu/abs/2003A&amp;A...408..755D
https://doi.org/10.1051/0004-6361:20034233
http://adsabs.harvard.edu/abs/2004A&amp;A...415..705D
https://doi.org/10.1051/0004-6361:20020436
http://adsabs.harvard.edu/abs/2002A&amp;A...387L..13D
https://doi.org/10.1007/s11207-014-0485-y
http://adsabs.harvard.edu/abs/2014SoPh..289.2733D
https://doi.org/10.1111/j.1365-2966.2007.11881.x
http://adsabs.harvard.edu/abs/2007MNRAS.378..825D
https://doi.org/10.1007/BF00733425
http://adsabs.harvard.edu/abs/1995SoPh..162....1D
https://doi.org/10.1093/mnras/stx2915
http://adsabs.harvard.edu/abs/2018MNRAS.474.3280F
https://doi.org/10.1086/508999
http://adsabs.harvard.edu/abs/2006PASP..118.1510F
http://adsabs.harvard.edu/abs/2006PASP..118.1510F
http://adsabs.harvard.edu/abs/1998A&amp;A...331..829G
https://doi.org/10.1007/s11207-007-0182-1
http://adsabs.harvard.edu/abs/2007SoPh..243...63G
https://doi.org/10.1051/swsc/2015040
http://adsabs.harvard.edu/abs/2016JSWSC...6A...1G
https://doi.org/10.1038/s41567-018-0058-3
http://adsabs.harvard.edu/abs/2018NatPh..14..480G
https://doi.org/10.1086/310628
http://adsabs.harvard.edu/abs/1997ApJ...480L.121G
https://doi.org/10.1086/344614
http://adsabs.harvard.edu/abs/2003ApJ...582..423G
https://doi.org/10.1088/0004-637X/760/1/47
http://adsabs.harvard.edu/abs/2012ApJ...760...47G
https://doi.org/10.1117/12.2055207
http://adsabs.harvard.edu/abs/2014SPIE.9144E..08H
https://doi.org/10.1023/A:1005166902804
http://adsabs.harvard.edu/abs/1999SoPh..187..229H
https://doi.org/10.1086/529012
http://adsabs.harvard.edu/abs/2008ApJ...677..704H
https://doi.org/10.1088/0004-637X/797/2/121
http://adsabs.harvard.edu/abs/2014ApJ...797..121H
https://doi.org/10.3847/1538-4357/aab366
http://adsabs.harvard.edu/abs/2018ApJ...860...28H
https://doi.org/10.1007/BF00149894
http://adsabs.harvard.edu/abs/1991SoPh..133..357H
https://doi.org/10.1007/s11214-010-9721-4
http://adsabs.harvard.edu/abs/2011SSRv..158....5H
https://doi.org/10.1086/425314
http://adsabs.harvard.edu/abs/2004ApJ...614L..85H
https://doi.org/10.1088/0004-637X/798/1/1
http://adsabs.harvard.edu/abs/2015ApJ...798....1I
https://doi.org/10.1038/s41550-017-0269-z
http://adsabs.harvard.edu/abs/2017NatAs...1..771I
http://adsabs.harvard.edu/abs/2010MmSAI..81..763J
https://doi.org/10.3847/2041-8205/820/1/L11
http://adsabs.harvard.edu/abs/2016ApJ...820L..11J
https://doi.org/10.1088/0004-637X/757/2/160
http://adsabs.harvard.edu/abs/2012ApJ...757..160J


Jess, D. B., Mathioudakis, M., Browning, P. K., Crockett, P. J., &
Keenan, F. P. 2010a, ApJL, 712, L111

Jess, D. B., Mathioudakis, M., Christian, D. J., et al. 2010b, SoPh, 261, 363
Jess, D. B., Mathioudakis, M., & Keys, P. H. 2014, ApJ, 795, 172
Jess, D. B., Morton, R. J., Verth, G., et al. 2015, SSRv, 190, 103
Jess, D. B., Reznikova, V. E., Ryans, R. S. I., et al. 2016, NatPh, 12, 179
Jiang, Y. W., Liu, S., Liu, W., & Petrosian, V. 2006, ApJ, 638, 1140
Joshi, V. K., & Prasad, L. 2012, RoAJ, 22, 13
Kashyap, V. L., Drake, J. J., Güdel, M., & Audard, M. 2002, ApJ, 580, 1118
Katsukawa, Y., & Tsuneta, S. 2001, ApJ, 557, 343
Keil, S. L., Rimmele, T., Keller, C. U., et al. 2003, Proc. SPIE, 4853, 240
Kendall, W. S., & van Lieshout, M. N. M. 1998, Stochastic Geometry:

Likelihood and Computation (London: Taylor and Francis)
Keys, P. H., Mathioudakis, M., Jess, D. B., et al. 2011, ApJL, 740, L40
Kirk, M. S., & Young, C. A. 2014a, AGUFM, SH34A-02
Kirk, M. S., & Young, C. A. 2014b, AAS Meeting Abstracts, 224, 218.47
Klimchuk, J. A., & Bradshaw, S. J. 2014, ApJ, 791, 60
Klimchuk, J. A., & Cargill, P. J. 2001, ApJ, 553, 440
Klimchuk, J. A., Patsourakos, S., & Cargill, P. J. 2008, ApJ, 682, 1351
Klimchuk, J. A., Tanner, S. E. M., & De Moortel, I. 2004, ApJ, 616, 1232
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJL, 713, L79
Kowalski, A. F., Mathioudakis, M., Hawley, S. L., et al. 2016, ApJ, 820, 95
Krishna Prasad, S., Jess, D. B., & Khomenko, E. 2015, ApJL, 812, L15
Krishna Prasad, S., Jess, D. B., Klimchuk, J. A., & Banerjee, D. 2017, ApJ,

834, 103
Krucker, S., & Benz, A. O. 1998, ApJL, 501, L213
Krucker, S., Christe, S., Glesener, L., et al. 2009, Proc. SPIE, 7437, 743705
Labonte, B. J., & Reardon, K. P. 2007, SoPh, 240, 387
Lawrence, J. K., Cadavid, A. C., Christian, D. J., Jess, D. B., &

Mathioudakis, M. 2011, ApJL, 743, L24
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17
Li, T. C., Drake, J. F., & Swisdak, M. 2012, ApJ, 757, 20
López Fuentes, M., & Klimchuk, J. A. 2016, ApJ, 828, 86
López Fuentes, M. C., Klimchuk, J. A., & Mandrini, C. H. 2007, ApJ,

657, 1127
Lucy, L. B. 1974, AJ, 79, 745
Lurie, J. C., Davenport, J. R. A., Hawley, S. L., et al. 2015, ApJ, 800, 95
Makitalo, M., & Foi, A. 2013, ITIP, 22, 91
Malina, R. F., & Bowyer, S. 1991, STIA, 93, 25725
Marsh, A. J., Smith, D. M., Glesener, L., et al. 2018, ApJ, 864, 5
McIntosh, P. S. 1990, SoPh, 125, 251
McTiernan, J. M., Kane, S. R., Loran, J. M., et al. 1993, ApJL, 416, L91
Milligan, R. O., Fleck, B., Ireland, J., Fletcher, L., & Dennis, B. R. 2017,

ApJL, 848, L8
Mullan, D. J., & Paudel, R. R. 2018, ApJ, 854, 14
Ofman, L., Nakariakov, V. M., & DeForest, C. E. 1999, ApJ, 514, 441
Ogawara, Y., Takano, T., Kato, T., et al. 1991, SoPh, 136, 1
Parker, E. N. 1988, ApJ, 330, 474
Parnell, C. E., & Jupp, P. E. 2000, ApJ, 529, 554
Pence, W. D., Seaman, R., & White, R. L. 2009, PASP, 121, 414
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, SoPh, 275, 3
Petkaki, P., Del Zanna, G., Mason, H. E., & Bradshaw, S. J. 2012, A&A,

547, A25
Pitkin, M., Williams, D., Fletcher, L., & Grant, S. D. T. 2014, MNRAS,

445, 2268
Poduval, B., DeForest, C. E., Schmelz, J. T., & Pathak, S. 2013, ApJ, 765, 144
Price, D. J., Taroyan, Y., Innes, D. E., & Bradshaw, S. J. 2015, SoPh,

290, 1931
Priest, E. R. 1986, SoPh, 104, 1

Priest, E. R., & Schrijver, C. J. 1999, SoPh, 190, 1
Qiu, J., Liu, W.-J., & Longcope, D. W. 2012, ApJ, 752, 124
Qiu, J., Sturrock, Z., Longcope, D. W., Klimchuk, J. A., & Liu, W.-J. 2013,

ApJ, 774, 14
Raftery, C. L., Gallagher, P. T., Milligan, R. O., & Klimchuk, J. A. 2009,

A&A, 494, 1127
Reale, F. 2007, A&A, 471, 271
Reale, F., Nigro, G., Malara, F., Peres, G., & Veltri, P. 2005, ApJ, 633, 489
Reale, F., & Orlando, S. 2008, ApJ, 684, 715
Reep, J. W., Bradshaw, S. J., & Klimchuk, J. A. 2013, ApJ, 764, 193
Reep, J. W., Polito, V., Warren, H. P., & Crump, N. A. 2018, ApJ, 856, 149
Richardson, W. H. 1972, JOSA, 62, 55
Rimmele, T. R., Wagner, J., Keil, S., et al. 2010, Proc. SPIE, 7733, 77330G
Rosner, R., Golub, L., Coppi, B., & Vaiana, G. S. 1978a, ApJ, 222, 317
Rosner, R., Tucker, W. H., & Vaiana, G. S. 1978b, ApJ, 220, 643
Sakamoto, Y., Tsuneta, S., & Vekstein, G. 2008, ApJ, 689, 1421
Sarkar, A., & Walsh, R. W. 2008, ApJ, 683, 516
Sarkar, A., & Walsh, R. W. 2009, ApJ, 699, 1480
Scharmer, G. B., Narayan, G., Hillberg, T., et al. 2008, ApJL, 689, L69
Schmitt, J. H. M. M., Kanbach, G., Rau, A., & Steinle, H. 2016, A&A,

589, A48
Shimizu, T. 1995, PASJ, 47, 251
Šimberová, S., Karlický, M., & Suk, T. 2014, SoPh, 289, 193
Simões, P. J. A., Graham, D. R., & Fletcher, L. 2015, SoPh, 290, 3573
Sprinthall, R. 2012, Basic Statistical Analysis (Boston, MA: Pearson Allyn &

Bacon)
Starck, J.-L., Murtagh, F., & Bijaoui, A. 1998, Image Processing and Data

Analysis: The Multiscale Approach (New York: Cambridge Univ. Press)
Tabachnick, B. G., & Fidell, L. S. 2006, Using Multivariate Statistics (5th ed.;

Needham Heights, MA: Allyn Bacon, Inc.)
Tajfirouze, E., Reale, F., Peres, G., & Testa, P. 2016a, ApJL, 817, L11
Tajfirouze, E., Reale, F., Petralia, A., & Testa, P. 2016b, ApJ, 816, 12
Terrell, J. 1977, ApJL, 213, L93
Terzo, S., Reale, F., Miceli, M., et al. 2011, ApJ, 736, 111
Tovmassian, H. M., Recillas, E., Cardona, O., & Zalinian, V. P. 1997,

RMxAA, 33, 107
Tsuneta, S., Acton, L., Bruner, M., et al. 1991, SoPh, 136, 37
Uchida, Y. 1968, SoPh, 4, 30
Vekstein, G. 2009, A&A, 499, L5
Viall, N. M., & Klimchuk, J. A. 2011, ApJ, 738, 24
Viall, N. M., & Klimchuk, J. A. 2012, ApJ, 753, 35
Viall, N. M., & Klimchuk, J. A. 2013, ApJ, 771, 115
Viall, N. M., & Klimchuk, J. A. 2015, ApJ, 799, 58
Viall, N. M., & Klimchuk, J. A. 2016, ApJ, 828, 76
Viall, N. M., & Klimchuk, J. A. 2017, ApJ, 842, 108
Wang, T., Ofman, L., & Davila, J. M. 2013, ApJL, 775, L23
Wang, T., Ofman, L., Sun, X., Provornikova, E., & Davila, J. M. 2015, ApJL,

811, L13
Wang, T. J., Ofman, L., Davila, J. M., & Mariska, J. T. 2009, A&A, 503, L25
Warmuth, A., & Mann, G. 2016, A&A, 588, A116
Warren, H. P., Brooks, D. H., & Winebarger, A. R. 2011, ApJ, 734, 90
Weber, M. A., Schmelz, J. T., DeLuca, E. E., & Roames, J. K. 2005, ApJL,

635, L101
Wedemeyer, S., Bastian, T., Brajša, R., et al. 2015, AdSpR, 56, 2679
Wheatland, M. S. 2009, SoPh, 255, 211
Wiegelmann, T. 2004, SoPh, 219, 87
Wiegelmann, T. 2007, SoPh, 240, 227
Winebarger, A. R., Emslie, A. G., Mariska, J. T., & Warren, H. P. 2002, ApJ,

565, 1298

21

The Astrophysical Journal, 871:133 (21pp), 2019 February 1 Jess et al.

https://doi.org/10.1088/2041-8205/712/1/L111
http://adsabs.harvard.edu/abs/2010ApJ...712L.111J
https://doi.org/10.1007/s11207-009-9500-0
http://adsabs.harvard.edu/abs/2010SoPh..261..363J
https://doi.org/10.1088/0004-637X/795/2/172
http://adsabs.harvard.edu/abs/2014ApJ...795..172J
https://doi.org/10.1007/s11214-015-0141-3
http://adsabs.harvard.edu/abs/2015SSRv..190..103J
https://doi.org/10.1038/nphys3544
http://adsabs.harvard.edu/abs/2016NatPh..12..179J
https://doi.org/10.1086/498863
http://adsabs.harvard.edu/abs/2006ApJ...638.1140J
http://adsabs.harvard.edu/abs/2012RoAJ...22...13J
https://doi.org/10.1086/343869
http://adsabs.harvard.edu/abs/2002ApJ...580.1118K
https://doi.org/10.1086/321636
http://adsabs.harvard.edu/abs/2001ApJ...557..343K
https://doi.org/10.1117/12.460273
http://adsabs.harvard.edu/abs/2003SPIE.4853..240K
https://doi.org/10.1088/2041-8205/740/2/L40
http://adsabs.harvard.edu/abs/2011ApJ...740L..40K
http://adsabs.harvard.edu/abs/2014AGUFMSH34A..02K
https://doi.org/10.1088/0004-637X/791/1/60
http://adsabs.harvard.edu/abs/2014ApJ...791...60K
https://doi.org/10.1086/320666
http://adsabs.harvard.edu/abs/2001ApJ...553..440K
https://doi.org/10.1086/589426
http://adsabs.harvard.edu/abs/2008ApJ...682.1351K
https://doi.org/10.1086/425122
http://adsabs.harvard.edu/abs/2004ApJ...616.1232K
https://doi.org/10.1088/2041-8205/713/2/L79
http://adsabs.harvard.edu/abs/2010ApJ...713L..79K
https://doi.org/10.3847/0004-637X/820/2/95
http://adsabs.harvard.edu/abs/2016ApJ...820...95K
https://doi.org/10.1088/2041-8205/812/1/L15
http://adsabs.harvard.edu/abs/2015ApJ...812L..15K
https://doi.org/10.3847/1538-4357/834/2/103
http://adsabs.harvard.edu/abs/2017ApJ...834..103K
http://adsabs.harvard.edu/abs/2017ApJ...834..103K
https://doi.org/10.1086/311474
http://adsabs.harvard.edu/abs/1998ApJ...501L.213K
https://doi.org/10.1117/12.827950
http://adsabs.harvard.edu/abs/2009SPIE.7437E..05K
https://doi.org/10.1007/s11207-007-0322-7
http://adsabs.harvard.edu/abs/2007SoPh..240..387L
https://doi.org/10.1088/2041-8205/743/1/L24
http://adsabs.harvard.edu/abs/2011ApJ...743L..24L
https://doi.org/10.1007/s11207-011-9776-8
http://adsabs.harvard.edu/abs/2012SoPh..275...17L
https://doi.org/10.1088/0004-637X/757/1/20
http://adsabs.harvard.edu/abs/2012ApJ...757...20L
https://doi.org/10.3847/0004-637X/828/2/86
http://adsabs.harvard.edu/abs/2016ApJ...828...86L
https://doi.org/10.1086/510662
http://adsabs.harvard.edu/abs/2007ApJ...657.1127L
http://adsabs.harvard.edu/abs/2007ApJ...657.1127L
https://doi.org/10.1086/111605
http://adsabs.harvard.edu/abs/1974AJ.....79..745L
https://doi.org/10.1088/0004-637X/800/2/95
http://adsabs.harvard.edu/abs/2015ApJ...800...95L
https://doi.org/10.1109/TIP.2012.2202675
http://adsabs.harvard.edu/abs/2013ITIP...22...91M
http://adsabs.harvard.edu/abs/1991STIA...9325725M
https://doi.org/10.3847/1538-4357/aad380
http://adsabs.harvard.edu/abs/2018ApJ...864....5M
https://doi.org/10.1007/BF00158405
http://adsabs.harvard.edu/abs/1990SoPh..125..251M
https://doi.org/10.1086/187078
http://adsabs.harvard.edu/abs/1993ApJ...416L..91M
https://doi.org/10.3847/2041-8213/aa8f3a
http://adsabs.harvard.edu/abs/2017ApJ...848L...8M
https://doi.org/10.3847/1538-4357/aaa960
http://adsabs.harvard.edu/abs/2018ApJ...854...14M
https://doi.org/10.1086/306944
http://adsabs.harvard.edu/abs/1999ApJ...514..441O
https://doi.org/10.1007/BF00151692
http://adsabs.harvard.edu/abs/1991SoPh..136....1O
https://doi.org/10.1086/166485
http://adsabs.harvard.edu/abs/1988ApJ...330..474P
https://doi.org/10.1086/308271
http://adsabs.harvard.edu/abs/2000ApJ...529..554P
https://doi.org/10.1086/599023
http://adsabs.harvard.edu/abs/2009PASP..121..414P
https://doi.org/10.1007/s11207-011-9841-3
http://adsabs.harvard.edu/abs/2012SoPh..275....3P
https://doi.org/10.1051/0004-6361/201219812
http://adsabs.harvard.edu/abs/2012A&amp;A...547A..25P
http://adsabs.harvard.edu/abs/2012A&amp;A...547A..25P
https://doi.org/10.1093/mnras/stu1889
http://adsabs.harvard.edu/abs/2014MNRAS.445.2268P
http://adsabs.harvard.edu/abs/2014MNRAS.445.2268P
https://doi.org/10.1088/0004-637X/765/2/144
http://adsabs.harvard.edu/abs/2013ApJ...765..144P
https://doi.org/10.1007/s11207-015-0722-z
http://adsabs.harvard.edu/abs/2015SoPh..290.1931P
http://adsabs.harvard.edu/abs/2015SoPh..290.1931P
https://doi.org/10.1007/BF00159941
http://adsabs.harvard.edu/abs/1986SoPh..104....1P
https://doi.org/10.1023/A:1005248007615
http://adsabs.harvard.edu/abs/1999SoPh..190....1P
https://doi.org/10.1088/0004-637X/752/2/124
http://adsabs.harvard.edu/abs/2012ApJ...752..124Q
https://doi.org/10.1088/0004-637X/774/1/14
http://adsabs.harvard.edu/abs/2013ApJ...774...14Q
https://doi.org/10.1051/0004-6361:200810437
http://adsabs.harvard.edu/abs/2009A&amp;A...494.1127R
https://doi.org/10.1051/0004-6361:20077223
http://adsabs.harvard.edu/abs/2007A&amp;A...471..271R
https://doi.org/10.1086/444409
http://adsabs.harvard.edu/abs/2005ApJ...633..489R
https://doi.org/10.1086/590338
http://adsabs.harvard.edu/abs/2008ApJ...684..715R
https://doi.org/10.1088/0004-637X/764/2/193
http://adsabs.harvard.edu/abs/2013ApJ...764..193R
https://doi.org/10.3847/1538-4357/aab273
http://adsabs.harvard.edu/abs/2018ApJ...856..149R
https://doi.org/10.1364/JOSA.62.000055
http://adsabs.harvard.edu/abs/1972JOSA...62...55R
https://doi.org/10.1117/12.857714
http://adsabs.harvard.edu/abs/2010SPIE.7733E..0GR
https://doi.org/10.1086/156145
http://adsabs.harvard.edu/abs/1978ApJ...222..317R
https://doi.org/10.1086/155949
http://adsabs.harvard.edu/abs/1978ApJ...220..643R
https://doi.org/10.1086/592488
http://adsabs.harvard.edu/abs/2008ApJ...689.1421S
https://doi.org/10.1086/589552
http://adsabs.harvard.edu/abs/2008ApJ...683..516S
https://doi.org/10.1088/0004-637X/699/2/1480
http://adsabs.harvard.edu/abs/2009ApJ...699.1480S
https://doi.org/10.1086/595744
http://adsabs.harvard.edu/abs/2008ApJ...689L..69S
https://doi.org/10.1051/0004-6361/201628199
http://adsabs.harvard.edu/abs/2016A&amp;A...589A..48S
http://adsabs.harvard.edu/abs/2016A&amp;A...589A..48S
http://adsabs.harvard.edu/abs/1995PASJ...47..251S
https://doi.org/10.1007/s11207-013-0334-4
http://adsabs.harvard.edu/abs/2014SoPh..289..193S
https://doi.org/10.1007/s11207-015-0709-9
http://adsabs.harvard.edu/abs/2015SoPh..290.3573S
https://doi.org/10.3847/2041-8205/817/2/L11
http://adsabs.harvard.edu/abs/2016ApJ...817L..11T
https://doi.org/10.3847/0004-637X/816/1/12
http://adsabs.harvard.edu/abs/2016ApJ...816...12T
https://doi.org/10.1086/182417
http://adsabs.harvard.edu/abs/1977ApJ...213L..93T
https://doi.org/10.1088/0004-637X/736/2/111
http://adsabs.harvard.edu/abs/2011ApJ...736..111T
http://adsabs.harvard.edu/abs/1997RMxAA..33..107T
https://doi.org/10.1007/BF00151694
http://adsabs.harvard.edu/abs/1991SoPh..136...37T
https://doi.org/10.1007/BF00146996
http://adsabs.harvard.edu/abs/1968SoPh....4...30U
https://doi.org/10.1051/0004-6361/200911872
http://adsabs.harvard.edu/abs/2009A&amp;A...499L...5V
https://doi.org/10.1088/0004-637X/738/1/24
http://adsabs.harvard.edu/abs/2011ApJ...738...24V
https://doi.org/10.1088/0004-637X/753/1/35
http://adsabs.harvard.edu/abs/2012ApJ...753...35V
https://doi.org/10.1088/0004-637X/771/2/115
http://adsabs.harvard.edu/abs/2013ApJ...771..115V
https://doi.org/10.1088/0004-637X/799/1/58
http://adsabs.harvard.edu/abs/2015ApJ...799...58V
https://doi.org/10.3847/0004-637X/828/2/76
http://adsabs.harvard.edu/abs/2016ApJ...828...76V
https://doi.org/10.3847/1538-4357/aa7137
http://adsabs.harvard.edu/abs/2017ApJ...842..108V
https://doi.org/10.1088/2041-8205/775/1/L23
http://adsabs.harvard.edu/abs/2013ApJ...775L..23W
https://doi.org/10.1088/2041-8205/811/1/L13
http://adsabs.harvard.edu/abs/2015ApJ...811L..13W
http://adsabs.harvard.edu/abs/2015ApJ...811L..13W
https://doi.org/10.1051/0004-6361/200912534
http://adsabs.harvard.edu/abs/2009A&amp;A...503L..25W
https://doi.org/10.1051/0004-6361/201527475
http://adsabs.harvard.edu/abs/2016A&amp;A...588A.116W
https://doi.org/10.1088/0004-637X/734/2/90
http://adsabs.harvard.edu/abs/2011ApJ...734...90W
https://doi.org/10.1086/499125
http://adsabs.harvard.edu/abs/2005ApJ...635L.101W
http://adsabs.harvard.edu/abs/2005ApJ...635L.101W
https://doi.org/10.1016/j.asr.2015.05.027
http://adsabs.harvard.edu/abs/2015AdSpR..56.2679W
https://doi.org/10.1007/s11207-009-9322-0
http://adsabs.harvard.edu/abs/2009SoPh..255..211W
https://doi.org/10.1023/B:SOLA.0000021799.39465.36
http://adsabs.harvard.edu/abs/2004SoPh..219...87W
https://doi.org/10.1007/s11207-006-0266-3
http://adsabs.harvard.edu/abs/2007SoPh..240..227W
https://doi.org/10.1086/324714
http://adsabs.harvard.edu/abs/2002ApJ...565.1298W
http://adsabs.harvard.edu/abs/2002ApJ...565.1298W

	1. Introduction
	2. Observations
	3. Monte Carlo Simulations
	3.1. Input Parameters Selected for the Current Study
	3.1.1. SDO/AIA Noise Modeling
	3.1.2. Additional Model Parameter Definitions

	3.2. Nanoflare Energy and SDO/AIA Intensity Scaling
	3.3. Simulation Outputs
	3.4. Comparing the Monte Carlo Statistical Parameter Space with SDO/AIA Data

	4. Discussion
	5. Future Directions
	6. Overview and Concluding Remarks
	AppendixMonte Carlo Simulations
	A.1. Code Overview and User Inputs
	A.2. Analysis and Output of the Numerical Code

	References



