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Chapter 1

Introduction

The object of this thesis is the analysis, the improvements and the applications of
particular numerical strategies with the common idea to avoid the use of a mesh,
upon which to discretize the governing problem domain. The studies on these
methods, usually called meshless, are motivated by the important role that in these
years they have been gained, not only in applied mathematics but in the engineer-
ing field. Thanks to their flexibility, they are largely used in multi-disciplinary
areas of science. Namely, they can treat with problems in high dimension, scat-
tered data approximation and problems defined over manifolds.
The meshless approximation methods have being studied by many researchers and
nowadays fall under many names, including meshfree, gridless, gridfree, Moving
Least Squares (MLS), Partition of Unity (PU) or Smoothed Particle Hydrodynam-
ics (SPH). Despite their varied names, all these numerical approaches provide an
essential functional structure, thus they can be analyzed or generalized indepen-
dently on the particular problem studied.
These methods present a valid alternative to the widely used grid strategies such
as the finite difference (FDM), finite volume (FVM), finite element (FEM), and
the strategies for coupling them.
While these traditional schemes have directly impacted engineering and scientific
developments, the state of art in computation investigations coupled with the in-
creasing performance of moderns computers, has exposed the limitations of these
conventional numerical methods. In fact, they have relied on the use of elements,
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grid or underlying structures to approximate the geometry of the problem domain.
The construction of these lattices either limits the ability to handle very large de-
formation process or complicated modeling. Therefore, to avoid the overwhelming
time consuming strategies in generating and maintaining high quality grids, the
meshless methods represent an appealing and valid alternative to facilitate the
numerical simulations that traditional schemes are incapable of modeling. In fact,
the meshless strategies are based only on a set of independent points that are
not linked to the others by a connectivity law, making the numerical applications
better suited to cope with high dimensional data, irregular spatial domains or
complex changes in the geometry of the domain of interest (e.g., free surfaces and
large deformations).
In this thesis we investigate on some of these methods, introducing them into bio-
mathematics context, to better understand some behaviors, and in approximating
functions and its derivatives.
In the first part we deal with dynamical systems modeled by ordinary differential
equations (ODEs). They are governed by suitable parameters, representing the
most important relations between the variables. These models are deterministic,
therefore, by fixing the values of the parameters, the solutions evolve toward the
stable configuration, depending on the initial conditions.
Many models are multi-stable, i.e. they admit more than one possible final configu-
ration. In real applications a stable point could represent an unfavorable condition,
such as the extinction of a species or a virus spread. Therefore, it is fundamental to
analyze the basins of attraction of these stable states, in order to avoid unpleasant
outcomes. To accomplish this task, we have developed a method to reconstruct
the surface between two different basins of attraction, called separatrices.
Starting from a bisection method proposed in literature [21], we present a new
efficient strategy to detect the scattered points lying on the separatrix manifold.
Moreover, dealing with a scattered data problem, we reconnect and reconstruct
the surfaces by employing a Moving Least Squares (MLS) meshless method.

In Chapter 2 we resume some important theoretical basis of the dynamical
analysis. Then, the bisection method to detect the separatrix points, is presented.
To reconstruct the surfaces, we consider the Moving Least Squares algorithm by
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means of compactly supported radial basis functions. These particular functions
have no prefer direction but only depend on norms in space (usually Euclidian).
Therefore, a problem involving many space dimensions is converted into one that
is virtually one dimensional.

In Chapter 3 we show the importance of the algorithm developed, by analyz-
ing the Allee effect in a particular eco-epidemiological model. First, we give some
backgrounds about the different classification of the Allee effect, then we analyze
the dynamics of the model considering the bifurcation studies. Finally, we recon-
struct the separatrix for different values of the parameters, underlying the most
important process driving the eco-system dynamics.

Chapter 4 provides a new formulation to detect the threshold points, involving
the invariant manifolds of the saddle points. This algorithm reduces the compu-
tational cost and it could be applied to multi-stable systems with any number of
stable configurations and, more important, with complex attractors such as tori
and limit cycle. Several models are analyzed to validate the new strategy.

The second part of this thesis is devoted in studying the Smoothed Particle
Hydrodynamics (SPH) method, widely used in applications involving Partial Dif-
ferential Equations (PDEs).
Many scientific process are modeled by means of PDEs equations or systems. Un-
fortunately, the exact solution of these models is very difficult or even impossible to
find, making the numerical approximation fundamental to many applied scientists.
The SPH was one of the first meshless method developed to substitute the classical
grid methods in approximate the solutions for astrophysics problems. Since it has
a long history, many improvements have been proposed to make the approximation
more stable and accurate. However, the method still suffers of drawbacks treat-
ing non uniform distribution of points and in dealing with boundary evaluations.
Here we work with a modified SPH method (M-SPH) to restore the accuracy of
the standard procedure, in approximating a function and its derivatives.

In Chapter 5, after an overview on Meshless Particle Methods (MPMs) and
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the standard SPH, the improved algorithm is proposed. It provides simultane-
ously an approximation of a function and its derivatives with the desired accuracy
by means of Taylor series expansion. Several numerical experiments, with different
bi-variate test functions and different data distribution are provided, in order to
test the validity of the M-SPH approach. We give evidence of the accuracy and
convergence.

Finally in Chapter 6 some computational skills of the modified formulation are
reported. By considering that the M-SPH formulation is more demanding than the
standard one, requiring many summations on the employed RBFs and derivatives
too, some efforts are performed with the aim to reduce the overall complexity.
Fast transforms are taken into account, and the Improved Fast Gauss Transform
(IFGT) is adapted to assembly the corrective linear system for each evaluation
point.

Most of the contents of this thesis was presented at international conferences
and published or accepted for publication.
In particular, the algorithm and the results presented in Chapter 2 and Chapter 3
are published in [35, 36, 37, 58]. The extended results on the invariant manifold
discussed in Chapter 4 are published in [34, 38]. Finally, the second part of the
thesis is the object of the papers [39, 40].
All the algorithms introduced and tested in this thesis have been implemented
in MATLAB. The bifurcation and stability analysis of the model in [58] it was
conducted with the XPPAUT program.



Chapter 2

Separatrix Reconstruction

In this chapter we will present briefly the fundamental elements of the analysis of
the dynamical systems and their applications in bio-mathematical field.
The first part is organized to give the ground floor where the following results are
rooted and to clarify the notation used. In this view, we will concentrate only on
the basic definitions, that are fundamental for the following discussion.
We will introduce the problem of the basins of attraction analysis, focusing on
the importance of the separatrix reconstruction. Finally a Moving Least Squares
meshless method is presented to deal with the scattered data approximation.

2.1 Mathematical Modeling

In the last decades, mathematical modeling becomes a fundamental tool for the
qualitative analysis of several natural phenomena. The unifying aim of theoretical
description and experimental investigation is to analyze and to justify specifics
processes explaining their intrinsic logic [65, 85]. The mathematical modeling
translates the world process observed into a rigorous scientific language.
These models are applied for a several number of different reasons. Example of the
range objectives are: developing scientific understanding, test the effect of changes
in a system and decision making. Of course, the majority of the interactive process
in the real world are far too complicated to be modeled their entirety. Therefore,
analyzing a phenomena, the idea is to describe and to understand the fundamen-
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tal mechanism, capturing the essence of various interactions, in order to obtain a
predictive science that studies the possible outcomes.
In this scenario, the mathematical analysis represents a bridge between the experi-
mental data measured and patterns describing in general the fundamental variable
interactions.
There are two different approaches in modeling: deterministic and stochastic. In
the first case, the random variations are ignored, therefore, starting from a fixed
starting condition, the predictive evolution is always the same. On the other hand
to describe the randomness presents in nature, the statistical model predicts the
distributions of different outcomes.
In both cases the equations of the model depend on suitable parameters to describe
the interactions between the variables that we want to describe.
In this part of the thesis we will focus on the analysis of the deterministic dy-
namical systems modeled by ordinary differential equations, ODEs, to study eco-
epidemiological interactions. The dynamical theory is largely used to study the
biological process in order to preserve the biodiversity of an eco-systems, to erad-
icate pest species or even in medicine to study the growth of the cancer cells or
diseases spread.
Even if we focus our attention only on bio-mathematics field, the results that we
will present could be applied in other field of science such as physics, engineering
and even social science.

2.2 Dynamical systems

In mathematics, a dynamical system is a model describing the time dependence
of a variable in a geometrical space.
The relation between the variables involved is either a differential equation or
difference equation of other time scale. Our research is focused on continuous
systems of ordinary differential equations:

ẋ = f(x) x ∈M ⊆ Rn, (2.1)

where M is an open set called phase-space, i.e. the space where all motions
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happen and f : M → Rn is a vector field that we assume to be f ∈ C1.
To determine the state for all future times, it is required to re-iterate the function
f . This iterative procedure, is referred to as "solving the system" or "integrating
the system". If the model can be solved, given an initial state x0, we can determine
all its future positions, i.e. the orbit of the point Φt(x0), where Φ : R → R is an
invertible map. The set of all these maps:

Φ =
{

Φt(x)|t ∈ R
}
,

is called flow of the system.
The dynamical theory is focused on the asymptotic behavior, meaning that the
principal goal is the analysis of the different trajectories when t → +∞. This
study allows to generalize and to predict the possible outcomes of the variables
studied, rather than consider only a particular interval of time.
Starting from different initial states and by changing the parameter values, the
system evolutions may be very different and lead to unfavorable conditions. To
understand the possible outcomes of the model, the first step is looking for fixed
states and to analyze their stability [52, 65].

Definition 1.
Given an autonomous system of ordinary differential equations ẋ = f(x), an equi-
librium or critical point x∗ is a solution that does not change in time:

Φt(x∗) = x∗ ∀t ∈ R.

The equilibrium points are the only one, whose trajectories are represented by
the points themselves. Now, the question is what happens when we consider
trajectories starting from initial states close to the fixed points. Namely, how
change the system for small perturbations. If the trajectories remain close to the
fixed point, it is called stable, in particular, if they collapse to the point, then it is
asymptotically stable. Otherwise it is unstable [74].
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Definition 2.
An equilibrium x∗ to an autonomous system of first order ODEs, is Lyapunov
stable if
∀ε > 0, ∃δ > 0 such that, if ||x− x∗|| < δ then ||Φt(x)− x∗|| < ε, ∀t > 0.
It is Lyapunov asymptotic stable if
∀ε > 0, ∃δ > 0 such that if ||x− x∗|| < δ then

lim
t→∞

Φt(x) = x∗.

Once the critical points are found the analysis of stability is conducted considering
the system (2.1) in matrix form

ẋ = Ax (2.2)

where x ∈ Rn and A is a n× n matrix with real entries.
Assuming a linear vector field, the system has a constant solution at the origin:
x = 0. This solution is asymptotically stable, if and only if all eigenvalues λ of
the matrix have negative real part: Re(λ) < 0. On the contrary if all the eigen-
values have positive real part, the origin is unstable. In Figure 2.1 it is shown the
classification of critical points in 2D vector field with eigenvalues having the same
signs. When the eigenvalues are complex the trajectories spiral around the point.
In Chapter 4 a more detailed classification of the equilibrium point will be ad-
dressed, considering the case of the eigenvalues with opposite signs.
These results on the stability analysis can be generalized to non-linear ODEs sys-
tem, thanks to the Hartman-Grobman theorem [50, 56].

Theorem 1 (Hartman-Grobman).
Let (2.1) be a non-linear system with f a smooth map with an hyperbolic equilibrium
point x∗ ∈ M . Then there exists a neighborood U of x∗ and an homeomorphism
h : U → Rn, such that h(x∗) = 0 in U and the flow of the system is topological
conjugate by the continuous map N = h(u) to the flow of its linearization dN

dt
=

AN .

This theorem asserts that analyzing the Jacobian matrix associated to the system
and the relative eigenvalues we have information about the local behavior around
the equilibrium point of a non-linear system. In particular, it works only if the
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Figure 2.1: Classification of equilibrium points in a 2D vector field depending on
the eigenvalue sign.

fixed states are assumed to be hyperbolic points, i.e. with no purely imaginary
eigenvalues. Therefore, the attractive or repulsive direction depends only on the
relative eigenvalues with negative or positive real part respectively (Figure 2.1).
From now on, we assume that all the points have no eigenvalues with zero real
part and these features will be fundamental for the future discussion in Chapter 4.
If the model admits only one stable configuration, the analysis is rather banal

and simple because all the trajectories evolve toward that state. On the con-
trary, the analysis of the multi-stable models results more complex and interesting,
namely the systems admitting more than one stable equilibrium simultaneously
[51, 60, 65, 77, 88, 96, 102]. In this case the phase-space is partitioned into the
basins of attractions of the equilibria, i.e. the sets of initial conditions evolving
toward the corresponding stable configuration. The study of these domains of
attraction is important in the research to avoid or to prevent an unfavorable out-
comes, such as the growth of the cancer cell [18] or the extinction of a species [58].
Often the physical or biological phenomena studied are not in isolated systems, in
this case such systems can shift abruptly from one state to another, a phenomenon
also known as ecological regime shift. Well-known examples include shifts from
clear to turbid waters [19], from grassland to shrubland [92], the collapse of fish-
eries [87], and the degradation of coral reefs [84].
In mathematical representation, modeling these shifts means change the values of
the parameters or the initial state variables [11]. In the first case, it is described a
change on the eco-system characteristics, therefore the relations between the vari-



2. Separatrix Reconstruction 10

ables are different. Changing the parameters could lead to new configuration, i.e.
the appearance (or disappearance) of alternative stable states.
In the second case the systems are already multi-stable but an overcritical distur-
bance of the system causes unpredictable shifts from one basins of attraction to
another.
For example, there are climatic factors, like the Indian Ocean Dipole and El Nino
Southern Oscillation [10, 86], becoming more unpredictable and less regular be-
cause of the global warming. These changes makes harder to live in this environ-
ment. As consequence, the animal survival is jeopardised and this could lead to
not have necessary newborns to avoid the decline of the population. Thus, it is
important to understand the necessary density for survival in order to prevent the
loss of biodiversity in the eco-system.
The tipping points, i.e. the boundary values between two basins of attraction,
represent the most sensitive states to these changes. As regime shifts often imply
catastrophic consequences for the ecosystem, failure to recognize alternative stable
states or wrong predictions of these threshold points can turn out not only as a
surprise, but also costly.
A complete knowledge of the existence and location of tipping points is fundamen-
tal for understanding and managing models [17, 19, 34, 75]. There is a need of
methods that help in accomplishing this task. In this thesis, we provide a numer-
ical tool to locate the boundary points and to reconstruct the relative separatrix
manifold, which separates two domains of attraction.

2.3 Detection Problem

To analyze and to reconstruct the domains of attraction, the first goal is to find
the tipping points lying on the separatrix manifold. In a simple system with only
one state variable, the separatrix point corresponds to the unstable equilibrium
collocated between the two stable steady states. However in higher dimensional
systems, information about the separatrix is needed. In particular, the tipping
point of a certain state variable is not anymore a single value for a given set of
parameters, but it depends on the values of the other state variables as the sepa-
ratrix is a higher dimensional object.



2. Separatrix Reconstruction 11

Figure 2.2: Phase-space of a planar model computed in XPPAUT. The green line
represents the x-nullclines. In red the y-nullclines. The blue curve is the separatrix
between the two stable points.

There are some packages such as MATCONT or XPPAUT that are capable to
reconstruct the separatrix curves in bi-dimensional systems. In Figure 2.2 is de-
picted an example of a planar model analyzed by using XPPAUT. In this thesis
we focus our study on the analysis of three dimensional dynamical systems with a
particular interest on the eco-epidemiological models.
Our research starts from the method proposed in [21], in which a bisection al-
gorithm is presented to detect the separatrix points with the desired accuracy.

2.3.1 Bisection Method

The bisection method has been presented for the first time in [21] to analyze the
basins of attraction of a bi-dimensional competitive model with two different stable
equilibria.
The algorithm starts considering a square domain with edge l ∈ R: [0, l]2, on the
plane of the trajectories (x, y), i.e. the phase-portrait. Then a grid of N × N

points is built, where N is the number of subdivision points in the interval [0, l].
When the biological parameters are fixed, the evolution of the trajectories is unique
and it depends only on the initial states (Figure 2.3A). Thus, the bisection routine
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Figure 2.3: A) Some trajectories computed starting from different initial conditions
(red curves). The green squares represent the starting points. The stars are the
stable states. B) The separatrix points detected with bisection method are depicted
in blue.

is applied to the following pairs of initial conditions

(xj, 0) and (xj, l), j = 1, ..., N,
(0, yj) and (l, yj), j = 1, ..., N.

The orbits of these points are integrated. If they reach different equilibrium points
then the bisection method is applied, i.e. the midpoint is the new initial state and
the procedure is iterated until the required accuracy is obtained (Figure 2.3B).

Later, this procedure was extended to three dimensional systems with two or
three stable fixed points [20, 22, 23, 24].
The idea is the same as the planar models. In this case a cubic domain is con-
sidered: [0, l]3 and the bisection routine is applied to the following pairs of initial
conditions

(xj, yk, 0) and (xj, yk, l), j, k = 1, ..., N,
(xj, 0, zk) and (xj, l, zk), j, k = 1, ..., N,
(0, yj, zk) and (l, yj, zk), j, k = 1, ..., N.
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Of course, the fixed points have to be excluded from the initial conditions, because
their orbits are the points themselves. Once that a sufficient number of separatrix
points are detected, the authors use a Partition of Unity method to reconstruct
the manifold.

Our studies begin by adopting the bisection procedure to find the tipping
points, whilst a quasi-interpolant scheme has been considered to reconstruct the
manifold. Namely, a Moving Least Square approximant, based on explicit formula
of the Lagrange multipliers, is used to avoid the setting up of the interpolation
system. The quasi-interpolant is formulated by means of compactly supported ra-
dial basis functions, providing a local approximation of each evaluation point and
we will discuss in details on it in the next section.

2.4 Moving Least Squares approximant

The general Moving Least Squares method (MLS) is appeared in the approxi-
mation theory literature in the paper [64], whose authors also pointed out the
connection to the earlier more specialized work of Shepard [97].
This scheme belongs to the class of meshless method that does not need the con-
struction of any grids, making it suitable even in problems with complex domains
and applicable in different area of science.
The idea of this method is to solve for each evaluation point a locally weighted
least squares problem. At first, it seems to be rather expensive, however is proved
to be an efficient method and it could be parallelized. Moreover in many appli-
cations, like the one considered in this work, it is not required a large number of
evaluations.
In the literature there are many different approaches and representations of the
moving least squares method [6, 32, 61, 64, 109]. Here we propose a discussion
similar to the one in [64], following the Backus-Gilbert approach [6] reported in
the monography [32].
Given a discrete set χ = {x1, ...,xN} ⊂ Rd of data sites and knowing the evalua-
tions {f(x1), ..., f(xN)} of the function f at these points, we construct the quasi-
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interpolant

Pf (y) =
N∑
i=1

f(xi)Φi(y), (2.3)

where Φi(y) = Φ(y,xi) are the generating functions that govern the approxima-
tion goodness.
If we consider a linear space generated by the linear function {Φ1, ...,ΦN} to ap-
proximate the given measurements {f1, ..., fN}, we can find the coefficients {ai}Ni=1,
to construct the interpolant

Pf (y) =
N∑
i=1

aiΦi(y), (2.4)

such that Pf (xi) = f(xi). In particular, if Φi are the cardinal functions, i.e.
Φi(aj) = δij, then the coefficients are the given data: ai = f(xi). In general
the MLS method considers a general space of generating functions to obtain an
approximant instead of an interpolant. In this way it is not necessary to set up
and to solve a possible large interpolation system to find the coefficient ai.
Of course, it is necessary to find the best set of functions Φi to obtain a good
fitness to the data. In the Backus-Gilbert formulation the goal is not to minimize
the point-wise error but instead finding the generating functions that minimize the
quantity

1
2

N∑
i=1

Φ2
i (y) 1

ω(xi,y) , (2.5)

where ω is the weight function governing the data influence. In our application we
choose the radial basis functions with compact support.
Therefore ωi(x) = ω(xi,y) are strictly positive in a sub-domain Ωi containing xi,
but they are zero outside. This domain is called the domain of influence of the
node xi. Specifically

∀x,y ∈ Rd ωε(x,y) = 0 if ||x− y||2 > ε, (2.6)

where ε is the so-called shape parameter indicating the domain size (Figure 2.4)
and which influences the approximation goodness.
To ensure that the quasi-interpolant Pf achieves a certain approximation power,
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Figure 2.4: Weight Radial Basis Function (Gaussian) with ε = 0.5 (left) and ε = 1
(right)

it is required that the generating functions Φi, reproduce polynomials of a certain
degree q. Thus they are subject to the constraints

N∑
i=1

p(xi)Φi(y) = p(y) ∀p ∈ Πd
q , (2.7)

where Πd
q is the space of the d-variate polynomials of total degree at most q with

dimension Q = (d+q)!
q!d! ,spanned by the monomial basis functions: {p1, ..., pQ}.

By considering the vector Φ(y) = [Φ1(y), ...,ΦN(y)]T we can rewrite (2.5) as fol-
lows

1
2ΦT (y)W(y)Φ(y), (2.8)

with W(y) = diag

(
1

ω(x1,y) , ...,
1

ω(xN ,y)

)
, (2.9)

and the linear polynomial constraint (2.7) becomes

AΦ(y) = p(y), (2.10)

with Aki = pk(xi), k = 1, ..., Q, i = 1, ..., N being the entries of matrix A and p =
[p1(y), ..., pQ(y)]T being the known vector. The generating functions Φ satisfying
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(2.8) and (2.10) are given by [32, 109]:

Φi(y) = ω(xi,y)
Q∑
k=1

λkpk(xi) i = 1, ..., N, (2.11)

where λk are the Lagrange multipliers, i.e. the only solutions of the system

Q∑
k=1

λk
N∑
i=1

ω(xi,y)pk(xi)pq(xi) = pq(y) 0 ≤ q ≤ Q. (2.12)

Therefore, by considering the vector Λ = [λ1, ..., λN ]T , and by letting K(xi,y) =
ω(xi,y)ΛT (y)p(xi), the quasi-interpolant is

Pf (y) =
N∑
i=1

f(xi)K(xi,y). (2.13)

In order to improve the stability of the method, the polynomials are centered
on the evaluation points, i.e. p(xi) = p(y−xi) so that only p1(y) ≡ 1 6= 0 [32, 109].
Constructing the quasi-interpolant (2.13), most of the computational cost is for
the estimation of Lagrange multipliers λk, requiring the solution of system (2.12)
for each evaluation point y. This appears to be quite expensive, but there are two
important factors to consider.
First, for our purpose, to reconstruct the surface we do not need a large number of
evaluation points. Second, the linear polynomial reproduction (q = 1) will show
to be of approximation order O(h2), and it is accurate enough in our contest [32].
Since we are in R2, the linear system (2.12) that we have to solve is

G(y)λ(y) = p(y), y ∈ R2, (2.14)

where G is the Gram matrix with entries Gjk(y) = ∑N
i=1 pk(xi)pl(xi)ω(xi,y) and

j, k = 1, .., 3.
Thanks to the low dimension of the problem, in the computation we use Maple to
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find the explicit formula for the Lagrange multipliers

λ1(y) = 1
|G|

(G2
11 −G22G33),

λ2(y) = 1
|G|

(G12G31 −G13G23),

λ3(y) = 1
D

(G22G13 −G13G23).

In this way the solution of the linear system is avoided at all and for each evaluation
point y the computational cost is at most:

O(Q3 +Q2Ny +QNy), (2.15)

where Ny is the number of data sites inside the support of the weighted functions
ω(·,y) [109].

2.4.1 Estimation Error

To derive the point-wise error estimates it is considered the polynomial reproduc-
tion property of the generating functions [32]. Therefore we obtain

|f(x)− Pf (x)| ≤ |f(x)− p(x)|+ |p(x)−
N∑
i=1

f(xi)Φi(x)| ≤

≤ |f(x)− p(x)|+ |
N∑
i=1

p(xi)Φi(x)−
N∑
i=1

f(xi)Φi(x)|, (2.16)

thus we have
|f(x)− Pf (x)| ≤ ||f− p||∞

[
1 +

N∑
i=1

Φi(x)
]
. (2.17)

To find the order of the approximation we have to discuss the upper bound of
the quantities ||f− p||∞ and ∑N

i=1 Φi(x).
Considering the q − th order Taylor expansions of f centered at the point x, we
obtain that

||f− p||∞ ≤ Chq+1max|Dαf(ξ)|, (2.18)
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where the shape parameter is scaled, according to the fill distance

hχ,Ω = sup
x∈Ω

min
xj∈χ

‖xj − x‖2, (2.19)

that gives a measure of the data distribution. To estimate the uniform bound for∑N
i=1 Φi let’s start considering the simplest case: q = 0, d = 1. In this case the

quasi-interpolant obtained reproduces the constants and it is the so-called Shepard
approximant

N∑
i=1

f(xi)Φi =
N∑
i=1

f(xi)
ωi(x)∑N
j=1 ωj(x)

, (2.20)

satisfying that
N∑
i=1

Φi = 1. Therefore

||f(x)− Pf || ≤ 2||f− p||∞. (2.21)

The authors in [109] extend the results for the general case, demonstrating that
the moving least squares method that reproduces polynomials of degree q has an
approximation error of O(hq+1). However some properties have to be satisfied in
order to prove this result. In particular it is required a quasi-uniform distribution
for the data sites and the weighted functions have to be compactly supported
functions as we previously assumed.

2.5 Sketch of the algorithm

We are now ready to construct the separatrix manifold. We assume the data sites χ
as the scattered separatrix points projected onto the (x, y) plane, while the data
values fi = f(xi) describe the height at xi. Then we apply the MLS method just
described in generating the local approximation.
The sketch of the overall algorithm is shown in the following:

• - E ∈ Rn×3: matrix whose rows contain the fixed points of the model.

• - parameter ∈ R1×k: the parameters vector.

• - l ∈ R: the edge length of the cubic domain considered.
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• - t ∈ R: size of integration interval.

• - N ∈ R: number of initial conditions on each axis.

• - y ∈ R2×M : matrix whose rows contain the evaluation points.

• STEP 1 Define the cubic domain [0, l]3, and consider h = 1, 2, 3 the par-
allel cubic faces.

STEP 1.1 Define the pairs of grid points on parallel faces:
P h
ij, i = 1, 2, j = 1, ..., N2.

• STEP 2 for j = 1 : N2

STEP 2.1 if P h
1j or P h

2j are in E then return
STEP 2.2 else if P h

1j and P h
2j tend toward different equilibrium

then SeparatrixPoints=Bisection(P h
1j,P h

2j);

• STEP 3 Repeat STEP 2 changing h.

• STEP 4 Calculate the Lagrange multipliers using the explicit formula:
λ = LagrangeMultipliers(y, SeparatrixPoints, ω)

• STEP 5 Find the MLS approximant:
Pf = MLS(λ,y, Separatrixpoints, ω)



Chapter 3

Analysis of the Allee effect

In this chapter we will present a study on the Allee effect of a particular eco-
epidemioligical model. The algorithm presented in the previous chapter will be
employed to reconstruct the separatrix manifold, representing the Allee threshold.
The obtained results show interesting insights that were not previously observed
with a classical dynamical analysis.

3.1 Allee effect

In many biological systems animals exhibit social behavior: they use cooperative
strategies to hunt or to fools predators [29, 30, 101], they forage together [63], they
join forces to survive unfavorable conditions [8, 42] or simply they seek sexual re-
productions at the same moment or place [14]. In the 1930s W.C. Allee discovered
that the goldfish grow more rapidly when there are more individuals in the tank
[5] and concluded that aggregation can improve the survival rate of individuals
and that cooperation could be crucial for the evolution and survival of the species.
The Allee effect describes the positive correlation between the population density
and populations fitness (measured at the per-capita growth rate) [5, 28]. When
there are too few individuals it may be that they will each benefit from more re-
sources, but in many cases they will also suffer from a back conspecific. Thus,
there is the possibility of extinction, if the population density falls below a critical
value known as "Alee threshold" [13, 14, 28, 51, 75].
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Figure 3.1: Study of the Allee effect on the plane (P, P t). Strong Allee effect (A):
the growth rate is negative for low density (P < θ). Weak Allee effect (B): the
growth rate is always positive.

The Allee effects can be classified in Strong Allee effect with a critical population
size and weak Allee effect without this critical threshold (Figure 3.1).
More than the weak effect, the strong one has obtained large attention especially
in studying endangered species. In fact it is important the study of the critical
quantity in order to protect the biodiversity or to guide eradication campaigns
of pest species. Recently, many researchers have studied the impact of the Allee
effects on population interactions as well as they interplay with disease on species
establishment and persistence [8, 29, 36, 37, 42, 93, 104]. All these researches
suggest the profound effects of the disease in population when it is coupled with
the Allee effect [62].
In this chapter we recap an eco-epidemiological model introduced and analyzed in
[58]. This combines disease transmission in a predator population with the eco-
logical dynamics of a predator-prey system. In addiction the predators cooperate
by hunting in packs.
Through the reconstruction of the separatrix manifold we will analyze the strong
Allee effect induced by this cooperation. In fact, the critical density needed for
survival corresponds to the tipping point between extinction and persistence. We
will use the method presented in previous section, to study the changes of the
Allee threshold when the biological parameters are varied.
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3.2 Eco-epidemiological model

The eco-epidemiological model considered here is based on prey and predator pop-
ulations with densities N and P , respectively. Because of the infectious disease the
predator population is split into susceptible (S) and infected (I), with P = S + I.
The population dynamics in time T can be described by a three-dimensional sys-
tem of nonlinear ordinary differential equations:

dN

dT
= r

(
1− N

K

)
N − (a0 + a1P )NP,

dS

dT
= −βSI

P
−mS + ε (a0 + a1P )NS + (1− θ) ε (a0 + a1P )NI,

dI

dT
= β

SI

P
−mI − µI + θε (a0 + a1P )NI.

It is assumed a logistic growth in prey, with K the carrying capacity and r

being the per capita net growth rate. Predators grow by consuming prey and die
with a natural per-capita death rate m. In order to model the cooperative hunting
among predators, the functional response to prey is represented by the term

(a0 + a1P )N,

where a0 is the density-independent predation rate corresponding to a linear func-
tional response and a1 represents the strength of hunting cooperation. Parameter ε
is the efficiency with which predators consumed prey into their own growth. The
disease transmission in the predator population is frequency-dependent, with β

being the transmission parameter. Moreover, we assume that the mothers could
pass the disease to the offspring, i.e. a vertical transmission, and θ ∈ [0, 1] is the
fraction of offsprings acquiring infection from their mothers. Furthermore, infected
predators are subject to an additional disease-related per-capita mortality µ.
All the variables and parameters involved in the mathematical modeling have dif-
ferent unit of measurement. Therefore before to analyze a dynamical system it is
necessary non-dimensionalize.
First we perform a change of variables, which allows to deal with the singularity
in the frequency dependent transmission and to distinguish the disease-induced
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extinction.
We replace the state variables S and I by the entire predator population P = S+I
and its prevalence i = I/P . Then we introduce the dimensionless quantities

n = εa0

m
N, p = a0

m
P, t = mT.

This leads to:

dn

dt
= r′

(
1− n

k′

)
n− (1 + αp)np, (3.1)

dp

dt
= − (1 + µ′i) p+ (1 + αp)np, (3.2)

di

dt
= i (1− i) (β′ − µ′)− (1 + αp) (1− θ)ni, (3.3)

where
r′ = r

m
, k′ = εa0K

m
, α = ma1

a2
0
, µ′ = µ

m
, β′ = β

m

are dimensionless parameters. In particular we will focus our analysis on the
relation between the parameters β and α, representing the transmissibility of the
infection and the strength of predator cooperation, respectively. To simplify the
notation, from now on, we drop the dashes appearing in the parameters.
Solving for the equilibria of model (3.1)–(3.3), and through the analysis of the
Jacobian matrix and its eigenvalues, the study of the stability is conducted. In
Table 3.1 there are resumed all the fixed steady states and the parameter conditions
for the stability.

An important quantity in the stability analysis is the basic reproduction num-
ber of the disease in the predator population,

R0 = β

µ+ (1− θ)k , (3.4)

which gives the number of secondary infections caused by a single infected preda-
tor during its lifetime when the predator–prey system is at disease-free coexistence
equilibrium. Depending on the value of this quantity we can distinguish two cases.
If R0 < 1, the infection will disappear in the long run. In this case, the model
reduces to the disease-free predator–prey system with predator cooperation. On
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Table 3.1: Equilibria of model (3.1)–(3.3) and their existence and stability condi-
tions. βc = k(1− θ) + µ
Equilibrium Meaning Existence Stability
E0 ≡ (0, 0, 0) Extinction of Always Unstable

all species
En ≡ (k, 0, 0) Prey only Always Unstable
Ei ≡ (0, 0, 1) Extinction of Always β < βc

all species
Eni ≡ (k, 0, 1− (1−θ)k

β−µ ) Disease-induced β > βc ∨ β < µ β > βc
predator extinction

Enp ≡ (n∗, p∗, 0) Disease-free - -
coexistence

Enpi ≡ (n∗, p∗, β−µ−(1−θ)
(β−µθ) ) (Endemic) coexistence β > µ+ 1− θ -

∨β < µθ

the contrary, if R0 > 1, the disease will spread in the predator population; in this
case, the predators could either coexist or go extinct because the infection its too
strong. To investigate the impact of pack hunting we study the bifurcation behav-
ior, namely we numerically continue the equilibria and their stability as functions
of the hunting cooperation parameter α. In Figure 3.2 are reported the results
confronting two cases: when the disease cannot establish (R0 < 1; left panels of
Figure 3.2) and the endemic case (R0 > 1; right panels of Figure 3.2).
Both panels show that the cooperation is fundamental for the survival of the preda-
tors. In fact, when the hunting pack is absent or small (α < αc; Fig. 3.2C,D) the
predators go extinct. As a consequence, the prey stabilize to the carrying capacity
k. In this case the model is equivalent to the classical Lotka-Volterra model with
prey self-regulation in a parameter range where the prey-only equilibrium (En or
Eni) is the only attractor. When α reaches the limit value α = αc, there is a
saddle–node bifurcation from which starts two branches of nontrivial equilibria,
one being stable and the other one being unstable. Consequently for α > αc there
is a bi-stability (the two red lines in Figure 3.2). Predators either go extinct (En
or Eni) or coexist with the prey (Enp or Enpi), depending on the initial popula-
tion densities. In this range of parameters, when α > αc and hunting cooperation
increases, the prey population density at stable coexistence equilibrium decreases
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Figure 3.2: Bifurcation diagrams of model (3.1)–(3.3) for varying hunting coop-
eration. The left panels are the disease-free case (β = 0.7;R0 < 1) and the right
panels are the endemic case (β = 5;R0 > 1). Red lines indicate stable equilibria
and dashed black lines unstable equilibria. LP marks limit point bifurcations oc-
curring at α = αc and HB marks Hopf bifurcations at α = αh. The bold green
lines are the amplitudes of limit cycles. Other parameter values: r = 10, k = 0.8,
θ = 0.1, m = 0.3.
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because cooperating predators become more effective in exploiting the prey. In
turn, predator density increases initially with increasing cooperation, but declines
for larger values of α when the prey becomes overexploited.
Furthermore, for high values of predator cooperation, there is a Hopf bifurcation,
where the coexistence equilibrium becomes unstable and populations start to oscil-
late (at α = αh in the bifurcation diagrams). Meanwhile the prey-only equilibrium
remains stable, i.e. we continue to have bi-stability.
The two panels apparently seem showing the same behavior, however there are
some important differences that underline the impact of the disease on the popu-
lation dynamics.
First, the disease tends to reduce the impact of hunting cooperation. In fact, com-
paring the bifurcation diagrams of predators and prey, we observe that the limit
point occurs for larger values of α in the presence of the disease. This makes sense
as due to infection there is a higher mortality rate in the predator population.
This requires higher hunting cooperation to mediate predator survival, and it also
reduces the peak density of predators (compare Fig. 3.2D with 3.2C).
Analyzing the prevalence diagrams, we observe that, when R0 < 1, the infection
prevalence always vanishes, as we expect (Fig. 3.2E). By contrast, when the disease
is established, the prevalence can reach two different levels, depending on whether
or not predators survive. Since the spread of the disease is assumed not be influ-
enced by the cooperation, the prevalence levels at the equilibrium are independent
of α (Fig. 3.2F and Tab. 3.1).
It is interesting notice that, even if the predators population die out, the steady
state Eni is stable. This point is feasible from a mathematical point of view, be-
cause the prevalence is the ratio of predators infected (i = SI

P
) in the limit process

of the predator population density approaching zero. Therefore, when P → 0
consequently S and I approach zero too. Thus in the limit scenario we have a 0

0

situation. Depending on the dynamics of the population, it could be that the limit
of the prevalence is different from zero, making the steady state Eni feasible.
Moreover the infection transmission is frequency dependent, therefore it is con-
stant in time, even when the population of predators approaches zero.
In reality the points Eni and En represent the same stationary state, but their
biological meaning are different. In the first case the predators die out because the
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infection is too strong: it represents the disease-induced extinction point. While
En represents the trivial extinction and it depends only on ecological reasons, i.e.
the prey cannot sustain the predator population.
From these analysis emerges that pack hunting can thus mediate the survival of
predators even when the prey density cannot sustain predators in the absence of
hunting cooperation. This is a new property not present in the classical Lotka–
Volterra model and it represents the strong Alee effect induced in the predator
population.
The Alee threshold is the predator density below which predator populations go
extinct, and above which they survive. In this eco-system depends both on the
value of the prey density to sustain the predator and on the number of the preva-
lence of infection.
In particular, the presence of the disease, increases the Allee threshold. Meaning
that the size of predators has to be bigger than the disease-free case, to contrast
the additional mortality. In this case we talk about epidemiological Allee threshold.
The unstable coexistence state, represented in panels C,D of Figure 3.2, gives an
idea of the boundary points between the two basins of attraction. However, be-
cause we are dealing with a higher dimensional system, it does not correspond to
the Allee threshold. Instead, we have to find the separatrix between the prey-only
state and the coexistence state. From these analysis and the results presented
in [58], we conclude that the two most important forces driving the population
dynamics are pack hunting and the disease infection working in contrast in the
survival of predator population.
In order to provide a more complete overview of these two features, we show a two
parameter bifurcation diagram in the (α, β) plane reported in Figure 3.3 (see also
[58]). We can distinguish four different dynamical regimes:

1. For low values of β (R0 < 1) the infection is not endemic and there are three
different scenarios depending on the level of hunting cooperation. First, for
small values of α (α < αc), the pack hunting is too inconsistent to overcome
the predator extinction. The result is basically corresponding to a simple
Lotka–Volterra model with prey self-regulation. Second, for higher hunting
cooperation, there is a bi-stability induced by the cooperation, between the
prey-only state En and the predator–prey coexistence state Enp. Third, for



3. Analysis of the Allee effect 28

even higher values of hunting cooperation, Enp becomes unstable. There is
bi-stability between the prey-only state and the predator–prey oscillations.
The following regimes assume disease persistence (R0 > 1) but are analog to
the cases just described.

2. For low values of α (to the left of the limit point curve), hunting cooperation
is too weak to contrast the effect of the disease and to sustain the population.
Therefore the only possible stable state is predators extinction Eni.

3. The third scenario occurs for the widest range of the parameters α and β.
It represents the bi-stability connected to the Allee threshold. Depending
on the initial conditions the three population can coexist Enpi, otherwise the
predators die out because of the infectious disease Eni.

4. For large values of α a periodic behavior erases. On the right of the Hopf
bifurcation curve, the endemic coexistence is cyclic. The system remains
bistable, with the other attractor being Eni.

For our goal, we are particularly interested in the bi-stable regime, where the sys-
tem shows tipping behavior in the sense that predators either go extinct or survive
at stable equilibrium. We shall focus on the endemic case and therefore consider
the dynamical regime no. 3, which covers a large part of the parameter range
shown in Fig. 3.3. However, the analysis so far has not given us any information
about the Allee threshold. Therefore, we do not know anything about the critical
extinction threshold for the predators. Is it very high such that predators would
have a hard time to survive in the bistable case, or is the Allee threshold quite
low such that survival chances in the bistable case would be much better? With
this is mind we proceed in studying the basins of attraction and in particular the
surface that allows to separate them in the phase space.

3.3 Separatrix Reconstruction

Before to reconstruct the separatrix surface, it is always advantageous to integrate
and to represent some solutions of the system, in order to individuate the cubic
domain to apply the bisection method.
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Figure 3.3: Two-parameter bifurcation diagram of model (3.1)–(3.3) when varying
predator cooperation α and disease transmissibility β. The red dashed line repre-
sents the limit point bifurcation curve (LP) and the black one the Hopf bifurcation
curve (HB). There are four different scenarios in the endemic case: (1) Disease-
free model, (2) Extinction of predators, (3) Bistability between predator extinction
and stable endemic coexistence, and 4) Bistability between predator extinction of
oscillatory endemic coexistence (OC). In the disease-free case, LV stands for the
prey-only state of the Lotka–Volterra model with logistic prey growth.Other pa-
rameter values as in Fig. 3.2.



3. Analysis of the Allee effect 30

Figure 3.4: Example of trajectories of model (3.1)–(3.3) starting from different
initial conditions represented by the red empty circles and approaching equilibrium
points (green stars) in 3D phase space (A) and projected on the phase plane
(n, p) (B). Parameter values: α = 2, β = 2, and the other ones as in Fig. 3.2.

Fixing the biological parameters, in Figure 3.4 we show different trajectories start-
ing from several initial conditions (red circles). In this case the populations can
reach one of the two different stable equilibria (green stars).
Looking at the diagram and considering the bifurcation analysis conducted, we
already get an idea about the location of the separatrix points.

In particular, by visualizing the projection on the plane (p, n) (Fig. 3.4B),
we note that the possible future outcomes of the system depend mainly on the
initial predator densities. This is due to the strong Allee effect in predators, linked
with the bi-stability. The separatrix represents the Allee threshold separating the
domains of attraction of the predator extinction Eni and coexistence point Enpi.
From these observations we can state that the separatrix surface is located between
the planes: π1 : p = 0 and π2 : p = l. Hence, the set of the initial conditions reduces
to

(nj, 0, ik), (nj, l, ik), j, k = 1, ..., N. (3.5)

Therefore, we solve the model (3.1)–(3.3) on the cubic domain [0, 1]3 by considering
N = 10 equispaced points on both n-axis and the i-axis. The Figure 3.5A shows
the separatrix points detected iterating the bisection method to the 100 pairs of
initial conditions, until the tolerance 10−4 is obtained.
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Figure 3.5: (A)Scattered separatrix points detected with bisection method. (B)
Reconstruction of the surface. Parameter values as in Fig. 3.4.

We choose the Wendland C2 compactly supported function, centered on y

ω(xi,y) = (1− ε||y− xi||2)4
+(4ε||y− xi||2 + 1), (3.6)

as weights. The goodness of the approximation depends on the size of the sup-
port. Therefore the approximation goodness is influenced by the shape parameter
ε. From empirically simulations we have found that for our applications a good
range for the parameter is 1 ≤ ε ≤ 3. The numerical test presented in this section
are obtained considering ε = 3 (Figure 3.5B).
The bifurcation analysis has showed as the two most important forces, driving the
dynamics of the systems, are the disease and the cooperation between predators.
To this aim, we reconstruct the separatrix surface by considering different values
of α and β, in order to understand the impact on the Allee threshold of the pack
hunting coupled with the infectious transmission.
As previous observed (Figure 3.4), the long term evolutions of the orbits mainly
depends on predators densities and the Allee threshold decreases for larger values
of prey. This seems plausible because with more resources, the predators do not
need a strong cooperation to guarantee the survival.
However by fixing all the parameters and by varying only the parameter β, the
separatrix manifold shifts to the right, reaching bigger values of predators den-
sities. This is due to the stronger transmissibility generating more infected on
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predators population. Increasing the prevalence, the predators have to face with
an additional mortality disease-induced, thus to contrast the extinction the initial
density has to be larger than before. Therefore, the Allee thresholds tend to be
larger, which is why the separatrix has shifted to the right-hand side (i.e., in the
positive predator direction) in comparison to Figure 3.6A.
Opposite results are obtained by varying hunting cooperation, α (Fig. 3.7). If hunt-
ing cooperation increases, the separatrix surface moves closer to the plane p = 0,
considerably reducing the basin of attraction of the prey-only state Eni (compare
Fig. 3.7B with Fig. 3.7A). Therefore, the trajectories of the system almost always
tend to the coexistence state Enpi except for very low predator densities.
So far we have seen that disease transmissibility tends to increase the Allee thresh-
old, whereas hunting cooperation tends to decrease the Allee threshold. If we in-
crease the two parameters β and α simultaneously, we observe, for the parameter
set chosen in Figure 3.7C, that the separatrix surface moves close to the plane
p = 0. This means that the impact of pack hunting prevails even when disease
transmission increases. The location of the Allee thresholds thus complement the
results from a bifurcation analysis.

Figure 3.6: Separatrix curve for different values of β. (A) α = 2, β = 2; (B)
α = 2, β = 8. The red star represents Enpi and the blue one is Eni. Two
trajectories, belonging to different basins are integrated and represented in green.
Other parameter values as in Fig. 3.2.
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Figure 3.7: Separatrix curve for different values of α and β. (A) α = 2; β = 2, (B)
α = 6; β = 2 (C) α = 6, β = 8. The red star represents Enpi and the blue one is
Eni. Two trajectories, belonging to different basins are integrated and represented
in green. Other parameter values as in Fig. 3.2.
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Table 3.2 reports the execution times to detect and to reconstruct the separa-
trices for different values of the parameters α and β.

Separatrix Detection Time Reconstruction Time
α = 2, β = 2 2.50 min 35 sec
α = 2, β = 8 2.35 min 40 sec
α = 6, β = 2 2.27 min 47 sec
α = 6, β = 8 2.42 min 32 sec

Table 3.2: Execution times for the detection and the reconstruction of the separa-
trices by fixing different values of α and β.

3.4 Results Interpretations

In this chapter we have addressed about an important application of separatrix
reconstruction in the study and the analysis of the Allee effect. The algorithm
presented in the previous chapter is a fundamental tool to represent the basins of
attraction and to understand the possible outcomes of the model. The algorithm
makes use of a bisection method proposed in [22, 23, 24] to detect the scattered
data points lying on the surfaces, that are reconnected employing a Moving Least
Squares method.
Standard model analysis, such the equilibrium and stability study, as well as bi-
furcation and continuation methods, offers various insights and give important
information about the research domain for the separatrix points. However they do
not give any information about the Allee effect. In particular the bifurcation anal-
ysis presents bi-stability for a large range of parameter α, suggesting an induced
strong Allee effect in predator population.
During the first analysis of this eco-epidemiological model, the authors already
noticed that the populations almost always evolve toward the coexistence state
when the parameter α is big. They observed this phenomenon through empirical
experiments, i.e. integrating several trajectories from different initial conditions,
even close to the extinction point. These results suggested that the basin of attrac-
tion of the point Eni was very small. However it was not possible demonstrated it
without the reconstruction of the separatrix.
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Here we proved that, even if the mathematical analysis shows a bi-stability, i.e. a
strong Allee effect, actually when the cooperation is really strong the Allee thresh-
old is almost zero, in which case the predators almost always survive. In other
terms, pack hunting can not only mediate predator survival by inducing a strong
Allee effect, but it can be so powerful that it turns a strong Allee effect effectively
into a weak Allee effect. The difference is that in the latter case predator survival
is (almost always) guaranteed, whereas in the former case an initial number of
predators above the Allee threshold is needed for survival. The numerical strategy
allows us to underline the impact of the pack hunting and the disease transmission
directly on the Allee threshold. This quantity is important in control programs to
eradicate predators that are pests (e.g. in the case of biological invasions) or one
may think to preserve an endangered predator population considering a sufficient
number of re-introductions.



Chapter 4

Invariant Manifolds
Reconstruction

In the previous chapter we have presented the bisection method. This routine
represents a valid and easy to implement algorithm to detect the separatrix points
of dynamical models.
However a controversial aspect is the high computational cost. In fact, for each
iteration, it is required the integration of the trajectory of the new initial state
until the desired accuracy is obtained. Moreover this procedure is applicable only
for dynamical systems admitting equilibria that are fixed points. In order to deal
with these problems, we consider the vector field properties of dynamical systems.
Recently, to visualize and to study the phase-space, many topological methods
have been developed. The principal aim is the representation of the topological
skeleton, i.e. the vector field analysis, considering only the fixed state and the
separatrices of the basins of attraction. Many studies have been conducted to
analyze the planar topological skeletons [9, 57, 107, 108, 110]. While only few
approaches exist to apply them to three dimensional vector field [45, 89, 106]. In
fact, in the former case the integration of the separatrix orbits is less stable and the
visualization of these manifolds is difficult to be treated. Therefore the existing
methods either are focused only on stable analysis, ignoring the separatrix, or
consider simple flow dynamics.
Here we present a new detection procedure to deal with three dimensional vector
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field. It is based on a particular class of equilibrium, the saddle points, and their
invariant manifolds.

4.1 Vector Field Topology

Before to describe the new detection method, we recall some important properties
of the vector field topology, that are fundamental to deal with the new algorithm.
In Section 1.6 we briefly introduced the stability analysis. In particular, we said
that, given a fixed point x0 for the model

ẋ = f(x), x ∈M ⊆ Rn, (4.1)

if the Jacobian matrix A(x0) has all eigenvalues with negative real part, then it
is stable. On the contrary, a critical point is called unstable node when all the
eigenvalues have positive real part. We did not consider the eigenvalues with real
part with opposite sign. In this case the point is unstable but it is called saddle.
Therefore, assuming that the model (4.1) is a three dimensional system and that
all the eigenvalues are real, the following classification holds:

Stable Node Re(λ1) ≤ Re(λ2) ≤ Re(λ3) < 0
Unstable Node 0 < Re(λ1) ≤ Re(λ2) ≤ Re(λ3)
Repelling Saddle Re(λ1) < 0 < Re(λ2) ≤ Re(λ3)
Attracting Saddle Re(λ1) ≤ Re(λ2)< 0 < Re(λ3)

Each of these classes can be further divided, if the Jacobian matrix A(x0) admits
two complex conjugate eigenvalues. In this case the trajectories of the system
spiral around the critical point and the equilibrium could be:

Stable Node–Focus Re(λ1) < Re(λ2) = Re(λ3) < 0
Im(λ2)=-Im(λ3)

Unstable Node–Focus 0 < Re(λ1) <Re(λ2) = Re(λ3)
Im(λ2)=-Im(λ3)

Repelling Saddle–Focus Re(λ1)< 0 < Re(λ2) = Re(λ3)
Im(λ2)=-Im(λ3)

Attracting Saddle–Focus Re(λ1) = Re(λ2) < 0 < Re(λ3)
Im(λ1)=-Im(λ2)
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Figure 4.1: Example of Equilibria in a three dimensional space.

In this classification we exclude the non hyperbolic equilibria because they are
not important for the topic of this thesis. A detailed discussion of the theory of
equilibrium points can be retrieved in [85].
Instead, for our goal, we are focused on the saddle points. In fact, the separatrices
are curves or surfaces separating regions of the vector field with different flow
behavior. Around the stable or the unstable node, all the trajectories have the
same direction, namely incoming or outgoing respectively. On the contrary, around
the saddle points we observe an inflow or outflow behavior, depending on the signs
of the eigenvalues. For example, a repelling saddle has a one direction of inflow
behavior and a plane where a 2D outflow behavior occurs (Figure 4.1). These
subspaces depend on the eigenvectors of the points and they are the key to detect
the invariant manifolds of the saddle.

Definition 3.
A subset W ⊆ Rn is called k-manifold, if it is locally homeomorphic to a k-
dimensional affine subspace of Rn.

The definition of a manifold is more general, but this will serve our goal. These
particular surfaces have well defined tangent spaces at each point that are inde-
pendent on the representation of the manifolds.

Definition 4.
A k-manifold W ⊆ Rn is said to be invariant under the flow of a vector field if:

x ∈ W ⇒ Φt(x) ∈ W for small t ≥ 0 (4.2)
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where Φt(x) is the flow of f .

This definition is equivalent to state that f is tangent to the manifoldW , there-
fore an invariant manifold is a union of integral trajectories of the vector field.
When the system (4.1) is linear with a fixed point at the origin x0, the real
eigenspaces Es and Eu of A(x0), represent respectively the stable and unstable
subspaces and they are invariant under the flow ẋ = Ax.
In particular Es and Eu are generated by the eigenvectors associated to the eigen-
values lying on the open left half plane and the open right half plane, respectively.
When the system is not linear, these subspaces are provided by the linearization
of the model: A = Df(x0) and in a neighborhood of the fixed point, they are
tangent to the invariant manifolds [95].

Theorem 2 (Local invariant Manifold Theorem for Hyperbolic Points).
Let be f a smooth vector field on Rn and xe an hyperbolic equilibrium point. There
is a k−manifold W s(xe) and a n − k manifold W u(xe) each containing the point
xe such that the following holds:

1. Each of W s(xe) and W u(xe) is locally invariant under f and contains xe.

2. The tangent space to W s(xe) at xe is Es and the tangent space to W u(xe) at
xe is Eu.

3. if x ∈ W s(xe) then the integral curve with initial condition x tends to xe as
t → ∞ and if x ∈ W u(xe) then the integral curve with initial condition x
tends to xe as t→ −∞.

4. The manifold W s(xe) and W u(xe) are locally uniquely, they are determined
by the preceding conditions.

Considering these vector field features, we will present a detection strategy to
represent the separatrix manifolds.
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4.2 Detection of the invariant manifolds

Since in two dimension the problem of the separatrix manifold is fully addressed,
in the following we consider only three dimensional systems.
Therefore the saddle node has a one dimensional invariant manifold consisting in a
trajectory passing through the point itself and a bi-dimensional manifold tangent
to the invariant plane Es or Eu. We start our discussion, focusing on this latter.
The first step consists in computing the Jacobian matrix A(x0) and analyzing
the associated eigenvalues λi with the respective eigenvectors vi, i = 1, 2, 3. If
the saddle point is repelling, there are two eigenvalues with positive real part.
Therefore, for Theorem 2, the corresponding eigenvectors generate an invariant
plane that is tangent to the unstable manifold W u(x0). While, if the saddle point
is attracting, the eigenvectors v1 and v2 generate an invariant plane that is tangent
to the stable manifold W s(x0).
When the saddle is a focus we have a particular case and the tangent plane is
generated by two complex conjugated eigenvectors such that

Re(v1) = Re(v2) and Im(v1) = −Im(v2).

Therefore, we consider as first generating vector the real part and as second the
imaginary part (Step 2.1).
Now, to integrate the scattered data on the invariant manifold, we place N points
on an ellipse centered at the saddle whose semi-axes are the corresponding eigen-
vectors. Because the subspace is invariant, by starting from these points, all their
trajectories belong to the manifold itself. Therefore we numerically integrate with
fourth order Runge-Kutta method, forward in time for repelling saddle and back-
ward in time for the attracting one (Step 3-4).
Finally, all the trajectories are discretized in order to obtain all the scatter data
on the separatrix. Indeed we identify the states obtained for each integration step
(Figure 4.2A). If a higher number of separatrix points is required the eigenvectors
could be rescaled in order to obtain a bigger ellipse. Then the procedure is re-
peated for the new ellipse points (Figure 4.2B).
Similar idea is applied to find the one dimensional manifold. In this case we
integrate the flow starting from the point: x0 + v3, where x0 is the saddle point
and v3 is the third eigenvector (Figure 4.3).
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Figure 4.2: Detection of the separatrix points. The green points lying on the
ellipses are the initial conditions for the backward integration. The blue points are
the discrete values of the trajectories. In figure A only one set of seeding points is
considered. In Figure B are taken up two sets.

Figure 4.3: Scattered data lying on the bi-dimensional manifold (blue points) and
the invariant curve in red.
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When the system admits three or more equilibria the reconstruction of more
separatrix surfaces is required. Therefore the detection procedure is applied to
each saddle points (Step 5).

For the sake of clarity we illustrate the fundamental steps of computational
process developed:

• - s ∈ Rn×3: matrix whose rows contain the saddles of the model.

• - parameter ∈ R1×k: the parameters vector.

• - l ∈ R: the edge length of the cubic domain considered.

• - t ∈ R: size of integration interval.

• - M ∈ R: number of the seeding points on the ellipse.

• - String: string with the name of the 3D model considered.

• STEP 1 Consider one saddle point x0 ∈ E3 and calculate the Jacobian
matrix J(x0).

• STEP 2 Calculate and order the eigenvectors and eigenvalues in
ascending order:
V = [v1;v2;v3] such that Re(λ1) < Re(λ2) < Re(λ3)
STEP 2.1 if v1 and v2 are complex conjugated

then v1 = Re(v1) ∧ v2 = Im(v1)

• STEP 3 for i = 0 : M
STEP 3.1 Consider the i-th point on the ellipse:

x = i ∗ pi/M ; y = (1− cos(x))/2 ∗ pi;
v = cos(x) ∗ v2 + sin(y) ∗ v1;

STEP 3.2 Define the initial condition : z = x0 + v.
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STEP 3.3 Integrate the system in the interval [0, t].

if λ1 < 0 ∧ λ2 < 0 then t = −t
[t, u] = ode45(@system, [0, t], parameter, z)

• STEP 4 Plot the scattered data on the phase-plane:
scatter3(u(:,1),u(:,2),u(:,3));

• STEP 5 Repeat the procedure for each saddle point.

4.3 Refinement of the scattered points

In previous section, we observe that integrating the seeding points, every trajectory
obtained is composed by a scattered separatrix point for each integration step. This
step could be reduced, being very small, when a better accuracy is required. As
result, many points could be overlapped, generating unnecessary information for
the reconstruction.
To improve the algorithm and to reduce the computational effort, we follow the
idea presented in [23], to refine the set of tipping points detected.
First of all, depending on the parameters and the problem analyzed, we have
to consider the range for the variables involved. Once the domain of interest is
individuated, the integration of the trajectories is forced to stop when they go
outside the limit boundaries.
Then, the N points detected are collected in a matrix S of dimension N × 3 and
the values:

xmin = min (S(1, :)) ; xmax = max (S(1, :))
ymin = min (S(2, :)) ; ymax = max (S(2, :)) , (4.3)

are computed. The intervals [xmin, xmax] and [ymin, ymax] are divided into P and
Q sub-intervals, respectively. The result is a grid of P × Q points on a plane
parallel to z = 0. For each interval IPQ, the average is computed by considering
the separatrix points belonging to it.
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Figure 4.4: A) Separatrix Points obtained with the detection strategies. B) Sepa-
ratrix points refined.

This refinement provides a new matrix C1 with the following entries

C1(i, :) =
∑
i∈IPQ

S(i, :)
kPQ

where kPQ is the cardinality of the sub-interval taken into account. Of course if
an interval does not contain any points it is not considered.
When the separatrix presents particular geometry, it is necessary re-iterate the

same process, but considering the grid on different planes. For example, when the
manifold is represented by a plane parallel to y = 0 or to z = 0, the strategy
proposed does not provide a good refinement. For this reason it is necessary to
consider the other axis

zmin = min (S(3, :)) , zmax = max (S(3, :)) ,

and the interval [zmin, zmax] is divided into M sub-intervals. Two matrices are
obtained

C2(i, :) =
∑

i∈IQM

S(i, :)
kQM

,

C3(i, :) =
∑

i∈IPM

S(i, :)
kPM

. (4.4)

Finally, all the refinement points of the different matrices are collected in one
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set. Of course, depending on the separatrix surface, one chooses the opportune
matrix. In Figure 4.4 we show the new set of points considering only C1.

4.4 Bio-mathematical Applications

To validate the new method we will present three case studies, reconstructing the
separatrix of particular eco-epidemiological predator-prey models.
To start we consider again the model of Section 3.2 to confront the results obtained:

dn

dt
= r

(
1− n

k

)
n− (1 + αp)np,

dp

dt
= − (1 + µi) p+ (1 + αp)np,

di

dt
= i (1− i) (β − µ)− (1 + αp) (1− θ)ni,

We fix the parameter value to: r = 10, k = 0.8, θ = 0.1, µ = 0.3, α = 1.5, β = 2,
for which the system admits the following equilibria:

Enp ≈ (0.8, 0, 0.4061) Stable node
Enpi ≈ (0.3156, 1.703, 0.4061) Stable node

E0 ≈ (0, 0, 0) Unstable node
En ≈ (0.8, 0, 0) Unstable node
Ei ≈ (0, 0, 1) Unstable node

Es ≈ (0.7632, 0.3128, 0.4061) Attracting Saddle

The Jacobian matrix of the system A(Es) has two stable eigenvectors: v1 =
(0.9975; 0.0450; 0.0551), v2 = (0.0218; 0.1387; 0.9901). On the bi-dimensional in-
variant stable subspace Es, we take the ellipse whose semi-axes are v1 and v2

rescaled of a factor 0.02. We integrate the separatrix surface starting from N = 15
points. To increment the number of points we integrate the trajectories of other
N1 = 15 points on a bigger ellipse, this time rescaling the eigenvectors of a factor
0.1. Once that a sufficient separatrix points are obtained, we apply a refinement
to avoid the unnecessary information. Because the surface is almost parallel to
plane p = 0 and approaches the prey null-plane, we have to consider the two sets
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Figure 4.5: A) The blu circles are the points obtained by backward integration.
B) The refinement points by considering M = 30, P = Q = 10, sub-intervals. The
parameters values for the model are: r = 10, k = 0.8, θ = 0.1, µ = 0.3, α = 4,
β = 4.

of points: C2 and C3 presented in previous section. In Figure 4.6 we show all
the points found with backward integration and on right picture the refinement
considering M = 30, P = Q = 10 sub-intervals on x,y,z-axis, respectively.
Now, we can reconstruct the surface with the Moving Least Squares approximant.
As before, we use the Wendland C2 compactly supported function centered at the
evaluation point y as weighted function, considering ε = 2 and 70 evaluation points
(Figure 4.6).
The surface continues approaching the plane n = 0. This indicates that the sepa-
ratrix manifold bends toward higher values of predators when the prey population
becomes small. Of course, since in this model it is not assumed an external forag-
ing, by considerably reducing the prey population, the predators have no sufficient
resources to sustain themselves, no matter how strong they cooperate in hunting.
In Figure 4.7 we confront the different detection methods: the red points are found
with the bisection procedure, while the blue ones are detected employing the new
strategy. The points obtained are quite the same, showing the validity of both
methods.
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Figure 4.6: Reconstruction of the separatrix using the MLS method, by fixing
r = 10, k = 0.8, θ = 0.1, µ = 0.3, α = 4, β = 4.

Figure 4.7: Confront between the two different detection method for separatrix
surface for the model (3.1)–(3.3). The red dots represent the point found with
the bisection procedure, while the blue ones are depicted by employing the new
strategy. Parameters: r = 10, k = 0.8, θ = 0.1, µ = 0.3, α = 2, β = 2.
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4.5 Multi-stability and complex attractors

Until now we have considered only bi-stable systems, with the reconstruction of
only one separatrix surface.
We will show as this procedure works with multi-stable models with any number
of contemporary stable steady state. In fact, it depends only on the saddle points
and their manifolds.
Moreover, to complete the analysis we will show the reconstruction of a separatrix
manifold when the stable equilibrium is a periodic attractor.

4.5.1 Tri-stable eco-epidemiological model

In this section we present a model analyzed in [62]. Also in this study, the authors
have the goal to understand how the presence of the Allee effect with the spread
of a disease, influences the population dynamics in a prey-predator ecosystem.
The a-dimensional model considered is:

dS

dt
= S [r(S − θ) (1− S − I)− βI − aP ] , (4.5)

dI

dt
= βSI − aIP − µI, (4.6)

dP

dt
= P [bS + αI − d] (4.7)

where the prey density is split into susceptible (S) and infected (I) population and
P represents the predator density. In this model the Allee effect is not induced as
in the previous example, but is a dynamical feature already modeled by the term:

r (S − θ) (1− S − I) , (4.8)

where θ is the Allee threshold and r is the maximum birth rate of species. In this
case, if the initial conditions of susceptible are below θ the populations die out,
otherwise converges to 1.
The disease spreads only in horizontal way and we report only the frequency-
dependent transmission, where β is the transmissibility. The predation is modeled
by the Holling Type I function: aIP , where a is the attack rate of predators. The
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Figure 4.8: A) Scattered data on invariant manifold of saddle Es1 for the
model (4.5)–(4.7); B) Refinement of the scattered data considering P = Q =
M = 10 sub-intervals.

parameters b and α represent the total effect to predator by consuming susceptible
and infected prey, respectively. Finally the predators die with a natural death rate
m and the infected suffer of an additional disease-induced death rate µ.
The authors, through the model analysis and integrating some initial conditions
on the phase space, give some general information about the basins of attraction.
However here we employ our method to obtain a more accurate representation of
the phase space reconstructing the different domains [35].
Letting β = 1.5, θ = 0.2, a = 2, b = 1.35, µ = 1 and d = 1 the system admits
three stable equilibria: the origin E0 ≡ (0, 0, 0), the disappearance of the disease
E1 ≈ (0.7407, 0, 0.0701) and the predator extinction E2 ≈ (0.6667, 0.0791, 0).
For the reconstruction of their basins of attraction we consider the invariant mani-
folds of the attractive saddle points Es1 ≡ (θ, 0, 0) and Es2 ≈ (0.7329, 0.0211, 0.0497).
We integrate the first separatrix considering M = 30 equispaced points on two el-
lipses generated by the two eigenvectors of the saddle Es1 , namely v1 ≈ (0.4099, 0, 0.9121)
and v2 ≈ (0.329, 0.9442, 0) rescaled of a factor 0.04 and 0.1, respectively. Then,
through a backward integration we obtain all the scattered data on the manifold,
that are refined considering the two matrices C2, C3 with P = Q = M = 10 sub-
intervals on x, y and z-axis.(Figure 4.8). The same procedure is applied to the
other saddle. This time the eigenvectors are complex conjugated:

v1,2 ≈ (0.9817,−0.0088± 0.08731i,−0.0552± 0.1599i).
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Figure 4.9: A) Scattered data on invariant manifold of saddle Es2 for the
model (4.5)–(4.7) ; B) Refinement of the scattered data considering M = P = 15
sub-intervals.

Therefore we generate the ellipse considering the real and the complex part as semi-
axes. The separatrix points are obtained considering the eigenvectors rescaled of
a factor 0.02 and 0.04 and then they are refined considering M = 15 and P = 15
sub-interval on x and y-axis (Figure 4.9). This surface separates the basins of the
two stable points E1 and E2. All the points lying outside the red surface evolve
toward the origin. Finally we approximate the two surfaces (Figure 4.8C) applying
the MLS approximant using the Wendland C2 compactly supported function with
the shape parameter ε = 3 and considering 60 evaluation points y (Figure 4.10).

4.5.2 Periodic attractors

To conclude the test and the analysis of this chapter we present another predator-
prey model, but this time we choose a set of parameters that induces a complex
dynamics with the appearance of periodic orbits, [56]:

dN

dt
= rN (1−N)− NP

h+N
, (4.9)

dP

dt
= NP

h+N
−mP − µiP, (4.10)

di

dt
= i

(
(βP − µ) (1− i)− N

h+N

)
. (4.11)
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Figure 4.10: A) Scattered data of the two invariant manifolds. B), C) Reconstruc-
tion of the two invariant manifolds.
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The model represents a predator-prey dynamics (N − P ), where predators suffers
of a disease and i is the prevalence of the infected on the entire population i = I

P
.

In the following table we resume all the parameters and their meaning:

Parameter Biological Meaning
r Per-capita growth rate
NP
h+N Predation
m Natural per-capita death-rate
β Transmissibility of the disease
µ Death rate of infected prey

In [56] two relatively models are analyzed. Here we focus only on the density-
transmission case. Despite the simplicity of the model the authors observe quasi-
periodicity, torus, oscillation and even chaos. Such complex behavior means that
small changes to parameters or initial conditions can have large effect on the bio-
logical system in long term. Therefore the reconstruction of the separatrix offers
an important tool to study the vector field and the biological dynamics.
When µ = 2, r = 0.5, h = 0.1,m = 0.2, β = 27.4 the system is tri-stable among
the disease-free predator prey oscillation, a coexistent torus and the coexistent
equilibrium E1 ≈≡ (0.6955, 0.1211, 0.3371).
Here we reconstruct the separatrix manifold between the coexistent torus and the
steady state E1 by considering the saddle coexistence point Es1 ≈ (0.1212, 0.0972, 0.174).
The Jacobian matrix admits two complex conjugate eigenvalues λ1 and λ2 and one
real positive λ3, presenting an attracting saddle.
We take N = 20 points on the ellipse generated by the two vectors: v1 ≈
(0.1293,−0.0158,−0.9633) and v2 ≈ (−0.0389,−0.2315, 0), representing respec-
tively, the real and the imaginary part of the complex eigenvectors.
In Figure 4.11A the red curve represents a trajectory evolving toward the fixed
point while the green one represents the limit torus.
Finally the manifold is reconstructed by considering again the Wendland C2 func-
tion with the shape parameter ε = 5 (Figure 4.11B).

To conclude the analysis of the phase-space, we detect the tipping points lying
between the basins of the two periodic attractors. We find the invariant stable
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Figure 4.11: A)In blu the scattered data lying on the invariant manifold. In red it is
represented the trajectory of the point P1 ≡ (0.3, 0.3, 0.15), in green the coexistent
torus starting from the point P2 ≡ (0.1, 0.2, 0.4). The values of the parameters
are: µ = 2, r = 0.5, h = 0.1,m = 0.2, β = 27.4. B) Reconstruction of the surface

manifold of the saddle Es2 ≡ (1, 0, 0). In this case the surface is more complicated
respect the others considered: it follows the trajectories of the endemic torus
(green curves on Figure 4.12). Since the two periodic attractors are very close, the
reconstruction results quite confusing. In Figure 4.12B we show both the scattered
surfaces detected, the limit torus in green and the disease free oscillation in black.

4.6 Conclusions

In the first part of this thesis we address the analysis of dynamical systems. In
particular we focus on the study of the basins of attraction of a multi-stable model,
through the reconstruction of separatrix surfaces.
Starting from the bisection method present in literature, we modify the detection
procedure, applying the vector field topology.
We underline as the invariant manifolds of saddle points represent the separatrix
requested. The new method local approximates the separatrix points and consid-
erably reduces the computational cost respect the previous procedure.
Using the knowledge of meshless method, we employ a Moving Least Squares
method to reconstruct and to reconnect the manifolds. Working in a three di-
mensional space, it is possible using the explicit formula to obtain the Lagrange
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Figure 4.12: A) In green the limit stable torus. In red are represented the tipping
points lying on the separatrix between the two periodic attractors. B) In red and in
blue are represented the two different scattered surfaces. In green the coexistent
torus and in black the disease-free oscillation. The parameters are the same of
Figure 4.11.

multipliers and consequently the MLS approximant. This allows to avoid the
resolution of any systems. The Radial Basis Functions are considered as weight
functions, governing the influence of the data. They represent a good choice, de-
creasing with the distance between the points. In particular we use the compactly
supported functions, avoiding to include the approximation data sites too far from
the evaluation point and focusing on the local approximation.
Several numerical examples are presented in order to test the new algorithm. In
particular, thanks to the reconstruction of the basins of attraction, it was possible
to give a more completeness on the analysis of the Allee effect in a predator-prey
model with cooperative predators, suffering of an infectious disease.
This algorithm could be applied to multi-stable models with any number of stable
points. In fact the procedure presented is applied to each saddle point of the model
analyzed. In particular is not influenced on the presence of complex attractors,
such as limit cycle or torus. This kind of detection strategies yields good results for
most topologies except for focus saddle with strong circulation that can intersect
the seeding ellipse, for which the reconstruction is still unstable.
The separatrix reconstruction arises as an important task in the analysis of the
dynamical models. It gives a better interpretation of the future outcomes of a dy-
namical systems, giving to the researchers the possibility to prevent the threshold
state subject to regime shift. Therefore they could start operations to change the
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eco-systems state with knowledge and reason, allowing a better management of
the phenomenon dynamics.



Chapter 5

Meshless Particle Methods

The meshless methods have gained increasing interest in many area of the sciences
[1, 2, 3, 4, 26, 27, 69, 47, 66, 99]. For their adaptable and ductility, they could deal
with several physics problems. In the first part of this thesis we have considered
a Moving Least Squares method to reconstruct the surfaces and consequently an-
alyze the basins of attraction of dynamical models.
Now we are focusing on a class of procedures called Meshless Particle Method
(MPM) which are employed to solve astrophysics, oceanografic, physic phenom-
ena. As the name suggests, these methods use a finite number of discrete particles
to describe the entire continuous system and to record the motion of the problem.
These MPMs were first developed to compensate the limitation of the grid algo-
rithms in dealing with particular features such as the large deformations of the
problem domain, moving material interfaces or deformable boundaries. In fact,
these new characteristics pose great challenges to numerical simulations with the
mesh based methods. Evolving the system in space and in time, for each step there
are different spacial configurations, therefore a new discretization of the model is
required. On the contrary, the great advantage of the MPMs is that it is not re-
quired any connectivity law or predefine structure between the particles involved.
Therefore, even with complex boundary conditions the discretization is simple and
does not change at each temporal step.
The approximation is not influenced by the problems scale, there are many meth-
ods developed in order to deal with micro-scale [31, 59, 111] to even astrophysics
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dimension [41, 54, 55]. These characteristics makes the methods suitable for differ-
ent applications, therefore even if an approximation procedure born to deal with
some specific science field, it could easily adapted to other kind of problems.
Considering the dynamical systems, we have dealt with variables evolving only on
time, thus the models analyzed were represented by systems of ordinary differential
equations (ODEs). However, especially in physics phenomena, the configuration
of the systems changes in the space domain. Therefore the problems studied are
modeled by means of Partial Differential Equations (PDEs). Obtaining analytical
solutions for such systems is even more complicated and is not usually possible.
Then the numerical efforts have been made in seeking the approximation.
The first step to deal with these problems is the discretization of the domain to
provide an approximation for the values of the field functions and its derivatives
at any evaluation point. There are two different possible approach: the Eulerian
and the Lagrangian method. In the first case the particle frame is fixed and any
point represents an interpolation data, but new points may be added where there
is need for increased accuracy. Otherwise the Lagrangian specification of the field
is an approach following the particles, both in space and time and points may be
added or deleted in order to maintain a prescribed sampling density.
If the domain is not already discrete or presenting a particular density represen-
tation then it is required an initial particles distribution. In literature already
exists several triangulations for 2D and 3D domains, already coded in software
packages. Then, the particles could be chosen as the centers of these triangular
mesh or even both as center and nodes. An other idea, it is to consider one of
the several distributions already employed in numerical field such as: Sobol points
[100], Halton [53] or even random points.
Following the same idea presented for the MLS method, to approximate a func-
tion f in a particular point x, are considered the information of all neighboring
particles influencing the point:

f(x) =
N∑
j=1

Φj(x)f(ξj) (5.1)

where f(ξj) are the data measured at the N neighboring data sites ξj and Φj
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represent the weight functions. These latter can be used for establishing set of
discretized system equations using strong form, weak form or both.
These methods are ideally suited to simulate problems dominated by complex
dynamics. In particular the lack of mesh significantly simplifies the model imple-
mentation and its parallelization.
Nowadays there are several particle methods [15, 25, 41, 76, 81, 90]. One of
the first method and large used today is the Smoothed Particle Hydrodynam-
ics (SPH) [79, 80]. The application of this method to a wide range, has led to
significant extensions and improvements of the original procedure. The numerical
aspects have been gradually improved and corrective methods where also proposed
[71, 83, 98, 103]. However, there are still many modifications to develop, in order
to obtain the same applicability and diffusion of the grid methods. In this part of
the thesis we are focused our research in restoring the accuracy in approximating
a function and its derivatives.

5.1 Smoothed Particle Hydrodynamics Method

The Smoothed Particle Hydrodynamics method was developed by Gingold and
Monaghan [44] and Lucy [73] in 1977, to analyze astrophysical problems [43, 78]
and later widely extended for applications to problems of continuum solid and
fluid mechanics. It is a meshless Lagragian particle method where the coordinates
move with the fluid. Nowadays the SPH method and its variants are the major
type of particle methods and have been incorporated into many commercial code.
It is fundamental based on two key steps: the first is the integral representation
or kernel approximation and the second is the particle approximation.
The first step considers the representation of a function f by means of its integra-
tion with the Delta Dirac function δ.
Let f(x) ∈ R, x =

(
x(1), ...,x(d)

)
and ξ =

(
ξ(1), ..., ξ(d)

)
∈ Rd, then the following

identity holds:

f(x) =
∫

Ω
f(ξ)δ(x, ξ)dξ (5.2)

where Ω is the problem domain and
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δ(x, ξ) =
{

1 x = ξ

0 x 6= ξ

is the Dirac Delta function.
If the function f is defined and continuous on Ω then the representation (5.2)
is exact. By replacing the Delta function with a kernel K(x, ξ;h) we obtain the
kernel approximation.

Definition 5. Let be f : Ω ⊂ Rd → R, d ≥ 1, the kernel approximation is defined
as

< fh(x) >:=
∫

Ω
f(ξ)K(x, ξ;h)dΩ (5.3)

with x = (x(1), ..., x(d)), ξ = (ξ(1), ..., ξ(d)) ∈ Ω, h ∈ R.

The function K(x, ξ; h) is named kernel function and h is the smoothing length
but it is equivalent to the shape parameter introduced in the previous chapters.
Therefore it localizes the influence of the kernel function. This latter must satisfies
some conditions in order to obtain a good approximation.
First, it is considered the normalization condition:

∫
Ω

K(x, ξ;h)dΩ = 1.

It is called unity condition too, because the kernel represents a partition of unity
of the domain. When the smoothing length approaches zero the kernel function
approximates the Dirac Delta function:

lim
h→0

K(x, ξ;h) = δ(x, ξ).

It is further required the kernel to be sufficiently smooth and if it is even, then it
is proven a second order of accuracy [68]. In fact the error can be estimated by
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means of Taylor series expansion of f(ξ) around the point x:

< fh(x) >=
∫

Ω

[
f(x) + f ′(x)(ξ − x) +O(|ξ − x|2)

]
K(x, ξ;h)dξ =

= f(x)
∫

Ω
K(x, ξ;h)dξ+

+ f ′(x)
∫

Ω
(ξ − x)K(x, ξ;h)dξ +O(h2). (5.4)

By considering K as even function, it follows that (ξ − x)K(x, ξ;h) is an odd
function then: ∫

Ω
(ξ − x)K(x, ξ;h)dξ = 0

and for the unity condition we obtain:

< fh(x) >= f(x) +O(h2). (5.5)

However one could use a kernel that does not satisfy some of the above conditions
and in this case the accuracy order is not guaranteed.

When the entire domain is represented by a finite number of particles the kernel
approximation is discretized, obtaining the particles representation.

Definition 6. Given a set of data sites Ξ =
{
ξj
}N
j=1
⊂ Ω and the corresponding

measurements
{
yj = f(ξj)

}N
j=1
∈ R, the particle approximation of the function is

defined as

fh(x) :=
N∑
j=1

f(ξj)K(x, ξj;h)dΩj, (5.6)

where dΩj is the measure of the subdomain Ωj associated to each data site and the
triple (K,Ξ, h) essentially characterizes the approximation.

The SPH method is widely used, but it still suffers of some problems working
with non uniform data distribution. Despite all the algorithms developed in the
years to restore the stability and the accuracy of the standard method, there still
needs of improvements.
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5.2 SPH numerical behavior

In this section we present some numerical simulations to test the method and to
show the advantages and the limitations of the standard SPH method.
We have conducted experiments considering the approximation of some test func-
tions, originally proposed in the ACM Transaction Software Packages [91, 105]:

f(x(1), x(2)) =16x(1)x(2)(1− x(1))(1− x(2)), (5.7a)

f(x(1), x(2)) =1
9tanh(9(x(2) − x(1)) + 1), (5.7b)

f(x(1), x(2)) =1.25 + cos(5.4x(2))
6 + 6(3x(1) − 1)2 . (5.7c)

Here we present the results taking into account the bi-variate functions, depicted
in Figure 5.1.
Any function K(x, ξ; h) with the properties listed in previous paragraph can be
employed as smoothing kernel function. Being a smooth infinitely differentiable
function, a common and suitable choice is the Gaussian function

K1(x, ξ; h) = 1
hd
√
πd
e−
‖ξ−x‖22

h2 ,

where the dimensional constant αd = 1/hd
√
πd is to satisfy the unity condition

requirement.
This kernel function will be employed in the approximation, centered in different
data sets, taken in number as the progression: (2n + 1)2. Gridded, Halton, Sobol
and random points are taken as data sequences and we will refer to these sets as
ΞG,ΞH ,ΞS,ΞR. The second and third ones are available in MATLAB@ Statistics
and Machine Learning Toolbox as haltonset and sobolset, respectively. The former
was introduced by J.H. Halton [53] and the latter by I.M. Sobol [100]. The random
points are generated by means of the random function of MATLAB@. The evalu-
ation points {x1, ...,xM} are on a regular mesh layed out over the computational
domain. For all the simulations M=1600, Ω = [0, 1]2 and the Voronoi tessellation
is adopted to define Ωj. In Figure 5.2 we show N=289 data sites for the four data
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sequences ΞG,ΞH ,ΞS,ΞR and the M evaluation points.
The following formulas are adopted to estimate the accuracy of the solution:

MAE := max
1≤i≤M

|fh(xi)− f(xi)|, (5.8)

RMSE :=

√√√√√√
M∑
i=1
|fh(xi)− f(xi)|2

M
, (5.9)

MEAN :=

M∑
i=1
|fh(xi)− f(xi)|

M
. (5.10)

In the discussion we will observe the convergence rate of the error O(h(rate)) com-
puted as:

rate =
log( en−1

en
)

log(hn−1
hn

)
(5.11)

where en−1 and en are the errors for two subsequently data sequences with hn−1

and hn fixed respectively as the fill-distance [16, 33, 109]:

hΞ,Ω = sup
x∈Ω

min
ξj∈Ξ

‖ξj − x‖2 (5.12)

for the two data sets.
First of all, we show as the smoothing lenght h influences the approximation good-
ness. To this aim, in Figure 5.3, by fixing the data number to N = 1089, we
plot the maximum absolute error (MAE), by varying h and for different data-set
distributions.
For a complete overview, in Table 5.1 are reported the values of hΞ and the MAE,
RMSE, MEAN error by considering ΞG,ΞH ,ΞS,ΞR with N=1089. The standard
method usually does not yield to satisfactory results and by increasing the data
density in Ω the accuracy slightly improves for the first few increased values as we
observe in Figure 5.4.
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Figure 5.1: Test functions (left) and their first derivatives (right) used in the
numerical experiments.
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Figure 5.2: The blue circles as the set of N = 289 data sites ξj; the red crosses as
the set of M=1600 evaluation points xi.

In Figure 5.5 we display the results obtained in approximating the derivatives of
the function. We consider a uniform grid in the unity square domain. By increasing
the data density, the results show the limit of the standard SPH method suffering
from several drawbacks. Analogous conclusions are reached with the data sets
ΞH ,ΞS,ΞR and by approximating the derivatives along the x(2) direction.

From these simulations we observe as the approximation of the derivatives via
standard SPH is poor and it is not according with the second order of accuracy
claimed in the previous sections. This is due because the estimation of error in
equation (5.5) refers to the kernel approximation. In particular, the SPH dis-
cretization makes reference to a set of data for which the conditions, valid for the
kernel approximation, are not always preserved. For instance, when data near the
boundary of the problem domain or with irregular data distribution are consid-
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Figure 5.3: Maximum absolute error vs. h for N=1089 data sites in ΞG,ΞH ,ΞS,ΞR.

Table 5.1: MAE, RMSE, MEAN error with hΞ - N=1089 - Test function (5.7a)
MAE RMSE MEAN hΞ

gridded data 0.0302 0.0104 0.0072 0.0214
Halton data 0.0753 0.0214 0.0162 0.0680
Sobol data 0.0624 0.0184 0.0124 0.0560
random data 0.2157 0.0353 0.0226 0.0570

ered, due to the unbalanced contribution to the discretized summations.
The aim of our research is to improve the standard method obtaining an approx-
imation accuracy of any desired order for the function and its derivative. Many
techniques have been devised to alleviate these problems and some of these have
been documented in [12, 70, 71, 72]. To accomplish this goal we consider the Taylor
series expansion of the trial solution. The improved method computes simultane-
ously the approximation of the function and its derivatives. In this way the lower
order derivative is not involved in computing the higher order one. Moreover this
procedure is appealing because allows to improve the accuracy without changes
on the kernel function. These features avoid unphysical results such as negative
values for variables, representing un-significant real states.
In the next section we will discuss on the basic idea of the improved approach
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Figure 5.4: Error versus the number of data in ΞG,ΞH ,ΞS,ΞR. Test function
(5.7a).

coupled with some validation results.

5.3 Enhancing approximation

To ensure the 1-st order of accuracy for the kernel approximation we consider the
Taylor expansion of f(ξ), retaining only the first term, multiplying for the kernel
function and integrating over Ω w.r.t. the variable ξ



5. Meshless Particle Methods 67

Figure 5.5: Error versus the number of data in ΞG for Dx(1)f . Test function (5.7a).

∫
Ω
f(ξ)K(x, ξ; h)dΩ =

∫
Ω
f(x)K(x, ξ; h)dΩ +

∫
Ω
O(h)K(x, ξ; h)dΩ, (5.13)

f(x) =
∫

Ω f(ξ)K(x, ξ; h)dΩ∫
Ω K(x, ξ; h)dΩ +O(h). (5.14)

The corresponding discrete formulation is

f(x) =

N∑
j=1

f(ξj)K(x, ξj; h)dΩj

N∑
j=1

K(x, ξj; h)dΩj

+O(h). (5.15)

The requirement of the unity condition for the kernel function corresponds to
assure the first order of accuracy-or 0-th order of consistency (k=0) for the kernel
approximation, but it is not always assured for the discrete counterpart. So we
proceed in the approximation by adopting the (5.15) instead of (5.6) to improve
the results.
In Figure 5.6 are plotted the numerical results obtained in approximating the test
function (5.7a) with the data sets ΞG,ΞH ,ΞS,ΞR. We increase the data density
in the unit square domain. By comparing the Figure 5.4 with Figure 5.6, the
improvements in the approximation are underlined. In the Tables 5.2 and 5.3,



5. Meshless Particle Methods 68

the errors and the convergence rate are reported referring to gridded and random
data sets. Therefore the theoretical assumptions are confirmed by the numerical
simulations, making evidence of a less accurate approximation for data in ΞR. In
Figure 5.7 we summarize the maximum absolute error for the test functions (4b)
and (4c) for the different data sequences ΞG,ΞH ,ΞS,ΞR.

Figure 5.6: k=0. Error versus the number of data in ΞG,ΞH ,ΞS,ΞR. Test function
(5.7a).

5.3.1 Higher order of accuracy

Now, to extend the results of the previous section, we generate methods with
higher approximation order by taking into account the Taylor series expansion of
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Table 5.2: k=0. MAE, RMSE, MEAN error for data in ΞG. Test function (5.7a).
Data used in the Figure 5.6(a).

N f hΞ
MAE rate RMSE rate MEAN rate

9 0.5097 – 0.2178 – 0.1849 – 0.2357
25 0.3556 0.7046 0.1203 1.1627 0.0923 1.3603 0.1414
81 0.2136 0.8672 0.0592 1.2047 0.0368 1.5642 0.0786
289 0.1175 0.9402 0.0283 1.1629 0.0136 1.5640 0.0415
1089 0.0616 0.9723 0.0142 1.0435 0.0052 1.4407 0.0214
4225 0.0316 0.9865 0.0072 0.9898 0.0026 1.0399 0.0109
16641 0.0160 0.9950 0.0037 0.9733 0.0013 1.0134 0.0055
66049 0.0080 0.9968 0.0018 0.9971 6.40e-04 1.0046 0.0028

Table 5.3: k=0. MAE, RMSE, MEAN error for data in ΞR. Test function (5.7a).
Data used in the Figure 5.6(d).

N f hΞ
MAE rate RMSE rate MEAN rate

9 0.6812 – 0.2986 – 0.2552 – 0.4398
25 0.7022 -0.1035 0.2136 1.1417 0.1751 1.2845 0.3280
81 0.3457 0.9830 0.1170 0.8355 0.0949 0.8499 0.1595
289 0.2759 0.4228 0.0642 1.1262 0.0454 1.3813 0.0936
1089 0.1643 1.4872 0.0398 1.3698 0.0255 1.6619 0.0661
4225 0.0786 1.1075 0.0183 1.1683 0.0091 1.5523 0.0340
16641 0.0398 0.6855 0.0071 0.9538 0.0030 1.1179 0.0126
66049 0.0229 1.0415 0.0041 1.0440 0.0015 1.2564 0.0074

the function f(ξ) up to the order k

f(ξ) =
∑
|α|≤k

1
α! (ξ − x)αDαf(x) +O(hk+1), (5.16)

where α = (α1, α2, ..., αd) ∈ Nd is a multi-index with |α| =
d∑
i=1

αi, α! = α1!α2!...αd!

and the differential operator is defined as:

Dα := ∂|α|

(∂x(1))α1 ...(∂x(d))αd
.
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Figure 5.7: k=0. MAE versus number of data in ΞG,ΞH ,ΞS,ΞR. (a) Test function
(4b) and (b) test function (4c).

Hence, the (5.16) is multiplied for the kernel function and its derivatives up to the
order k and integrated over Ω w.r.t. the variable ξ:

∫
Ω
f(ξ)K(x, ξ; h)dΩ =

∑
|α|≤k

1
α!

∫
Ω

(ξ − x)αDαf(x)K(x, ξ; h)dΩ+

+
∫

Ω
O(hk+1)K(x, ξ; h)dΩ

...∫
Ω
f(ξ)DkK(x, ξ; h)dΩ =

∑
|α|≤k

1
α!

∫
Ω

(ξ − x)αDαf(x)DkK(x, ξ; h)dΩ+

+
∫

Ω
O(hk+1)DkK(x, ξ; h)dΩ.
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In linear algebra notation, neglecting the error, the improved formulation corre-
sponds to the point-wise linear systems:

< A(k) > c(k) =< b(k) > (5.17)

where

< A(k) >=


∫

Ω K(x, ξ; h)dΩ . . . 1
k!
∫

Ω(ξ(d) − x(d))kK(x, ξ; h)dΩ
... . . .

...∫
ΩDkK(x, ξ; h)dΩ . . . 1

k!
∫

Ω(ξ(d) − x(d))kDkK(x, ξ; h)dΩ



c(k) =


f(x)
...

Dk
x(d)f(x)



< b(k) >=


∫

Ω f(ξ)K(x, ξ; h)dΩ
...∫

Ω f(ξ)DkK(x, ξ; h)dΩ


where the notation Dk

x(d) indicates that the operator is applied with the multi-index
having kd = k.
Now, we discretize the formulation for the function and its derivatives estimate up
to order k at the evaluation point x

A(k) =



N∑
j=1

K(x, ξj; h)dΩj . . . 1
k!

N∑
j=1

(ξ(d)
j − x(d))kK(x, ξj; h)dΩj

... . . .
...

N∑
j=1
DkK(x, ξj; h)dΩj . . . 1

k!

N∑
j=1

(ξj(d) − x(d))kDkK(x, ξj; h)dΩj


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c(k) =


f(x)
...

Dk
x(d)f(x)



b(k) =



N∑
j=1

f(ξj)K(x, ξj; h)dΩj

...
N∑
j=1

f(ξj)DkK(x, ξj; h)dΩj


.

Solving the system provides simultaneusly approximation values for the function
f with accurate order k + 1 and of order k + 1 − p for the derivatives of order p.
To give evidence of this assertion, we consider the error vector

e(k) =



O(hk+1)
N∑
j=1

K(x, ξj; h)dΩj

...

O(hk+1)
N∑
j=1
DkK(x, ξj; h)dΩj


and the system matrix A(k) approximated as

A(k) ∼=


p11 . . . p1k
... . . . ...
pk1 . . . pkk


︸ ︷︷ ︸

P


1

h
. . .

hk

 .

So, in computing the solution the error is about
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(A(k))−1e(k) ∼=


1

1
h

. . .
1
hk

P−1



O(hk+1)
N∑
j=1

K(x, ξj ; h)dΩj

O(hk+1)
N∑
j=1
DK(x, ξj ; h)dΩj

...

O(hk+1)
N∑
j=1
DkK(x, ξj ; h)dΩj


∼=


O(hk+1)
O(hk)

...
O(h)

 .

In the following we report the numerical test for the function (5.7a). We require a first
and second order, k=1 and k=2 in approximating the function and its derivatives. Ta-
bles 5.4 and 5.5 present the simulations with k=1, while the second order of accuracy
is shown in Tables 5.6 and 5.9. Analyzing these results, we observe a good approxima-
tion, almost reaching the convergence predicted by the theory. In Figure 5.8, by fixing
N=1089, we focus on the MAE comparing SPH and the improved method with k=0,
k=1 and k=2. We observe that the error is reduced inside the domain and it is always
present on the boundaries but a significant decrease is with k=1,2.
We conclude this section presenting the MAE for finer data locations concerning the
three functions (5.7a), (5.7b), (5.7c) with the standard SPH formulation and with the
modified one by varying k=0,1,2. In Figures 5.9, 5.10 and 5.11 we show the maximum
absolute error versus the number of data in ΞG, ΞH , ΞS , ΞR.

The results presented are promising and satisfying, however the computational de-
manding could represents a limit in managing high number of data. To this aim in the
next chapter we deal with some techniques to speed up the method.
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Table 5.4: k=1. MAE, RMSE for data in ΞG. Test function (5.7a).
N f Dx(1)f hΞ

MAE rate RMSE rate MAE rate RMSE rate

9 0.3016 – 0.1424 – 2.7931 – 1.0237 – 0.2357
25 0.1158 1.8745 0.0563 0.1818 1.6832 0.9914 0.5379 1.2598 0.1414
81 0.0366 1.9596 0.0183 1.9120 0.9237 1.0207 0.2512 1.2949 0.0786
289 0.0114 1.8258 0.0052 1.9690 0.4825 1.0211 0.1131 1.2540 0.0415
1089 0.0035 1.8001 0.0014 1.9784 0.2461 1.0145 0.0530 1.1431 0.0214
4225 9.54e-04 1.9052 3.64e-04 1.9909 0.1241 1.0111 0.0268 1.0089 0.0109
16641 2.45e-04 1.9874 9.27e-05 1.9996 0.0629 0.9935 0.0134 1.0134 0.0055
66049 6.39e-05 1.9771 2.33e-05 1.9994 0.0319 0.9855 0.0067 0.9999 0.0028
96721 4.38e-05 1.9857 1.57e-05 2.0526 0.0264 0.9909 0.0056 0.9264 0.0023

Table 5.5: k=1. MAE, RMSE for data in ΞR. Test function (5.7a).
N f Dx(1)f hΞ

MAE rate RMSE rate MAE rate RMSE rate

9 0.5337 – 0.1925 – 2.8825 – 1.0814 – 0.4398
25 0.2936 2.0375 0.1518 0.8063 2.4489 0.5558 0.8345 0.8838 0.3280
81 0.1295 1.1353 0.0602 1.2815 1.4324 0.7437 0.4485 0.8609 0.1595
289 0.0857 0.7732 0.0235 1.7659 0.9766 0.7185 0.2333 1.2259 0.0936
1089 0.0416 2.0767 0.0116 2.0340 0.7202 0.8744 0.1350 1.5700 0.0661
4225 0.0106 2.0559 0.0031 1.9577 0.3799 0.9611 0.0597 1.2276 0.0340
16641 0.0011 2.2823 4.53e-04 1.9375 0.1711 0.8036 0.0233 0.9478 0.0126
66049 7.73e-04 0.6629 1.54e-04 2.0273 0.0960 1.0858 0.0127 1.1402 0.0074
96721 3.79e-04 2.9256 9.79e-05 1.8595 0.0859 0.4563 0.0103 0.8597 0.0058
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Table 5.6: k=2. MAE for data in ΞG. Test function (5.7a).
N f Dx(1)f D2

x(1)f hΞ
MAE rate MAE rate MAE rate

9 0.2647 – 1.9477 — 4.5084 – 0.2357
25 0.0741 2.4917 0.8781 1.5591 2.9491 0.8306 0.1414
81 0.0146 2.7587 0.3074 1.7855 1.7288 0.9094 0.0786
289 0.0028 2.8822 0.0921 1.8941 0.9434 0.9485 0.0415
1089 3.32e-04 2.9417 0.0253 1.9473 0.4939 0.9756 0.0214
4225 4.44e-05 2.9710 0.0066 1.9737 0.2528 0.9876 0.0109
16641 5.73e-06 2.9934 0.0017 1.9831 0.1279 0.9961 0.0055
66049 7.29e-07 2.9954 4.30e-04 1.9934 0.0643 0.9532 0.0028
96721 4.11e-07 2.9954 2.94e-04 1.9959 0.0532 0.9673 0.0023

Table 5.7: k=2. MAE for data in ΞR. Test function(5.7a).
N f Dx(1)f D2

x(1)f hΞ
MAE rate MAE rate MAE rate

9 15.5032 – 37.2568 — 68.8620 — 0.4398
25 3.4298 5.1438 31.2706 0.5972 49.2390 1.1437 0.3280
81 0.7152 2.1742 9.7030 1.6229 49.8307 -0.0166 0.1595
289 0.3016 1.6194 3.2224 2.0675 26.2748 1.2004 0.0936
1089 0.0242 7.2410 0.9811 3.4140 5.9107 4.2828 0.0661
4225 0.0016 4.0504 0.3792 1.4286 4.4230 0.4357 0.0340
16641 3.37e-04 1.5692 0.0548 1.9487 3.7019 0.1793 0.0126
66049 3.99e-05 4.0176 0.0083 3.5404 0.8011 2.8826 0.0074
96721 3.00e-05 1.2219 0.0146 -2.3887 0.0146 -47520 0.0058

Table 5.8: k=2. RMSE for data in ΞR. Test function(5.7a).
N f Dx(1)f D2

x(1)f hΞ
RMSE rate RMSE rate RMSE rate

9 0.6575 – 2.2986 — 3.6311 — 0.4398
25 0.2018 4.0278 1.8702 0.7034 3.5045 0.7034 0.3280
81 0.0379 2.3202 0.5166 1.7841 3.0262 1.7841 0.1595
289 0.0096 2.5729 0.1566 2.2388 1.1947 2.2388 0.0936
1089 0.0012 5.8605 0.0518 3.1739 0.4512 3.1739 0.0661
4225 1.06e-04 3.6944 0.0137 2.0001 0.2175 2.0001 0.0340
16641 1.39e-05 2.0466 0.0027 1.6361 0.1547 0.3432 0.0126
66049 1.73e-06 3.9153 5.60e-04 2.9516 0.0427 2.4187 0.0074
96721 1.37e-06 0.9577 5.77e-04 -0.1200 0.0802 -2.5873 0.0058
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Table 5.9: k=2. MEAN for data in ΞR. Test function(5.7a).
N f Dx(1)f D2

x(1)f hΞ
MEAN rate MEAN rate MEAN rate

9 0.1512 – 0.7934 — 2.2061 — 0.4398
25 0.0749 2.3926 0.7176 0.3425 2.2544 -0.0738 0.3280
81 0.0118 2.5671 0.1746 1.9601 1.1652 0.9152 0.1595
289 0.0020 3.3536 0.0539 2.2055 0.4935 1.6112 0.0936
1089 3.85e-04 4.6827 0.0218 2.6055 0.2133 2.4088 0.0661
4225 3.83e-05 3.4661 0.0058 1.9948 0.0810 1.4554 0.0340
16641 3.27e-06 2.4788 9.62e-04 1.8099 0.0384 0.7519 0.0126
66049 4.65e-07 3.6734 2-88e-04 2.2694 0.0152 1.7448 0.0074
96701 2.70e-07 2.3176 1.95e-04 1.6593 0.0162 -0.2748 0.0058

Figure 5.8: MAE for (a) SPH standard; (b) Improved method with k=0, (c) k=1,
(d) k=2. N=1089 data in ΞG. Function test (5.7a).
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Figure 5.9: Function test (5.7a). Comparison of MAE on the function with the
standard SPH formulation and the improved ones with k=0,1,2. (a) Gridded data;
(b) Halton data; (c) Sobol data; (d) Random data.
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Figure 5.10: Function test (5.7b). Comparison of MAE on the function with the
standard SPH formulation and the improved ones with k=0,1,2. (a) Gridded data;
(b) Halton data; (c) Sobol data; (d) Random data.
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Figure 5.11: Function test (5.7c). Comparison of MAE on the function with the
standard SPH formulation and the improved ones with k=0,1,2. (a) Gridded data;
(b) Halton data; (c) Sobol data; (d) Random data.



Chapter 6

Computational skills

In previous chapter we have presented an enhancement to the SPH method in approx-
imating a function and its derivatives. The method has proven to provide an accuracy
of any desired order. However the computational effort is quite expensive compared to
the original method. In fact for each evaluation point, we have to build and solve the
linear system (5.17). The size of the system is described by the quantity

sk,d = (d+ k)!
d!k!

depending on the problem dimension d and on the order of accuracy requested k. Con-
sequently the computational cost required is

Ck,d ≈MNsk,d

(
sk,d + 3

2

)
. (6.1)

From the numerical tests presented, we notice that often the maximum error is picked
only in some boundary points. Therefore, to improve the accuracy of the approximation,
one could be interested on consider only these particular points instead to recompute the
procedure for all. In this case, passing from k−1 to k order of accuracy there are needed
only of d

2k sk−1,d[ (d+2k)
k sk−1,d + 1] more elements to end up the matrix A(k) starting from

the matrix A(k−1). In fact, as shown in Figure 6.1, the matrix of higher order is partial
composed by the matrices of lower order.

A first approach to speed up the computation, making the large scale problems
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

A(0)

A(1)

. . .
A(k)


.

Figure 6.1: Skeleton of the matrix associated to the (k +1)-th order of accuracy.

tractable, is to split the matrix A(k), by means of the matrices:

K(k) =


K(x, ξ1; h) K(x, ξ2; h) . . . K(x, ξN ; h)

...
... . . .

...
DkK(x, ξ1; h) DkK(x, ξ2; h) . . . DkK(x, ξN ; h)

 (6.2)

V =


dΩ1

dΩ2
. . .

dΩN

 (6.3)

P(k) =


1 (ξ(1)

1 − x(1)) . . . 1
k!(ξ

(d)
1 − x(d))k

1 (ξ(1)
2 − x(1)) . . . 1

k!(ξ
(d)
2 − x(d))k

...
... . . .

...
1 (ξ(1)

N − x(1)) . . . 1
k!(ξ

(d)
N − x(d))k

 (6.4)

allowing to re-write the system as:

(K(k)VP(k))c(k) = K(k)Vf (6.5)

where f collects the function values.
The resolution and the results are the same, but the process is faster passing from a
BLAS level 1 to a BLAS level 3 [46].
However most of the computational cost is the construction of the elements of matrix A(k)
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and vector b(k). All these elements are constituted by the summation of the Gaussian
kernel or its derivatives multiplied for different weights. To speed up this assembly
procedure, in the next section we introduce a fast summation technique.

6.1 Improved Fast Gauss Transform
The Fast Gauss Transform (FGT) was introduced by Greengard and Strain [48, 49] for
efficient evaluation of the Gauss transform, reducing the computational cost in comput-
ing the sum

G(xi) =
N∑
j=1

wje
−
‖ξj−xi‖

2

h2 i = 1, ...,M (6.6)

where wj are the weight coefficients,
{
ξj

}N
j=1
⊆ Rd are the centers of the Gaussian,

h is the smoothing length and {xi}Mi=1 ⊆ Rd are the evaluation points.
Following the Fast Multipole Method (FMM) idea, Greengard and Strain proposed an
Hermite series expansion centered at location x∗

G(xi) =
∑
α≥0

Cαhα

(xi − x∗
h

)

where hα is the d-dimensional Hermite function and α ∈ Nd is a multi-index. The
coefficient Cα represents the contribution of the centers in the approximation

Cα = 1
α!

N∑
j=1

wj

(
ξj − x∗

h

)α
.

If each element of the Hermite series is truncated after k terms, then each Cα is a d-
dimensional matrix with kd terms and the computational effort is reduced from O(MN)
operations to O((M + N)kd). However, increasing the problem dimension d, the term
kd grows exponentially, reducing the advantages of the fast summations. Afterthought,
the authors work with a box data structure, involving meshes that are inefficient in high
dimensions.
To overcome these limits, Yang et al. [94, 112, 113] proposes the Improved Fast Gauss
Transform (IFGT), replacing the Hermite representation with the Taylor series expan-
sion. Re-writing the exponential term as
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e−
‖xi−ξj‖

2

h2 = e−
‖xi−x∗‖2

h2 e−
‖ξj−x∗‖2

h2 e
2(ξj−x∗)(xi−x∗)

h2

the first two terms can be evaluated independently. The only problem remains the
evaluation of the one, where evaluation points and centers are linked. For this reason
the multivariate Taylor series expansion is considered giving rise to the approximation
[112]

Ĝ(xi) = e−
‖xi−x∗‖2

h2
∑

|α|≤k−1
Cα (xi − x∗)α (6.7)

with

Cα = 2|α|

α!

N∑
j=1

wje
−
‖ξj−x∗‖2

h2

(
ξj − x∗

h2

)α
.

Considering the rapidly decreasing of the Gaussian function, the space could be
divided into cells, collecting the influences of the centers. In this way, by choosing a
"cut-off" radius rx for each evaluation point, only the cells lying within rx are taking into
account in the summation.
To this aim, chosen p different cells, the N centers ξj are divided into the sets: S1, ..., Sp

with corresponding center c1, ..., cp. After the partition of the points is completed, the
truncation number k is chosen for each cell, in order to obtain the precision required.
For each p−th cell with center cp, the influence of data ξj is computed

Cpα = 2|α|

α!
∑
ξj∈Sp

wje
−
‖ξj−cp‖2

h2

(
ξj − cp
h

)α
. (6.8)

Thus for each evaluation point xi the fast summation is found

Ĝ(xi) =
∑

‖xi−cp‖≤rx

∑
α≤kmax−1

Cpαe
− ‖xi−cp‖2

h2

(xi − cp
h

)α
, (6.9)

where kmax is the maximum truncation order.
Depending on the truncation of Taylor series and on the value of the cut-off radius rx,
the upper error bound can be estimated

∑
j

|wj |
(

2k

k
ρkξρ

k
x + e−( ρxh )2

)
(6.10)
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with ρξ the upper bound of
(
ξj − x∗

)
and ρx the upper bound of (xi − x∗).

Yang, considerably improved the original fast summation either in term of computa-
tional cost and in accuracy. However some problems could arise when the value of the
smoothing length is low, such as in our case. In fact, in this case the error increases and
it is necessary increasing the number p of cells and the truncation order k, making the
procedure inefficient again.
To avoid this problem in [82] a tree-data structure is employed to speed up the research
for fixed-radius nearest neighborood, in partitioning the data ξj . Thus the nc influential
cells can be found in O(nclogp) time.
If h is considerably low, it is better to find the ξj involved and compute the direct
summation. Therefore, considering the data distribution, the smoothing length and the
bound error required, the new routine chooses the best computation strategy between
the following four:

1. Direct Evaluation

2. Direct Evaluation with tree-data structure

3. Improved Fast Gaussian Transform

4. Improved Fast Gaussian Transform with tree data structure.

In particular, after the best alternative is chosen, it is automatically found the best
maximum truncation order kmax and the optimal number of cells p. Indicating with nc
and ns the number of the cells and the data sites inside the radius rx, the computational
for the different strategy are reported on Table 6.1.

Table 6.1: Computational cost using the four different strategies
Cost direct O(dMN)
Cost direct +tree O(d(N +Mns)logN)
Cost IFGT O(dNlogp+ (N +Mnc)r(kmax−1)d + dMp)
Cost IFGT+tree O(N +Mnc)(dlogp+ r(kmax−1)d)

In the next section we will show the computational performance in applying the
IFGT strategies to our improved SPH method.
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6.2 IFGT vs SPH
Opportunely combining the SPH method with the IFGT considerably speed up the
method at a large number of evaluation points, by maintaining the accuracy order.
Each entries of the matrix A(k) and b(k) requires a summation and it is computed by
using the IFGT with different weights, depending on the derivatives of the kernel. The
algebra involved is quite tedious but thanks to the features of the Gaussian derivatives,
we can exploit of a sort of symmetry and re-use terms already computed.
To make the discussion as simpler as possible, let consider k = 1 and d = 2, so
we obtain a 3 × 3 system to build. In this case six fast summations are required:

1IFGT :=
N∑
j=1

dΩjK(x, ξj ; h)

2IFGT :=
N∑
j=1

(dΩjξ
(1)
j )K(x, ξj ; h)

3IFGT :=
N∑
j=1

(dΩjξ
(2)
j )K(x, ξj ; h)

4IFGT :=
N∑
j=1

(dΩjξ
(1)
j ξ

(1)
j )K(x, ξj ; h)

5IFGT :=
N∑
j=1

(dΩjξ
(1)
j ξ

(2)
j )K(x, ξj ; h)

6IFGT :=
N∑
j=1

(dΩjξ
(2)
j ξ

(2)
j )K(x, ξj ; h)

these are coupled with different weights giving rise to the corrective matrix A(1):

A
(1)
11 = 1IFGT

A
(1)
12 = 2IFGT − x(1)

i 1IFGT

A
(1)
13 = 3IFGT − x(2)

i 1IFGT

A
(1)
21 = 2

h2A
(1)
12

A
(1)
22 = 2

h2 [4IFGT + (x(1)
i )

2
1IFGT + 2x(1)

i 2IFGT ]
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A
(1)
23 = 2

h2 [5IFGT − x(2)
i f2IFGT − x(1)

i 3IFGT − x(1)
i x

(2)
i 1IFGT ]

A
(1)
31 = 2

h2A
(1)
13

A
(1)
32 = 2

h2A
(1)
23

A
(1)
33 = 2

h2 [6IFGT + (x(2)
i )

2
1IFGT − 2x(2)

i 3IFGT ].

The Figure 6.2 compares the cost of direct summation versus the IFGT summation
and shows the efficiency greatly improved by making use of the IFGT. We compare the
CPU times which need to generate and to solve the linear system (5.17) with or without
the IFGT for k=1 and k=2 with the same approximation error referring to the test func-
tion (5.7a) with data in ΞG. In the Tables 6.2 and 6.3 the CPU times for k=1 and k=2
respectively with gridded and random data in approximating the test function (5.7a)
are reported. The simulations are conducted on a computer equipped with a processor
Intel(R) Core (TM) i7-3537U CPU 2.00GHz.

Figure 6.2: CPU times (s) versus N in ΞG: (a) k=1; (b) k=2.

In this second part of the thesis we have analyzed a particular class of meshless
method: the particle methods, focusing on the Smoothed Particle Hydrodynamics. We
present an improved SPH strategy based on Taylor series expansion to restore the accu-
racy of the standard method. Through several numerical investigations we give evidence
of the enhancements in approximating a function and its derivatives. We work with a
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Table 6.2: CPU times (s) versus N. Data in ΞG. Test function(5.7a).
N k=1 k=1 k=2 k=2

IFGT IFGT
9 0.1539 0.0255 0.7095 0.1756
81 0.8124 0.0264 1.3353 0.4532
289 1.3506 0.5747 2.7261 0.9541
1089 4.4933 0.7062 4.8085 1.2359
4225 19.5425 1.0367 21.3708 2.4587
16641 39.8844 1.6538 84.6397 3.0125

Table 6.3: CPU times (s) versus N. Data in ΞR. Test function(5.7a).
N k=1 k=1 k=2 k=2

IFGT IFGT
9 0.5099 0.0253 0.6818 0.1856
81 0.7778 0.0341 1.0210 0.4232
289 1.3719 0.5747 1.3925 0.9824
1089 3.6146 0.7062 3.6724 1.2523
4225 10.6324 1.0985 16.0703 2.6577
16641 42.3251 1.5315 79.7602 3.1543

Gaussian kernel that it is infinitely differentiable, radial and strictly positive definite
function. This choice allows us to employ a IFGT strategies to speed up the computa-
tional cost.
We address the basic features of the method, conducting many experiments with var-
ious data sets and considering several bi-variate test functions. Satisfactory results
and computational advantages with uniform and non uniform large data sets encourage
to proceed in the approximation of a function and its derivatives with the combined
methodology.



Chapter 7

Conclusions and Future Work

This thesis presents new and accurate numerical strategies working with meshless meth-
ods in the study of dynamical models and in the approximation field.
In the first part, we have presented a numerical tool for better understanding of dynam-
ical phenomena.
The goal is to reconstruct the domains of attractions of a particular model in order to
know in advance all the possible outcomes. To accomplish this task, we have developed
an algorithm to detect and to reconnect the threshold points lying between two different
basins. Considering the vector field topology, we have demonstrated that the separatrix
surfaces are the invariant manifolds of the saddle points. Therefore a new detection
strategy has been shown. Comparing to the bisection method, the computational effort
is considerably reduced. In particular, this new algorithm could be applied to more
complex systems, admitting periodic stable configurations, such as limit cycle or limit
torus.
Once the invariant manifolds are detected, we reconstruct them by employing a Moving
Least Squares (MLS) mesh-free approximant. This method presents a number of advan-
tages dealing with the scattered data problems. In fact, we do not need to face with any
linear systems. Instead, we have to solve small weighted problems depending on the dif-
ferent evaluation points. In particular, working with bi-dimensional data measurements,
as in our applications, the explicit formula for the Lagragian multipliers are found. As
result the computational cost is further reduced.
The several numerical applications have shown as the separatrix is a fundamental key to
better interpret the dynamical process that could not emerged from a standard equilib-
rium and stability analysis. For example, we have provided a study on the Allee effect
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induced by the hunting cooperation coupled with an infectious disease. Dealing with
a three dimensional systems was impossible to study the Allee threshold without the
separatrix reconstruction. The results obtained, show interesting insights on the classifi-
cation of the Allee effects, enlightening that for a strong cooperation the Allee threshold
approaches zero. Therefore the strong Allee effect previously observed, actually is more
similar to the weak one and the predators almost always coexist with the prey, reducing
the bistability to an only possible outcome. Being the critical population density needed
for survival, the Allee threshold is important, especially when it comes to population
management.
The proposed algorithm works for almost all the dynamical models, however, if the sys-
tem admits a focus saddle with strong circulation, the detection of the separatrix points
results less accurate. Therefore, future developments are focused on working to couple
the old bisection method with the new strategy, in order to preserve the goodness of
approximation and the efficiency of the method in this particular case.
In the second part, we have presented a new modified Smoothed Particle Hydrodynamics
method based on the Taylor series expansion. Many numerical tests have been shown to
give evidence of the accuracy, convergence and computational cost. It has been demon-
strated that the method provides concurrently, accuracy of any order in approximating
a function and order k + 1− p to approximate the p− th derivative.
Dealing with the infinitely smooth differentiable Gaussian kernel functions it has been
possible using the Improved Fast Gauss Transform to reduce the computational demand-
ing in assembly the system matrices. The satisfactory results and the computational
advantages obtained with different data distributions, encourage to proceed in the ap-
proximation of a function and its derivatives with this new methodology.
This work has wide possibilities for future developments. In particular, the research will
investigate the application of the IFGT to enhance a meshfree solver, for the analysis of
the electromagnetic fields over time. Moreover, we will focus on developing new iterative
strategies in order to avoid the generation of the linear systems in improving the SPH
approximation.
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