

Available online at www.sciencedirect.com

Biochemical Systematics and Ecology 34 (2006) 349-352

biochemical systematics and ecology

www.elsevier.com/locate/biochemsyseco

Guaianolides and lignans from the aerial parts of *Centaurea ptosimopappa*

Sezgin Çelik^a, Sergio Rosselli^b, Antonella M. Maggio^b, Rosa Angela Raccuglia^b, Ismet Uysal^a, Wanda Kisiel^c, Klaudia Michalska^c, Maurizio Bruno^{b,*}

^a Çanakkale Onsekiz Mart University, Science & Literature Faculty, Biology Department, 17100 Çanakkale, Turkey ^b Dipartimento Chimica Organica, Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy ^c Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, PL-31-343 Krakow, Poland

Received 20 April 2005; accepted 17 October 2005

Keywords: Centaurea ptosimopappa; Section Ptosimopappus; Asteraceae; Guaianolides; Lignans; Chemosystematics

1. Subject and source

The genus *Centaurea* L. (Asteraceae, tribe Cardueae, subtribe Centaureinae) comprises ca. 600 species distributed in Asia, Europa, North Africa and America (Hickey and King, 1981; Heywood, 1979). Turkish flora numbers 187 species, 114 of which being endemic (Davis, 1975; Davis et al., 1988; Wagenitz et al., 1988; Guner et al., 2000; Duran and Duman, 2000; Turkoglu et al., 2003).

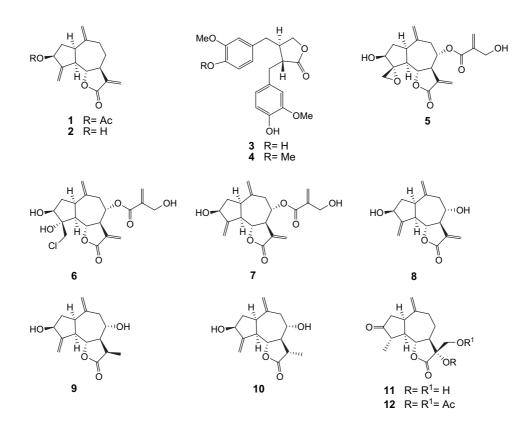
Centaurea ptosimopappa Hayek is an endemic species distributed in the Mediterranean and South-Eastern Anatolian regions of Turkey; widespread and locally frequent in the Amanos and Casus mountains (Davis, 1975; Reeves and Adigüzel, 2004). Aerial parts of *C. ptosimopappa* were collected in Hatay, the Amanos Mountain above Dörtyol (Turkey), 850–950 m above sea level in June 2003 (36° 51′ N, 36° 13′ E). Voucher specimens (Celik 2148–2153) are deposited at the Department of Biology, Çanakkale Onsekiz Mart University.

2. Previous work

Previous chemical studies seem to indicate that patterns of sesquiterpene lactone are systematically important within the genus *Centaurea*. Other secondary metabolites present in plants of this taxon include triterpenes, steroids, hydrocarbons, polyacetylenes, flavonoids, anthocyanins, lignans and alkaloids (Al-Easa and Rizk, 1992). As part of our ongoing chemical investigation of *Centaurea* species of the Mediterranean area (Bruno et al., 1998, 2001, 2002; Senatore et al., 2003), we have examined the aerial parts of the hitherto unstudied *C. ptosimopappa*.

^{*} Corresponding author. Tel.: +39 091 596 905; fax: +39 091 596 825. *E-mail address:* bruno@dicpm.unipa.it (M. Bruno).

Dry aerial parts (2.8 kg), finely powdered, were extracted three times with acetone (3×10 L) at room temperature for one week. After filtration, the solvent was removed under reduced pressure to yield a residue (90 g) which was chromatographed on a silica gel column (Merck Art. 9025, 0.063–0.200 mm, 60×700 mm) eluted with petroleum ether with increasing amounts of EtOAc, 500 mL fractions being collected as follows: 1–10 (petroleum ether), 11–20 (petroleum ether–EtOAc, 4:1), 21–30 (petroleum ether–EtOAc, 3:2), 31–40 (petroleum ether–EtOAc, 2:3), 41–50 (petroleum ether–EtOAc, 1:4), 51–60 (EtOAc), 61–70 (EtOAc–MeOH, 9:1).


S. Çelik et al. / Biochemical Systematics and Ecology 34 (2006) 349-352

Fractions 31–40 were rechromatographed on a silica gel column (Merck Art. 9025, 0.063–0.200 mm, 30×400 mm), eluting with CH₂Cl₂ with increasing amounts of MeOH (49:1 \rightarrow 9:1) to give a subfraction that was allowed to crystallize (petroleum ether–EtOAc, 1:1) giving 600 mg of zaluzanin D (1).

Fractions 41–50 were rechromatographed on a silica gel column (Merck Art. 9025, 0.063–0.200 mm, 30×400 mm), eluting with petroleum ether with increasing amounts of EtOAc (3:2 \rightarrow 1:4) to give two subfractions. The first one was further purified to give 400 mg of zaluzanin C (2). The second one furnished 4 mg of arctigenin (3) after purification by prep. TLC (Merck Art. 5553, CH₃COCH₃–CHCl₃, 1:9, Rf 0.72).

Fractions 51–60 were rechromatographed on a silica gel column (Merck Art. 9025, 0.063–0.200 mm, 30×400 mm), using the same solvent system as described above to give two subfractions. The first one was purified by prep. TLC, as mentioned above, to give 1 mg of matairesinol (**4**, Rf 0.45). The second one was processed by semiprep. RP HPLC on a Delta-Pack C-18 column (particle size 15 mm 25 × 100 mm) coupled to a dual wavelength UV/ vis detector operating at 210 and 260 nm, using an H₂O–MeOH (11:9) mixture at flow rate of 3.0 ml/min, giving janerin (**5**, 1 mg, Rt 48.9), chlorojanerin (**6**, 1 mg, Rt 43.9), cynaropicrin (**7**, 5 mg, Rt 96.9) and a mixture containing **11** (Rt 31.0). The mixture could be further separated by semiprep. RP HPLC (H₂O–MeOH, 7:3) to yield

Structures of compounds 1-12

351

deacylcynaropicrin (8, 2 mg), 11α , 13-dihydro-deacylcynaropicrin (9, 1 mg), 11β , 13-dihydro-deacylcynaropicrin (10, 1 mg) and 4β , 15-dihydro-3-dehydro-solstitialin A (11, 5 mg), the last one contamined with 8.

The structures of the isolated compounds were readily identified by comparing their physical and spectral data (melting points, NMR-spectra, mass spectra) with those reported for zaluzanin D (1), zaluzanin C (2) (Ando et al., 1989), arctigenin (3), matairesinol (4) (Rahman et al., 1990), janerin (5), chlorojanerin (6) (Gonzalez et al., 1977), cynaropicrin (7), deacylcynaropicrin (8) (Rustaiyan et al., 1981), 11α , 13-dihydro-deacylcynaropicrin (9) (Bohlmann and Chen, 1982), 11β , 13-dihydro-deacylcynaropicrin (10) (Singhal et al., 1982). The identity of 4 β , 15-dihydro-3-dehydro-solstitialin A (11) was confirmed after acetylation which yielded 4 β , 15-dihydro-3-dehydro-solstitialin A diacetate (Rustaiyan et al., 1981).

4. Chemotaxonomic and biological significance

Our chemical studies of the aerial parts of *C. ptosimopappa* have led to the isolation of nine guaiane-type sesquiterpene lactones (**1**, **2**, **5**–**11**) and two butyrolactone lignans (**3**, **4**). The guaianolides zaluzanin D (**1**) and zaluzanin C (**2**) are major constituents of the plant material accompanied by minor quantities of the remaining compounds. This is the first report on the presence of zaluzanin D in *Centaurea* species. Zaluzanin C has been found in *Cheirolophus sempervirens* (L.) Pomel (Marco et al., 1994), a species formerly belonging to the section Cheirolophus (Cass.) of the genus *Centaurea* (Hellwig, 2004). Compounds **1** and **2**, first reported from *Zaluzania* species (Romo de Vivar et al., 1967; Dominguez et al., 1975), are also present in other plant genera, e.g. *Zinnia* (Romo et al., 1971), *Podachaenium* (Bohlmann and Le Van, 1977), *Conocephalum* (Asakawa and Takemoto, 1979), *Gochnatia* (Bohlmann et al., 1984), *Cynara* (Omar et al., 1984) and *Scalesia* (Spring et al., 1999).

C. ptosimopappa belongs to the section Ptosimopappus O. Hoffm., endemic to Turkey. The only other *Centaurea* species of this section is *Centaurea ptosimopappoides* Wagenitz, which, although quite similar, shows some morphological differences (Table 1). The minor constituents of *C. ptosimopappa* include cynaropicrin (7) and its deacyl derivatives, also found in *C. ptosimopappoides* (Oksuz and Serin, 1997). It follows, therefore, that both species produce cynaropicrin-like guaianolides and are chemotaxonomically related.

The section Ptosimopappus can be morphologically distinguished from the closely related section Microlophus (Cass.) DC by their differing of achenes, pappus-hairs and involucres. Three members of the later section have been examined. The guaianolides janerin (5) and cynaropicrin (7) have been reported from *Centaurea babylonica* L. (Bruno et al., 2005) and *Centaurea thracica* (Janka) Hayek (Nowak et al., 1986), respectively, and cynaropicrin (7), deacylcynaropicrin (8) and 4 β ,15-dihydro-3-dehydro-solstitialin A (11) from *Centaurea behen* L. (Rustaiyan et al., 1981).

The major guaianolides zaluzanin D (1) and zaluzanin C (2) isolated from *C. ptosimopappa* have been shown to exhibit a variety of biological activities. Zaluzanin D (1) displays antifungal activity against plant pathogenic fungi (Krishna Kumari et al., 2003) as well as zaluzanin C (2) (Wedge et al., 2000). Allelopathic activity (Macias et al., 1992) has been reported for zaluzanin C (2).

Finally, cynaropicrin (7) has been proved to be a potent feeding deterrent against several species of Lepidoptera (Bhattacharyya et al., 1995).

Table 1

Morphological characteristics of the section Ptosimopappus

Centaurea ptosimopappa Hayek	Centaurea ptosimopappoides Wagenitz
Shrub, 1–1.80 m	Subshrub, 30–50 cm
Leaves firm, almost leathery, glabrous	Leaves firm, with slightly prominent lateral nerves,
on both surfaces, wooly at margin	glabrous on both surface, slightly tomentose
	at magrin, entire
Leaves lanceolate-spathulate to obovate	Leaves lanceolate, basal and lower petiolate
Involucrum $18-25 \times 8-16$ mm	Involucrum $18-22 \times 9-11 \text{ mm}$
Achen 4–5 mm, pappus	Achen 5–7 mm, pappus deciduous and 5–8 mm
deciduous and 4–6 mm	
Involucrum $18-25 \times 8-16$ mm	Involucrum $18-22 \times 9-11 \text{ mm}$
Flowers yellow	Flowers yellow

Acknowledgements

This work was supported by Italian Government project PRIN.

References

- Al-Easa, H.S., Rizk, A.M., 1992. Qatar Univ. Sci. J. 12, 27.
- Ando, M., Kusaka, H., Ohara, H., Takase, K., Yamaoka, H., Yanagi, Y., 1989. J. Org. Chem. 54, 1952.
- Asakawa, Y., Takemoto, T., 1979. Phytochemistry 18, 285.
- Bhattacharyya, P.R., Barua, N.C., Ghosh, A.C., 1995. Ind. Crop. Prod. 4, 291.
- Bohlmann, F., Le Van, N., 1977. Phytochemistry 16, 1304.
- Bohlmann, F., Chen, Z., 1982. Phytochemistry 21, 2120.
- Bohlmann, F., Schmeda-Hirschmann, G., Jakupovic, J., King, R.M., Robinson, H., 1984. Phytochemistry 23, 1989.
- Bruno, M., Vassallo, N., Fazio, C., Gedris, T.E., Herz, W., 1998. Biochem. Syst. Ecol. 26, 801.
- Bruno, M., Maggio, A., Paternostro, M.P., Rosselli, S., Arnold, N.A., Herz, W., 2001. Biochem. Syst. Ecol. 29, 433.
- Bruno, M., Maggio, A., Rosselli, S., Gedris, T.E., Herz, W., 2002. Biochem. Syst. Ecol. 30, 379.
- Bruno, M., Rosselli, S., Maggio, A., Raccuglia, R.A., Arnold, N.A., 2005. Biochem. Syst. Ecol. 33, 817.
- Davis, P.H., 1975. In: Flora of Turkey and the East Aegean Islands, vol. 5. Edinburgh Univ. Press, Edinburgh, pp. 466-585.
- Davis, P.H., Mill, R.R., Tan, K., 1988. In: Flora of Turkey and the Aegean Islands (Supplement), vol. 10. Edinburgh Univ. Press, Edinburgh, pp. 489-501.
- Dominguez, X.A., Marroquin, J., Cardenas, E., 1975. Planta Med. 28, 89.
- Duran, A., Duman, H., 2000. Ann. Bot. Fenn. 39, 43.
- Gonzalez, A.G., Bermejo, J., Cabrera, I., Galindo, A., Massanet, G.M., 1977. Anal. Quim. 73, 86.
- Guner, A., Ozhatay, N., Ekim, T., Baser, K.H.C., 2000. Flora of Turkey and East Aegean Islands (Supplement 2). Edinburgh Univ. Press, Edinburgh, pp.163–164.
- Hellwig, F.H., 2004. Plant Syst. Evol. 246, 137.
- Heywood, V.H., 1979. Flowering Plants of the World. Oxford University Press.
- Hickey, M., King, C.J., 1981. 100 Families of Flowering Plants. Cambridge University Press.
- Krishna Kumari, G.N., Masilamani, S., Ganesh, M.R., Aravind, S., Sridhar, S.R., 2003. Fitoterapia 74, 479.
- Macias, F.A., Galindo, J.C.G., Massanet, G.M., 1992. Phytochemistry 31, 1969.
- Marco, J.A., Sanz-Cervera, J.F., Garcia-Lliso, V., Susanna, A., Garcia-Jacas, N., 1994. Phytochemistry 37, 1101.
- Nowak, G., Drozdz, B., Kroszczynski, W., Holub, M., 1986. Acta Soc. Bot. Pol. 55, 17.
- Oksuz, S., Serin, S., 1997. Phytochemistry 46, 545.
- Omar, A.A., Sarg, T.M., Khafagy, S.M., Ibrahim, Y.E., Grenz, M., 1984. Phytochemistry 23, 2381.
- Rahman, M.M.A., Dewick, P.M., Jackson, D.E., Lucas, J.A., 1990. Phytochemistry 29, 1971.
- Reeves, R.D., Adigüzel, N., 2004. Turk. J. Bot. 28, 147.
- Romo de Vivar, A., Cabrera, A., Ortega, A., Romo, J., 1967. Tetrahedron 23, 3903.
- Romo, J., Romo de Vivar, A., Ortega, A., Diaz, E., Carino, M.A., 1971. Rev. Latinoam. Quim. 2, 24.
- Rustaiyan, A., Niknejad, A., Zdero, C., Bohlmann, F., 1981. Phytochemistry 20, 2427.
- Senatore, F., Rigano, D., De Fusco, R., Bruno, M., 2003. Flavour Fragrance J. 18, 248.
- Singhal, A.K., Chowdhury, P.K., Sharma, R.P., Baruah, J.N., Herz, W., 1982. Phytochemistry 21, 462.
- Spring, O., Heil, N., Eliasson, U., 1999. Biochem. Syst. Ecol. 27, 277.
- Turkoglu, I., Akan, H., Civelek, S., 2003. Bot. J. Linn. Soc. 143, 207.
- Wagenitz, G., Ertugrul, K., Dural, H., 1988. Willdenowia 28, 157.
- Wedge, D.E., Galindo, J.C.G., Macias, F.A., 2000. Phytochemistry 53, 747.