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Abstract
Current radiological literature is strongly focussed on radiation imaging risks. Indeed, given there is a small but actual aug-
ment in cancer risk from exposure to ionizing radiation in children, it is important to understand what the risk of alternative 
techniques could be. We retrospectively review literature data concerning possible MR imaging risks, focussing on the 
biological effects of MR, sedation and gadolinium compound risks when dealing with infant patients. The main concerns 
can be summarized in: (1) Biological effects of non-ionizing electromagnetic fields (EMF) employed—whose mechanisms 
of interaction with human tissues are polarization, induced current, and thermal heating, respectively. (2) Risks associated 
with noises produced during MRI examinations. (3) Hazards from ferromagnetic external and/or implanted devices—whose 
risk of being unintentionally brought inside MR room is higher in children than in adults. (4) Risks associated with sedation 
or general anaesthesia, essential problem in performing MR in very young patients, due to the exam long-lasting. (5) Risks 
related to gadolinium-based contrast agents, especially considering the newly reported brain deposition.
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Introduction

Current radiological literature is strongly focussed on radia-
tion imaging risks [1]; it may be worthwhile to assess the 
safety of alternative imaging modalities used in the paedi-
atric population. Since it is a small but actual augment in 
cancer risk from exposure to ionizing radiation in children, 
it is important to understand what the risks of alternative 
techniques could be.

Therefore, the aim of this article was to make a risk/ben-
efit analysis of avoiding the use of X-rays in favour of other 
imaging modalities, focusing our attention on MR imag-
ing (MRI). To achieve this goal, we investigated the recent 
literature and reviewed our experience to optimize the MR 
approach in children.

Methods

We performed a PubMed research (“Magnetic Reso-
nance Imaging”[Mesh] AND “safety”[Mesh]), obtain-
ing 817 results. Adding the filter “Child: birth -18 years”, 
the papers were reduced to 125. Search results for 
((“gadolinium”[MeSH Terms] OR “gadolinium”[All 
Fields]) AND deposition [All Fields] AND (“brain”[MeSH 
Terms] OR “brain”[All Fields])) were 142 papers.

Lastly,  searching for (“Magnetic Resonance 
Imaging”[Mesh] AND “safety”[Mesh] AND “sedation”) 
we obtained 22 papers. If integrated with (“safety”[MeSH 
Terms] OR “safety”[All Fields]) AND (“pediatrics”[MeSH 
Terms] OR “pediatrics”[All Fields] OR “pediatric”[All 
Fields]) AND “MRI”[All Fields], found papers were 564.
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Among those papers, we focussed on articles specifically 
addressed to risks of MRI safety on paediatric population, 
about biological effects, gadolinium-related and sedation 
risks at the end we selected 73 articles and statements con-
sidered more relevant according to author’s agreement that 
are discussed in this paper.

Risks related to MRI medical examinations 
in the paediatric population

MRI related risks can be summarized in: biological effects 
of non-ionizing electromagnetic fields (EMF) employed; 
risks from noises produced during MRI examinations; haz-
ards from ferromagnetic external and/or implanted devices; 
risks associated with sedation or general anaesthesia or 
related to gadolinium-based contrast agents (GBCA) [2].

Biological effects of non‑ionizing electromagnetic 
fields employed in MRI

The three sources of EMF used in MRI are the following: 
static magnetic fields (SMF), gradient fields (GMF), and 
radiofrequency (RF). The mechanisms of interaction with 
human tissues are polarization, induced current, and thermal 
heating, respectively. FDA has approved exposure of adults 
to 7 T fields and exposure of neonates to 4 T fields.

Usually, Institutional Review Boards (IRBs) define MRI 
as a minimal risk technique so it is approved for numerous 
research protocols, including in children [3]. Minimal risk 
means “the probability (of occurrence) and magnitude (seri-
ousness) of harm or discomfort (e.g. psychological, social, 
legal, economic) associated with the research are not greater 
than those ordinarily encountered in daily life (of the average 
person in the general population) or during the performance 
of routine physical or psychological examinations or tests.” 
[4].

MRI is considered the safe alternative to CT, but para-
doxically, one of the most alarming issues concerning MRI 
regards the possible “genotoxic” effects [5].

Hartwig [6] demonstrated that EMF generated during 
MRI diagnostic scans have genotoxic effects, in terms of 
micronuclei (MN) induction (carcinogenesis). Anyway, the 
genetic damage should be reversible: after 48 h, the MN 
number returned to that of the controls, suggesting that two 
cell divisions are enough to eliminate them. In conclusion, 
the authors suggested prudent use to avoid superfluous exam-
inations, according to the precautionary principle. However, 
the precautionary principle is positive only if the restraint of 
a procedure has less damaging side effects than benefits of 
usage [7]. Simi [8] reported a dose-dependent (1.5 T scan-
ner, with a maximum gradients strength of 50 mT m−1, and 
a maximum gradients speed of 150 mT m−1 s−1) increase 

of MN frequency in vitro that returned to control values 
after 24 h when the exposure was within diagnostic levels. 
In vivo, a significant increase in MN was found till 24 h and 
after the frequencies slowly returned to control values. [9].

The issue of biological damage and DNA repair capacity 
is also the key point of the studies on detrimental effect of 
X-ray radiation [10]. Kuefner [11] stressed that individual 
factors, including radiation sensitivity and DNA repair 
capacity, determine the DNA damage level. There may be 
similar assumptions for MR, but according to Leszczynski, 
even if single EMF exposures cause only negligible fully 
reversible effects, i.e. slightly changed phosphorylation of 
proteins, multiple EMF tests might increase the risk that one 
of these changes might lead to an irreversible effect [12]. 
The dilemma is: in children’s growing organs mitoses are 
more frequent, but cancer incidence significantly increases 
in the elderly [13]. The apparent contradiction is likely to 
be justified in the greater potential of chromosome damage 
repair in children. Besides, in everyday life, we are subjected 
to a series of environmental insults that cannot be genotoxic 
“in themselves”, but may increase the negative effects of 
other biological, chemical and/or physical agents [8]. In a 
study by Magin [14] on (sub) chronicle exposures, no sta-
tistically significant changes were observed in foetal growth 
in animals (mice) exposed to only MR or ultrasound fields. 
Conversely, in the combined ultrasound and MR exposed 
group, foetal weight and crown-rump length were reduced 
compared to the controls. Luckily, analysis of cognitive and 
biometric data from a decade-long longitudinal fMR study 
of normal language development in a small, longitudinal 
sample of healthy children who received up to 10 MR scans 
provided evidence of minimal (if any) risk [3]. Salerno et al. 
demonstrated the effect on human lymphocyte activation 
cytokine release by SMF in 0.5 T MR [15, 16].

The most common/known biological problem during MR 
is that of heating, due to RF fields [17]. This heating of tis-
sues is maximum at the surface and minimal at the centre of 
the body. A rise of 1 °C is generally acceptable for a normal 
healthy body. Usually, there are no problems in adults, who 
dissipate heat mainly with peripheral vasodilatation. Infants 
and newborns, particularly if preterm, have immature ther-
moregulation [17, 18]. The RF power absorbed per unit of 
mass of an object is defined Specific Absorption Rate (SAR) 
and is measured in watts per kilogram (W kg−1). SAR rises 
with the square of the static MF. To avoid overheating of any 
local area, the limits of the product of time and local SAR 
(W min kg−1) are defined by international guidelines. For 
exposures of infants, a reduction of these values by a factor 
of two is recommended [18, 19]. For children in general and 
infants/newborns, the time factor is crucial. Many techni-
cal issues cause an increase of examination time, such as 
smaller coils to maximize local signal (enclosing a larger 
portion of the body, and augmenting RF heating in turn), 
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respiratory triggering and cardiac gating, and controlled 
ventilation [20].

During sedation/anaesthesia, which limits intrinsic ther-
moregulation, body temperature is the result of a sum of fac-
tors: the cool environment, hypothermia because of passive 
heat loss (large surface area-to-body weight ratio), heating 
due to RF fields [21]. According to Isaacson, hypothermia 
(− 1 °C or more) is possible in young patients propofol-
sedated [22]. Conversely, a case of iatrogenic hyperther-
mia occurring in a 16-month-old infant during anaesthesia 
for cardiac MR (fentanyl, rocuronium, sevoflurane) was 
reported [23]. The patient was scanned with a head coil 
for 19 consecutive series over 95 min with a 1.5 T mag-
net. The pulse sequences included fast spin echo sequences, 
which are associated with the highest SARs. At the end of 
the examination, the heart rate was 200 bpm and axillary 
temperature was 38 °C. Other series of infants propofol-
sedated do not confirm hypothermia, reporting a prevalence 
of heating: probably, the depth of sedation may influence the 
degree of thermoregulatory impairment [24]. In summary, 
local temperature fluctuations are difficult to predict.

Risks related to noises produced during MR 
examinations

Various types of acoustic noise are produced during MRI. 
The primary source of noise is the GMF with flexing and 
vibration of the gradient coils [25]. The noise is manifested 
as loud tapping, knocking, or chirping sounds. Neonates 
with undeveloped anatomical structures may have an ampli-
fied reaction to acoustic noise, i.e. important changes in vital 
signs of newborns have been described during MR examina-
tions, which may be due to acoustic noise. This could aug-
ment the chance of hearing loss and could have an adverse 
effect on neurosensory and physiologic short-term and 
long-term natural growth and development of the neonate 
[26]. Noise levels differ with diverse MR sequences and are 
directly related to static field strength [25]. MHRA states 
[27]: the use of earplugs, ear defenders, or other hearing 
protections is highly recommended. Groups of concerns are 
paediatric and neonate patients, and the foetus. It is recom-
mended that staff and others remaining in the scan room (i.e. 
parents) wear non-metallic earplugs and/or ear defenders. 
In the case of the anaesthetized patients, hearing protection 
should always be provided. Another source of acoustic noise 
is the so-called RF hearing (click, buzz, chirp, or knocking 
noise) [25].

Time-varying magnetic fields also induce electric fields in 
patients, stimulating nerves or muscles. At sufficient ampli-
tudes, peripheral nerve stimulation is perceptible (i.e. tin-
gling or tapping sensations). Safety standards avoid cardiac 
stimulation [28].

Risks from ferromagnetic external objects 
and implanted devices

The risk of ferromagnetic projectiles unintentionally car-
ried inside the scanning room of an MR setting is greater 
in children (especially in the newborns and infants) than in 
adults. If a young child needs MR, the clinical problem is 
usually severe and almost always sedation or anaesthesia 
is necessary. Usually, they have supplementary equipment, 
such as monitoring, ventilation and infusion pumps. As syn-
thesized by Arthur [17]: proper requirements must be acces-
sible when sick young children are in the MR environment: 
MR-compatible fibre-optic temperature monitoring, pulse 
oximeter, ECG leads. Standard equipments such as laryngo-
scope blades, handles and stethoscopes are usually not MR 
compatible. All emergency care is best performed outside 
the immediate scanner environment (outside the 5-Gauss 
line) to minimize the risk of ferromagnetic projectile.

Concerning implanted devices, these are special in chil-
dren and must be known (Fig. 1). They can determine elec-
tromagnetic field interactions, MR-related heating, and the 
creation of artefacts. As well as longer-term central venous 
catheters, implanted programmable cerebrospinal fluid 
(CSF) shunts (to be resected after imaging), implanted car-
diac devices and cochlear implants are typical of paediatric 
patients. The FDA’s Centre for Devices and Radiological 
Health (CDRH) proposes terms to be used to label MR infor-
mation for medical devices [29]:

• MR Safe: an item that poses no known hazards in all MR 
environments;

Fig. 1  CT angiography sagittal reconstruction of a 1-year-old female 
with congenital heart disease with Berlin Heart, a paediatric mechani-
cal ventricular assist device (arrow); in these cases, magnetic reso-
nance (MR) imaging is contraindicated
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• MR Conditional: an item that has been demonstrated to 
pose no known hazards in a specified MR environment 
with specified conditions of use;

• MR Unsafe: an item that is known to pose hazards in all 
MR environments.

Owing to the complexity of the conditions faced and 
the heterogeneity of the implanted devices, in our Hospi-
tal we identified a flow chart that has the justification of 
the examination as starting point and subsequently advises 
that the physician retrieves the information on the device 
from the manufacturer, identifying the degree of MR safety. 
The increasing amount of data on all specific devices will 
ultimately allow to build a database, enabling real-time 
decisions.

Risks associated with sedation 
and anaesthesia

The most common cause of artefacts on MR images is 
patient motion. In children, the mix of patient collaboration, 
fast/irregular respiratory frequency, and tiny anatomy can 
make the exam extremely challenging. In MR performed in 
paediatric patients, spatial resolution is crucial, but unfortu-
nately there is an inverse relationship between spatial resolu-
tion and signal-to-noise ratio (SNR), which is proportional 
to the square root of the acquisition time [30].

NICE guidelines suggest [31]: “for children and young 
people […] during diagnostic imaging consider either chlo-
ral hydrate for children under 15 kg, or midazolam. If these 
are not suitable, consider one of the following drugs min-
istered by a specialist healthcare professional with a nar-
row margin of safety: propofol, sevoflurane”. Long scan 
times evidently make sedation/anaesthetic indispensable 
in paediatric MR [32]. The principal short-term risks are 
under-sedation or over-sedation. Under-sedation is inade-
quate reduction of movements to obtain diagnostic images. 
In younger children, over-sedation increases the risk of 
desaturation or apnoea. Furthermore, adverse events, espe-
cially pulmonary complications, also include patients with 
obesity, history of snoring, and developmental disabilities. 
In children with congenital cardiac diseases, the frequency 
of adverse events was estimated to be between 0 and 10.4% 
[33] and direct patient observation is prevented by physi-
cal separation. Besides, little is known about the long-term 
effects after exposure to analgesics or sedatives [34]. Prac-
tices for the induction of general anaesthesia, as masks or 
cannulas, can also create panic in the child [32]. Alternative 
techniques such as oral sucrose solution, “feed and wrap” or 
“feed and sleep” practices can be valid solutions. Accord-
ing to Edwards [32], “feed and wrap” is ideal for children 
younger than 1 year, oral or intravenous sedation between 1 

and 5 years, and distraction therapies for > 6 year olds. Usu-
ally, the necessity of “urgent” examinations favours anaes-
thesia (i.e. baseline oncology imaging that implies prolonged 
examination times). There is a need to balance the choice 
between the risk of failing the exam, the use of alternative 
techniques such as CT (considering any diagnostic limits), 
and performing anaesthesia directly (if the organization 
allows it) [35].

In any case, intensive use of techniques to reduce arte-
facts, such as respiratory gating (or triggering), respiratory 
compensation (or phase re-ordering), navigator echoes, ECG 
gating, contributing to long acquisition times, is required in 
children.

Risks associated with gadolinium‑based 
contrast agents (GBCA)

GBCAs can increase the accuracy of MR examinations, but 
many risks associated with the administration of exogenous 
contrast media must be taken into account [36]. All GBCAS 
are administered to humans in the form of chelates to avoid 
the presence of free gadolinium (Gd3+), which is toxic. The 
molecular structure can be linear or macrocyclic, and ionic 
or non-ionic. In linear GBCAs, the ion of Gd is surrounded 
by an open structure. Macrocyclic agents have a complete 
ring encasing the ion of Gd in a structure which tends to hold 
it more firmly, thus being more resistant to its release [37]. 
The association between GBCA exposure and the develop-
ment of Nephrogenic Systemic Fibrosis (NSF) is widely 
accepted [38]. In healthy individuals, the half-life of GBCAs 
is usually 1.5 h, while in severely impaired renal function 
patients the half-life is increased up to approximately 30 h 
[39]. Only 23 paediatric NSF cases have been described and 
all patients were 6 years of age or older. Seventeen of these 
children had documented exposure to GBCAs [40].

The association of brain MR abnormalities (Abnormal 
T1 Shortening in Deep Brain Areas) with a history of linear 
GBCA administration was firstly reported by Kanda [41]. 
Increased signal intensity in the dentate nucleus and globus 
pallidus on unenhanced T1-weighted images (T1WI) showed 
a positive correlation with previous exposure to GBCAs 
with an apparent dose–response relationship (Fig. 2a, b). 
Macrocyclic GBCAs seem to be less linked to this phenom-
enon [42–47]. The same phenomenon has been also reported 
in children [48–53]. The studies have been focused in three 
directions: (1) detection of increased T1-weighted signal 
intensity (SI) or R1 relaxation rate in deep grey matter struc-
tures; (2) direct detection of Gd and measurement of Gd 
concentration in human tissues (brain, other organs) [45] 
[54–57]; (3) animal studies (detection and measurement of 
Gd levels, imaging investigations, Gd deposit speciation) 
[58–60]. To date, no histological changes in brain tissues 
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after repeated GBCA administration have been found. Clini-
cal significance of gadolinium deposition and potential long-
term consequences in the brain remain unclear. For all these 
reasons, EMA’s Committee for Medical Products for Human 
Use (CHMP) has recently published several precautions and 
recommendation on the use of GBCAs for MR [61].

ESUR Contrast Medium Safety Committee recommends 
avoiding unnecessary exposure of children to GBCAs, espe-
cially in neonates and infants. Contrast agents with high-
est risk of NSF (linear) are contraindicated in neonates and 
should be used with caution in children aged less than 1 year 
[62]. However, Bedoya [63] investigated the effect of intra-
venous contrast material (linear) on renal function in a large 
population of neonates and concluded that, in the absence of 
known renal failure, neonates receiving standard patient care 
do not appear to be at increased risk for developing renal 
toxicity due to the administration of intravenous iodine- or 
gadolinium-based contrast media.

Paediatric acute allergic-like reactions to GBCA are rare: 
0.04–0.08% per dose vs. 0.18% for iodinated contrast agents 
[5, 64–66].

Conclusions

The main role of imaging is to help patients by influencing 
clinical management, simultaneously reducing imaging-
related risks without negative consequences on efficacy as 
much as possible. MR is paramount in the evaluation of 
the brain, musculoskeletal system, and spine. As for the 
abdomen, MR is multi-parametric and has an incompara-
ble contrast resolution, excellent for oncology. In detail, it 
can create a variety of tissues contrasts that can even be co-
registered, increasing lesion conspicuity [30, 67].

Unfortunately, MR is also somewhat operator depend-
ent in its execution and, to be effective, time consuming. 
Conversely, CT is faster, cheaper, and much easier to per-
form. As Arthurs stated [5]: a well-performed CT will yield 
better diagnostic information than a poorly performed MR. 
The duration of MR means sedation or anaesthesia and 
risks of over-sedation, causing respiratory depression. The 
major events requiring resuscitation occur in 1% of patients, 
depending on the exact drug regimen used and staff experi-
ence [35]. Paradoxically, in this context the main risk in 
imaging concerns MR. The drawback of CT is the risk of 
ionizing radiation. Syndrome associated with paediatric 
tumours, such as Beckwith–Wiedemann syndrome and, 
even more, DNA repair diseases (Fanconi anaemia, ataxia-
telangectasia, etc.), which are characterized by immunodefi-
ciency and/or predisposition to cancer development, need a 
screening by imaging [68–70]. Despite the presumed geno-
toxicity, MR is considered the technique of choice in this 
case: many cancer-prone diseases have been shown to be 
radiosensitive due to pitfalls in the mechanisms of repair of 
induced DNA lesions.

Up to date there is not yet an adequate consensus about 
the MR-related cancer risks and the World Health Organi-
zation affirmed that “the carcinogenicity of static magnetic 
fields to humans is not at present classifiable”. But a study 
conducted by Ray et Al must be mentioned, since it dem-
onstrated that there is not actual carcinogenetic risk, when 
performing MR in foetal period—first trimester [70, 71].

Whole‐body MR (WB-MR) is an increasingly used tech-
nique in paediatric oncology (Sequences that are typically 
employed in WB-MR include short tau inversion recovery 
(STIR), usually obtained using respiratory compensation 
techniques, and diffusion-weighted whole-body imaging 
with background body signal suppression (DWIBS), which 
are free breathing sequences [72]. The limits of WB-MR 
are poor sensitivity (motion artefacts, partial volume planes) 
and poor specificity (pitfalls due to growth variants) [73]. 

Fig. 2  a, b Pre-contrast T1-weighted images of a 13-year-old girl 
affected by suprasellar germinoma treated with chemotherapy and 
radio-therapy. a First MRI at the onset (11  years). A clear dentate 
nucleus hyperintensity (arrows) is visible after 6th from previous MR 
(b); only a macrocyclic GBCA was used
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Besides, technological advancements in CT (reduced radia-
tion doses in sub-second scan times) improve the potentials 
of CT and we should re-evaluate its use in at-risk paediatric 
patients. Diagnostic images are produced without breath-
holds and patient cooperation and, thus, without general 
anaesthesia. A typical example is Cardiac CT [33].

In summary, particularly in young children, the choice 
between CT and MR should be decided on a case-by-case 
basis, considering efficacy first and avoiding radio-phobic 
attitudes. Of course, the costs, the urgency, and the avail-
ability of machines also play a primary role.
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