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Introduction

This thesis is a collection of three essays based on the application of mixed frequency

macro-�nancial data analysis to study spillovers. Time series are sampled at di�erent

frequencies: generally, �nancial data is observed at high-frequency (e.g. daily, weekly)

and macro data is observed at lower-frequency (e.g. monthly, quarterly). A conventional

approach in empirical literature using a Vector Autoregressive (VAR) models is to choose

a common sampling frequency for all the variables. This requires aggregation of the

high-frequency series to a low-frequency with a loss of potentially relevant high-frequency

information (see Ghysels et al., 2007).

An alternative to conventional common-frequency approach is a Mixed Data Sampling,

MIDAS-class models proposed by Ghysels et al. (2004) and Ghysels (2016). More spe-

ci�cally, Ghysels (2004) has introduced a MIDAS regression model, where a low-frequency

variable is treated as a dependent and the high-frequency ones as regressors. More re-

cently, Ghysels (2016) has proposed a multivariate extension of MIDAS regression model

� a mixed sapling frequency VAR model (MF-VAR henceforth), where all high and low

frequency variables are treated as endogenous.

The advantage of MF-VAR is argued in the recent literature. In Granger causality test

contest, Götz et al. (2016) and Ghysels et al. (2016) show that mixed-frequency Granger

causality tests are better suited to recover causal relationships when compared to the

standard common low-frequency approach. In a structural VAR context, Bacchiocchi et al.

(2018) propose a MIDAS-SVAR model, which is a multivariate extension of unrestricted-

MIDAS model (by Foroni et al., 2015) and reverse unrestricted MIDAS model (by Foroni

et al., 2018). In empirical application the authors �nd no relationship between US capital

in�ows, monetary policy and uncertainty when using common-frequency approach with

quarterly data, while MIDAS-SVAR results show a strong positive impact from interest

1



INTRODUCTION 2

rate shock on capital in�ows when it occurs in the �rst two months of the quarter and the

e�ect is negative when shock hits the economy in the last month of the quarter.

While the aforementioned MF-VAR studies rely on observable data to model mixed

frequency data, the studies of Foroni and Marcelino (2014a, 2014b) use a state space

approach, treating the low-frequency series as �missing data� and a low-frequency variable

is interpolated to the frequency of a high-frequency variable.

In this thesis I concentrate on the application of the MF-VAR based on observable

data. The main advantage of MF-VAR is that it allows the use of the standard VAR tools

- impulse response, forecast error variance decomposition analysis and test for Granger

causality. The estimation of the model relies on well established procedures, for instance,

OLS and maximum likelihood. Moreover, Ghysels (2016) argues that the identifying

restrictions implied by a Cholesky factorization are more plausible in a context of mixed

frequency structural VAR.

In Chapter 1, I evaluate how important is �nancial distress of European Global Sys-

temically Important Banks, GSIB, for Eurozone �nancial distress. The attention to the

European banking sector increased during the Eurozone crisis. Since a signi�cant amount

of sovereign debt was owed by European banks, the sovereign default could lead to a failure

of systemically-important European banks. In this context, regulators and policy makers

agreed that the systemically important banks should become a regulatory priority.

This study contributes to the empirical literature measuring the systemic importance

of the GSIBs and ranking systemically important �nancial institutions. Alternatively to

previous studies, I measure the contribution of the European systemically important banks

to the Eurozone's �nancial �uctuations by performing Forecast Error Variance Decompos-

ition (FEVD) analysis. Given the use of mixed frequency data, I �t a structural bivariate

Mixed Frequency Data Sampling VAR model to daily GSI bank CDS spread and to the

weekly CISS index constructed by ECB to proxy �nancial distress in the Eurozone. The

focus on Forecast Error Variance Decomposition allows measuring the contribution of the

European GSIBs to EZ �nancial distress and to rank systemically important �nancial in-

stitutions. I compare full sample and regime speci�c estimation results (given the evidence

of structural breaks) and the �ndings show that the contribution of a bank CDS spread

to Eurozone �nancial distress increases during periods of �nancial turmoil. In addition, I

�nd my FEVD based rankings to be similar to the ones provided by Financial Stability

Board list.

The usefulness of a VAR based on mixed frequency data is con�rmed by a Likelihood
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Ratio test. I show that the aggregation of the daily CDS spread data into weekly observa-

tions generate a loss of information in a VAR. Finally, I �nd that the shocks in MF-SVAR

explain a much larger part of the FEVD than in traditional CF-SVAR model, suggesting

that the contribution of the European GSIBs to EZ �nancial distress is underestimated in

a common-frequency model.

In Chapter 2 I focus on the links between �nancial stress and real economic activity in

Lithuania. My �rst contribution is to extend the monthly Financial Stress Index (CLIFS)

for Lithuania computed by ECB in two dimensions. First, arguing the important role

played by Scandinavian commercial banks in the Lithuanian �nancial sector development

(three Scandinavian banks constitute approximately 73% of the total banking sector as-

sets) I include the banking sector among its constituents (beyond bond, equity, foreign

exchange markets). Second, I extend a monthly ECB �nancial stress index to a high-

frequency (daily) horizon. Moreover, I show that a proposed daily �nancial stress index

for Lithuania is a better predictor than a monthly index of ECB for a future path of a

monthly industrial production growth in Lithuania.

My second contribution is to investigate the causal relationships between the construc-

ted daily FSI for Lithuania and monthly industrial production growth in Lithuania, by

using a Granger causality test. Given a large mismatch in frequencies of the series involved

(i.e. daily vs monthly) I apply the Granger causality test developed by Götz et al. (2016)

and by Ghysels et al. (2018). The empirical �ndings suggest that the daily Lithuanian

FSI has a predictive power for monthly Lithuanian IP growth for the full sample period

(October 2001 � December 2016), but not vice versa.

In Chapter 3, I examine the macro-uncertainty and �nancial distress connectedness

among Eurozone countries. The contribution of this chapter to the existing literature is

twofold. First, this study contributes to empirical literature on macro-�nancial connec-

tedness between Eurozone countries. I show that macro-uncertainty and �nancial distress

are relatively disconnected in the Eurozone (this �nding is similar to the one of Jurado et

al., 2015, for the US economy). Moreover, in line with the empirical studies of Cipollini

et al. (2015), Ehrmann and Fratzscher (2017) and of Caporin et al. (2018), which focus

only on sovereign bond markets, I also �nd evidence of a decrease in the degree of connec-

tedness between the core and periphery block since the outbreak of Eurozone sovereign

debt crisis. In addition, I �nd evidence of a shift in directional connectedness, since core

(peripheral) countries are the triggers of the connectedness between macro-uncertainty

and �nancial stress before (since) the Eurozone sovereign debt crisis. Moreover, I show

that the connectedness between core and periphery Eurozone countries is occurring mainly
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through �nancial stress. Finally, core countries (in particular Germany, Netherlands and

Belgium) are the triggers of the connectedness before the Eurozone sovereign debt crisis

(1997-2009), while periphery countries (in particular, Greece, Ireland and Spain) play an

important role in driving connectedness in the full sample period including the Eurozone

sovereign debt crisis.

Second, my contribution is also methodological. I extend a GVAR model by using the

recent econometric developments by Ghysels (2016). In particular, I �t a GVAR model

to two endogenous variables: a monthly Country-Level Index of Financial Stress (CLIFS)

provided by ECB (see Klaus et al., 2017) and a quarterly index of uncertainty about GDP

growth computed by Rossi and Sekhposyan (2017). Then, total and directional connec-

tedness are computed by using the methodology developed by Greenwood-Nimmo et al.

(2015) which extends the Diebold and Yilmaz (2012, 2014) VAR based approach to estim-

ate the Forecast Error Variance Decomposition, FEVD, to a Global Vector Autoregressive,

GVAR model.

By comparing the results obtained by MF and CF GVAR models, I show that spillovers

in the CF model are underestimated. These �ndings would have implications for the

correct implementation of policies aiming at dampening �nancial instability. For instance,

core-periphery connectedness occurring through �nancial stress is 5 percentage points

lower than the connectedness index obtained by MF approach. Moreover, contrary to the

MF results, the common-frequency model suggests that periphery countries are net donors

in terms of �nancial distress before Eurozone debt crisis and they become net recipients

once I consider also the Euro sovereign debt crisis.
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Chapter 1

How important are GSI banks for the

�nancial distress in the Eurozone? An

analysis based on MF-VAR

1.1 Introduction

The attention to the European banking sector increased during the Eurozone crisis when

�nancial markets became increasingly sceptical about the capability of few peripheral

Eurozone member states to be able to pay their government debt. Since a signi�cant

amount of sovereign debt is owed by European banks, the sovereign default could lead

to a failure of systemically-important European banks. The recent global �nancial crisis

showed how the collapse of a systemically important bank can bring all �nancial system

into a deep crisis. In this context, the �nancial regulatory authorities have introduced new

regulations in order to prevent the failure of so-called global systemically important banks

(GSIBs). In November 2011, Financial Stability Board (FSB) published a list of GSIBs,

which, under distress, given their size, interconnectedness, substitutability, complexity,

and cross jurisdictional activities, would be signi�cantly harmful for the whole �nancial

system and economic activity (BCBS, 2013; FSB, 2016).

The aim of this chapter is to contribute to the empirical literature measuring the sys-

temic importance of the GSIBs and ranking systemically important �nancial institutions.

More speci�cally, this study is along the lines of Adrian and Brunnermeier (2016). The

authors propose the (∆CoVaR) indicator of systemic risk to evaluate the �nancial sys-

7



1.1. INTRODUCTION 8

tem loss conditional on each institution being in distress.1Alternatively, I measure the

contribution of the European systemically important banks to the Eurozone's �nancial

�uctuations by performing the Forecast Error Variance Decomposition (FEVD) analysis.2

Moreover, I rank the European GSIBs according to the contribution of CDS spreads of

each European GSIB to the FEVD of the CISS index.3

My contribution also builds on a growing strand of the literature focusing on spillovers

between sovereign credit markets and systemically relevant banks in Eurozone. For in-

stance, Alter and Schüler (2012) provide empirical evidence on risk spillovers between

banks and sovereigns during the period between June 2007 and May 2010, by �tting a

bivariate VAR to a sovereign CDS spread and a selected domestic bank CDS spread. The

authors �nd evidence of contagion from bank credit spreads into the sovereign CDS market

in the period before bank bailouts, while after bailouts sovereign CDS spreads impact bank

CDSs more strongly. Similarly, Alter and Beyer (2014) focus on spillovers between sover-

eign credit markets and systemically relevant banks in Eurozone. To quantify spillovers,

the authors use a vector autoregressive model �tted to daily sovereign and bank CDS

series. Their main results state that spillover e�ects from banks to sovereigns and vice

versa increase during periods of stress, suggesting an intensifying feedback loop between

Eurozone banks and sovereigns.

In this chapter, I proxy the European GSIBs by using daily CDS spreads with 5-year

maturity and Eurozone �nancial distress by a weekly composite indicator of systemic

stress, CISS, for EZ (see Holló et al., 2012).4 Given the use of mixed frequency data, I

employ a structural MF-VAR model, suggested by Ghysels (2016), to obtain the contri-

bution of CDS spreads of each European GSIB to the Forecast Error Variance, FEVD, of

the CISS index. In addition, I compare the results obtained by MF-VAR model and the

traditional common-frequency (CF)SVAR model. The collected data covers the period

1I do not focus on measuring the vulnerability of a single �nancial institution to distress a�ecting the
whole �nancial system. The recently proposed macro-prudential indicators such as the Distress Insurance
Premium (DIP), the Marginal Expected Shortfall (MES) and the Systemic Risk Measure (SRISK) put
forward by Huang et al. (2012), Acharya et al. (2017), and by Brownlees and Engle (2016) focus on the
expected loss of an institution when the system is in distress.

2Impulse response analysis (in section 1.4.3.2) shows that, overall, there is a positive spillover from the
CDS spread of a GSIB to the CISS index.

3The CISS is a �nancial stress index for Eurozone, quantifying the current state of �nancial instability
in the Eurozone �nancial system. It is constructed by aggregating individual stress indicators of �ve
markets - the �nancial intermediaries sector, money markets, equity markets, bond markets and foreign
exchange markets, into a single composite indicator (for more details see Section 1.A.1.1).

4The studies of Alter and Schüler (2012), Alter and Beyer (2014), Acharya and Ste�en (2015), Ballester
et al. (2016), Cetina and Loudis (2016), among others, focus on the use of CDS as proxy of �nancial
institutions distress (e.g. probability of default) and explore spillover e�ects.
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starting before the global �nancial crisis and ending in 28/10/2016. First, the empirical

analysis is carried out using the full sample, and then, given the evidence of structural

breaks (using methodology of Qu and Perron, 2007), for three periods: (i) before the global

�nancial crisis (GFC), (ii) during the GFC and European sovereign debt crisis (SDC), and

(iii) after the SDC.

Overall, I �nd that the major contribution of GSIBs distress shocks to CISS �uctuations

occurred in the last regime, which covers the period between 2012 and 2016. In addition,

the ordering of the GSIB in terms systemic importance using the FEVD obtained through

MF VAR are similar to the rankings provided by the Financial Stability Board (FSB). The

usefulness of a VAR based on mixed frequency data is con�rmed by a Likelihood Ratio

test. I show that the aggregation of the daily CDS spread data into weekly observations

generate a loss of information in a VAR. Finally, I �nd that the shocks in MF-SVAR

explain a much larger part of the FEVD than in traditional CF-SVAR model, suggesting

that the contribution of the European GSIBs to EZ �nancial distress is underestimated in

a common-frequency model.

The rest of the chapter is organized as follows. In section 1.2 I present the methodology.

Section 1.3 describes the data. Section 1.4 discusses the results. Finally, section 1.5

concludes.

1.2 VAR Methodology

1.2.1 Traditional CF-VAR

Traditional VAR analysis is based on using time series sampled at the same (common)

frequency. If data have mixed-frequency, then the observations of the high-frequency vari-

able are aggregated to match the observations of the low-frequency series. The traditional

CF-VAR model used in this study is based on average of a daily CDS spread over a week to

match the weekly frequency of the composite indicator of �nancial stress for the Eurozone,

the CISS index. Since the series are integrated of order one (according to the Augmen-

ted Dickey-fuller test), in a �rst stage of multivariate analysis, I transform the data into

�rst-di�erences.

Consider a traditional structural representation of VAR(p) model as follows:

Ayt = c+

p∑
i=1

Ciyt−i +Bεt, εt ∼ N(0, In) (1.1)



1.2. VAR METHODOLOGY 10

where yt is a (2Ö1) vector of endogenous variables, containing a weekly change of CDS

spread (∆cds) and a weekly change in Eurozone's �nancial distress (∆CISS), A is a

(2Ö2) coe�cient matrix of contemporaneous relations among the endogenous variables,

εt is a (2Ö1) vector of orthogonalized structural shocks, including a GSI bank distress

shock (εbt) and a EZ �nancial distress shock (εft ). Finally, B is a (2Ö2) coe�cient matrix

of structural shocks' standard deviations restricted to be diagonal. The corresponding

reduced-form model is obtained by pre-multiplying the structural model by A−1:

yt = µ+

p∑
i=1

Γiyt−i + ut, ut ∼ N(0,Σu) (1.2)

where the reduced form shocks have covariance matrix E(ut, u
′
t) = Σu. Identi�cation of

the structural shocks is obtained through the Cholesky decomposition of Σu, and given the

focus on the impact of GSI bank distress shock on EZ �nancial distress, the CDS spread

is ordered �rst. Therefore, the (exactly) identifying restrictions are given by the following

con�guration of the structural form coe�cient matrices:

A =

1 0

a 1

 and B =

b1 0

0 b2

 (1.3)

1.2.2 MF VAR

Recent studies (see Clements and Galvão, 2008; Foroni et al., 2015; Ghysels, 2016; Götz et

al., 2016; among others) use mixed-frequency data directly, without any time aggregation.

In this study I follow the approach proposed by Ghysels (2016).

I denote a low-frequency and high-frequency variable by xL and xH , respectively. A

high-frequency variable is observedm times during a low-frequency period t. More speci�c-

ally, the high-frequency variable � CDS spread, is observed 5 days during a week, m = 5.

Since, an index j = (1, 2, 3, 4, 5) is used for a speci�c high-frequency observation in a

week t, the �ve daily observations (from Monday to Friday) for the high-frequency CDS

spread are indicated by xH(t, 1), xH(t, 2), xH(t, 3), xH(t, 4), xH(t, 5), respectively. Next, in

line with Ghysels (2016), I construct a stacked vector (Zt) of six endogenous variables, ap-

pending the low-frequency series to the �ve high-frequency variables. Then a reduced-form
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MF-VAR(p) model in a matrix notation has the following form:



xH(t, 1)

xH(t, 2)

xH(t, 3)

xH(t, 4)

xH(t, 5)

xL(t)


=



µ1

µ2

µ3

µ4

µ5

µL


+

p∑
i=1



γi11 γi12 γi13 γi14 γi15 γi1

γi21 γi22 γi23 γi24 γi25 γi2

γi31 γi32 γi33 γi34 γi35 γi3

γi41 γi42 γi43 γi44 γi45 γi4

γi51 γi52 γi53 γi54 γi55 γi5

γiL1 γiL2 γiL3 γiL4 γiL5 γiL





xH(t− i, 1)

xH(t− i, 2)

xH(t− i, 3)

xH(t− i, 4)

xH(t− i, 5)

xL(t− i)


+



uH(t, 1)

uH(t, 2)

uH(t, 3)

uH(t, 4)

uH(t, 5)

uL(t)


(1.4)

where a time index t is a week, as in a traditional VAR model.5 The covariance matrix of

the reduced form shocks (uMF
t ) is:

uMF
t =


σ11 · · · · · · σ1L

... σ22 · · ·
...

σ51
...

. . .
...

σL1 σL2 · · · σLL

 (1.5)

Next, consider a structural MF-VAR model:

A



xH(t, 1)

xH(t, 2)

xH(t, 3)

xH(t, 4)

xH(t, 5)

xL(t)


= c+

p∑
i=1

Ci



xH(t− i, 1)

xH(t− i, 2)

xH(t− i, 3)

xH(t− i, 4)

xH(t− i, 5)

xL(t− i)


+B



εH(t, 1)

εH(t, 2)

εH(t, 3)

εH(t, 4)

εH(t, 5)

εL(t)


(1.6)

where A is a coe�cient matrix describing contemporaneous relations between the bank

CDS spread and the CISS index within a week t. The orthogonal structural shocks (with

variance equal to unity), described by the six dimensional vector εMF
t = (εH(t, j)′, εL(t)′)

can be recovered from reduced-form errors, uMF
t , since uMF

t = A−1BεMF
t and ΣMF

u =

A−1BB′A−1′ . I use the recursive identifying scheme implied by the Cholesky decompos-

ition of the reduced form covariance matrix, ordering the daily observations of the CDS

spread �rst:

5The optimal lag length p (in weeks) is obtained through a Bayesian information criterion.
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A =



1 0 0 0 0 0

a1 1 0 0 0 0

a2 a3 1 0 0 0

a4 a5 a6 1 0 0

a7 a8 a9 a10 1 0

a11 a12 a13 a14 a15 1


(1.7)

It is important to observe that the identifying scheme based on recursive ordering implies

that, on impact, only the high-frequency structural shocks εH(t, j) hit the low-frequency

series (xL) (e.g. the index of Eurozone �nancial stress). Therefore, the feedback from the

CISS index to the bank CDS spread occurs a week after the shock onwards. Moreover, the

recursive scheme implies also that a shock to a bank CDS spread on a given day has an

e�ect only on the following days of the week. More speci�cally, while a shock to the CDS

spread of Monday εH(t, 1) has an e�ect on the following days of the week t (measured by

the �rst column coe�cients a1, a2, a4, a7), the CDS spread on Friday is only a�ected by a

shock occurring on the same day.

The use of restrictions on lagged coe�cient matrix beyond those exactly identifying the

structural form impact multiplier matrix would require the use of ML joint estimation of

two sets of structural form coe�cients: those for the impact multiplier and those related to

the autoregressive coe�cients of the high and low frequency variables. Although this model

is more parsimonious, it is more computationally demanding than the exactly identi�ed

model I propose. In this case, the estimation is split in two stages: in the �rst stage I

estimate the reduced form model by OLS. In the second stage, I employ the Cholesky

decomposition of reduced form covariance matrix (hence, the number of structural form

parameters is only related to the structural form impact multiplier matrix).

Finally, the magnitude of the structural shocks εMF
t is measured by the main diagonal

elements of matrix B:

B =



b11 0 0 0 0 0

0 b22 0 0 0 0

0 0 b33 0 0 0

0 0 0 b44 0 0

0 0 0 0 b55 0

0 0 0 0 0 bLL


(1.8)
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1.2.3 Likelihood Ratio Test: MF VAR vs CF-VAR

I follow Bacchiocchi et al. (2018) to analyse the usefulness of the MF VAR by testing,

through a LR statistics, whether aggregation of the mixed-frequency series as in traditional

CF-VAR generates a loss of information. The authors suggest that the comparison between

the two speci�cations depends on the aggregation scheme used to aggregate the high-

frequency data in a CF-VAR.

Recall that the traditional CF-VAR model in eq. (1.2):

Γ(L)yt = ut (1.9)

where yt is a 2Ö1 column vector which includes daily observation of CDS spreads aggreg-

ated over a week (through simple average) to match the weekly frequency of the CISS

index. Given a selection matrix G, the common-frequency data vector (yt) can be mapped

to the mixed-frequency data stacked vector (Zt) as follows:

yt = GZt (1.10)

with G =

1
5

1
5

1
5

1
5

1
5

0

0 0 0 0 0 1

and ut = GuMF
t .

Bacchiocchi et al. (2018) shows that pre-multiplying the MF-VAR model in eq. (1.4)

by the selection matrix G:

GΓ(L)MFZt = GuMF
t (1.11)

I get the equivalence between the reduced form MF-VAR and CF-VAR:

GΓ(L)MFZt = Γ(L)yt (1.12)

Therefore, the LR statistics can be computed by comparing the log-likelihood of the

unrestricted model, i.e. MF-VAR, with the one associated with the restricted model, i.e.

CF-VAR. The test statistics LR = −2(lr − lu) is asymptotically distributed as a χ2, with

the degrees of freedom equal to the number of restrictions on the MF VAR coe�cients.

In particular, I consider 32 restrictions for each lag: eight are imposed on the parameters
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capturing the relationships between high- and low-frequency variables and twenty-four

are imposed on the parameters capturing the relationships between the high-frequency

variables.6

1.2.4 Forecast Error Variance Decomposition Analysis

Once the MF VAR has been estimated, the forecast error variance decomposition (FEVD)

analysis is used to analyze how the GSIBs distress shocks a�ect the �nancial stability in

the Eurozone. I measure the fraction of the H-step-ahead error variance in forecasting the

CISS index (xL) attributable to shocks in GSI banks distress (εH) for any given forecast

horizon (H) as:

FEV D = θL,j(H) =

∑H−1
h=0 (e

′
xL

Ψhej)
2∑H−1

h=0 e
′
xL

ΨhΨhexL
(1.13)

where Ψh is the matrix of moving average structural form coe�cients for horizon h.

The reduced-form stationary MF VAR in eq. (1.4) can be inverted to obtain the

reduced-form Vector Moving Average representation:

Zt =
∞∑
h=0

Φhu
MF
t−h (1.14)

where Φ0 = IK , and the remaining Φh =
∑H−1

h=1 Φh−iΓi. Then, the structural form coef-

�cients in Ψh (in eq. 1.13) are estimated from the Moving Average representation with

orthogonal white noise innovations, as follows:

Zt =
∞∑
h=0

Ψhε
MF
t−h (1.15)

where εMF
t = A−1BuMF

t and Ψh = ΦhA
−1B.

Given that I am interested in measuring the contribution of the shocks in CDS spread

to the forecast error variance of the low-frequency CISS index for the H-step-ahead horizon,

I focus only on the �rst �ve coe�cients of the last row of Ψh : θL1(H), θL2(H), θL3(H),

θL4(H), θL5(H). For this purpose, I use the six dimensional selection vectors: the row

vector e
′
xL

= [0, 0, 0, 0, 0, 1] and the column vector ej which takes value 1 in only one of

6I consider di�erent VAR lag length varying from one to four.
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the �rst �ve rows and zero elsewhere. Finally, I compare the sum the �ve aforementioned

coe�cients with the single coe�cient measuring the FEVD associated with a traditional

bi-dimensional CF-VAR.

1.3 Data

This analysis concentrates on the following European banks: BNP Paribas (FR), Banco

Santander S.A. (ES), Barclays Bank PLC (UK), Groupe Crédit Agricole (FR), Deutsche

Bank AG (DE), HSBC Bank PLC (UK), ING Bank NV (NL), Royal Bank of Scotland

(UK), Société Générale S.A. (FR), Standard Chartered Bank (UK), UBS AG (CH) and

UniCredit SpA (IT). All the selected banks, according to FSB, were considered as the

Global Systemically Important Banks in 2016. I collect, from Bloomberg, the daily senior

CDS spreads with 5-year maturity, since these contacts are generally considered the most

liquid and constitute the majority of the entire CDS market.7

I use the Composite Indicator of Systemic Stress (CISS), proposed by Holló et al.

(2012), available from ECB, to measure �nancial distress in Eurozone.8 The weekly CISS

index is based on 15 raw indicators of �nancial stress capturing the dynamics of �ve

Eurozone �nancial markets: money, foreign exchange, banking and non-bank �nancial

intermediaries sector, equity and bond. The construction of the index consists in two

steps: �rst, each raw indicator is transformed through the cumulative distribution function

(CDF), then, �ve separate sub-indexes are computed, and aggregated using time-varying

pair-wise correlation (see Appendix 1.A.1.1). The CISS index varies between 0 and 1.

Higher values are associated with a higher level of stress in the Eurozone.

The starting date of the sample for each bivariate VAR varies according to the avail-

ability of the CDS spread, and ends on 28/10/2016 (for more details see Table 1.1 in

Appendix 1.A.4). I use 5 observations per week (from Monday to Friday) for the CDS

spread. Descriptive statistics for CDS spread data for 12 analysed banks is presented in

Table 1.2. The average values (means) of spreads ranges from 0.99% to 2.23%, respect-

ively, for HSBC and Crédit Agricole. The CDS spread maximum values are those for

UniCredit, Royal Bank of Scotland and Société Générale, and they are equal to 11.53%,

8.78%, 7.96%, respectively. The CISS index values and the CDS spreads peak during the

7The CDS spread is an insurance premium paid by CDS buyer to CDS seller in order to be in-
sured/protected in case the credit event. Thus, the more the holder of a security thinks its issuer is likely
to default, the more desirable is a CDS, and the higher is the premium or CDS spread.

8The index is available at: https://sdw.ecb.europa.eu/browse.do?node=9689689



1.4. EMPIRICAL EVIDENCE 16

periods of �nancial turmoil (see the Figures in Appendix 1.A.2).

1.4 Empirical Evidence

1.4.1 Structural Breaks

Given the focus on an extended sample involving periods of no crisis with those associated

with the global �nancial and Eurozone sovereign debt crisis, the multivariate analysis is not

only based on the full sample, but also on sub-samples identi�ed endogenously. For this

purpose, I apply Qu and Perron (2007) methodology (see Appendix 1.A.1.2) to investigate

whether there have been structural changes in the traditional CF-VAR �tted to the CISS

index and each of the 12 GSIBs CDS spreads (in �rst di�erence). More speci�cally, I focus

on breaks in the reduced-form residuals covariance matrix since they underlie shifts in the

corresponding Cholesky factorization used to derive the structural form moving average

coe�cients used to compute the FEVD. Moreover, I argue that the number of breaks

detected endogenously is conservative since the estimation of a traditional reduced-form

VAR relies on time aggregation and it is bound to discover linkages between the CISS index

and CDS spread weaker than the ones that can be obtained by using mixed-frequency data.

Table 1.3 and Figure 1.1 show the results of the Qu and Perron (2007) test. I report the

number of structural breaks and the associated dates for the 12 VAR models considered

in the analysis. In particular, Table 1.3 shows the results associated with the SEQ(l +

1|1) test.9 The trimming parameter ε chosen for a regime minimal length is the same

for all dataset and is set equal to 0.2, thus, each regime has a length of T × 0.2. The

maximum number of break points (M) considered for datasets having more than 700

weekly observations is set equal to three, while one break is allowed for those having

less than 500 observations.10 The choice of three as the maximum number of breaks is

motivated by the sample under investigation covering the 2002-2016 period hit by two

periods of major �nancial turmoil: the global �nancial crisis and the European debt

crisis.11

9I do not report the results on double maximum tests (WDmax) since I always reject the null hypothesis
of no break vs existence of at least one breakpoint.

10I impose M = 3 for the following banks: BNP Paribas, Banco Santander, Barclays Bank, Deutsche
Bank, HSBC Bank, ING Bank, Royal Bank of Scotland, Societe Generale, UBS and UniCredit; I impose
M = 1 for the following banks: Crédit Agricole SA and Standard Chartered Bank.

11More speci�cally, the maximum of three break points allow the four possible regimes: (i) the relatively
�tranquil� period before the global �nancial crisis (2002-2007), (ii) the global �nancial crisis (caused by the
turmoil in the US subprime mortgage market, 2007-2009), (iii) the peak of crisis associated with Eurozone
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Let me �rstly consider the models with M = 3. The SEQ(3|2) test allows rejecting

the null hypothesis of two structural break points against the alternative of three in two

VAR models: one including HSBC Bank and another one including UBS. Since I cannot

reject the null hypothesis of SEQ(3|2) test for eight remaining VAR models, where M is

set equal to three, I conclude that there is evidence of two breaks. Finally, I �nd evidence

of one structural break for the VAR models (including either Crédit Agricole or Standard

Chartered Bank) where M is set equal to one.

The results in this section suggest that the identi�ed structural break points can be

related to important systemic changes. The three break points cases, associated with

HSBC and UBS banks, identify separately a tranquil period (before July 2007), from the

global �nancial crisis (caused by the turmoil in the US subprime mortgage market), which

led several banks to severe liquidity problems, and the one associated with Eurozone

sovereign debt (starting from mid-2010). While the cases of two break points, identify

separately only the tranquil regime (pre July 2007) from a period of �nancial turmoil

related to the subprime and Eurozone sovereign debt markets.

1.4.2 LR Test: MF VAR vs CF VAR

Table 1.4 shows the results of the LR test that show whether there is a loss of information

in a VAR model based on the weekly CISS index and on the aggregation of the daily CDS

spread data into weekly observations. I can observe that the null of equivalence between

the traditional CF VAR and the MF VAR is strongly rejected. The results suggest that

each of the estimated MF VAR models provide more accurate results than the traditional

VAR. Therefore, aggregating the mixed-frequency data to a low-frequency generates a loss

of information.

1.4.3 The Importance of GSI Banks Distress to EZ Financial Sta-

bility

1.4.3.1 FEVD: importance of G-SIB shocks

Table 1.5 gives the percentage of the forecast error variance of the CISS index that can

be attributed to innovations in GSI banks distress at di�erent forecast horizons: 1, 2, 3,

4 weeks ahead. The FEVD is computed, �rst, for the full sample and then separately

for each regime (i.e. sub-sample), which has been identi�ed through the structural break

sovereign debt (2009-2012), and (iv) the period after the Eurozone sovereign debt crisis (2012-2016).
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test used in the �rst stage of the analysis. It is important to notice that, when the focus

is on the MF-SVAR, I compute the sum of the FEVD of each day of the week to make

comparison with the aggregate ones associated with the traditional CF-SVAR.

I �rst comment on the FEVD results associated with the MF-SVAR. Table 1.6, which

provide a summary of results, shows that the role played by a bank distress shock in

explaining the �uctuations of the EZ �nancial stress index increases when I move from one

week to a one month forecast horizon. In particular, if the focus is on the full sample period,

a GSIBs' distress shock account (on average) for 7.5% of the EZ �nancial stress variability

at 4-week horizon (see the mean values given in Panel A of Table 1.6). Inspection of the

other three panels (B-D) of Table 1.6 shows that (on average) the contribution of GSI

banks distress shocks to EZ �nancial stress variation have increased over the years. More

speci�cally, the mean value of FEVD (for the four week ahead forecast horizon) for the

pre-crisis sub-sample (see Panel B) and for the crisis sub-samples (see Panel C and D) are

equal to 6.83%, 9.03% and 9.79%.

In particular, from Table 1.5, which shows the contribution of each bank separately,

I can observe that only Santander and RBS bank distress shocks explain more than 10%

of the EZ �nancial stress variation (at 4-week horizon) during the period preceding global

�nancial crisis (before July 2007). The number of banks contributing more than 10% to

the CISS forecast error variance (at 4-week horizon) increases to eight (Barclays, Crédit

Agricole, Deutsche Bank, HSBC, ING, Royal Bank of Scotland, Standard Chartered and

UBS banks) during the global �nancial and Eurozone sovereign debt crisis period (July

2007 � October 2016). Furthermore, I �nd that the major contribution of GSIBs distress

shocks to CISS �uctuations at 4-week horizon occurs in the last regime.

The results for the CF-SVAR approach are shown in columns with label CF in each

Panel (1-12) of Table 1.5. Inspection of CF-SVAR results con�rms the empirical �ndings

of MF-SVAR: the contribution of the GSI banks distress shock to the �uctuation of EZ

�nancial stress has been increasing over the years. It is important to observe that the

shocks in MF-SVAR model explain a larger part of the FEVD than in CF-SVAR model.12

This �nding is con�rmed by Table 1.6, which shows the descriptive stats of FEVD results

in Table 1.5. I �nd that in MF approach not only the mean values, but also the max and

min of the FEVD shares across each GSIB institution are bigger than those corresponding

to a CF-SVAR model.

12These �ndings are similar to those obtained by Bacchiocchi et al. (2018). The authors �nd that the
moderate impact of monetary policy, economic and policy uncertainty shocks on capital in�ows suggested
by traditional SVAR is then magni�ed when using the MF-SVAR.
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1.4.3.2 Impulse response to structural shocks

The regime speci�c cumulative impulse responses based on MF-SVAR model (see �gures

in section 1.A.3) complement the FEVD analysis used to assess the importance of GSI

banks distress shocks for the dynamics of EZ �nancial distress. The impulse response

analyses show that, overall, there is a positive spillover from the CDS spread of a GSIB

to the CISS index. More speci�cally, Figures 1.2 - 1.6 show the response (over a 12 week

horizon) of the proxy of Eurozone �nancial distress to a one standard deviation shock to

the CDS spread of a GSIB.

The �ndings also suggest that a shock observed at the beginning of the week, especially

on Monday, has a stronger e�ect than the shocks occurring in the other days of the week.

In addition, two-thirds of the GSI banks distress shocks hitting the EZ �nancial system

on Monday have an immediate e�ect, while the shocks on Tuesday-Friday takes more time

to reach their strongest impact.

1.4.3.3 Rankings: the Most Important Banks for EZ Financial Distress

In Table 1.7 I rank the European GSIBs according to the FEVD results at 4-week hori-

zon obtained by estimating a regime speci�c MF-VAR. More speci�cally, the ranking is

provided for three sub-samples, Pre-Crisis Regime, Crisis Regime 1 and Crisis Regime 2

(see Table 1.7), which involve the period before the �nancial turmoil, the global �nan-

cial and the European sovereign debt crises and the period after. From Table 1.7 I can

observe that, before the global �nancial crisis, while Banco Santander and RBS were the

largest contributors to the �uctuations of EZ �nancial distress (the corresponding FEVD

values are 13.76% and 11.19%, respectively), the �nancial stress of the other banks were

considerably less important. Moreover, during Crisis Regime 1, associated with the global

�nancial crisis and the European sovereign debt crisis, there is an important increase in

the role played by each European GSIBs (especially DB) in shaping CISS dynamics, with

the exception of RBS and Banco Santander. Since the start of the global �nancial crisis to

the most recent years, UBS and HSBC have played an important role and have remained

among the top four contributors of EZ �nancial distress �uctuations. Standard Chartered

is the bank showing the largest swing, since its contribution to Eurozone �nancial distress

drops from 10% (during the second regime) to 5.63% (during the third regime starting

from March 2010). As for the third regime (observed over 2012-2016), the four largest

contributors to EZ distress are: UBS (13.82%), DB (13.14%), Barclays (12.86%) and

HSBC (12.49%). In contrast, I observe that UniCredit bank and Société Générale bank
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are consistently among the least important for EZ �nancial �uctuations over the three

regimes.

I also compare the role of GSI banks headquartered in Eurozone countries with the one

related to GSI banks headquartered in non-Eurozone countries for EZ �nancial distress.

First, the ranking in Table 1.7 suggests that the non-Eurozone GSIBs are as well important

as EZ-GSIBs. In particular, UK banks (Barclays, Standard Chartered, HSBC and RBS)

and UBS (which is headquartered in Switzerland) are among the four largest contributors

in at least one of the regimes. Moreover, the role played by non-Eurozone GSIBs appears

to have been increasing since September 2007. More speci�cally, while only RBS explains

more than 10% of the EZ �nancial distress �uctuations during the �rst regime, non-EZ

banks are the largest contributors over the second regime.

Finally, I compare the benchmark rankings in Table 1.8 (available over the 2013-2016

period) with the ones obtained from the estimation of the Crisis Regime 2 MF VAR (see

last column of Table 1.7). I �nd the results obtained in this section to be similar to the

FSB list. More speci�cally, UBS and HSBC banks, which are ranked among the top four,

are regarded as the most systemically risky according to the FSB list. Moreover, in line

with FSB, I rank Barclays and Deutsche Bank among the top four systemically risky.

Furthermore, the least systemically important banks in the list (Santander, Standard

Chartered, Société Générale and UniCredit), are also considered the least systemically

important according to FSB.

1.5 Conclusions

In this chapter I evaluate how important is �nancial distress of European GSI banks for

Eurozone �nancial stability. I use CDS spread (available on daily basis) and the CISS

index (available at weekly frequency) as proxies of �nancial stress for GSI banks and the

Eurozone, respectively. I focus on the Forecast Error Variance Decomposition, to measure

the contribution of the European GSIBs to EZ �nancial distress by �tting a bivariate

VAR based either on common frequency data or on mixed frequency data, e.g. a MF VAR

(see Ghysels, 2016). The usefulness of a VAR based on mixed frequency data sampling

is con�rmed by a Likelihood Ratio test. I also distinguish between full sample analysis

and a regime speci�c one (given the evidence of structural breaks). The empirical �ndings

suggest that the contribution of the European GSIBs to EZ �nancial distress has increased

over the sample period under investigation, once I move from a pre-crisis period to the
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one associated with �nancial turmoil related to global �nancial and Eurozone sovereign

debt crises. Moreover, the MF-SVAR empirical �ndings suggest a more important role

of GSI bank distress for the CISS variability than the one suggested by estimation of a

traditional CF-SVAR model. Finally, I �nd the rankings based on FEVD to be similar to

the ones provided by Financial Stability Board list.
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1.A Appendix

1.A.1 Methodology

1.A.1.1 CISS index

The European Central Bank periodically publishes a weekly Composite Indicator for Sys-

temic Stress (CISS), developed by Holló et al. (2012). The aim of �nancial stress indices

(FSIs) such as the CISS is to measure the current state of instability, i.e. the current level

of frictions, stresses and strains in the �nancial system.

Data used for CISS construction. The CISS comprises 15 market-based �nancial

stress indicators equally split into �ve categories: the �nancial intermediaries sector,

money markets, equity markets, bond markets and foreign exchange markets, arguably

representing the most important segments of a �nancial system. A separate �nancial

stress sub-index is computed for each of these �ve market segments, where each sub-index

includes three stress indicators.13

Transformation of raw stress indicators. Each of the 15 raw indicators is trans-

formed into standardized measures, by using an empirical cumulative distribution function

(CDF). The empirical CDF is computed as:

zn = Fn(xn) =

 r
n

1

for x[r]≤xt≤x[r+1]

for xn≥x[n]

(1.16)

where r = (1, 2, . . . , n − 1) is a ranking number, n the total number of observations in

the sample. This method of standardization consists in converting the 15 raw �nancial

13Money market stress is captured by: realized volatility of the 3-month Euribor rate; interest rate
spread between 3-month Euribor and 3-month French T-bills; and MFI emergency lending at Eurosystem
central banks.
Bond market stress is represented by: realised volatility of the German 10-year benchmark government

bond index; yield spread between A-rated non-�nancial corporations and government bonds; and 10-year
interest rate swap spread.
Equity market stress is represented by: realised volatility of the Datastram non-�nancial sector stock

market index; CMAX for the Datastream non-�nancial sector stock market index; and stock-bond correl-
ation.
Financial intermediaries stress is captured by: realised volatility of the idiosyncratic equity return of

the Datastream bank sector stock market index over the total market index; yield spread between A-rated
�nancial and non-�nancial corporation's; and CMAX for the �nancial sector equity market index.
Foreign exchange market stress is represented by: realised volatility of the euro exchange rate vis-à-vis

the US dollar, the Japanese Yen and the British Pound, respectively.
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stress indicators into new series which are unit-free and ranging between 0 and 1. By this

procedure, the values of individual stress indicator are ranked in the �rst step and then

divided by the total number of observations (n). The rank of 1 is assigned to the minimum

value in the sample and n to a maximum. Then, the three stress factors (j = 1, 2, 3) of

each market category (i = 1, 2, . . . 5) are �nally aggregated into their respective sub-index

by taking their arithmetic average.

Aggregation. The CISS is computed as follows:

FSI = (w × st)Ct(w × st)′ (1.17)

where w = (w1, w2, w3, w4, w5) is a vector of sub-index weights, the vector of sub-indices is

denoted by st = (s1,t, s2,t, s3,t, s4,t, s5,t).
14 Ct is the matrix of time-varying cross-correlation

coe�cients ρij,t between the sub-indexes i and j:

Ct =



1 ρ12,t ρ13,t ρ14,t ρ15,t

ρ21,t 1 ρ23,t ρ24,t ρ25,t

ρ31,t ρ32,t 1 ρ34,t ρ35,t

ρ41,t ρ42,t ρ43,t 1 ρ45,t

ρ51,t ρ52,t ρ53,t ρ54,t 1


(1.18)

The time-varying cross-correlations ρij,t are estimated recursively on the basis of exponentially-

weighted moving averages (EWMA).

1.A.1.2 Structural Change Points in VAR models

I use Qu and Perron (2007) methodology to test for structural change points in a VAR

model. In particular, I test for the structural break points in a reduced-form vector

autoregressive model with two endogenous variables and one lag:

14Weights are estimated on the basis of their average relative impact on industrial production growth
measured by the cumulated impulse responses from a variety of di�erent speci�cations of standard linear
VAR models.
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yt = µ+ Γyt−1 + ut (1.19)

where yt = (∆CISSt,∆cdst)
′ is a vector of weekly endogenous variables observed at week

t, µ is a (2× 1) vector of intercepts, Γ is a (2× 2) coe�cient matrix of the model and an

error term ut has a mean zero and a covariance E(utu
′
t) =

∑
. When testing for structural

breaks, I allow only a covariance matrix of residuals,
∑
, to change.

Following the authors' notation, I denote M as total number of structural changes in

the system of equations andM+1 as the number of unknown regimes. The total number of

observations is indicated by T and the unknown break dates by vector (T1, . . . , TM), where

T0 = 1 and TM+1 = T . Consequently, each regime j = (1, . . . ,M + 1) has a sub-period of

length Tj−1+1 ≤ t ≤ Tj. For the estimation of the parameters M̂, T̂1, . . . , T̂M ,
∑̂

1, . . . ,
∑̂

M+1

in the VAR(1) model (see eq. 1.19) it is convenient to rewrite the model in a matrix form

as:

yt = x
′

tβ + ut (1.20)

where x
′
t = (I2 ⊕ (1,∆CISSt−1,∆cdst−1). The estimation is based on a restricted quasi-

maximum likelihood that assumes serially uncorrelated Gaussian errors. Conditional on

the given break dates (T1, . . . , TM), the Gaussian quasi-likelihood ratio is:

LRT =

∏m+1
j=1

∏Tj
t=Tj−1+1 f(yt|xt; βj;Σj)∏m+1

j=1

∏T 0
j

t=T 0
j−1+1

f(yt|xt; β0
j ;Σ

0
j )

(1.21)

where f(yt|xt; βj; Σj) = 1
2πn/2|Σj |1/2

exp
{
−1

2
[yt − x

′
tβj]

′Σ−1
j [yt − x

′
jβj]
}
.

The estimation procedure consists in estimating the log-likelihood values for all possible

segments (at most T (T −1)/2), and then assessing which particular combination ofM +1

segments leads to the highest likelihood value.15 This is achieved by using a dynamic

programming algorithm (by Bai and Perron, 2003; Qu and Perron, 2007). In order to

determine the number of break points (M) in the model, I rely on tests suggested by Qu

and Perron (2007). Firstly, I test if at least one structural break is present in the model

i.e. I test a null hypothesis (H0) of no structural break versus (HA) an unknown number

of breaks given some upper bound. For this, I use a double maximum test (WDmax ),

15In practice, less than T(T-1)/2 segments are permissible, since some minimum distance between the
break points may be imposed and a maximum number of breaks (M) may be allowed.



1.A. APPENDIX 27

which statistic is de�ned for some �xed weights (am) as:

WDmaxLRT (M) = max(1≤m≤M)[amsup(λ1,. . . ,λm)∈Lε2ln(LRT )] (1.22)

If the WDmax test rejects the null hypothesis, I use a sequential test SEQ(l+1|l) test.

This test is based on a sequential testing procedure considering the null hypothesis (H0) of

l breaks against an alternative hypothesis (HA) of l+1 structural breaks. The SEQ(l+1|l)

test is de�ned as:

SEQ(l + 1|l) = max
1≤j≤l+1

sup
τ∈Λj,ε

lrT (T̂1, . . . , T̂j−1, τ, T̂j, . . . , T̂l)− lr(T̂1, . . . , T̂l) (1.23)

where a procedure to test the null hypothesis of l breaks versus the alternative hypothesis

of l + 1 breaks consists in performing a one break test for each of the (l + 1) segments

de�ned by the partition (T̂1, . . . , T̂l) and assessing whether the maximum of the tests is

signi�cant.
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1.A.2 Time Series Plots and Structural Breaks

Figure 1.1: Structural Break Points
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1.A.3 Impulse Response Analysis Plots

Figure 1.2: Cumulated IRFs of CISS to a BNP Paribas and Santander distress shocks

Notes: BNP indicates a BNP Paribas bank, SANTAN denotes a Santander bank. 1 stands for a shock
hitting the Eurozone �nancial system on Monday, 2 � Tuesday, 3 � Wednesday, 4 � Thursday, 5 � Friday.
The x-axis represent weeks after the shock. The responses are presented with 90% probability bands (red
dashed lines).
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Figure 1.3: Cumulated IRFs of CISS to a Barclays and Deutsche Bank distress shocks

Notes: BACR indicates a Barclays bank, DB � a Deutsche bank. 1 stands for a shock hitting the Eurozone
�nancial system on Monday, 2 � Tuesday, 3 � Wednesday, 4 � Thursday, 5 � Friday. The x-axis represent
weeks after the shock. The responses are presented with 90% probability bands (red dashed lines).
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Figure 1.4: Cumulated IRFs of CISS to a ING and Royal Bank of Scotland distress shocks

Notes: INTNED indicates a ING Bank, RBS denotes a Royal Bank of Scotland1 stands for a shock hitting
the Eurozone �nancial system on Monday, 2 � Tuesday, 3 � Wednesday, 4 � Thursday, 5 � Friday. The
x-axis represent weeks after the shock. The responses are presented with 90% probability bands (red
dashed lines).
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Figure 1.5: Cumulated IRFs of CISS to a Crédit Agricole and Standard Chartered distress
shocks

Notes: ACAFP denotes a Crédit Agricole bank, STANLN a Standard Chartered Bank. 1 stands for a
shock hitting the Eurozone �nancial system on Monday, 2 � Tuesday, 3 � Wednesday, 4 � Thursday, 5 �
Friday. The x-axis represent weeks after the shock. The responses are presented with 90% probability
bands (red dashed lines).
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Figure 1.6: Cumulated IRFs of CISS to a HSBC and UBS distress shocks

Notes: HSBC denotes a HSBC Bank, UBS a UBS Bank. 1 stands for a shock hitting the Eurozone
�nancial system on Monday, 2 � Tuesday, 3 � Wednesday, 4 � Thursday, 5 � Friday. The x-axis represent
weeks after the shock. The responses are presented with 90% probability bands (red dashed lines).
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1.A.4 Tables

Table 1.1: Dataset

Name of the variable Symbol Country Frequency
Time span

From To

Composite indicator of systemic stress CISS EZ Weekly 21/09/2001 28/10/2016

CDS spreads of:

BNP Paribas SA BNP FR Daily 13/05/2002 28/10/2016

Banco Santander SA SANTAN ES Daily 24/06/2002 28/10/2016

Barclays Bank PLC BACR GB Daily 27/01/2003 28/10/2016

Crédit Agricole SA ACAFP FR Daily 10/09/2007 28/10/2016

Deutsche Bank AG DB DE Daily 25/03/2002 28/10/2016

HSBC Bank PLC HSBC GB Daily 10/03/2003 28/10/2016

ING Bank NV INTNED NL Daily 27/01/2003 28/10/2016

Royal Bank of Scotland RBS GB Daily 13/05/2002 28/10/2016

Societe Generale SA SOCGEN FR Daily 13/05/2002 28/10/2016

Standard Chartered STANLN GB Daily 23/06/2008 28/10/2016

UBS AG UBS CH Daily 13/05/2002 28/10/2016

UniCredit SpA UCGIM IT Daily 17/09/2001 28/10/2016

Notes: for CDS spreads I consider 5 daily observations per week (from Monday to Friday). The CISS
variable is released on Friday.

Table 1.2: Descriptive statistics of CDS spreads

Mean Median MAX MIN St.dev
Observations

Unit
(daily) (weekly)

BNP Paribas SA 1.25 1.08 6.21 0.09 1.2 3775 755 %

Banco Santander SA 1.85 1.48 7.32 0.12 1.67 3745 749 %

Barclays Bank PLC 1.49 1.38 5.42 0.08 1.24 3590 718 %

Crédit Agricole SA 2.23 1.65 7.25 0.23 1.41 2385 477 %

Deutsche Bank AG 1.38 1.32 5.24 0.14 1.1 3810 762 %

HSBC Bank PLC 0.99 1.03 3.14 0.08 0.68 3560 712 %

ING Bank NV 1.26 1.28 4.68 0.07 1 3590 718 %

Royal Bank of Scotland 1.97 1.52 8.78 0.07 1.88 3775 755 %

Société Générale SA 1.53 1.29 7.96 0.09 1.51 3775 755 %

Standard Chartered Bank 1.98 1.77 5.55 0.88 0.81 2180 436 %

UBS AG 1.15 1.25 5.38 0.07 0.94 3775 755 %

UniCredit SpA 2.14 1.52 11.53 0.12 2.21 3945 789 %
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Table 1.3: Structural break dates and SEQT (l + 1|l) test results

CDS spread variable Number of breaks Break dates SEQ (l+1|l) test statistics

BNP Paribas 2
13/07/2007 The Seq( 2 | 1 ) test is : 158.253

12/10/2012 The Seq( 3 | 2 ) test is : 0.000

Banco Santander 2
14/12/2007 The Seq( 2 | 1 ) test is : 121.149

12/10/2012 The Seq( 3 | 2 ) test is : 0.000

Barclays Bank 2
06/07/2007 The Seq( 2 | 1 ) test is : 142.645

12/10/2012 The Seq( 3 | 2 ) test is : 0.000

Crédit Agricole* 1 28/06/2013

Deutsche Bank 2
13/07/2007 The Seq( 2 | 1 ) test is : 104.634

10/08/2012 The Seq( 3 | 2 ) test is : 0.000

HSBC Bank 3

06/07/2007

The Seq( 3 | 2) test is : 67.67026/03/2010

28/12/2012

ING Bank 2
13/07/2007 The Seq( 2 | 1 ) test is : 168.804

28/09/2012 The Seq( 3 | 2 ) test is : 0.000

Royal Bank of Scotland 2
13/07/2007 The Seq( 2 | 1 ) test is : 197.305

12/10/2012 The Seq( 3 | 2 ) test is : 0.000

Société Générale 2
13/07/2007 The Seq( 2 | 1 ) test is : 154.560

07/09/2012 The Seq( 3 | 2 ) test is : 0.000

Standard Chartered Bank* 1 05/03/2010

UBS 3

13/07/2007

The Seq( 3 | 2 ) test is : 53.17711/06/2010

03/05/2013

UniCredit 2
13/07/2007 The Seq( 2 | 1 ) test is : 109.226

12/10/2012 The Seq( 3 | 2 ) test is : 0.000

Notes: The * marks the VAR models where I test for only one structural break (M=1), hence, in this
case, inference on structural breaks is based only on WDmax test. I consider M=3 for all other VAR
models. The �rst column indicates a bivariate VAR model including as endogenous variables one of the
twelve GSIB CDS spread and the CISS index. The second column gives the number of breaks detected
endogenously. The third column gives the dates of the break points. The last column gives the SEQ
(l+1|l) test statistics. The 5% critical values for the Seq(2|1) and the Seq(3|2) tests are 15.458 and
16.337, respectively.
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Table 1.5: FEVD for EZ �nancial distress subject to GSI banks distress shocks

Panel (1): BNP Paribas

Full sample: I regime: II regime: III regime:

13/05/2002 - 28/10/2016 13/05/2002 - 12/07/2007 13/07/2007 - 11/10/2012 12/10/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 3.04 3.37 2.68 1.15 5.7 3.55 4.53 3.14

2 5.19 3.24 2.6 1.37 6.85 3.47 7.95 4.03

3 6.19 3.36 5.43 1.37 7.47 3.47 8.79 4.05

4 8.53 3.34 7.13 1.37 7.59 3.47 9.39 4.05

Panel (2): Santander

Full sample: I regime: II regime: III regime:

24/06/2002 - 28/10/2016 24/06/2002 - 13/12/2007 14/12/2007 - 11/10/2012 12/10/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 1.13 2.49 3.44 0 2.08 3.32 2.49 1.84

2 4.29 2.54 6.53 2.09 6.42 3.17 5.57 3.2

3 5.16 2.53 11.03 2.3 8.11 3.17 5.66 3.19

4 7.17 2.53 13.76 2.51 9.98 3.17 5.7 3.19

Panel (3): Barclays

Full sample: I regime: II regime: III regime:

27/01/2003 - 28/10/2016 27/01/2003 - 05/07/2007 06/07/2007 - 11/10/2012 12/10/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 2.42 2.66 5.24 3.54 3.3 2.63 1.78 1.77

2 4.17 2.57 5.6 3.37 5.67 2.54 9.76 3.68

3 4.58 3.02 6.32 3.37 6.63 2.53 10.91 3.71

4 6.23 3.03 6.7 3.37 8.14 2.53 12.86 3.72

Panel (4): Deutsche Bank (DB)

Full sample: I regime: II regime: III regime:

25/05/2002 - 28/10/2016 25/03/2002 - 12/07/2007 13/07/2007 - 09/08/2012 10/08/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 3.39 4.36 3.5 0.23 4.45 4.46 4.91 3.73

2 4.73 4.09 3.54 0.33 5.02 4.39 11.12 5.63

3 5.23 4.44 4.46 0.33 5.61 4.38 11.76 5.61

4 7.63 4.42 4.99 0.33 5.77 4.38 13.14 5.61

Notes: Each panel present the FEVD of CISS index that can be attributed to innovations in GSI banks
distress for each model separately. The results are reported for each regime, where each row provides
results speci�c to a forecast horizon H, varying from 1 to 4 weeks ahead. The column SUM(MF) gives
the sum of FEVD relative to forecast horizon H across the �ve days of the week.
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Table 1.5: (Continued)

Panel (5): ING Bank

Full sample: I regime: II regime: III regime:

27/01/2003 - 28/10/2016 27/01/2003 - 12/07/2007 13/07/2007 - 27/09/2012 28/09/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 3.57 4.16 2.42 2.27 4.72 4.4 3.74 6.07

2 5.44 3.9 4.7 2.02 7.24 4.29 9 6.06

3 6.4 4.58 5.61 2.06 8.23 4.3 9.19 6.03

4 8.38 4.55 5.74 2.06 9.28 4.3 10.32 6.03

Panel (6): Royal Bank of Scotland (RBS)

Full sample: I regime: II regime: III regime:

13/05/2002 - 28/10/2016 13/05/2002 - 12/07/2007 13/07/2007 - 11/10/2012 12/10/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 2.7 2.13 5.52 1.36 4.07 2.14 2.14 1.42

2 4.66 2.06 5.39 1.29 6.1 2.11 7.96 2.6

3 5.77 2.21 8.8 1.28 7.43 2.11 9.3 2.59

4 8.36 2.2 11.19 1.28 8.88 2.11 11.41 2.59

Panel (7): Société Générale (SG)

Full sample: I regime: II regime: III regime:

13/05/2002 - 28/10/2016 13/05/2002 - 12/07/2007 13/07/2007 - 06/09/2012 07/09/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 3.52 3.64 1.66 0.21 5.74 3.87 2.86 3.61

2 5.36 3.41 2.53 0.9 6.6 3.74 5.26 3.85

3 5.86 3.59 3.59 0.9 7.35 3.74 5.43 3.84

4 8.12 3.57 4.75 0.92 7.55 3.74 5.57 3.84

Panel (8): UniCredit

Full sample: I regime: II regime: III regime:

17/09/2001 - 28/10/2016 17/09/2001 - 12/07/2007 13/07/2007 - 11/10/2012 12/10/2012 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 2.46 2.46 2.44 0.54 3.14 2.61 2.54 2.44

2 4.66 2.52 2.58 0.65 5.18 2.77 4.96 3.49

3 5.16 2.79 3.52 0.63 5.87 2.78 5.3 3.48

4 6.9 2.78 3.88 0.63 6.06 2.79 5.46 3.48

Notes: Each panel present the FEVD of CISS index that can be attributed to innovations in GSI banks
distress for each model separately. The results are reported for each regime, where each row provides
results speci�c to a forecast horizon H, varying from 1 to 4 weeks ahead. The column SUM(MF) gives
the sum of FEVD relative to forecast horizon H across the �ve days of the week.
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Table 1.5: (Continued)

Panel (9): Crédit Agricole (CA)

Full sample: 10/09/2007 - 28/10/2016 I regime: 10/09/2007 - 27/06/2013 II regime: 28/06/2013 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 3.43 2.3 3.35 2.66 7.97 0.64

2 4.79 2.27 4.57 2.58 9.78 1.39

3 5.4 2.26 5.48 2.58 11.29 1.39

4 5.93 2.26 5.68 2.58 11.67 1.39

Panel (10): Standard Chartered Bank (S.Ch.)

Full sample: 23/06/2008 - 28/10/2016 I regime: 23/06/2008 - 04/03/2010 II regime: 05/03/2010 - 28/10/2016

H SUM (MF) CF SUM (MF) CF SUM (MF) CF

1 4.37 4.08 10.11 4.86 4.68 2.34

2 5.58 3.81 10.97 5.13 4.79 2.42

3 5.91 3.98 11.27 5.14 5.25 2.41

4 7.63 3.94 11.3 5.14 5.63 2.41

Notes: Each panel present the FEVD of CISS index that can be attributed to innovations in GSI banks
distress for each model separately. The results are reported for each regime, where each row provides
results speci�c to a forecast horizon H, varying from 1 to 4 weeks ahead. The column SUM(MF) gives
the sum of FEVD relative to forecast horizon H across the �ve days of the week.
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Table 1.6: Descriptive statistics of FEVD for EZ �nancial stress subject to GSI banks
distress shocks

MF-SVAR Traditional-SVAR

A. Full sample

H: 1 2 3 4 1 2 3 4

max 4.37 7.07 7.42 9.29 4.36 4.24. 4.58 4.55

min 1.13 4.02 4.58 5.93 2.13 2.06 2.21 2.2

mean 2.96 5 5.67 7.53 3.2 3.09 3.38 3.37

sd.dev 0.8 0.79 0.74 1.01 0.8 0.74 0.8 0.79

B. Period I

H: 1 2 3 4 1 2 3 4

Max 5.52 6.53 11.03 13.76 3.54 3.37 3.37 3.37

Min 1.57 2.53 3.52 3.88 0 0.04 0.04 0.04

Mean 3.16 4.16 5.83 6.83 1.01 1.31 1.33 1.35

sd.dev 1.34 1.4 2.38 3.18 1.14 0.98 1 1.03

C. Period II

H: 1 2 3 4 1 2 3 4

max 11.45 12.65 13.74 14.18 5.35 5.18 5.17 5.17

min 1.38 4.57 5.48 5.68 2.14 2.11 2.11 2.11

mean 5.38 7.31 8.27 9.03 3.53 3.52 3.52 3.52

sd.dev 2.99 2.4 2.33 2.48 0.97 0.96 0.96 0.96

D. Period III

H: 1 2 3 4 1 2 3 4

max 10.42 12.7 13.66 13.82 6.07 6.06 6.03 6.03

min 1.78 4.79 5.25 5.46 0.64 1.39 1.39 1.39

mean 4.26 8.24 8.58 9.79 2.8 3.64 3.64 3.64

sd.dev 2.57 2.62 2.93 3.32 1.44 1.37 1.36 1.36
Notes: This table provides descriptive stats of FEVD results associated to the twelve di�erent VAR
models (each corresponding to a speci�c GSIB) given in Table 1.5, Panel (1-12). The columns 1 to 4
for both (MF SVAR and Traditional SVAR) give the FEVD for the forecast horizons, ranging from one
week to four weeks ahead. The label Period I refers to a �rst regime for all banks except Crédit Agricole,
Standard Chartered. The label Period III refers to the last regime of all the banks. Period II refers to the
remaining regimes.
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Table 1.7: MF VAR regime speci�c rankings

Pre-Crisis Regime Crisis Regime I Crisis Regime II
1. Santander (13.76) 1. HSBC (12.32) 1. UBS (13.82)
2. RBS (11.19) 2. Standard Ch. (11.30) 2. DB (13.14)
3. BNP Paribas (7.13) 3. UBS (10.52) 3. Barclays (12.86)
4. Barclays (6.70) 4. Santander (9.98) 4. HSBC (12.49)
5. ING (5.74) 5. ING (9.28) 5. Crédit Agricole (11.67)
6. UBS (5.50) 6. RBS (8.88) 6. RBS (11.41)
7. DB (4.99) 7. Barclays (8.14) 7. ING (10.32)
8. Société Gen. (4.75) 8. BNP Paribas (7.59) 8. BNP Paribas (9.39)
9. HSBC (4.64) 9. Société Gen. (7.55) 9. Santander (5.70)
10. UniCredit (3.88) 10. UniCredit (6.06) 10. Standard Chart. (5.63)

11. DB (5.77) 11. Société Gen. (5.57)
12. Crédit Agricole (5.68) 12. UniCredit (5.46)

Notes: I provide the ranking of the European GSIBs according their contribution to the EZ �nancial
distress measured by the FEVD results at 4-week horizon obtained by using MF-VAR approach (see
Table 1.5). The �gures FEVD, measuring the contribution of GSIBs distress shocks to CISS �uctuations
at 4-week horizon are reported in brackets. The rankings are for three di�erent sub-samples identi�ed
through Qu and Perron (2007) structural break test. In particular, the Pre-Crisis Regime coincides with
the �rst sub-sample (see Table 1.5 for the start and ending dates). The ranking for the Pre-Crisis Regime
does not include Crédit Agricole and Standard Chartered given that the CDS data available for the two
banks start in 2007, 2008, respectively. Moreover, the Crisis Regime 2 coincides with last sub-sample (see
Table 5 for the start and ending dates). The Crisis Regime 1 coincides with the period before the last
sub-sample (see Table 1.5 for the start and ending dates). The only exception regarding the sub-samples
associated with Crisis Regime 1 are UBS and HSBC for which the �gures reported in this Table are an
average of the FEVD results corresponding to second and third regime in Table 1.5 (see Panel 11 and 12).
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Table 1.8: Benchmark rankings: Financial Stability Board

2013 2014 2015 2016

4th bucket HSBC HSBC HSBC

3rd bucket

Barclays, Barclays, Barclays, HSBC,

DB, DB, DB, DB,

BNP Paribas BNP Paribas BNP Paribas BNP Paribas

2nd bucket

UBS,

RBS, RBS Barclays

Crédit Agricole

1st bucket

Crédit Agricole, Credit Agricole, Crédit Agricole,

UBS, RBS, UBS, RBS, UBS

ING Bank, ING Bank, ING Bank, ING Bank,

Santander, Santander, Santander, Santander,

Société Générale, Société Générale, Société Générale, Société Gén.,

Standard Chart., Standard Chart., Standard Chart., Standard Chart.,

UniCredit UniCredit UniCredit UniCredit

Notes: I report the banks allocated in the buckets (the 4th bucket is associated with highest capital
requirements). I report only the rankings for the banks taken under the consideration in this analysis.



Chapter 2

Financial distress and real economic

activity in Lithuania: a Granger

causality test based on MF VAR

2.1 Introduction

Measuring �nancial stress has become more prominent since the global �nancial crisis.

Central banks and international organizations have constructed �nancial stress indexes

(FSI) in order to detect signs of �nancial stress in the whole �nancial system and to

monitor the state of �nancial stability. Recently, European Central Bank has introduced

a monthly Country-Level Index of Financial Stress (CLIFS) for each of the 27 European

Union countries (Klaus et al., 2017), including Lithuania.1 This index is constructed

by aggregating six �nancial distress measures, representing the uncertainty and sharp

corrections in market prices, that covers only three �nancial market sectors: bond, stock

and foreign exchange markets.

In this chapter, �rst, I seek to improve a monthly Country-Level Index of Financial

Stress (CLIFS) for Lithuania (by Klaus et al., 2017) along two dimensions. First, I extend

a monthly ECB �nancial stress index to a high-frequency (daily) horizon and, then, by

arguing an important role played by Scandinavian commercial banks in the Lithuanian

�nancial sector development, I include the banking sector among its constituents (beyond

1Financial stress indexes were introduced for US (Hakkio and Keeton, 2009; Kliesen and Smith, 2010;
Brave and Butters, 2011; Oet et al., 2011), Canada (Illing and Liu, 2006), major advanced and emerging
counties (Cardarelli et al., 2011; Balakrishnan et al., 2011, respectively) and Eurozone as a whole (Hollo
et al., 2012) among others.
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bond, equity, foreign exchange markets).2 More speci�cally, Lithuanian �nancial sec-

tor is dominated by Scandinavian-owned commercial banks. The three largest banks in

Lithuania � SEB, Swedbank and DnB � to a signi�cant extent have contributed to the

Lithuanian economic growth over the 2000-2007 period.3 In particular, the growth was

fuelled by cheap credit provided by the banks that drove up domestic demand and led to

the formation of a `bubble' in the Lithuanian real estate market. In 2009 the domestic

real estate `bubble' burst and the global �nancial crisis have led Lithuania into the biggest

recession since the independence period. Gross Domestic Product of Lithuania fell -15%

in 2009 compared to the previous year.4

In the second step of the analysis, I contribute to empirical literature exploring the

linkages between �nancial stress and real economic activity. Some studies have recently

focused on �nancial uncertainty as a possible driver of the US business cycle. More

speci�cally, the study of Bloom (2009) obtain an indicator of �nancial uncertainty by

aggregating �rm speci�c �nancial uncertainty and assess its impact on real economic

activity (employment and industrial production). Ludvigson, Ma, and Ng (2019) extract

�nancial uncertainty as a latent variable from a dynamic factor model �tted to a large

dataset of �nancial time series and they assess the impact on real economic activity,

proxied by log of real industrial production. Gilchrist, Sim, and Zakrajsek (2014) provide

a micro and macro based analysis showing that �nancial frictions are an important part

of the mechanism through which uncertainty shocks a�ect the economy. The authors at

macro-level, using a structural vector autoregressive (SVAR) model assess the interactions

between uncertainty, credit spreads, and economic activity. The results show that the

interaction between �nancial frictions (proxied by credit spreads) and uncertainty are

important to assess how �uctuations in the latter are propagated to the real economy.

Unanticipated increases in uncertainty imply a rise in credit spreads, leading to a decline

in real GDP that is driven primarily by the protracted drop in the investment component

of aggregate spending. In contrast, shocks to �nancial disturbances (orthogonal to credit

spreads) have a large e�ect on economic activity.

Moreover, a number of empirical studies �nd that an increase in �nancial stress has

2Also the Bank of England paper by Chatterjee et al. (2017) introduce a FSI for the United Kingdom by
extending the CLIFS index by Klaus et al. (2017). The authors incorporate three additional sub-indexes
that represent stress in corporate bond, money and housing markets.

3Since 2017 the Baltic operations of DnB and Nordea banks were merged to a new bank - Luminor.
4While I emphasize the dependence of the Lithuanian �nancial system from foreign banks, a recent

study by Rubio and Comunale (2018) emphasize the vulnerability of the Lithuanian housing markets to
Euro area common shock, given that Lithuania has variable-rate mortgages and a higher LTV cap than
its European partners.
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an adverse impact on the overall economic activity. Hakkio and Keeton (2009) show that

an increase in �nancial stress leads to persistent business cycle downturns. More recently,

Chau and Deesomsak (2014) show that the lagged values of �nancial distress have a

signi�cant predictive power for the overall U.S. economic activity. As for the Eurozone,

Holló et al. (2012) �nd that an increase in the �nancial distress, proxied by a CISS index,

leads to a collapse in industrial production (only for values of the index above a threshold).

More recently, Kremer (2016) shows that the CISS index Granger causes EU real GDP

growth.

While the aforementioned studies are based on a common frequency dataset, in this

chapter, I investigate a causal relationship between a daily �nancial stress index for

Lithuania and a monthly Lithuanian industrial production growth. For this purpose, I

use a Granger (non-) causality test applied to a mixed-frequency VAR. As argued by

Ghysels et al. (2016), the use of mixed-frequency data allows a more accurate analysis of

the causal patterns than a test based on traditional common-frequency data. In addition,

given that the mixed-frequency VAR is characterised by a large mismatch in frequencies

of the series involved (e.g. daily vs monthly), I apply the Granger causality test developed

by Götz et al. (2016) and by Ghysels et al. (2018).

The �ndings are in line with Cardarelli et al. (2011) suggesting that banking sector

stress tends to be associated with larger negative IP growth than stress episodes related

only with bond, equity and foreign exchange sectors. More speci�cally, in a common-

frequency framework I �nd that the inclusion of the banking sector related stress in the

�nancial stress index for Lithuania provides more information about the future path of

IP growth in Lithuania. Finally, I show that a proposed daily �nancial stress index for

Lithuania is a better predictor for a future path of a monthly industrial production growth

than a monthly CLIFS index of ECB.

This chapter is structured as follows. Section 2.2 describes the recent stylized facts

about the Lithuanian �nancial system and the real economic activity. Section 2.3 discusses

the empirical literature on Financial Stress Index. Section 2.4 describes my contribution

to the construction of FSI for Lithuania. Section 2.5 describes the Granger causality

test based on the MF VAR. Section 2.6 discusses the empirical evidence, and section 2.7

concludes.
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2.2 Stylized Facts for Lithuania

The development of the Lithuanian �nancial system over the period 2001-2016, measured

by �nancial system's asset-to-GDP ratio, is shown in Figure 2.1.5 The �nancial system's

growth (from 35.7% of GDP in 2001 to 84.5% of GDP in 2016) was mainly driven by the

banking sector expansion. In fact, the asset-to-GDP ratio of the banking sector increased

from 31.4% in 2001 to 66.7% in 2016.

In total, there are six banks and eight foreign bank branches operating in Lithuanian

banking sector. Figure 2.2 shows that the Lithuanian banking sector is dominated by three

Scandinavian-owned commercial banks: Swedish SEB bank and Swedbank, and Norwegian

DnB bank. In particular, the assets of the three Scandinavian banks constitute around

73% of the total banking sector assets in 2016. Due to the high concentration in the

Lithuanian banking sector the three major banks produce a massive systemic e�ect on the

Lithuanian �nancial sector.

In the eight-year period from 2000 to 2007, the Lithuanian economy experienced one

of the highest economic growth rates within the European Union. As suggested by Kuodis

and Ramanauskas (2009), the growth was fuelled by easy accesses to cheap credit provided

by the large Scandinavian-owned commercial banks. On the other hand, the cheap credit

and high income expectations gave a strong boost to the construction sector, which led to

a formation of a �bubble� in the Lithuanian real estate market.

In 2009 Lithuania went into the biggest recession since the independence period (i.e.

since 1990). In the �rst quarter of 2009 the Lithuanian industrial production felt more

than 25% compared to the same period in the previous year.6 Lithuanian economy was hit

by a double-crisis: external one, caused by global �nancial crisis and internal one, caused

by a strong decline in the domestic demand (due to households and �rms facing di�culties

in meeting their liabilities to credit institutions).

At the end of 2011, the �fth largest Lithuanian bank, SNORAS bank, went bankrupt.

According to the Bank of Lithuania data, SNORAS bank constituted 6.2% of total banking

sector loans and 13.0% of deposits. In February 2013, another Lithuanian bank - Ukio

bankas - went bankrupt. The bank was not a major credit provider, however, it was the

fourth in terms of deposit holdings. Nevertheless, the suspension of several institutions

did not cause any major turbulence in the �nancial system.

At the beginning of 2013, Lithuania`s economy bounced back and grew at one of the

5Source: Bank of Lithuania: https://www.lb.lt/en/main-indicators-of-banking-sector-activities
6Source: Lithuanian Department of Statistics: https://www.stat.gov.lt/en.
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fastest rates in the EU. However, in the following years the economic growth slowed down

due to the uncertainty caused by the Russia-Ukraine con�ict and import restriction to

Russia in 2014. At the beginning of 2016, the distress in the banking sector increased

due to the concerns regarding the real estate sector in Sweden. While I emphasize the

dependence of the Lithuanian �nancial system from foreign banks, a recent study by Rubio

and Comunale (2018) emphasize the vulnerability of the Lithuanian housing markets to

Euro area common shock, given that Lithuania has variable-rate mortgages and a higher

LTV cap than its European partners.

2.3 Financial Stress Index

Since the start of the global �nancial crisis, a number of studies have developed indices of

�nancial stress (FSI) which are used to measure the vulnerabilities in the �nancial system.

The �rst study is the one by Illing and Liu (2006) introducing a FSI for the Canadian

�nancial system combining (through principal component analysis) information on 11

�nancial market series representative of the banking, foreign exchange, debt and equity

markets. The IMF study by Cardarelli et al. (2011) introduces FSIs for 17 advanced

economies. Through variance-equal weighting method, the authors combine information

on three �nancial market segments: banking, securities markets and foreign currency.7

Similarly, the IMF study by Balakrishnan et al. (2011) uses the methodology of Cardarelli

et al. (2009) to construct a �nancial stress index for emerging countries.

As for the US, the �rst study to provide an index monitoring stress in the �nancial

markets is the Kansas City FSI developed by Hakkio and Keeton (2009).8 The authors use

a principal component analysis to combine 11 indicators, representing the key features of

�nancial stress in the US �nancial system, into an overall index. Kliesen and Smith (2010)

propose a St. Louis Fed Financial Stress Index by using 18 weekly data series.9 Brave and

Butters (2011) introduce the National Financial Conditions Index (NFCI), monitoring the

�nancial conditions in banking sector, money, debt and equity markets.10 The authors

show that the NFCI is useful in forecasting growth in US gross domestic product and

business investment from two to four quarters ahead. Finally, another FSI index is the

7By using a variance-equal weighting method each component is computed as a deviation from its
mean and weighted by the inverse of its variance (Balakrishnan et al., 2011).

8Chen et al. (2014) examine the link between Kansas City FSI and oil prices. Index is available at:
https://www.kansascityfed.org/research/indicatorsdata/kcfsi.

9Th index is available at: https://fred.stlouisfed.org/series/STLFSI.
10The index is available at: https://www.chicagofed.org/research/data/nfci/background.
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Cleveland Fed's Financial Stress Index, developed by Oet et al. (2011).11 The index uses

daily data collected from four �nancial market sectors � credit, foreign exchange, equity,

and interbank markets, which are aggregated into the composite indicator by applying

time-varying credit weights.

The European Central Bank (ECB) periodically publishes a weekly Composite Indic-

ator for Systemic Stress (CISS), developed by Holló et al. (2012).12 The CISS index is

constructed by aggregating 15 raw indicators of �nancial stress capturing the develop-

ments in �ve sectors of the Euro area: the money, foreign exchange, equity, bond and

non-bank �nancial intermediaries securities markets.

The ECB database also provides a monthly Country-Level indicator of �nancial stress,

CLIFS, developed by Klaus et al., (2017) for each Eurozone country, including Lithuania.13

The methodology for the construction of the CLIFS index is similar to the one suggested

by Holló et al. (2012) for the CISS index. However, the CLIFS captures systemic stress

only in three �nancial market segments: equity, long term bonds and foreign currency

markets.14

2.4 Construction of Financial Stress Index for Lithuania

In this section I describe the construction of the daily �nancial stress index for Lithuania.

More speci�cally, the construction involves three steps: section 2.4.1 describes the �nancial

time series selected for each sub-sector; section 2.4.2 explains the methodology used for the

transformation of market speci�c stress indicators; section 2.4.3 describes how individual

indicators are aggregated into the �nal index.

2.4.1 Data and market indicators

I construct a daily FSI for Lithuania by using 12 market speci�c indicators (see Table 2.1).

Similarly to Klaus et al. (2017), I use:

a) a Lithuanian stock market index - OMX Vilnius (OMXV) - for the equity market,

b) a 10-year government bond yields - to monitor stress in the bond market,

11Nazlioglu et al. (2015) analyse a volatility transmission between oil prices and Cleveland FSI. Index
was discontinued in May 2016.

12CISS index is available at: http://sdw.ecb.europa.eu/browse.do?node=9693347.
13CLIFS indexes are available at: https://sdw.ecb.europa.eu/browse.do?node=9693347.
14As argued by Klaus et al. (2017), other sectors are not considered because the availability of data

capturing stress in 27 countries is limited both in the time and cross-sectional dimension.
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c) and compute a daily real e�ective exchange rate for Lithuania - in order to monitor

stress in the foreign exchange market.

Moreover, beyond the three �nancial markets considered by Klaus et al. (2017), I also

consider the stress in a banking sector, which I proxy by the stock prices of the three

major banks operating in Lithuania: Swedbank, DnB and SEB bank.15 The construction,

data sources and the time spans of indicators are described below.

2.4.1.1 Bond market

To measure a distress in Lithuanian bond market I collect a daily 10-year Lithuanian

government bond yields for the period ranging from 01/10/2001 to 30/12/2016. The

10-year Lithuanian government bond yields (R10LT,ẗ) in the real terms are given by:

rR10LT,ẗ = R10LT,ẗ −
CPILT,t − CPILT,t−12

CPILT,t−12

× 100 (2.1)

where R10LT,ẗ is the nominal 10-year government bond yield and CPILT,t is the Consumer

Price Index for Lithuania; ẗ denotes days and t indicates months. Since the CPI is available

only on monthly frequency, I simply interpolate the monthly CPI to a daily frequency.

Then, I estimate two components of the bond market sub-index:

(i) daily realized volatility
(
V rR10LT,ẗ

)
obtained from the absolute daily changes in

the real 10-year Lithuanian government bond yields
(
rR10Lt,ẗ

)
. In line with Klaus et al.

(2017) I standardize the changes in the real 10-year Lithuanian government bond yields(
ch rR10LT,ẗ

)
through a 10 year rolling standard deviation (i.e. the window size is set

equal to 2520 working days):
ch rR10LT,ẗ = rR10Lt,ẗ − rR10LT,ẗ−1

ch rR̃10LT,ẗ =
ch rR10LT,ẗ

σch rR10
LT,ẗ,ẗ−10years

V rR10LT,ẗ =
∣∣∣ch rR̃10LT,ẗ

∣∣∣
(2.2)

(ii) cumulative di�erence (CDIFFẗ) computed as a maximum increase in Lithuanian

real government bond spread over a two-year rolling window (i.e. over the previous T = 2

years). In particular the real government bond spread with respect to Germany
(
rR10DE,ẗ

)
is given by:16

15Klaus et al. (2017) capture the stress in the banking sector by using the bank stock price indices from
Datastream. However, it is not available for Lithuania.

16The daily data on Lithuania bond yields is obtained as the di�erence of the daily spread with German
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 rSpreadẗ = rR10LT,ẗ − rR10DE,ẗ

CDIFFẗ = rSpreadẗ −mini=0,...,T (rSpreadẗ−i)
(2.3)

2.4.1.2 Equity market

The Lithuanian stock market index, OMX Vilnius (OMXV), includes all the stocks listed

on the main and secondary lists on the Vilnius Stock Exchange. The stock market index

in real terms is given as:17

rOMXVẗ =
OMXVẗ
CPILT,ẗ

(2.4)

Similarly to the bond market, I follow the suggestion of Klaus et al. (2017) and focus on:

(i) daily realized volatility (V OMXVẗ) obtained from the absolute daily log stock mar-

ket returns: 
ln rOMXVẗ = log(rOMXVẗ)− log(rOMXVẗ−1)

ln ˜rOMXVẗ =
ln rOMXVẗ

σln rOMXV
ẗ,ẗ−10years

V OMXVẗ =
∣∣∣ln ˜rOMXVẗ

∣∣∣
(2.5)

where the returns are standardized by using a 10 year rolling window standard deviation.

(ii) cumulative maximum loss (CMAXẗ), estimated by comparing the value of rOMXVẗ

at day ẗ with its maximum value over the previous T periods (T = 2 years, 507 days).

CMAXẗ = 1− rOMXVẗ
maxi=0,1,...,T (rOMXVẗ−i)

(2.6)

where the backward rolling window is �xed for the �rst 2 years (04/01/2000 � 31/12/2001).

2.4.1.3 Foreign exchange market

The Lithuanian foreign exchange market dynamics is monitored by focusing on the real

e�ective exchange rate, REER. However, the Bank of International Settlements (BIS) and

10 year government bond yield available from Ycharts:
https://ycharts.com/indicators/lithuaniagermany_10_year_bond_spread, and the daily 10-year Ger-

man government bond yields available from Bundesbank database. Then, I use the monthly CPI for
Lithuania and for Germany, available from OECD to convert the nominal yields into real term.

17Note: CPI is available only on monthly frequency, therefore, I simply interpolate it to a daily fre-
quency.
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the ECB Statistical Data Warehouse (SDW) publish the REER for Lithuania only at low

frequencies (monthly, quarterly or annual). Therefore, I construct a daily REER.

Unlike the bilateral exchange rate that involves two currencies, the e�ective exchange

rate is an index that describes the strength of a currency relative to a basket of other

currencies. In particular, I calculate the REER for Lithuania as the geometric weighted

average of bilateral nominal exchange rates of litas vis-à-vis the currency of the major

trading partners. The major trading partners are: the whole Eurozone (euro), Estonia

(kroon), Latvia (lats), China (yuan renminbi), Czech Republic (koruna), Denmark (krone),

Japan (yen), Norway (krone), Poland (zªoty), Russia (ruble), Sweden (krona), Turkey

(lira), United Kingdom (pound sterling), United States of America (dollar).18 The nominal

bilateral currencies are then converted in purchasing power of Lithuanian consumers by

using the country speci�c consumer price index (CPI) (Schmitz et al., 2013):

REERẗ =
N∏
i=1

(
eẗLT,iCPI

ẗ
LT

CPI ẗi

)wi

(2.7)

where N is the number of major trading partner countries; eẗLT,i is a bilateral exchange

rate of the litas vis-à-vis the currency of partner country i; wi is the trade weight assigned

to the currency of a trading partner; the CPI for Lithuania and for the partner country i

are CPI ẗLT and CPI ẗi respectively.
19 The weights assigned to the major trading partners

are shown in Table 2.2. The 11 Eurozone countries and other 13 major trading partner

countries cover 91.4% of Lithuanian total trade in the period 2008 � 2010. The weights

are adjusted considering 91.4% to be the total trade (see second row of Table 2.2). For the

comparison, Figure 2.3 shows that daily REER (in �gure aggregated to monthly frequency)

is almost identical to the monthly REER from BIS.

Then, similarly to bond and stock market, the stress in foreign exchange market is

monitored by measuring the following two components:

(i) daily realized volatility (V REERẗ) computed as the absolute value of daily growth

rate of real e�ective exchange rate. I divide the growth rate by a 10 year rolling standard

deviation (with the window set equal to 2520 working days):

18Estonia and Latvia joined the Eurozone in 2011 and 2014, respectively.
19The bilateral exchange rates for litas and its major trading partners are collected form the Bank of

Lithuania (BoL); the CPI data is taken from OECD and the trading weights from BIS. Note: CPI is
available only on monthly frequency, therefore, I simply interpolate it to a daily frequency.
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
lnREERẗ = log(REERẗ)− log(REERẗ−1)

ln R̃EERẗ =
lnREERẗ

σlnREER
ẗ,ẗ−10years

V REERẗ =
∣∣∣ln R̃EERẗ

∣∣∣
(2.8)

(ii) cumulative change (CUMUL) of REER over six months (i = 6 months, or 126

working days):

CUMULẗ = |REERẗ −REERẗ−i| (2.9)

2.4.1.4 Banking sector

In order to measure the stress in the Lithuanian banking sector, I monitor the stock prices

of the three major Scandinavian banks: the Norwegian DnB bank and the two Swedish

banks � Swedbank and SEB. In particular, the banking sector sub-index consists of six

components. For each of the bank I estimate two components:20

(i) daily realized volatility of the idiosyncratic part of the bank stock price returns

(V BKSB,ẗ). The idiosyncratic component
(
εB,ẗ
)
is the estimated residual from a regression

of the bank speci�c real stock price return
(
lnBKSB,ẗ

)
on the real total stock market index(

ln rSXc,ẗ

)
: 

lnBKSB,ẗ = log(rBKSB,ẗ)− log(rBKSB,ẗ−1)

lnBKSB,ẗ = βB,ẗ × ln rSXc,ẗ + εB,ẗ

ε̃B,ẗ =
εB,t

σε
B,ẗ,ẗ−10years

V BKSB,ẗ =
∣∣ε̃B,ẗ∣∣

(2.10)

where the regression is estimated by using a rolling window of two years (�xed for the �rst

two years). The stock market indexes (indexed by c =OMXS30, OBX) of Sweden stock

market (OMXS30) and Norwegian stock market (OBX) and bank speci�c stock prices

(indexed by B = Swedbank, SEB,DnB) are converted in real terms by using the CPI for

the related countries, respectively, as:
SXc,ẗ
CPIẗ

and
BKSB,ẗ
CPIẗ

.21

20I follow the methodology by Klaus et al. (2017) for the components' construction. However, note
that the authors do not include the banking sector in the CLIFS for Lithuania.

21The OMXS30 is a stock market index for the Stockholm Stock Exchange that consists of the 30 most
traded stock classes (including SEB bank and Swedbank stocks). The OBX Index is a stock market index
which lists 25 most liquid companies (including DnB bank) of the Oslo Stock Exchange in Norway. The
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(ii) cumulative maximum loss of bank stock prices (CMAXBB) for each bank is es-

timated by comparing the value of rBKSB at time ẗ with its maximum value over the

previous T periods (T = 2 years, 502 working days):

CBKSB,ẗ = 1−
rBKSB,ẗ

maxi=0,1,...,T (rBKSB,ẗ−i)
(2.11)

2.4.2 Transformation of raw stress indicators

In order to aggregate the twelve individual stress indicators into a single �nancial stress

index, �rstly, I need to standardize each indicator to have a common unit. Following Holló

et al. (2012) and Klaus et al. (2017), the standardization of stress indicators is based on

empirical cumulative distribution function (CDF). This method of standardization consists

in converting the six �nancial stress indicators into new series which are unit-free and

ranging between 0 and 1. By this procedure, in the �rst step, the values of individual

stress indicator are ranked and then divided by the total number of observations (n). The

rank of 1 is assigned to the minimum value in the sample and n to a maximum.

The empirical CDF is computed as:

zn = Fn(xn) =

 r
n

1

for x[r]≤xt≤x[r+1]

for xn≥x[n]

(2.12)

where r = {1, 2, . . . , n − 1} is a rank number, n the total number of observations in the

sample.22 The CDF is computed over an initial window of 10 years, after this period, the

transformation is applied recursively over expanding samples with one new observation

added at a time (keeping the ranks of previous observations �xed).

2.4.3 Aggregation

Once the twelve stress indicators have been transformed, I aggregate them into the �nal

FSI. The aggregation consists in two steps. In the �rst step, the transformed individual

stress indicators capturing stress in a speci�c �nancial market are combined (by arithmetic

data on Swedbank and SEB bank stock prices as well as OMXS30 index are from NASDAQ database.
The data on DnB bank stock prices is collected from DnB database and the OBX index from Oslo Børs
database. Note: CPI is available only on monthly frequency, therefore, I simply interpolate it to a daily
frequency.

22If the same value of x occurs more than once, the rank number assigned to each of the observations
is given as the average of rankings involved.
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average) to obtain four sub-indexes: the bond market sub-index (SBond), the stock market

sub-index (SEq), the foreign exchange market sub-index (SFX) and the banking sector

sub-index (SBank):



SBond,ẗ =
V rR10ẗ+CDIFFẗ

2

SEq,ẗ =
V OMXVẗ+CMAXẗ

2

SFX,ẗ =
V REERẗ+CUMULẗ

2

SBank,ẗ =
V BKSSwed,ẗ+CBKSSwed,ẗ+V BKSSEB,ẗ+CBKSSEB,ẗ+V BKSDnB,ẗ+CBKSDnB,ẗ

6

(2.13)

Once the sub-indices are computed, I aggregate them into the �nal FSI by using the

approach based on the portfolio theory suggested by Holló et al. (2012) for the CISS

index construction and used more recently by Louzis and Vouldis (2013), Johansson and

Bonthron (2013) and by Klaus et al. (2017). Therefore, the FSI for Lithuania is computed

as follows:

FSIẗ = (w × sẗ)Cẗ(w × sẗ)
′

(2.14)

where sẗ = (S
Bond,ẗ

, S
Eq,ẗ

, S
FX,ẗ

, S
Bank,ẗ

) is a vector of the sub-indexes, Cẗ is the matrix of

time-varying cross-correlation coe�cients between the four sub-indexes and w is a sub-

index weight. Similarly to Klaus et al. (2017), I give the same weight to each sub-index

(w = 1
4
).23

The portfolio based approach allows taking into account the systemic co-movement

across the �nancial market segments through time-varying cross-correlations between the

sub-indexes. The stronger is the correlation of �nancial stress across the sub-indexes,

the more weight is attributed to the FSI. The time-varying cross-correlation ρi,j,ẗ between

sub-indexes i and j is estimated recursively using the exponentially weighted moving

averages (EWMA) method. In particular, the covariances
(
σi,j,ẗ

)
and volatilities

(
σ2
i,ẗ

)
are estimated as follows:

23Holló et al. (2012) estimate the weights of the sub-indexes in the CISS index by using a bivariate
linear VAR and, then, by computing the cumulated impulse response of industrial production growth
to a one standard deviation shock to a sub-sector index. However, the authors �nd that the di�erences
between the CISS computed with impulse response based weights and the one with equal weights are not
large.
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

σi,j,ẗ = λσi,j,ẗ−1 + (1− λ)S̄i,ẗS̄j,ẗ

σ2
i,ẗ

= λσ2
i,ẗ−1

+ (1− λ)S̄2
i,ẗ

ρi,j,ẗ =
σi,j,ẗ
σi,ẗσj,ẗ

Cẗ =


1 ρEq,Bond,ẗ ρFX,Eq,ẗ ρBank,Eq,ẗ

ρBond,Eq,ẗ 1 ρFX,Bond,ẗ ρBank,Bond,ẗ

ρBond,FX,ẗ ρEq,FX,ẗ 1 ρBank,FX,ẗ

ρBond,Bank,ẗ ρEq,Bank,ẗ ρFX,Bank,ẗ 1


(2.15)

where i, j = {Bond,Eq, FX,Bank}, i 6= j, with Si,ẗ =
(
Si,ẗ − 0.5

)
denoting demeaned

sub-indexes obtained by subtracting their theoretical median value (i.e. 0.5). In line with

Klaus et al. (2017), I keep the smoothing parameter λ = 0.85 constant. The initial values

for the covariance and the volatilities (for ẗ = 1 which is associated with 2/10/2001) are

set equal to the corresponding average values over the two years (i.e. the period running

from 2/10/2001 to 30/9/2002).

2.4.4 Daily �nancial stress index for Lithuania

The evolution of the sub-indexes used for Lithuanian �nancial stress index construction,

over the period 2/10/2001 � 30/12/2016, is displayed in Figure 2.4. Figure 2.4 shows

that the �nancial distress in bond, equity, foreign exchange and banking sectors reaches

the peak during the period of global �nancial crisis. In particular, the stock market sub-

index peaks in October 2008, the foreign exchange sub-index in January 2009, the banking

sub-index in March 2009 and bond sub-index in June 2009.

Figure 2.5 shows the contribution of each sub-index to the overall distress in the

Lithuanian �nancial system. The contribution of each sub-index increases during the

global �nancial crisis (during mid-2007 � mid-2009) and the major contributor is the

banking sector. As expected, during the European sovereign debt crisis period (beginning

of 2011 � 2012) the bond market sub-index is the main contributing factor to �nancial

stress. It is also worth noting that the foreign exchange sub-index results as the major con-

tributor to the overall stress in Lithuania in 2015. In particular, distress in the Lithuanian

foreign exchange market has increased at the end-2014, when the Russian economy was

in a downturn due to the fall in the oil prices and the Russia-Ukraine con�ict.

Figure 2.6 shows the time-varying correlations between the four sub-indices, which
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quanti�es the systemic risk of the Lithuanian �nancial system. The relatively high correl-

ation coe�cient between each pair of market sub-indices associated with relatively high

values of all sub-indices is observed over the period from December 2008 to September

2009.

The total daily �nancial stress index for Lithuania is presented in Figure 2.7. Figure

2.7 shows that the Lithuanian �nancial system did not experience high levels of �nancial

stress over the period 2001-2007. However, the index starts to increase at the beginning

of 2008 and reaches a peak right after the collapse of the US investment bank Lehman

Brothers. Although the �nancial distress slightly diminishes at the end of 2009, the rising

concerns regarding the sustainability of sovereign debt in the some of Eurozone countries

(Greece and later Italy, among others) leads to high values of the stress index in May

2010 and over September - October 2011. Furthermore, Figure 2.7 shows that the failure

of two domestic banks: SNORAS (in November 2011), which was the third largest bank

by deposits and the �fth largest by assets and of Ukio bankas (in February 2013), did not

a�ect the stability of the entire �nancial system.

Finally, Figure 2.8 compares the daily FSI with an alternative monthly �nancial stress

index for Lithuania by Klaus et al. (2017), which is available at ECB database. Note,

that for a more straightforward comparison, for the moment, I aggregate the daily FSI

to a monthly frequency. Figure 2.8 shows that the two indexes peaks during the GFC.

However, while the FSI peaks in the beginning of 2009, the ECB index reach the highest

stress level in the mid-2009.

2.5 Mixed Frequency Granger (non-) Causality test

There is an important link between �nancial stress and the real sector. A number of

empirical studies �nd that increase in �nancial stress, measured by a �nancial stress index,

can produce substantial spillovers and have signi�cant e�ects on the real economy.24 Hollo

et al. (2012) �nd that in the high-stress regimes the increase in the EZ �nancial distress

leads to a collapse in industrial production, while in the low-stress regime it does not have

any statistically signi�cant impact. More recently, Kremer (2016) shows that the CISS

index Granger cause EU real GDP growth. While the aforementioned studies are based

24For instance, when �nancial markets su�er from high distress increased uncertainty about asset value
decreases the value of collateral. As the consequence, shocks a�ecting the creditworthiness lead to in-
creased swings in output. At the same time, economic activity is a�ected by the fact that bank capital is
eroded, which forces banks to deleverage and decrease the lending to businesses.
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on a common low frequency dataset, in this section, I investigate a causal relationship

between a daily �nancial stress index for Lithuania (constructed in section 2.4) and a

monthly Lithuanian industrial production growth.

2.5.1 Mixed Frequency VAR

Consider two time series sampled at di�erent frequencies: a low-frequency series xL and

a high-frequency series xH . A high-frequency series is observed m times during a low-

frequency period t. According to Ghysels (2016), the mixed frequency VAR model can

deal either with a case of a small m (e.g. when the series are sampled at quarterly/annual

or weekly/daily frequency), or with a case of a large m (e.g. when the series are sampled

at daily/monthly or weekly/quarterly frequency). In this chapter, I focus on the large m

case: one series is sampled at monthly and the other one at daily frequency.

In MF-VAR all observations of period t (i.e. high and low frequency observations) are

stacked into a column vector by treating the m observations of the high-frequency series

as if they were distinct endogenous variables. Let xH(t, 1) be the �rst high-frequency ob-

servation of xH in low frequency period t (e.g. the �rst daily observation of the month t),

a xH(t, 2) � the second, and xH(t,m) � the last one. Consider a high-frequency vector in

t-period as [xH(t, 1), xH(t, 2), xH(t, j), . . . , xH(t,m)]′. Then, a mixed frequency vector with

one high and one low frequency variable is denoted as Z(t) = [xH(t, 1)′, . . . , xH(t,m)′, xL(t)′]
′
,

with the dimension K × 1, where K = m+ 1.

A reduced-form vector autoregressive model with mixed-frequency data (MF-VAR(p))

is given by:25
xH(t, 1)

...

xH(t,m)

xL(t)

 =


µ1
...

µm

µm+1

 +
∑p
k=1


d11,k · · · d1m,k c1,k
...

. . .
...

...

dm1,k · · · dmm,k cm,k

b1,k · · · bm,k ak




xH(t− k, 1)

...

xH(t− k,m)

xL(t− k)

 +


uH(t, 1)

...

uH(t,m)

uL(t)


or

Z(t) = µ+

p∑
k=1

ΓkZ(t− k) + ut (2.16)

The coe�cients b's and c's capture the causality from a high-frequency variable xH

to the low frequency variable xL, and the causality from xL to xH , respectively. More

speci�cally, testing for Granger (non-) causality implies the following null hypothesis:

� High-to-low (non-) causality . xH does not Granger cause xL if and only if:

25The parameters in Γ are estimated by using an OLS estimator.
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H0 : b1,k = ... = bm,k = 0; for k = 1, ..., p (2.17)

� Low-to-high (non-) causality. xL does not Granger cause xH if and only if:

H0 : c1,k = ... = cm,k = 0; for k = 1, ..., p (2.18)

2.5.2 Granger causality test

Given that the mixed-frequency VAR in section 2.5.1 is characterized by a large mismatch

in sampling frequencies of the series involved (i.e. daily vs monthly), in this section I

describe the Granger causality tests that take into account this issue. Götz et al. (2016)

develop a test for a high-to-low and low-to-high Granger causality in a mixed-frequency

VAR by using a Wald test. The Wald test is based on the unrestricted MF-VAR in (2.16).

Let Γ̂ denote an OLS estimates of the coe�cient matrices for the lagged endogenous

variables in the MF-VAR (2.16) and de�ne R a matrix that picks the set of coe�cients

of interest for Granger (non-) causality test i.e. Rvec(Γ̂). Then, the Wald test statistic is

constructed as:

ξ̂W = [Rvec(Γ̂)]′(RΩ̂R′)−1[Rvec(Γ̂)] (2.19)

with

Ω̂ =
(
W
′
W
)−1

� Σ̂ (2.20)

where Σ̂ = 1
TL
û
′
û is the covariance matrix of the disturbance terms in (2.16) and W is the

regressor set. However, in a mixed-frequency model with a large m an asymptotic Wald

test may exhibit size distortions when the number of zero restrictions is relatively large,

compared to a sample size (Götz et al., 2016; Ghysels et al., 2018). Therefore, Götz et al.

(2016) rely on bootstrap in order to draw an inference based on the Wald test.26

Ghysels et al. (2018) propose a max-test only for high-to-low Granger causality case

with a large number of zero restrictions. More speci�cally, the max-test statistic is based

on pm parsimonious regression models:

xL(t) = µi +

p∑
k=1

ak,ixL(t− k) + βixH(t− 1,m+ 1− i) + uL,i(t), (2.21)

26Montecarlo simulations in Götz et al. (2016) show that bootstrap variants of high-to-low and low-to-
high causality tests improve the empirical size.
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where index i ∈ {1, ..., pm} is in high-frequency terms and the second argument (m+1−i)
of xH can be less than 1 (since i > m occurs when p > 1). Each ith model contains p low-

frequency autoregressive lags of xL and only the ith high-frequency lag of xH . I estimate

the parsimonious model pm times. It is important to notice that the βi in parsimonious

models (2.21) and b's in unrestricted model (2.16) generally are not equivalent. I estimate

the parameters in each ith model by OLS to get β̂i = {β̂1, ..., β̂pm}. Then, I formulate a

max-test statistic as:

T̂TL = max
1≤i≤pm

{(
√
TLβ̂i)

2} (2.22)

where TL is a low-frequency sample size. The mixed-frequency max-test statistics T̂TL has

a non-standard asymptotic distribution under the null hypothesis in (2.17). Therefore, I

follow Ghysels et al., (2018) and rely on a simulation-based p-value.

Rewrite each parsimonious regression model in (eq. (2.21)) as:

xL(t) = X
′

i(t)× θi + uL,i(t) (2.23)

for i = 1, ..., pm, where Xi(t) = [1, xL(t− 1), ..., xL(t− p), xH(i)]′, θi = [µi, a1,i, ..., ap,i, βi]
′

and all parameters across the pm models are stacked as θ = [θ
′
1, . . . , θ

′
pm]

′
. De�ne a

selection matrix R that selects β = [β1, . . . , βpm]′ from θ such that β = Rθ:

R =


01×(1+p) 1 01×(1+p) 0 · · · 01×(1+p) 0

01×(1+p) 0 01×(1+p) 1 · · · 01×(1+p) 0
...

...
...

...
...

...
...

01×(1+p) 1 01×(1+p) 0 · · · 01×(1+p) 1


pm×(p+2)pm

(2.24)

Under the null hypothesis consider T̂TL
d→ max1≤i≤pm{N 2

i } (see eq. (2.22)) as TL →
∞, where N =[N1,...,Npm]' is distributed as N(0, V ) with covariance matrix:

V ≡ RÖSigmaÖR
′

(2.25)

where

Sigma =


S1×1 · · · S1×(pm)

...
. . .

...

S(pm)×1 · · · S(pm)×(pm)


Si×j = G−1

ii ΛijG
−1
jj , Gii = E[Xi(t)X

′
j(t)], Λij = E[ε2tXi(t)X

′
j(t)] for i, j ∈ {1, ..., pm}.
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Let V̂TL be a consistent estimator for V . In the �rst step, draw M samples of vectors

N = {N (1), ...,N (M)} independently from N(0, V̂TL). In the second step, transform

N = {N (1), ...,N (M)} to be distributed as N(0, V̂TL). Finally, compute arti�cial test

statistics T̂ (j)
TL

= max{(N (j)
1 )2, ..., (N (j)

pm)2 for j = 1, . . . ,M . An asymptotic p-value

approximation for T̂TL is:

p̂TL,M =
1

M

M∑
j=1

I(T̂ (j)
TL

> T̂TL) (2.26)

where I(A) is the indicator function that equals 1 if A occurs and 0 otherwise.

2.6 Empirical Evidence

2.6.1 Data

I focus on the daily Lithuanian FSI (constructed in section 2.4) and monthly industrial

production (IP) growth in Lithuania for the sample period running from October 2, 2001

to December 30, 2016, yielding a sample size of TL = 183 months. In line with Holló et

al. (2012) and Klaus et al. (2017) I use a year-to-year IP growth estimated as 12th month

log-di�erence. I use a seasonally and working day adjusted data on Lithuanian industrial

production, which is available from the Lithuanian Department of Statistics.

Figure 2.9 plots the data. The �gure suggests that Lithuanian economy has experienced

a high growth up to the end-2008. With the beginning of the global �nancial crisis, the

IP shrank decreasing for 14 consecutive months (from November 2008 to January 2010),

peaking at (minus) -31.4% in April 2009.

The daily Lithuanian FSI, constructed in section 2.4, has a varying number of daily

observations within each month, ranging from 18 to 23 observations. In order to perform

a MF Granger causality test, for simplicity, I assume that the maximum number of daily

observations that is available in each month throughout the sample is 18 (m = 18). More

speci�cally, the daily Lithuanian FSI series are modi�ed as follows:

FSIH(t, j) for j = 1, ..., 18 (2.27)

where the lastm(t)− 18 observations at the end of each month are disregarded (see Götz et

al., 2016).27 This modi�cation gives a dataset with TL = 183 low-frequency observations,

27Note that the xH(t, 1) is not necessarily the �rst day of the month. For example, October 1, 2016 fall
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m = 18 and m × TL = 3294 high-frequency observations. Therefore, when setting the

VAR MF model speci�cation, the stacked vector of endogenous variables has a dimension

K = 19. The Phillips and Perron (1988) test for unit-root suggest that the data are

stationary (at 10-percent signi�cance level).

2.6.2 Granger causality tests

To test for Granger causality from the daily Lithuanian FSI (FSIH) to monthly IP growth

in Lithuania (IPL) I focus on the last row of MF-VAR(2) speci�cation in (2.16):

IPL(t) = µ19 +
2∑

k=1

akIPL(t− k) +
36∑
i=1

biFSIH(t− 1, 18 + 1− i) + uL(t) (2.28)

where I regress the monthly IP growth onto a constant (µ19), p = 2 months of lagged

low-frequency variable (IP growth), pm = 36 days of lagged high-frequency variable (FSI

for Lithuania).28 The Wald test developed by Götz et al. (2016) consider the unrestricted

model described in (2.16). The model is estimated by using ordinary least squares. The

p-values for the Wald test for the null hypothesis H0 : b1 = · · · = b36 = 0 in eq. (2.17) are

computed using 1999 bootstrap replications.29

The max-test by Ghysels et al. (2018) is based on parsimonious regression models:

IPL(t) = µi +
2∑

k=1

akiIPL(t− k) + βiFSIH(t− 1, 18 + 1− i) + uL,i(t) (2.29)

for i = {1, . . . , 36}, where each ith model contains p = 2 months of lagged IP growth and

only the ith daily lag of FSI for Lithuania.30 I estimate the parsimonious model 36 times.

The number of parameters to estimate in the parsimonious regression model is 4 (1+2+1)

against 39 (1+2+36) in the full regression model in eq.(2.28).31 For the robustness check

on Sunday. Thus, October 3, 2016 is considered as the �rst observation of the month xH(t, 1).
28The model speci�cation is chosen according to the suggestions of Ghysels et al. (2018). More spe-

ci�cally, I perform a Ljung-Box Q-test to test for the absence of serial correlation in residuals of the full
regression model eq. (2.28).The p-values for Q-test are reported in Appendix, Table 2.5.

29For bootstrap, I use a code provided by Götz et al. (2016).
30Following Ghysels et al. (2018) p-values are computed based on the robust covariance matrix with

100 000 draws from an approximation to the limit distribution under non-causality.
31I estimate 4 parameters in each ith parsimonious model eq. (2.29): (i) a constant (α0i), (ii) two

coe�cients related to the lagged IP growth (a1i, a2i) and (iii) one coe�cient related to the lagged FSI
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I also try the di�erent model speci�cations: MF-VAR(1) and MF-VAR(3).

To test for Granger causality from monthly IP growth to daily FSI for Lithuania,

de�ned as H0 : c1 = · · · = c36 = 0 in (2.18), I focus on an unrestricted model in (2.16)

(see last column of the model) and I use the Wald statistics eq. (2.19) developed by Götz

et al. (2016).

2.6.3 Empirical �ndings

2.6.3.1 Full sample analysis

The full sample results in Table 2.3 panel (A) show that the daily Lithuanian FSI has

a predictive power for monthly Lithuanian IP growth for the period (October 2001 �

December 2016), but not vice versa. More speci�cally, the p-values suggest that, for any

MF-VAR model speci�cation (with lag order (p) equal to 1, 2, or 3), there is evidence

of unidirectional causality from daily Lithuanian FSI to monthly IP growth in Lithuania.

In fact, while both the max-test and the Wald test reject the null hypothesis that FSI

does not Granger cause IP growth at 10% signi�cance level, I cannot rejected the null

hypothesis that IP growth does not Granger cause FSI.

In addition, the analysis is in line with other studies (see Hakkio and Keeton, 2009,

among others) which �nd that an increase in �nancial stress has an adverse impact on

the overall economic activity. In particular, Figure 2.10 shows that the point estimates of

the coe�cients βi for each i
th parsimonious model (eq. 2.29) used to evaluate the e�ect

of �nancial stress on economic activity is negative and statistically signi�cant (at 95%

con�dence interval).

Further, in order to evaluate the index, I compare the daily FSI for Lithuania with al-

ternative �nancial stress indexes. Speci�cally, I test for Granger causality betweenmonthly

IP growth in Lithuania and (i) a daily FSI for Lithuania, constructed by taking into con-

sideration only three sub-indexes - bond, equity and foreign exchange (excluding banking

sub-index), (ii) a monthly FSI for Lithuania (composed of 4 sub-sectors: bond, equity, for-

eign exchange and banking), obtained by averaging the daily FSI to a monthly frequency,

and (iii) a monthly CLIFS index provided by ECB and developed Klaus et al. (2017),

which is composed of only three sub-indexes - bond, equity and foreign exchange.

As for case (i), the p-values in Table 2.3 panel (B) suggest that a daily FSI for

Lithuania, constructed by taking into consideration only three sub-indexes - bond, equity

(βi).
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and foreign exchange (excluding banking sub-index), is also a good predictor for a monthly

IP growth in Lithuania. More speci�cally, for any MF-VAR speci�cation (with lag order

equal to 1, 2 or 3) the daily FSI (3 sub-indexes) Granger cause a monthly IP growth in

Lithuania, but not vice versa. Furthermore, the point estimates of the coe�cients βi for

each ith parsimonious model (eq. 2.29) in Figure 2.11 shows that an increase in �nan-

cial stress in equity, bond and foreign exchange sectors leads to a slowdown in IP growth

in Lithuania, although the e�ect is slightly smaller compared to the daily FSI that also

contains the banking sector related stress sub-index.

As for case (ii), I use a common frequency VAR(1) to test for Granger causality between

monthly IP growth in Lithuania and a monthly FSI for Lithuania (composed of 4 sub-

sectors: bond, equity, foreign exchange and banking). The p-values in Table 2.3 panel (C)

suggest a unidirectional causality from a monthly FSI to a monthly IP growth, since I can

reject the null hypothesis of non-causality relying on an asymptotic and a bootstrap version

of a Wald test. Moreover, a common frequency regression results in Table 2.4 panel A

show that an increase in �nancial stress has a negative and statistically signi�cant impact

on the IP growth in Lithuania.

As for case (iii), I investigate the causal relationship between the monthly CLIFS

developed by Klaus et al. (2017) and the monthly Lithuanian IP growth series.32 For this

purpose, I use an asymptotic and a bootstrap Wald test for testing bi-directional Granger

causality. The full sample results in Table 2.3 panel (D), based on VAR(2) model, suggest

that I cannot reject the null hypothesis of non-causality in both directions. This empirical

�nding is con�rmed by the common frequency regression results in Table 2.4 panel (B)

suggesting that a CLIFS index has a negative impact on IP growth in Lithuania, although

the e�ect is not statistically signi�cant.

To summarize, the empirical �ndings suggest the importance of including the banking

sector into the �nancial stress index (and the use of a mixed frequency dataset), otherwise

the negative causal e�ect on IP growth would not be detected.

2.6.3.2 Rolling-window analysis

I also assess if there is any evidence of changes in the causality between the daily FSI

for Lithuania and monthly IP growth over the full sample period. For this purpose, I

implement a rolling-window Granger causality test, �xing the window size to 84 months

32The index is composed of 3 sub-sectors, re�ecting the stress in equity, bond and foreign exchange
market.
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(i.e. seven years).33 This gives a total of 100 sub-samples, where the �rst sub-sample

covers the period from October 2001 to September 2008 and the last sub-sample covers

the period from January 2010 to December 2016. In line with the full sample analysis, I

use a max-test developed by Ghysels et al. (2018) and the Wald test developed by Götz

et al. (2016) for each sub-sample.

Figure 2.12 plots the rolling window p-values for each causality test over the 100

windows (the last observation of each sub-sample period is shown on the horizontal axis).

More speci�cally, Panel A and B show the max-test and the Wald test p-values for the null

hypothesis that a daily FSI does not Granger cause the monthly IP growth in Lithuania.

The p-values of the Wald test for the causality in the opposite direction are presented in

the panel C of Figure 2.12.

In line with full sample analysis, the results suggest that I cannot reject the null

hypothesis that IP growth in Lithuania does not Granger cause the �nancial distress in

Lithuania at 10% signi�cance level. On the contrary, I �nd that a daily �nancial stress

index for Lithuania has a predictive power for monthly Lithuanian IP growth (at 10%

signi�cance level) for most of the considered sub-samples, according to the max-test and

to the Wald test (see Panel A � B in Figure 2.12). In particular, the max-test (see panel

A) con�rms the causality from FSI to IP growth from April 2009 to March 2016, and the

Wald test (see panel B) detects a signi�cant causality from the January 2010 to January

2016.34

Furthermore, the p-values of a rolling window analysis in Figure 2.13 panel (A)-(B)

suggest that a daily FSI for Lithuania, constructed by aggregating only 3 sub-indexes

(bond, equity and foreign exchange) is also a good predictor of monthly Lithuanian IP

growth, since I can reject the null hypothesis of non-causality at 10% signi�cance level

in most of the considered sub-samples. Panel C shows that IP growth does not Granger

cause �nancial distress in the sub-samples covering the period from July 2009 to November

2013. Moreover, the p-values in Figure 2.14 of an asymptotic Wald test implemented for a

rolling window analysis suggest a unidirectional causality from monthly FSI, composed of

4 sub-indexes (bond, equity, foreign exchange and banking), to monthly IP growth, since

I can reject the null hypothesis of non-causality in most of the sub-samples (see panel A).

In line with the full sample analysis, the only case associated with no evidence of causality

in both directions is when I focus on the relationship between monthly CLIFS index by

33The rolling-window analysis uses a �xed-length window, which moves sequentially from the beginning
to the end of the sample period by adding one observation ahead and dropping one from the behind.

34Note that I report the last observation of the sub-sample period.
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Klaus et al. (2017) and monthly IP growth. More speci�cally, the rolling window analysis

results in Figure 2.15 suggest no causality between monthly CLIFS index by Klaus et al.

(2017) and monthly IP growth.

2.7 Conclusions

In this chapter, �rst, I construct a daily Financial Stress Index (FSI) for Lithuania. In

particular, I extend the monthly Financial Stress Index (FSI) for Lithuania, computed by

ECB (see Klaus et al, 2017), to a high-frequency (daily) horizon and, given the important

role played by a banking sector in the Lithuanian economic development in the recent

decade, I include the banking sector among its constituents (beyond bond, equity, foreign

exchange markets).

Moreover, I investigate the causal relationships between the daily FSI for Lithuania and

monthly industrial production growth, using a Granger causality test applied to a mixed-

frequency VAR characterised by a large mismatch in sampling frequencies of the series

involved (i.e. daily vs monthly). The empirical �ndings suggest that the daily Lithuanian

FSI has a predictive power for monthly Lithuanian IP growth for the full sample period

(October 2001 � December 2016), but not vice versa. These results are also con�rmed by a

rolling-window analysis, where I allow the causal relationship to vary over time. Moreover,

the analysis is in line with the empirical studies (see Hakkio and Keeton, 2009, among the

others) showing that an increase in �nancial stress has an adverse impact on the overall

economic activity. In particular, I show that a banking stress in Lithuania leads to a

stronger decline in IP growth.

Finally, I show that the constructed daily FSI for Lithuania is a better predictor for

monthly industrial production growth than amonthly Country-Level Indicator of Financial

Stress developed by ECB (Klaus et al., 2017).

Overall, the �ndings for Lithuania suggest that the leading indicator properties of an

FSI index for Lithuania with respect to industrial production growth can be enhanced if

I take into account the banking sector and I use daily observations.
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2.A Appendix

2.A.1 Figures: stylized facts for Lithuania

Figure 2.1: The development of Lithuanian �nancial system 2001-2016

Source: Bank of Lithuania (https://www.lb.lt/en/�nancial-stability#ex-1-1).

Figure 2.2: Lithuanian banking sector structure by assets (end-2016)

Source: Bank of Lithuania (https://www.lb.lt/en/main-indicators-of-banking-sector-activities).
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2.A.2 Figures: FSI for Lithuania

Figure 2.3: Our REER in comparison with the REER for Lithuania from BIS

Notes: The straight line is the monthly REER index I compute by aggregating daily data. The dotted
line is the monthly REER index available from BIS.

Figure 2.4: Sub-indexes (2001-2016)
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Figure 2.5: Contribution of the sub-indexes to the overall FSI

Figure 2.6: Time varying cross-correlations between the sub-indexes

Notes: I use EWMA with smoothing parameter 0.85 (see eq. 2.15) to estimate the pairwise correlations
among sub-sectors.

Figure 2.7: Daily �nancial stress index for Lithuania

Notes: Bars are associated with the following crisis events: the bankruptcy of US investment bank
Lethman Brothers, �rst and second Greece bailouts, and SNORAS and Ukio bankas bankruptcy.
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Figure 2.8: Comparison between FSI and a CLIFS for Lithuania from ECB

Notes: The bold line is daily Lithuanian FSI aggregated into monthly frequency.
The grey line is the monthly Lithuanian CLIFS index available from ECB at: ht-
tps://sdw.ecb.europa.eu/browse.do?node=9693347.

Figure 2.9: Lithuanian industrial production growth and FSI for Lithuania

Notes: In PANEL (A) I show the daily FSI, while in PANEL (B) the index is aggregated to monthly
frequency. The IP growth is estimated as 12th month di�erence in log output, for a period October 2001
- December 2016. IP growth is in black colour and FSI is in red colour.



2.A. APPENDIX 74

2.A.3 Figures: full sample analysis

Figure 2.10: Daily FSI (4 sub-indexes): the βi coe�cient values in each ith model

Notes: The plot shows the point estimates of the coe�cients βi for each i
th parsimonious model (see eq.

2.29) and the con�dence bands (±2× Str.Error).

Figure 2.11: Daily FSI (3 sub-indexes): the βi coe�cient values in each ith model

Notes: The plot shows the point estimates of the coe�cients βi for each ith parsimonious model (see
eq. 2.29) and the con�dence bands (calculated as: Estimate ± 2× Str.Error). I consider a daily FSI
constructed by aggregating only 3 sub-indexes: bond, equity and foreign exchange.
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2.A.4 Figures: rolling window analysis

Figure 2.12: P-values for rolling window analysis (daily FSI composed of 4 sub-indexes)

Note: I test for Granger causality between daily FSI for Lithuania (constructed in section 2.4) andmonthly
IP growth. Each test is based on MF-VAR (2) model and implemented by using a rolling window of 84
months (i.e. seven years). The x axes represent the 100 sub-samples, where the �rst sub-sample covers the
period from October 2001 to September 2008, the second sub-sample covers the period from November
2001 to October 2008 and the last sub-sample covers January 2010 - December 2016 (the last observation
of each sub-sample period is shown on the x axis). The y axes represent the p-values. The signi�cance
level of 10% is indicated by a light grey line.

Figure 2.13: P-values for rolling window analysis (daily FSI composed of 3 sub-indexes)

Note: I consider a daily FSI for Lithuania constructed by aggregating only 3 sub-indexes (bond, equity
and foreign exchange). Each test is based on MF-VAR (2) model and implemented by using a rolling
window of 84 months (i.e. seven years). The x axes represent the 100 subsamples, where the �rst covers
the period from October 2001 to September 2008, the second one from November 2001 to October 2008
and the last one January 2010 - December 2016. The y axes represent the p-values. The signi�cance level
of 10% is indicated by a light grey line.
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Figure 2.14: P-values for rolling window analysis (monthly FSI composed of 4 sub-indexes)

Note: I consider an asymptotic Wald test between common frequency variables: a daily FSI for Lithuania
(composed of 4 sub-indexes) aggregated to monthly frequency and monthly IP growth. An optimal lag
length for each sub-sample is obtained by using a SC criteria. Each test is implemented by using a rolling
window of 84 months (i.e. seven years). The x axes represent the 100 subsamples, where the �rst covers
the period from October 2001 to September 2008, the second one from November 2001 to October 2008
and the last one January 2010 - December 2016. The y axes represent the p-values. The signi�cance level
of 10% is indicated by a light grey line.

Figure 2.15: P-values for rolling window analysis (CLIFS index for Lithuania)

Note: I consider an asymptotic Wald test between monthly CLIFS index by ECB and monthly IP growth,
implemented by using a rolling window of 84 months (i.e. seven years). An optimal lag length for each
sub-sample is obtained by using a SC criteria. The x axes represent the 84 subsamples, where the �rst
covers the period from February 2003 to January 2010, the second one from March 2003 to February 2010
and the last one January 2010 - December 2016. The y axes represent the p-values. The signi�cance level
of 10% is indicated by a light grey line.
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2.A.5 Tables

Table 2.1: Indicators used for the Lithuanian FSI construction

Market Indicator Notation

Bond market

Realized daily volatility of 10y Lithuanian
V rR10t

government bond yields

Cumulative di�erence of Lithuanian and
CDIFFt

German 10y bond yields

Equity market
Realized daily volatility of OMXV V OMXVt

The cumulative maximum loss (CMAX) of OMXV CMAXt

Foreign exchange Realized daily volatility of REER V REERt
market Cumulative change over six months of REER CUMULt

Banking sector: Realized volatility of the idiosyncratic
V BKSSwed,t

Swedbank Swedbank stock price returns

CMAX of Swedbank stock prices CBKSSwed,t

Banking sector: Realized volatility of the idiosyncratic
V BKSSEB,t

SEB bank SEB bank stock price returns

CMAX of SEB bank stock prices CBKSSEB,t

Banking sector: Realized volatility of the idiosyncratic
V BKSDnB,t

DnB bank DnB stock price returns

CMAX of DnB bank stock prices CBKSDnB,t
Notes: all data is in real terms.

Table 2.2: Lithuanian's major trading partners, market share in %

EZ EE LV CN CZ DK JP NO PL RU SE TR US GB Tot

LT 41.6 2.9 6.8 4.3 2.1 2.9 0.7 1.6 9.5 7.6 4.1 0.9 3.2 3.1 91.4

LTadj 45.5 3.2 7.5 4.7 2.3 3.1 0.8 1.8 10.4 8.4 4.5 1.0 3.5 3.4 100
Notes: based on trade in 2008 � 2010. EZ � Eurozone (Austria 1.4, Belgium 4.0, Finland 2.7, France 4.8,
Denmark 17.1, Ireland 0.3, Italy 5.3, Luxembourg 0.2, Netherlands 3.8, Portugal 0.3, Spain 1.7); EE �
Estonia, LV � Latvia CN � China, CZ � Czech Republic, DK � Denmark, JP � Japan, NO � Norway, PL-
Poland, RU-Russia, SE- Sweden, TR � Turkey, US- United States, GB- United Kingdom. Data is taken
from BIS.
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Table 2.3: P-values for Granger Causality test (full sample analysis)

Panel (A): Daily FSI (including 4 sub-indexes) and monthly IP growth

H0: daily FSI 9 monthly IP growth H0: monthly IP growth 9 daily FSI

Test Wald test
max-test

Wald test

(bootstrap version) (bootstrap version)

MF-VAR(1) 0.001 0.004 0.233

MF-VAR(2) 0.026 0.008 0.127

MF-VAR(3) 0.071 0.013 0.394

Panel (B): Daily FSI (3 sub-indexes) and monthly IP growth

H0: daily FSI 9 monthly IP growth H0: monthly IP growth 9 daily FSI

Test Wald test
max-test

Wald test

(bootstrap version) (bootstrap version)

MF-VAR(1) 0.001 0.006 0.236

MF-VAR(2) 0.009 0.014 0.314

MF-VAR(3) 0.080 0.019 0.472

Panel (C): Monthly FSI (4 sub-indexes) and IP growth

H0: monthly FSI 9monthly IP H0: monthly IP 9 monthly FSI

Wald test Wald test Wald test Wald test

(bootstrap version) (asymptotic) (bootstrap version) (asymptotic)

CF-VAR(1) 0.001 0.000 0.876 0.850

Panel (D): Monthly ECB Country-Level FSI (3 sub-indexes) and IP growth

H0: monthly FSI 9monthly IP H0: monthly IP 9 monthly FSI

Wald test Wald test Wald test Wald test

(bootstrap version) (asymptotic) (bootstrap version) (asymptotic)

CF-VAR(2) 0.209 0.181 0.174 0.140
Notes: In panel (A) and (B) I investigate the causality between daily and monthly series. For this, I �t
a MF-VAR speci�cation with 1, 2, 3 lags and I use a max-test by Ghysels et al. (2018) and bootstrap
version of Wald test by Götz et al. (2016). In panel (C) and (D) I test for Granger causality between
two monthly series. For this purpose, I �t a common-frequency VAR model, where the optimal lag length
is chosen by using a Bayesian information criteria and I use an asymptotic and a bootstrap version of a
Wald test.
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Table 2.4: Regression results (full sample analysis)

Panel (A): Panel (B):

monthly FSI (4 markets) monthly CLIFS (by Klaus et al., 2017)
const 0.043 (0.008)*** 0.018 (0.008)*
IPt−1 0.520 (0.059)*** 0.593 (0.079)***
FSIt−1 -0.236 (0.049)*** -0.113 (0.086)
IPt−2 0.115 (0.075)
FSIt−2 0.039 (0.085)

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05
Notes: panel (A) present the point estimates for the coe�cients in IPt = constt+a×IPt−1+b×FSIt−1+ut
and panel (B) for the coe�cients in IPt = constt +

∑2
k=1 ak × IPt−k +

∑2
k=1 bk × CLIFSt−k + ut.

Table 2.5: Q test (full sample analysis)

Lag order (p, pm): k = 1 k = 5 k = 18

FSI with 4 sub-sectors
MF-VAR (1) 0.624 0.887 0.035
MF-VAR (2) 0.987 0.981 0.119
MF-VAR (3) 0.796 0.68 0.023

Notes: I �nd that a model with p =2 and pm =36 is better speci�ed in terms of absence of residual
correlation than other models taken under the consideration. In fact, when the model is �tted with p =2
and pm =36 I cannot reject the null hypothesis of no serial correlation in the residuals at 5% signi�cance
level, since the p-values of the test are {0.987, 0.981, 0.119}, respectively, for each lag {1, 5, 18}.



Chapter 3

Mixed Frequency GVAR analysis of

macro-uncertainty and �nancial stress

spillovers in the Eurozone

3.1 Introduction

The empirical literature studying uncertainty of macroeconomic activity and �nancial

stress has been growing since the disruption of the Global Financial Crisis (GFC). The

focus of this chapter is on the Eurozone and I aim to assess, �rst, how close the in-

dices of macroeconomic uncertainty and �nancial markets uncertainty are to each other.

Recently, Jurado et al. (2015) show that, in the US, the stock market uncertainty and mac-

roeconomic uncertainty are di�erent since the index of macroeconomic uncertainty they

construct identi�es far fewer episodes of turmoil than those captured by stock market

volatility. Caldara et al. (2016) discriminate between �nancial and economic uncertainty

shocks in the US by means of a statistical approach to Structural VAR identi�cation fol-

lowing the penalty function described by Uhlig (2003). The authors conclude that while

the economic uncertainty channel plays a negligible role in the transmission of �nancial

shocks, the �nancial channel plays an important role in the transmission of economic un-

certainty shocks. I contribute to the literature by using the methodology developed by

Greenwood-Nimmo et al. (2015) which extends the Diebold and Yilmaz (2012, 2014)

VAR based approach to estimate the Forecast Error Variance Decomposition, FEVD, to

a Global Vector Autoregressive, GVAR model. As suggested by Diebold and Yilmaz, the

FEVD can be used do derive pairwise and aggregated indices of connectedness.

80
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In this study, the GVAR is �tted to two endogenous variables: a monthly Country-

Level Index of Financial Stress (CLIFS) provided by ECB (see Klaus et al., 2017) and

a quarterly index of uncertainty about GDP growth computed by Rossi and Sekhposyan

(2017). The GVAR can be estimated using OLS �tted to a (Eurozone) country speci�c

VAR. In order to rely on a relatively large sample of time series observations for each

endogenous variable, I concentrate on the Eurozone countries for which data is available

over an extended sample. The number of Eurozone countries is ten. Five of them are core

Eurozone countries (Austria, Belgium, France, Germany, Netherlands) and the remaining

ones are peripheral countries, PIIGS, (Greece, Ireland, Italy, Portugal and Spain). The

analysis is carried considering either a sub-sample period ending in 2009 (which includes, as

a period of turmoil, only the Global Financial Crisis, GFC) or the full sample period (1997-

2015), which includes also the Eurozone sovereign debt crisis. The degree of connection

between the macro-uncertainty block and the �nancial stress block within the Eurozone

is obtained by aggregating the pairwise FEVD.

Moreover while a large number of studies analyse the role of uncertainty spillovers

(second moment) on the the real economy (�rst moment), I focus on spillovers of second

moments. In a seminal work, Bloom (2009) analyse the relationship between real activity

and uncertainty, proxied by stock market volatility. Using a VAR model the author �nd

that uncertainty has a large real impact, generating a substantial decrease in output and

employment over the following 6 months. Jurado, Ludvigson and Ng (2015) �nd that

macro uncertainty shocks account for up to 29 percent of the forecast error variance

in industrial production, depending on the VAR forecast horizon, while stock market

volatility explains at most 7 percent. Baker, Bloom and Davis (2016) develop a new

index of economic policy uncertainty (EPU) and show that innovations in economic policy

uncertainty signal declines in investment, output and employment in the United States

and in 12 major economies.

The second contribution is to the empirical literature studying transmission of �nancial

stress and/or economic uncertainty across countries. The �nancial stress spillovers have

been investigated by Balakrishnan et al. (2011), Dovern and Van Roye (2014), Apostolakis

and Papadopoulos (2014, 2015), Apostolakis (2016). Rossi and Sekhposyan (2017) explore

transmission of economic uncertainty shocks across countries. My focus is on the linkages

between �nancial stress and economic uncertainty across Eurozone countries. In particular,

I am mainly interested in assessing the spillovers (measured through GVAR based FEVD)

from the core to periphery and vice versa. The analysis of connectedness between core

and periphery is disaggregated, �rst, by distinguishing between the macro-uncertainty and
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�nancial stress blocks, and, then, by investigating the role played by each speci�c country.

Third, my contribution is also methodological: I extend a GVAR model by using

the recent econometric developments by Ghysels (2016) which allows the use of mixed-

frequency (MF) data directly in the VARmodel rather than aggregating the high-frequency

variable to low-frequency before the estimation (which is a standard approach).1 As

argued by Ghysels (2016), the inclusion of the �nancial data sampled at a high-frequency

is relevant because it results in a more informative sample than in a standard common-

frequency (CF) approach.

The main �ndings can be summarized as follows. First, the estimates show that macro-

uncertainty and �nancial stress blocks are disconnected, given that spillovers from each

block account only for a quarter of the Forecast Error Variance. Moreover, I �nd evid-

ence of a decrease in the degree of connectedness between the core and periphery block

since the outbreak of Eurozone sovereign debt crisis. In addition, I �nd evidence of a

shift in directional connectedness, since core (peripheral) countries are the triggers of the

connectedness between macro-uncertainty and �nancial stress before (since) the Eurozone

sovereign debt crisis. I also �nd that connectedness between core and periphery is occur-

ring mainly through �nancial stress, although it decreases during Eurozone sovereign debt

market crisis, given a strong decline in the �nancial stress spillovers from core to periphery.

Moreover, I �nd evidence that the main contributors of the (decreased) connectedness after

the Eurozone sovereign debt crisis are Greece, Ireland and Portugal.

Finally, by comparing the results obtained by MF and CF GVAR models, I show that

spillovers in the CF model are underestimated. These �ndings would have implications

for the correct implementation of policies aiming at dampening �nancial instability. For

instance, core-periphery connectedness occurring through �nancial stress is 5 percentage

points lower than the connectedness index obtained by MF approach. Moreover, contrary

to the MF results, the common-frequency model suggests that periphery countries are

net donors in terms of �nancial distress before Eurozone debt crisis and they become net

recipients once I consider also the Euro sovereign debt crisis.

The structure of this chapter is as follows: section 3.2 reviews the related literature

and speci�es the contribution; section 3.3 explains the methodology; section 3.4 describes

the data; the main results are presented in Section 3.5 and 3.6. Section 3.7 concludes.

1To my knowledge only the study of Cotter et al. (2017) uses the DY approach relying on the estimation
of a VAR �tted to mixed-frequency data to analyse spillovers between the real and �nancial sides of the
US economy. The authors show that additional high-frequency information produces estimated spillovers
that are typically higher than those from an analogous common-frequency approach.
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3.2 Literature Review

Conditional volatility models have been used to study macroeconomic uncertainty. Foun-

tas et al. (2006) uses the multivariate GARCH model �tted to monthly US industrial

production and in�ation to capture macroeconomic uncertainty. Henzel and Rengel (2017)

use an Exponentially Weighted Moving Average model to model volatility of two common

latent variables (extracted through the estimation of a Dynamic Factor Model) underlying

US macroeconomic uncertainty. The �rst factor captures business cycle uncertainty, while

the second factor represents oil and commodity price uncertainty. Recently, stochastic

volatility has been used to model macro-economic uncertainty. More speci�cally, Jurado

et al. (2015) use stochastic volatility of a latent variable extracted from a Dynamic Factor

Model �tted to a large macro-time series dataset for the US. Alessandri and Mumtaz (2018)

use stochastic volatility of structural innovations underlying Structural VAR. While the

previous studies focus only on the US, another strand of the literature broaden the fo-

cus and derive an index of economic policy uncertainty, EPU, computed by combining

�uncertainty-related� keywords in news publications for a number of countries (see Baker

et al., 2016). More recently, Rossi and Sekhposyan (2017) rely on the quantile of the un-

conditional distribution of the forecast errors to derive an index of uncertainty about real

economic activity for a number of Eurozone countries. Few authors have constructed a

global index of uncertainty (pooling information on di�erent countries). More speci�cally,

Baker et al. (2016) have constructed an EPU index for Europe (involving only seven coun-

tries); Berger et al. (2017) have used stochastic volatility to model time varying volatility

of a latent factor extracted from a DFM �tted a set of output growth and in�ation-time

series for OECD countries.

The empirical literature on the �nancial stress index monitoring the evolution of dis-

tress a�ecting di�erent sectors of �nancial markets (mainly stock, bonds, banking and

foreign exchange) is growing. While the studies of Hakkio and Keeton (2009) for the US

use principal component analysis and by Hollo et al. (2012) for the Eurozone use portfolio

weights to aggregate normalized raw stress indicators of di�erent �nancial markets within

a country, Chau and Deesomsak (2014) use Diebold-Yilmaz (2012, 2014) connectedness

analysis to study equity, debt, banking, and foreign exchange markets in the US.

The �rst study to examine spillovers of �nancial stress across countries is the one by

Balakrishnan et al. (2011), exploring the transmission of stress from advanced to emerging

economies. Dovern and Van Roye (2014) use Global VAR model to analyse the spillovers

from a shock to US �nancial stress to other countries. To proxy a �nancial distress
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the authors construct country-speci�c �nancial stress index, which is based on variables

representing the �nancial distress in banking sector, stock markets, bond markets, money

markets and foreign exchange markets. Apostolakis and Papadopoulos (2014) examine the

interdependences of �nancial stress indices across G7 countries for the 1981�2009 period

using dynamic conditional correlations. Apostolakis and Papadopoulos (2015) use Diebold

and Yilmaz methodology (2012, 2014) to analyse interdependence and spillovers of three

�nancial stress sub-indices (banking, securities and foreign exchange) both within and

across major advanced countries. The Diebold and Yilmaz (2012, 2014) methodology

is also used by Apostolakis (2016) to examine �nancial stress spillovers in �ve Asian

countries, namely, China, South Korea, Malaysia, Thailand, and the Philippines, during

turmoil periods. The study of Rossi e Sekhposyan (2017) has examined the spillovers

across the macroeconomic uncertainty indices of 17 Eurozone countries.

The links between uncertainty and �nancial stress has been neglected in the previous

literature. To the best of my knowledge, the paper by Liow et al. (2018) is the only

exception.2 The authors use Diebold and Yilmaz (2012, 2014) methodology to examine

the spillovers of economic policy uncertainty, measured by EPU index, and those related

to �nancial stress in stock, real estate, bond and currency markets. They �nd that in-

ternational spillovers across seven major world economies play an important role in the

transmission of shocks to policy uncertainty and to �nancial market stress.

3.3 Empirical Methodology

I compute the macro-�nancial spillovers using the generalized connectedness measures

(GCM) developed by Greenwood-Nimmo et al. (2015) who extend the Diebold and Yil-

maz (2014) Generalised FEVDs (GFEVDs) analysis to a GVAR model. The GVAR model

in this chapter is based on 10 country speci�c VAR, each including the same set of the

variables sampled at di�erent frequencies: (i) quarterly real economy indicators (i.e. GDP

growth uncertainty index by Rossi and Sekhposyan, 2017) and (ii) monthly �nancial indic-

ators (i.e. country-speci�c indicators of �nancial stress, by Klaus et al., 2017). More spe-

ci�cally, I extend the country speci�c MF VARmethodology put forward by Ghysels (2016)

to a GVAR and I also compare the empirical �ndings with the standard common-frequency

GVAR model (based on aggregating the high-frequency series into low frequency).

2See also the study of Sun et al. (2017) which provides a short analysis on the dynamics between EPU
and �nancial stress, by using a multi-scale correlation framework.
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3.3.1 GVAR model using mixed-frequency data

The GVAR model is constructed by combining 10 country-speci�c models, indexed by

i = 1, 2 . . . N . Each county-speci�c model (i) includes the following variables sampled

at di�erent frequencies: a quarterly GDP growth uncertainty index GDPi (i.e. a low-

frequency variable) andmonthly indicator of �nancial stress CLIFSi (i.e. a high-frequency

variable). A high-frequency series is observed m = 3 times during a low-frequency period

t. Let CLIFSi(t, 1) be the �rst high frequency observation in low frequency period t (i.e.

the �rst monthly observation of the quarter t), a CLIFSi(t, 2) � the second observation,

and CLIFSi(t, 3) � the last one. In MF-VAR (by Ghysels, 2016) all observations of period

t are stacked into a column vector by treating the m observations of the high frequency

series as if they were the distinct endogenous variables.

A mixed-frequency vector of endogenous variables for country i is composed of ki = 4

variables and is given as:

Zi,t = [CLIFSi(t, 1)′, CLIFSi(t, 2)′, CLIFSi(t, 3)′, GDPi(t)
′] (3.1)

A corresponding standard common-frequency (CF) data vector for country i, which

contains both the high-frequency and the low-frequency variables observed at the low-

frequency (i.e. quarter), has the following composition:

ZL
i,t = [CLIFSi(t)

′, GDPi(t)
′] (3.2)

where themonthly variable is aggregated to the quarterly frequency as:1
3

∑3
j=1 CLIFSi(t, j).

Consider now each country i represented by a mixed-frequency vector autoregressive

model augmented by a set of foreign variables Z∗i,t. Speci�cally, a MF-VARX(1,1) model

is set up for each county i as:

Zi,t = ci + ΓiZi,t−1 + Λi0Z
∗
i,t + Λi1Z

∗
i,t−1 + ui,t (3.3)

for i = 1, ..., N countries and t = 1, ..., T low-frequency time periods.3 Furthermore, Zi,t−1

is a ki × 1 vector of lagged country-speci�c (domestic) variables (in eq. (3.1)), Z∗it is a

ki × 1 vector of country-speci�c foreign variables, ci is a constant and ui,t is a ki × 1

vector of serially uncorrelated innovations, with Σui being a sample variance-covariance

matrix of the reduced-form residuals; Γi is a ki×ki coe�cient matrix associated to lagged

3Due to the small number of quarterly observations i.e. 72 observations available, I set lag orders to
one. Then, I estimate a VARX(1,1) model by using OLS estimator for each country separately.
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domestic variables, Λi0 and Λi1 are ki × ki coe�cient matrices related to, respectively,

contemporaneous and lagged foreign variables.4

The vector of foreign variables Z∗i,t in a country speci�c MF-VARX is constructed as a

weighted averages of other countries' variables:

Z∗i,t = WiZt (3.4)

where Zt = [Z
′
1,t, Z

′
2,t, ..., Z

′
N,t, ]

′
is a k × 1 vector including all endogenous variables of the

system (k =
∑N

i=1ki = 40 in this study in a MF case) and Wi is a ki × k link matrix:

Wi =
(
wi1Iki · · · wiiIki · · · wiNIki

)
(3.5)

with the 4Ö4 matrix wii = 0 and with the 4Ö4 matrix wig given by �xed trade weights

obtained from BIS over the period 2011-2013 (see Table 3.1).5 For instance, the link

matrix for Austria (AT) is as follows:

WAT =


0 0 0 0 wAT,BE 0 0 0 · · · 0

0 0 0 0 0 wAT,BE 0 0 · · · 0

0 0 0 0 0 0 wAT,BE 0 · · · 0

0 0 0 0 0 0 0 wAT,BE · · · wAT,ES

 (3.6)

where wAT,g is taken from Table 3.1. This implies that the foreign variables in Z∗i,t eq.

(3.4) for Austria are given by:

Z∗AT,t = WATZt =


CLIFS∗AT (t, 1)

CLIFS∗AT (t, 2)

CLIFS∗AT (t, 3)

GDP ∗AT (t)

 (3.7)

In the �rst stage of the analysis, each country speci�c MF-VARX in (3.3) is estimated

by using OLS like a standard country speci�c CF-VARX. In the second stage, the N = 10

models are combined into the global model. Suppose Si is a ki × k selection matrix that

picks up country-speci�c variables from the global vector of mixed-frequency endogenous

variables (Zt) such that:

4Similarly, I can implement a corresponding standard VARX model by considering the low-frequency
vector (3.2) in the eq. (3.3), instead of mixed-frequency vector (3.1).

5The use of trade weights is in line with the Global VAR analysis of Cesa-Bianchi (2013) and of
Greenwood-Nimmo et al. (2015).
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Zi,t = SiZt (3.8)

Then, by substituting (3.4) and (3.8) in (3.3), I rewrite a country-speci�c MF-VARX(1)

in terms of Zt:

(SiZt) = ci + Γi(SiZt−1) + Λi0(WiZt) + Λi1(WiZt−1) + ui,t (3.9)

Re-arrange:

(Si − Λi0Wi)Zt = ci + (ΓiSi + Λi1Wi)Zt−1 + ui,t (3.10)

Re-name:

GiZt = ci +HiZt−1 + ui,t (3.11)

Finally, the GVAR model is built by simply stacking up all the i = 1, 2, . . . , N country-

speci�c models in a global model:

GZt = c+HZt−1 + ut (3.12)

where G = (G
′
1, G

′
2, . . . , G

′
N)′, H = (H

′
1, H

′
2, . . . , H

′
N)′, c = (c

′
1, c

′
2, . . . , c

′
N)′ and ut =

(u
′
1,t, u

′
2,t, ..., u

′
N,t)

′. If the G matrix in (3.12) is non-singular, I can invert it and obtain a

GVAR model in its reduced form:

Zt = µ+ FZt−1 + νt (3.13)

where F = G−1H, vt = G−1ut and µ = G−1c.

3.3.2 Generalized connectedness measures (GCMs)

3.3.2.1 Generalized FEVD

I use the connectedness measures proposed by Diebold Yilmaz (2014) and based on the

order-invariant generalised FEVD and extended to GVAR by Greenwood-Nimmo (2015):

GFEVD = θ̃l←j(H) =
σ−1
u,jj

∑H−1
h=0 (e

′

lΦhG
−1Σuej)

2∑H−1
h=0 e

′
lΦhΣvΦhel

(3.14)



3.3. EMPIRICAL METHODOLOGY 88

for l, j = 1, . . . , k, where H = 4, 8 is a forecast horizon, σ−1
u,jj are the standard deviations

of the residual process of the j-th equation in the system (i.e. squared root of diagonal

elements of Σu matrix in (3.12)), Σv = G−1Σu(G
−1)

′
, el (ej) is a k × 1 selection vector

whose l-th (j-th) element is equal to unity and zeros elsewhere, the matrix G is obtained

from eq. (3.12). The Φh is a coe�cient matrix from the in�nite order moving average

(MA) representation of the GVAR model in (3.13):

Zt =
∞∑
h=0

Φhνt−h (3.15)

with Φ0 = Ik and Φh = FΦh−1 and the matrix F is obtained from estimation of the

reduced form model given in (3.13). The non-diagonally of Σv implies that the sum of

elements in each row of the variance decomposition does not need to sum to unity across

j (i.e.
∑k

j=1 θlj(H) 6= 1).

The mix of high frequency and low frequency variables could help to justify the use

a Global Structural VAR identi�ed through a recursive ordering (where there is low fre-

quency series does not and a contemporaneous impact on the high frequency variable).

However, given that the high-frequency series in the study are those related to uncertainty

in �nancial markets which are typically regarded as forward looking, I prefer to depart

from the structural form modelling approach and use the generalized impulse response

approach which is invariant to variable ordering.

Therefore, in order to restore a percentage interpretation to the GFEVD, I follow

Diebold and Yilmaz (2012) to normalize each entry of the variance decomposition matrix

by the row of sum as:

θl←j(H) =
θ̃l←j(H)∑k
j=1 θ̃l←j(H)

(3.16)

such that
∑k

j=1 θlj(H) = 1 and
∑k

l,j=1 θlj(H) = k.

3.3.2.2 The MF connectedness matrix

The resulting connectedness matrix, for MF-GVAR model with mixed-frequency vector in

(3.1), is given in a general form as:
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C(H)
MF

(k × k)
=



θ1←1(H) θ1←2(H) θ1←m(H) θ1←k1(H) · · · θ1←k(H)

θ2←1(H) θ2←2(H) θ2←m(H) θ2←k1(H)
. . . θ2←k(H)

θm←1(H) θm←2(H) θm←m(H) θm←k1(H) · · · θm←k(H)

θk1←1(H) θk1←2(H) θk1←m(H) θk1←k1(H) · · · θk1←k(H)
...

...
...

...
. . .

...

θk←1(H) θk←2(H) θk←m(H) θk←k1(H) · · · θk←k(H)


(3.17)

for H = 4, 8, where m = 3, k1 = 4, k =
∑N

i=1 ki = 40 for i = (1, 2, . . . , 10) countries.6

For instance, the �rst row of the matrix (3.17) characterize the fraction of the H-step-

ahead error variance in forecasting the �nancial distress in Austria in the �rst month of

the quarter (variable 1) that is attributable to shocks in: (i) itself, measured by element

θ1←1(H); (ii) �nancial distress in Austria in the second month of the quarter (variable 2),

measured by θ1←2(H); (iii) �nancial distress in Austria in the last month of the quarter

(variable 3), measured by θ1←m(H); (iv) quarterly GDP growth uncertainty in Austria

(variable 4), measured by element θ1←k1(H); (v) quarterly GDP growth uncertainty in

the last of the 10 Eurozone countries considered, that is Spain (variable 40), denoted by

θ1←k(H).

The corresponding connectedness matrix for CF-GVAR model, considering common-

frequency data vector (in eq. 3.2), has the following speci�cation:

C(H)
CF

(K ×K)
=


φ1←1(H) φ1←K1(H) · · · φ1←K(H)

φK1←1(H) φK1←K1(H) · · · φK1←K(H)
...

...
. . .

...

φK←1(H) φK←K1(H) · · · φK←K(H)

 (3.18)

for H = 4, 8, where K1 = 2, K =
∑N

i=1Ki = 20 for i = (1, 2, . . . , 10) countries. For

instance, the φ1�1(H) measures the fraction of the H-step-ahead error variance in fore-

casting the quarterly �nancial distress in Austria that is attributable to shocks in itself;

the element φ1←K1(H) characterise the e�ects of the shocks to quarterly GDP growth

uncertainty in Austria on the quarterly �nancial distress, and the element φ1←K(H) de-

notes the contribution of the quarterly GDP growth uncertainty in Spain on the quarterly

6As in a common-frequency case, the generic element θl�j(H) represents the proportion of the H-step
ahead FEVD of variable l accounted by innovations in variable j. The contribution of the shock to the
l-th variable itself is denoted by θl�l(H), while the other elements of the l-th row, l 6= j, capture the
spillovers from the other variables in the system to variable l.
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�nancial distress in Austria.

First stage aggregation

The MF connectedness matrix in (3.17) incorporates a large volume of information about

the spillovers between the variables in the system, resulting in 402 elements compared to

202 elements in the CF connectedness matrix in (3.18). In the MF form, the dynamics

between the GDP growth uncertainty and �nancial distress in each country i is character-

ised not by a single element of the GFEVD, like in a CF case, but by multiple elements.

For instance, the sub-array [θ1←k1(H), θ2←k1(H), θm←k1(H)]′ in the MF-GFEVD speci�c-

ation given by eq. (3.17) corresponds to a single element φ1�2(H) in CF-GFEVD in

(3.18). In order to facilitate the interpretation and comparability between MF and CF

connectedness matrixes, I can transform the C(H)
MF by grouping the elements related with

m high-frequency observations in each country i into sub-arrays (blocks).

The MF-GFEVD C(H)
MF in (3.17) expressed in an aggregated form is given by:7

C(H)
AGG(MF )

(K ×K)
=


ΘH1←H1(H) ΘH1←L1(H) · · · ΘH1←LN (H)

ΘL1←H1(H) ΘL1←L1(H) · · · ΘL1←LN (H)
...

...
. . .

...

ΘLN←H1(H) ΘLN←L1(H) · · · ΘLN←LN (H)

 for H = 4, 8 (3.19)

where K = 20, the index Hi represents a high-frequency variable i.e. �nancial stress index

and the Li denotes a low-frequency variable i.e. GDP growth uncertainty, for country

i = {1, 2, . . . , 10}.8 For instance, the (2× 2) upper-left block in eq. (3.19) corresponds to

a (4× 4) upper-left block of MF-GFEVD matrix in eq. (3.17), as follows:

ΘH1←H1(H)

(1× 1)
≡

 θ1←1(H) θ1←2(H) θ1←m(H)

θ2←1(H) θ2←2(H) θ2←m(H)

θm←1(H) θm←2(H) θm←m(H)


(m×m)

(3.20)

ΘH1←L1(H)

(1× 1)
≡

 θ1←k1(H)

θ2←k1(H)

θm←k1(H)


(m×1)

7Also the individual elements of MF global connectedness matrix in (3.17) could be used directly to
study the GCMs.

8Note that (H) stands for a forecast horizon and Hi for a high frequency variable for country i.
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ΘL1←H1(H)

(1× 1)
≡
[
θk1←1(H) θk1←2(H) θk1←m(H)

]
(1×m)

ΘL1←L1(H)

(1× 1)
≡

θk1←k1(H)

(1× 1)

where for country i = 1 the ΘH1←L1(H) (ΘL1←H1(H)) gathers together the elements

measuring the contribution of the low-(high-) frequency variable to the H-step ahead

FEVD of high-(low-) frequency variable. Similarly, the elements ΘH1�H1 (ΘL1�L1) rep-

resents the contribution of the high-(low-) frequency variable to itself.

More speci�cally, the elements in C(H)
AGG(MF ) eq. (3.19) are computed by aggregating

the corresponding elements in C(H)
MF eq. (3.17), as follows. The contribution from high-

frequency variable (Hg) to low-frequency variable (Li) for countries i, g = (1, 2, ..., 10) is

given by:

ΘLi�Hg(H) =
m∑
j=1

θl�j(H) (3.21)

where l is a low-frequency variable related to county i (i.e. GDPi(t)) and j = 1, 2, 3

is a high-frequency variable related to country g (i.e. CLIFSg(t, j)).
9 Similarly, the

contribution from a low-frequency variable (Li) to a high-frequency variable (Hg) is given

by:

ΘHg�Li(H) =
1

m

m∑
j=1

θj←l(H) (3.22)

Moreover, the contribution from high-frequency variable Hg in country g to a high-

frequency variable Hi in country i is given by:

ΘHi←Hg(H) =
1

m

m∑
l,j=1

θl�j(H) (3.23)

Finally, the elements ΘLi�Lg(H) simply corresponds to θl�j(H).

After aggregation, the C(H)
AGG(MF ) in eq. (3.19) and C(H)

CF in eq. (3.18) have the same

dimension (K ×K) and can be interpreted in the same way.

9Note that i may be equal to g.
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Second stage aggregation

To estimate the GCMs across the countries, regions and groups-speci�c variables, I follow

the block aggregation approach proposed by Greenwood-Nimmo et al. (2015). Firstly, the

connectedness matrix in (3.19) is re-normalized as:

C(H)
R−AGG(MF ) = K−1C(H)

AGG(MF ) (3.24)

Therefore, the sum of all elements in matrix C(H)
R−AGG(MF ) is equal to one. This modi�c-

ation ensures that I may achieve a clear percentage interpretation of any desired block

aggregation scheme (Greenwood-Nimmo et al., 2015).

Since the GFEVDs are invariant to the ordering of the variables in the system, I can

re-order variables in Zt into b groups. Then, the C(H)
R−AGG(MF ) can be expressed in block

form as follows:

C(H)
R−AGG(MF )

(K ×K)
=


B

(H)
1←1 B

(H)
1←2 · · · B

(H)
1←b

B
(H)
2←1 B

(H)
2←2 · · · B

(H)
2←b

...
...

. . .
...

B
(H)
b←1 B

(H)
b←2 · · · B

(H)
b←b

 (3.25)

The blocks lying on the main diagonal of C(H)
R−AGG(MF ) (i.e. Bα�α(H)) contain all the

within-group FEVD contributions. The total within-group FEVD contribution for the

α-th group is:

W(H)
α←α = e

′

KαB
(H)
α←αeKα (3.26)

where eKα is an Kα×1 vector of ones. The cross-group transmission (directional spillover)

is indicated by B
(H)
α←β(H) for α 6= β. In particular, the spillover from group β to group α

is estimated as:

F (H)
α←β = e

′

KαB
(H)
α←βeKβ (3.27)

and the spillover to group β from group α as:

T (H)
β←α = e

′

Kβ
B

(H)
β←αeKα (3.28)

In other words, W(H)
α←α, F (H)

α←β and T (H)
β←α are equal to the sum of all elements in the

related block B
(H)
α←β. By following these de�nitions, it is straight forward to obtain the
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group connectedness matrix form:

B(H)

(b× b)
=


W(H)

1←1 F (H)
1←2 · · · F (H)

1←b

F (H)
2←1 W(H)

2←2 · · · F
(H)
2←b

...
...

. . .
...

F (H)
b←1 F (H)

b←2 · · · W(H)
b←b

 ≡

W(H)

1←1 T (H)
1←2 · · · T (H)

1←b

T (H)
2←1 W(H)

2←2 · · · T
(H)

2←b
...

...
. . .

...

T (H)
b←1 T (H)

b←2 · · · W(H)
b←b

 (3.29)

Note that the dimension of the group connectedness matrix is b2 < K2. Then, using

(3.29) I can de�ne the total from, to and net connectedness of the α-th group as follows:

F (H)
α←∗ =

∑b
β=1,β 6=αF

(H)
α←β, T

(H)
∗←α =

∑b
β=1,β 6=α T

(H)
β←α and N (H)

∗←α = T (H)
∗←α −F (H)

α←∗ (3.30)

where F (H)
α←∗ measures the total contribution from all other groups to group α, T (H)

∗←α is the

total contribution to all other groups from group α and N (H)
∗←α measures the net connec-

tedness of group α. Finally, the total connectedness (spillover) index, S(H), and the total

domestic connectedness (within-group) index, D(H), in terms of the b groups is de�ned as

follows:

S(H) =
∑b

α=1F
(H)
α←∗ ≡

∑b
α=1 T

(H)
∗←α and D(H) =

∑b
α=1W

(H)
α←α (3.31)

3.4 Data

The proxy of �nancial conditions in each EZ country is the monthly Country-Level Index

of Financial Stress (CLIFS) provided by ECB (see Duprey, Klaus and Peltonen, 2017).10

The CLIFS is a composite index derived from data representing three �nancial market

segments: the stock price index (STX ) for the equity market, the 10-year government

yields (R10 ) for the bond market, and the real e�ective exchange rate (REER) for the

foreign exchange market. More speci�cally, the stress in each �nancial market segment is

captured by two indices: realized volatility and maximum loss over two year period, and

then they are aggregated by using a portfolio aggregation approach. The composite index

captures the �nancial stress, which is re�ected by (i) the uncertainty in market prices, (ii)

sharp corrections in market prices, and (iii) the degree of commonality across the three

10The data is available at Statistical data warehouse, ECB: https://sdw.ecb.europa.eu/.
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�nancial market segments.

Since I also focus on macro-uncertainty, I rely on a novel real economic activity uncer-

tainty dataset computed by Rossi and Sekhposyan (2017). The authors provide quarterly

series of uncertainty for GDP growth.11 The GDP growth uncertainty index by Rossi and

Sekhposyan (2017) builds on the point forecasts from the Survey of Professional Fore-

casters administered by the European Central Bank is and it is based on comparing the

realized forecast error with the unconditional distribution of forecast errors for that vari-

able (proxied by the full sample of past forecast errors). If the realized forecast error is in

the tail of the distribution, then the realization is very di�cult to predict, thus, the mac-

roeconomic environment is very uncertain. For each country, Rossi and Sekhposyan (2017)

construct the overall as well as the positive (upside) and negative (downside) uncertainty

indices.12

All the series are plotted in Appendix 3.A.1. Figure 3.1 presents the monthly CLIFS

for the period from April 1997 to March 2015. Panel (a) shows the CLIFS for the core EZ

countries (Austria, Belgium, France, Germany and Netherlands) and panel (b) for PIIGS

countries (Greece, Ireland, Italy, Portugal and Spain). By the construction the CLIFS

values varies between 0 and 1, where the large values indicate the high level of stress

associated with the GFC and the Eurozone debt crisis. Furthermore, Figure 3.2 presents

country-speci�c quarterly GDP growth uncertainty series from 1997:Q2 to 2015:Q1. Panel

(a) plots the series for core EZ countries and panel (b) � for PIIGS countries. I focus on

the overall index of output growth uncertainty, which, by the construction, varies between

0.5 and 1. While, before 2007, the degree of co-movement among core countries is higher

than among peripheral countries, it increases for both groups of countries during the GFC

and at the beginning of EZ debt crisis (between 2007 and 2010).

3.5 LR test of MF vs CF Global VAR

I assess whether aggregation of high-frequency information generates a loss of information

through a LR statistics computed for each country-speci�c VARX model, that is a VAR

augmented by the current and lagged values of the exogenous variable (capturing the

impact of the foreign variables). More speci�cally, I follow Bacchiocchi et al. (2018), and

11The data is available at: http://www.tateviksekhposyan.org/. The authors rely on the methodology
developed by Rossi and Sekhposyan (2015). The Baker et al. (2016) index of economic policy uncertainty
would be another suitable candidate for the analysis, but it is available only few Eurozone countries:
France, Germany, Italy, Spain and the Netherlands.

12Positive (negative) uncertainty indicates that realized output growth is higher (lower) than expected.
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I compare the log-likelihood of the unrestricted model (lu, i.e. MF-VARX), with the one

for the restricted model (lr, i.e. CF-VARX). Table 3.2 shows the LR test statistics. I can

observe that the null of equivalence between the traditional CF-VARX and the MF-VARX

is strongly rejected. The results suggest that each of the estimated MF-VARX models

provide more accurate results than the traditional CF-VAR. Therefore, aggregating the

mixed-frequency data to a low-frequency generates a loss of information. However, for the

purpose of comparing results, in Section 3.6 I will provide the results both for the MF

Global VAR and for CF Global VAR.

3.6 Spillovers Analysis

I am interested in exploring whether there is a change in macro-�nancial uncertainty

spillovers since the Eurozone sovereign debt crisis period onwards. For this purpose, I

focus on a sub-sample period spanning from 1997:Q2 to 2009:Q4 and also on the full

sample period spanning from 1997:Q2 to 2015:Q1.

In the empirical analysis I consider various block aggregation schemes. I start from

the aggregate results across the ten countries and follow with the country-speci�c results.

All the results in Tables 3.3 - 3.6 (which are percentages of the total system-wide FEVD),

are presented for the full and the sub-sample periods, distinguish between two forecast

horizons: H = 4, 8 quarters. The mixed-frequency GVAR model results are presented in

panels (A) and the corresponding results for a common-frequency GVAR model are given

in panels (B) of Tables 3.3 - 3.6.

3.6.1 Macro-�nancial connectedness

First, I estimate the aggregate macro-�nancial uncertainty spillovers in the Eurozone. For

this purpose, I examine the interconnectedness between the GDP growth uncertainty and

the �nancial distress in the Eurozone, by considering two blocks: (i) the macro-uncertainty

block, (ii) and the �nancial stress block. The macro-uncertainty block is constructed by

aggregating the 10 countries' FEVD of GDP growth uncertainty, while the �nancial stress

block is constructed by aggregating the 10 countries' FEVD of �nancial distress. The

connectedness measures between the two blocks are presented in Table (3.3). The res-

ults on the main diagonal show the within-group spillovers and the o�-diagonal elements

represent the cross-block (directional) spillovers (see eq. (3.29)).

Inspection of Table 3.3 panel (A) shows that, in line with the empirical �ndings of
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Jurado et al. (2015) for the US, the Eurozone macro-uncertainty and �nancial stress

(capturing uncertainty in �nancial markets) are relatively disconnected. More speci�cally,

if I consider a forecast horizon equal to a year (H=4), I �nd that the sum of cross-block

variance shares (o�-diagonal elements of Table 3.3, panel (A)) account only for a quarter of

the system-wide FEVD. Moreover, the total connectedness does not change when I shift the

focus from the sub-sample to full sample analysis, which includes the period of Eurozone

sovereign debt crisis. A similar pattern is observed if I consider a forecast horizon equal to

two years (H=8). More speci�cally, the total connectedness between macro-uncertainty

and �nancial stress accounts for 28% of the system's FEVD (in sub-sample and full sample

analysis).

As for the directional spillover results, if I consider a forecast horizon equal to a year

(H=4), then I observe that there is a decrease (from 15.99% to 10.74%) in the spillover

from FSI on GDP uncertainty when I shift the focus from the sub-sample to the full

sample analysis (which also includes the Euro sovereign debt crisis). Moreover, I observe

an increase (from 9.97% to 14.52%) in the spillover from GDP uncertainty on FSI when I

move the focus from the sub-sample to the full sample analysis. A similar pattern can be

observed if I consider a forecast horizon equal to two years (H=8), since there is evidence of

a decrease (from 18.49% to 12.85%) in the contribution from FSI on GDP uncertainty and

an increase (from 9.68% to 14.93%) in the spillover from GDP uncertainty on FSI when

I shift the focus from the sub-sample to the full sample analysis. My �ndings contrasts

with the historical variance decomposition results of the study on the US by Caldara et

al. (2016) which shows an important contribution of shocks to �nancial stress (proxied

only by the excess bond premium) on economic uncertainty and not vice-versa.

I also compare the mixed-frequency results with the results obtained by using a common-

frequency approach (see panel (B) of Table 3.3). The total connectedness (sum of the o�-

diagonal elements) between GDP growth uncertainty and FSI obtained by the common-

frequency approach is slightly lower than the connectedness index obtained by MF ap-

proach (i.e. 23% for CF approach vs 25% for MF approach, at H=4). Moreover, my

�ndings are in line with those by Hallam et al. (2017). The authors, by using a MF-VAR,

analyse macro-�nancial spillovers in the US for the sample period running from 1975 to

2015, and they �nd that the index of total connectedness for the MF and CF models is

equal to 24.79% and 16.38% respectively.
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3.6.2 Regional connectedness

In the second step, I analyse spillovers between two blocks: periphery and core. The

�ndings in Table 3.4 panel (A) suggest a decrease in the cross-regional connectedness

(given by a sum of o�-diagonal elements) from 31.42% to 25.41% (at H=4) once I move

from the sub-sample period preceding the Eurozone sovereign debt crisis to the full sample.

Similarly, if I consider a forecast horizon of two years (H=8), I observe a decrease in the

cross-regional connectedness form 33.32% to 28.73% when I move the focus from the sub-

sample to the full sample analysis. This �nding is in line with the empirical studies of

Cipollini et al. (2015), Ehrmann and Fratzscher (2017) and of Caporin et al. (2018)

which �nd evidence of segmentation among Eurozone sovereign bond markets during the

Eurozone sovereign debt market crisis period.

Moreover, in line with empirical �ndings of Antonakakis and Vergos (2013), Fernandez-

Rodriguez et al. (2016), and of De Santis and Zimic (2018) I observe a shift in the origin

of connectedness relationships since the beginning of the Eurozone sovereign debt crisis.13

In particular, while core countries are triggers of cross-regional connectedness in the sub-

sample period, PIIGS are the countries driving connectedness in the full sample period.

More speci�cally, if I consider a forecast horizon equal to a year (H = 4), and if I shift the

focus from the sub-sample to the full sample analysis (which includes Eurozone sovereign

debt crisis), then I observe a decrease in the spillover from core to periphery counties (from

19.92% to 11.35%) and an increase in the spillovers from periphery to core countries (from

11.50% to 13.88%). If the focus is on a horizon equal to two years, then spillovers from

periphery to core countries tends to increase from 12.88% to 17.33% when I move from

the sub-sample to full sample analysis.

Furthermore, in line with empirical �ndings of Fernandez-Rodriguez et al. (2016) and

De Santis and Zimic (2017), I observe a decrease (from 38.5% to 36.12%) in the degree of

connectedness within core countries (the upper-left element) when I shift the focus from

the sub-sample to the full sample analysis. However, in line with Anatonakis and Vergos

(2013) and conversely to Fernandez-Rodriguez et al. (2016) and to De Santis and Zimic

(2018), I �nd an increase (from 30% to 38.5%) in the degree of connectedness within PIIGS

countries when I move from the sub-sample to the full sample analysis.

13The Diebold and Yilmaz (2014) approach has been used to analyse connectedness within Eurozone by
Antonakakis and Vergos (2013), Fernandez-Rodriguez et al. (2016) and by De Santis and Zimic (2017).
While Antonakakis and Vergos (2013) and Fernandez-Rodriguez et al. (2016) focus on EZ sovereign bond
yield spread and volatility, respectively, and they use the general impulse response approach suggested by
Diebold and Yilmaz, De Santis and Zimic (2018) use a Structural VAR �tted to EZ sovereign bond yields
identi�ed through sign restrictions.
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The results obtained by a common-frequency approach (see panel (B) in Table 3.4)

indicate that the spillovers within both country groups (diagonal elements) increase once I

move to the period including the Eurozone sovereign debt crisis. Moreover, the CF model

suggests smaller directional spillovers than those obtained from Global MF VAR.

3.6.2.1 Core-periphery connectedness: the role of �nancial stress and macro-

uncertainty

Further, I examine whether the main drivers of connectedness between core and periphery

are �nancial stress or macro-uncertainty, and whether the role of these drivers has changed

over the years. In particular, I concentrate on four blocks: (i) GDP growth uncertainty in

core EZ countries, (ii) GDP growth uncertainty in PIIGS countries, (iii) �nancial distress

in core EZ countries and (iv) �nancial distress in PIIGS countries. The results for the

full sample and for the sub-sample (i.e. before the Eurozone sovereign debt crisis) are

presented in Table 3.5.

I �nd the core-periphery spillovers are mainly occurring through �nancial stress (see

panel A). More speci�cally, if I focus on Panel A.1, then I can observe that, for a forecast

horizon equal to one year, core-periphery spillovers occurring only through �nancial stress

are equal to 16.1% over the period preceding the Eurozone debt crisis and they decrease

to 9.3% once I consider the full sample.14 The main trigger of the disconnect between core

and periphery is the strong decline in the �nancial stress spillovers from core to periphery

countries, from 11.5% to 4.0%. This �nding con�rms the empirical �ndings of Cipollini et

al.(2015), Ehrmann and Fratzscher (2017) and of Caporin et al (2018) which �nd evidence

of segmentation (during the Eurozone sovereign debt market crisis period) by focussing

only on Eurozone sovereign bond markets.

The core-periphery spillovers occurring only through macro-uncertainty (sum of the

elements in row 3, column 1 and in row 1, column 3 of each 4Ö4 matrix in panel A.1) are

equal to 4% and to 4.6% in the sub-sample and in the full sample period, respectively.

It is also important to notice that Table 3.5 highlights the role played by the core

countries to system wide risk through �nancial stress before the Eurozone debt crisis,

given that they are net donors of �nancial stress spillovers (see sub-sample results, panel

A.2 and A.4). In particular, I observe a decrease (from 10.5% to -5.1%, at H=4) in the

net spillovers from the core EZ �nancial stress when I shift from sub-sample analysis

14The �nancial stress spillovers between core and periphery are the sum of two elements of each 4Ö4
matrix (see panel A.1): the �rst is in row 4, column 2 and the second one is in row 2, column 4.
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to full-sample analysis. The peripheral EZ countries are net donors, both in terms of

�nancial stress and real output growth uncertainty, during the period which includes the

EZ sovereign debt crisis (see panel A.2 and A.4). In particular, the net spillover from the

periphery macro-uncertainty and �nancial stress group increase (respectively, from -3.9%

to 1%, and from -4.5% to 1.3%, at H=4, see panel A.2) ones I move from sub-sample

analysis to the full sample analysis. These �ndings are in line with Fernandez �Rodriguez

et al. (2016) and De Santis and Zimic (2017), who �nd a decline (increase) in directional

connectedness from core (peripheral) to peripheral (core) countries during the sovereign

debt crisis.

The common frequency model results in panel B of Table 3.5 suggest smaller direc-

tional spillovers than those obtained from mixed frequency data model. In particular, if

I consider a full-sample analysis in panel B.1, I �nd the core-periphery connectedness oc-

curring through �nancial stress is 5% lower than the connectedness index obtained by MF

approach, while the core-periphery connectedness occurring through macro-uncertainty is

around 0.5 percentage points lower for a common frequency model. Moreover, contrary

to the MF results, the common-frequency model suggests that periphery countries are

net donors in terms of �nancial distress before Eurozone debt crisis and they become net

recipients once I consider also the Euro sovereign debt crisis (see panel B.2 and B.4).

3.6.2.2 Core-Periphery connectedness: country speci�c analysis

I also examine the role played by each country in driving connectedness between core and

periphery and whether the role of these drivers is changing over time. Table 3.6 records

the within, from and to connectedness among countries in the system for the full sample

and sub-sample periods at forecast horizon H=4, 8.

The evidence in Table 3.6 con�rms my �ndings associated with Table 3.4: since the

start of the EZ sovereign debt crisis, the Eurozone global risk, proxied by the total connec-

tedness index (see the total from/to connectedness in panel A.1 and A.2), has declined.

More speci�cally, if I consider a forecast horizon of one year (H=4 quarters) the total

connectedness index decrease from 57.6% to 48.1% (see panel A.1), when I move from the

sub-sample to the full sample analysis. If the focus is on a forecast horizon equal to two

years (H=8 quarters) I observe a decrease in total connectedness from 62.33% to 52.86%

(see panel A.2), when I shift from sub-sample to full-sample analysis. This �nding holds

for the common-frequency approach (see panel B.1 and B.2) although the total from/to

spillovers are smaller than those obtained through the mixed-frequency approach. In par-
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ticular, the CF results in panel B.1 show the decrease in total connectedness index from

43.71% to 36.52% (for H=4) when I shift from the sub-sample to the full sample analysis.

Our MF results are in line with other empirical studies using the Diebold and Yilmaz

(2012, 2014) forecast error variance decomposition analysis focussing only on sovereign

debt markets. Evidence of bond market fragmentation due to Eurozone sovereign debt

crisis is given by Fernandez-Rodriguez et al. (2016) and by De Santis and Zimic (2018)

�nd evidence of a decrease in connectedness among Eurozone sovereign yields.

The total net spillovers across the �ve core and the �ve peripheral countries con�rm

the �ndings in Table 3.4 (see panels A.1-A.2), that is, before the Eurozone sovereign debt

crisis, the main contributors to connectedness are core countries. More speci�cally, while

Belgium, Netherlands and Germany all show positive net indices (pointing at their role

as net donors), the net spillover indices for the �ve peripheral countries are all negative.

Moreover, the total net spillovers across the �ve core and the �ve peripheral countries con-

�rm that after the Eurozone sovereign debt crisis, the main contributors to connectedness

are peripheral countries. More speci�cally, while Greece, Ireland and Spain all show posit-

ive net indices (pointing at their role as net donors), the only core country with a positive

net spillover index is Germany. These results di�er, to some extent, from those obtained

by De Santis and Zimic (2018) which �nd evidence of sovereign bond yields spillovers only

from Greece and Italy during the turmoil related to the Eurozone sovereign debt market

crisis.

3.7 Conclusions

In this chapter I examine the macro-uncertainty and �nancial distress connectedness

among Eurozone countries from 1997 to 2015, by using a GVAR model �tted to two

endogenous variables sampled at di�erent frequencies: a monthly Country-Level Index of

Financial Stress (CLIFS) and a quarterly index of uncertainty about GDP growth. In par-

ticular, I extend a GVAR model by using the recent econometric developments by Ghysels

(2016), that allows the use of mixed-frequency data directly in the VAR model rather

than aggregating the high-frequency variable to low- frequency before the estimation.

Total and directional connectedness are computed by using the methodology developed

by Greenwood-Nimmo et al. (2015) which extends the Diebold and Yilmaz (2012, 2014)

VAR based approach to estimate the Forecast Error Variance Decomposition, FEVD, to

a Global Vector Autoregressive, GVAR model.
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The empirical �ndings suggest that macro-uncertainty and �nancial stress are relatively

disconnected in the Eurozone, since the spillovers across the two blocks account only for

25% of the total Eurozone system-wide FEVD at one year forecast horizon. Moreover,

I �nd evidence of disconnect between core and periphery countries since the outbreak of

Eurozone sovereign debt crisis. I also �nd that connectedness between core and periphery

is mostly occurring through �nancial stress and it decreases during the Eurozone sovereign

debt crisis, given a strong decline in the �nancial stress spillovers from core to periphery.

Moreover, I show that, while core countries (in particular Germany, Netherlands and

Belgium) are the triggers of the connectedness between macro-uncertainty and �nancial

stress before the Eurozone sovereign debt crisis, periphery countries (in particular, Greece,

Ireland and Spain) play an important role in driving connectedness once I consider the

full sample period (including the Eurozone sovereign debt crisis). Finally, by comparing

the result obtained through mixed-frequency and the common-frequency Global VAR I

�nd that MF based indices of connectedness are larger than those obtained through CF

approach.



Bibliography

[1] Alessandri, P., & Mumtaz, H. (2018). Financial regimes and uncertainty shocks.

Journal of Monetary Economics.

[2] Antonakakis, N., & Vergos, K. (2013). Sovereign bond yield spillovers in the Euro

zone during the �nancial and debt crisis. Journal of International Financial Markets,

Institutions and Money, 26, 258-272.

[3] Apostolakis, G. (2016). Spreading crisis: Evidence of �nancial stress spillovers in the

Asian �nancial markets. International Review of Economics & Finance, 43, 542-551.

[4] Apostolakis, G., & Papadopoulos, A. P. (2014). Financial stress spillovers in advanced

economies. Journal of International Financial Markets, Institutions and Money, 32,

128-149.

[5] Apostolakis, G., & Papadopoulos, A. P. (2015). Financial stress spillovers across the

banking, securities and foreign exchange markets. Journal of Financial Stability, 19,

1-21.

[6] Bacchiocchi, E., Bastianin, A., Missale, A., & Rossi, E. (2018). Structural analysis

with mixed-frequency data: A MIDAS-SVAR model of US capital �ows. arXiv pre-

print arXiv:1802.00793.

[7] Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty.

The Quarterly Journal of Economics, 131(4), 1593-1636.

[8] Balakrishnan, R., Danninger, S., Elekdag, S., & Tytell, I. (2011). The transmission

of �nancial stress from advanced to emerging economies. Emerging Markets Finance

and Trade, 47(sup2), 40-68.

[9] Bloom, N. (2009). The impact of uncertainty shocks. econometrica, 77(3), 623-685.

102



BIBLIOGRAPHY 103

[10] Caldara, D., Fuentes-Albero, C., Gilchrist, S., & Zakraj²ek, E. (2016). The macroe-

conomic impact of �nancial and uncertainty shocks. European Economic Review, 88,

185-207.

[11] Caporin, M., Pelizzon, L., Ravazzolo, F., & Rigobon, R. (2018). Measuring sovereign

contagion in Europe. Journal of Financial Stability, 34, 150-181.

[12] Cesa-Bianchi, A. (2013). Housing cycles and macroeconomic �uctuations: A global

perspective. Journal of International Money and Finance, 37, 215-238.

[13] Chau, F., & Deesomsak, R. (2014). Does linkage fuel the �re? The transmission of

�nancial stress across the markets. International Review of Financial Analysis, 36,

57-70.

[14] Cipollini, A., Coakley, J., & Lee, H. (2015). The European sovereign debt market:

from integration to segmentation. The European Journal of Finance, 21(2), 111-128.

[15] Cotter, J., Hallam, M., & Yilmaz, K. (2017). Mixed-frequency macro-�nancial

spillovers.

[16] De Santis, R. A., & Zimic, S. (2018). Spillovers among sovereign debt markets: Iden-

ti�cation through absolute magnitude restrictions. Journal of Applied Econometrics,

33(5), 727-747.

[17] Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive

directional measurement of volatility spillovers. International Journal of Forecasting,

28(1), 57-66.

[18] Diebold, F. X., & Y�lmaz, K. (2014). On the network topology of variance decom-

positions: Measuring the connectedness of �nancial �rms. Journal of Econometrics,

182(1), 119-134.

[19] Dovern J. and B. van Roye (2014): International transmission and business-cycle

e�ects of �nancial stress, Journal of Financial Stability 13,pp 1-17.

[20] Ehrmann, M., & Fratzscher, M. (2017). Euro area government bonds�Fragmentation

and contagion during the sovereign debt crisis. Journal of International Money and

Finance, 70, 26-44.



BIBLIOGRAPHY 104

[21] Fernández-Rodríguez, F., Gómez-Puig, M., & Sosvilla-Rivero, S. (2016). Using con-

nectedness analysis to assess �nancial stress transmission in EMU sovereign bond

market volatility. Journal of International Financial Markets, Institutions and Money,

43, 126-145.

[22] Fountas, S., Karanasos, M., & Kim, J. (2006). In�ation uncertainty, output growth

uncertainty and macroeconomic performance. Oxford Bulletin of Economics and Stat-

istics, 68(3), 319-343.

[23] Ghysels, E. (2016). Macroeconomics and the reality of mixed frequency data. Journal

of Econometrics, 193(2), 294-314.

[24] Greenwood-Nimmo, M., Nguyen, V. H., & Shin, Y. (2015). Measuring the connec-

tedness of the global economy.

[25] Hakkio, C. S., & Keeton, W. R. (2009). Financial stress: what is it, how can it be

measured, and why does it matter?. Economic Review, 94(2), 5-50.

[26] Henzel, S. R., & Rengel, M. (2017). Dimensions of macroeconomic uncertainty: A

common factor analysis. Economic Inquiry, 55(2), 843-877.

[27] Hollo, D., Kremer, M., & Lo Duca, M. (2012). CISS-a composite indicator of systemic

stress in the �nancial system.

[28] Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American

Economic Review, 105(3), 1177-1216.

[29] Klaus, B., Duprey, T.,& Peltonen, T. (2017). Dating systemic �nancial stress episodes

in the EU countries. Journal of Financial Stability, 32, 30-56.

[30] Liow, K. H., Liao, W. C., & Huang, Y. (2018). Dynamics of international spillovers

and interaction: Evidence from �nancial market stress and economic policy uncer-

tainty. Economic Modelling, 68, 96-116.

[31] Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear

multivariate models. Economics letters, 58(1), 17-29.

[32] Rossi, B., & Sekhposyan, T. (2015). Macroeconomic uncertainty indices based on

nowcast and forecast error distributions. American Economic Review, 105(5), 650-55.



BIBLIOGRAPHY 105

[33] Rossi, B., & Sekhposyan, T. (2017). Macroeconomic uncertainty indices for the euro

area and its individual member countries. Empirical Economics, 53(1), 41-62.

[34] Uhlig, H. (2005). What are the e�ects of monetary policy on output? Results from

an agnostic identi�cation procedure. Journal of Monetary Economics, 52(2), 381-419.



106

3.A Appendix

3.A.1 Figures

Figure 3.1: Country-Speci�c Indicators of Financial Stress (CLIFS)

Figure 3.2: Country-Speci�c Output Growth Uncertainty Indices

Notes: horizontal axes show the forecast origin dates.
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3.A.2 Tables

Table 3.1: Trade weights

wig AT BE FR DE NL GR IE IT PT ES
AT 0 0.054 0.091 0.6 0.068 0.004 0.009 0.125 0.008 0.04
BE 0.025 0 0.212 0.342 0.182 0.005 0.066 0.102 0.011 0.056
FR 0.031 0.135 0 0.398 0.096 0.005 0.019 0.166 0.022 0.13
DE 0.119 0.138 0.249 0 0.169 0.008 0.021 0.181 0.021 0.094
NL 0.03 0.175 0.149 0.436 0 0.006 0.021 0.105 0.014 0.061
GR 0.032 0.086 0.122 0.306 0.099 0 0.018 0.242 0.01 0.085
IE 0.032 0.131 0.167 0.342 0.135 0.006 0 0.102 0.013 0.072
IT 0.051 0.099 0.209 0.385 0.104 0.014 0.018 0 0.016 0.104
PT 0.017 0.054 0.142 0.239 0.069 0.004 0.012 0.105 0 0.358
ES 0.025 0.073 0.246 0.305 0.084 0.007 0.019 0.156 0.085 0

Table 3.2: LR test statistics for testing MF-VARX vs CF-VARX

Country Sub-sample (1997-2009 Q4) Full sample (1997-2016)
Austria 463.56 592.89
Belgium 429.62 575.87
France 482.74 624.66

Germany 414.91 590.64
Netherlands 465.9 622.12

Greece 407.19 529.8
Ireland 362.81 499.31
Italy 520.31 693.7

Portugal 512.22 651.22
Spain 516.74 675.92

Notes: The �gures are the Likelihood Ratio, LR, statistics for testing the null of equivalence of MF-VARX
with the traditional CF-VARX for each county i =(AT,BE,FR,DE,GR,IE,IT,NL,PT,ES), as suggested by
Bacchiocchi et al. (2018). Rejection of the null hypothesis implies that aggregating the mixed-frequency
series as in traditional CF-VARX generates a loss of information. The LR statistics is computed by
comparing the log-likelihood of the unrestricted model, i.e. MF-VARX (lu), with the one associated
with the restricted model, i.e. CF-VARX (lr). The test statistics LR = −2(lr − lu) is asymptotically
distributed as a χ2, with the degrees of freedom given by the number of restrictions (38 restrictions: twelve
are imposed on Γi matrix, twelve on Λi0, twelve on Λi 1and two on ci) on the MF-VARX coe�cients. I
report the LR test statistics in the table and p-values (available upon request) are close to zero, suggesting
a strong rejection of the null hypothesis.
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Table 3.3: Spillovers between �nancial stress and GDP growth uncertainty

Panel A: Mixed Frequency Approach

Forecast horizon: H=4 H=8

Sub-sample Full sample Sub-sample Full sample

1997:Q2-2009:Q4 1997:Q2-2015:Q1 1997:Q2-2009:Q4 1997:Q2-2015:Q1

From/To GDP FSI GDP FSI GDP FSI GDP FSI

GDP 34.01 15.99 39.26 10.74 31.51 18.49 37.15 12.85

FSI 9.97 40.03 14.52 35.48 9.68 40.32 14.93 35.07

Panel B: Common Frequency Approach

Forecast horizon: H=4 H=8

Sub-sample Full sample Sub-sample Full sample

1997:Q2-2009:Q4 1997:Q2-2015:Q1 1997:Q2-2009:Q4 1997:Q2-2015:Q1

From/To GDP FSI GDP FSI GDP FSI GDP FSI

GDP 31.46 18.54 47.38 2.62 30.63 19.37 46.84 3.16

FSI 4.39 45.61 20.48 29.52 5.65 44.35 23.22 26.78
Notes: Within-group connectedness indices are on the main diagonal and the o�-diagonal elements show
the to/from contributions. Total spillover index is estimated by summing the o�-diagonal elements of
(2× 2) matrix.

Table 3.4: Regional spillovers

Panel A: Mixed Frequency Approach

Forecast horizon: H=4 H=8

Sub-sample Full sample Sub-sample Full sample

1997:Q2-2009:Q4 1997:Q2-2015:Q1 1997:Q2-2009:Q4 1997:Q2-2015:Q1

From/To Core Periphery Core Periphery Core Periphery Core Periphery

Core 38.5 11.5 36.12 13.88 37.12 12.88 32.67 17.33

Periphery 19.92 30.08 11.53 38.47 20.44 29.56 11.4 38.6

Panel B: Common Frequency Approach

Forecast horizon: H=4 H=8

Sub-sample Full sample Sub-sample Full sample

1997:Q2-2009:Q4 1997:Q2-2015:Q1 1997:Q2-2009:Q4 1997:Q2-2015:Q1

From/To Core Periphery Core Periphery Core Periphery Core Periphery

Core 39.4 10.6 40.97 9.03 37.61 12.39 38.09 11.91

Periphery 12.97 37.03 9.54 40.46 14.02 35.98 9.46 40.54
Notes: Within-group connectedness indices are on the main diagonal and the o�-diagonal elements show
the to/from contributions. Total spillover index is estimated by summing the o�-diagonal elements of
(2× 2) matrix.
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Table 3.5: Regional spillovers between �nancial stress and macro-uncertainty

Panel A: Mixed Frequency Approach

H=4 Sub-sample (1997:Q2-2009:Q4) Full sample (1997:Q2-2015:Q1)

Panel (A.1): Connectedness Table
Core Core PIIGS PIIGS Core Core PIIGS PIIGS

(GDP) (FSI) (GDP) (FSI) (GDP) (FSI) (GDP) (FSI)

Core (GDP) 14.9 4.8 2.3 3 16.9 2.4 2.8 3

Core (FSI) 3.1 15.6 1.7 4.6 5.9 11 2.8 5.3

PIIGS (GDP) 1.7 3.5 15.1 4.7 1.8 2.5 17.8 2.8

PIIGS (FSI) 3.2 11.5 2 8.3 3.2 4 2.6 15.2

Panel (A.2): Directional Connectedness Indices
Within From To Net Within From To Net

Core (GDP) 14.9 10.1 8 -2.1 16.9 8.1 10.9 2.7

Core (FSI) 15.6 9.4 19.8 10.5 11 14 8.9 -5.1

PIIGS (GDP) 15.1 9.9 5.9 -3.9 17.8 7.2 8.2 1

PIIGS (FSI) 8.3 16.7 12.2 -4.5 15.2 9.8 11.2 1.3

Total 54 46 46 0.0 60.8 39.2 39.2 0.0

H=8 Sub-sample (1997:Q2-2009:Q4) Full sample (1997:Q2-2015:Q1)

Panel (A.3): Connectedness Table
Core Core PIIGS PIIGS Core Core PIIGS PIIGS

(GDP) (FSI) (GDP) (FSI) (GDP) (FSI) (GDP) (FSI)

Core (GDP) 12.53 6.38 2.69 3.39 14.94 2.90 3.42 3.74

Core (FSI) 2.60 15.61 2.02 4.77 5.07 9.76 3.76 6.41

PIIGS (GDP) 1.79 3.85 14.49 4.87 1.83 2.85 16.96 3.36

PIIGS (FSI) 2.55 12.24 2.51 7.70 2.60 4.12 3.50 14.78

Panel (A.4): Directional Connectedness Indices
Within From To Net Within From To Net

Core (GDP) 12.5 12.5 6.9 -5.5 14.9 10.1 9.5 -0.6

Core (FSI) 15.6 9.4 22.5 13.1 9.8 15.2 9.9 -5.4

PIIGS (GDP) 14.5 10.5 7.2 -3.3 17 8 10.7 2.6

PIIGS (FSI) 7.7 17.3 13 -4.3 14.8 10.2 13.5 3.3

Total 50.3 49.7 49.7 0.0 56.4 43.6 43.6 0.0
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Table 3.5: (Continued)

Panel B: Common Frequency Approach

H=4 Sub-sample (1997:Q2-2009:Q4) Full sample (1997:Q2-2015:Q1)

Panel (B.1): Connectedness Table
Core Core PIIGS PIIGS Core Core PIIGS PIIGS

(GDP) (FSI) (GDP) (FSI) (GDP) (FSI) (GDP) (FSI)

Core (GDP) 12.87 5.32 3.89 2.93 21.7 0.5 2.2 0.7
Core (FSI) 1.11 20.11 0.95 2.82 7 11.8 4 2.2

PIIGS (GDP) 4.92 4.82 9.78 5.48 1.9 0.7 21.7 0.7
PIIGS (FSI) 0.95 2.28 1.38 20.39 5 2 4.5 13.6

Panel (B.2): Directional Connectedness Indices
Within From To Net Within From To Net

Core (GDP) 12.9 12.1 7.0 -5.2 21.7 3.3 13.9 10.5
Core (FSI) 20.1 4.9 12.4 7.5 11.8 13.2 3.2 -10.0

PIIGS (GDP) 9.8 15.2 6.2 -9.0 21.7 3.3 10.6 7.3
PIIGS (FSI) 20.4 4.6 11.2 6.6 13.6 11.4 3.6 -7.8

Total 63.2 36.8 36.8 0.0 68.7 31.3 31.3 0.0

H=8 Sub-sample (1997:Q2-2009:Q4) Full sample (1997:Q2-2015:Q1)

Panel (B.3): Connectedness Table
Core Core PIIGS PIIGS Core Core PIIGS PIIGS

(GDP) (FSI) (GDP) (FSI) (GDP) (FSI) (GDP) (FSI)

Core (GDP) 12.14 5.07 4.22 3.57 20.83 0.64 2.74 0.79
Core (FSI) 1.52 18.88 1.28 3.32 6.77 9.85 5.80 2.58

PIIGS (GDP) 5.81 4.69 8.46 6.05 2.00 0.85 21.28 0.88
PIIGS (FSI) 1.03 2.50 1.82 19.66 4.48 2.13 6.17 12.21

Panel (B.4): Directional Connectedness Indices
Within From To Net Within From To Net

Core (GDP) 12.1 12.9 8.4 -4.5 20.8 4.2 13.2 9.1
Core (FSI) 18.9 6.1 12.3 6.1 9.9 15.1 3.6 -11.5

PIIGS (GDP) 8.5 16.5 7.3 -9.2 21.3 3.7 14.7 11.0
PIIGS (FSI) 19.7 5.3 12.9 7.6 12.2 12.8 4.2 -8.5

Total 59.1 40.9 40.9 0.0 64.2 35.8 35.8 0.0
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Table 3.6: Macro-�nancial spillovers among EZ countries

Panel A.1: Mixed Frequency Approach (H=4)

Sub-sample 1997:Q2-2009:Q4 Full sample 1997:Q2-2015:Q2

Within From To Net Within From To Net

"AT" 4.39 5.61 4.69 -0.92 5.28 4.72 4.78 0.06
"BE" 4.12 5.88 9.76 3.88 3.9 6.1 4.57 -1.53
"FR" 3.7 6.3 5.19 -1.11 3.86 6.14 2.78 -3.36
"DE" 3.87 6.13 9.44 3.3 5.81 4.19 8.2 4.02
"NL" 4.9 5.1 8.37 3.26 5.33 4.67 3.13 -1.54
"GR" 6.4 3.6 3.43 -0.17 7.5 2.5 5.99 3.49
"IE" 4.1 5.9 5.72 -0.17 6.49 3.51 5.8 2.29
"IT" 2.7 7.3 2.7 -4.6 3.76 6.24 4.03 -2.21
"PT" 4.77 5.23 2.96 -2.27 5.13 4.87 1.73 -3.14
"ES" 3.43 6.57 5.36 -1.21 4.86 5.14 7.06 1.92

Total: 42.4 57.6 57.6 0 51.9 48.1 48.1 0

Total core: 21 29 37.4 8.4 24.2 25.8 23.5 -2.3
Total PIIGS: 21.4 28.6 20.2 -8.4 27.7 22.3 24.6 2.3

Panel A.2: Mixed Frequency Approach (H=8)

Sub-sample 1997:Q2-2009:Q4 Full sample 1997:Q2-2015:Q2

Within From To Net Within From To Net

"AT" 3.77 6.23 4.07 -2.16 4.79 5.21 5.19 -0.02
"BE" 3.13 6.87 8.71 1.84 3.23 6.77 4.55 -2.22
"FR" 3.04 6.96 5.22 -1.74 3.15 6.85 2.40 -4.45
"DE" 3.87 6.13 13.46 7.33 5.09 4.906 8.16 3.25
"NL" 4.22 5.78 8.06 2.29 4.58 5.42 2.92 -2.50
"GR" 5.49 4.51 3.31 -1.20 7.30 2.70 5.65 2.94
"IE" 4.05 5.95 6.89 0.94 6.38 3.62 6.65 3.02
"IT" 2.36 7.64 2.89 -4.75 3.26 6.74 4.71 -2.03
"PT" 4.34 5.66 2.69 -2.97 4.57 5.43 1.65 -3.78
"ES" 3.40 6.60 7.02 0.42 4.81 5.19 10.97 5.78

Total: 37.67 62.33 62.33 0.00 47.14 52.86 52.86 0.00
Total core: 18.03 31.97 39.53 7.56 20.84 29.16 23.23 -5.93
Total PIIGS: 19.64 30.36 22.80 -7.56 26.31 23.69 29.62 5.93
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Table 3.6: (Continued)

Panel B.1: Common Frequency Approach (H=4)

Sub-sample 1997:Q2-2009:Q4 Full sample 1997:Q2-2015:Q2

Within From To Net Within From To Net

"AT" 6.16 3.84 4.89 1.05 6.44 3.56 4.32 0.76
"BE" 4.53 5.47 4.62 -0.86 4.73 5.27 2.18 -3.09
"FR" 5.14 4.86 5.23 0.37 5.34 4.66 1.96 -2.70
"DE" 5.41 4.59 5.87 1.28 7.28 2.72 8.04 5.33
"NL" 7.19 2.81 3.33 0.52 7.07 2.93 3.15 0.22
"GR" 6.01 3.99 3.78 -0.21 8.16 1.84 3.01 1.16
"IE" 4.58 5.42 2.77 -2.65 7.22 2.78 3.41 0.64
"IT" 6.35 3.65 7.20 3.55 5.24 4.76 3.39 -1.37
"PT" 6.46 3.54 1.93 -1.61 6.05 3.95 1.70 -2.24
"ES" 4.47 5.53 4.09 -1.45 5.96 4.04 5.34 1.30

Total: 56.29 43.71 43.71 0 63.48 36.52 36.52 0

Total core: 28.42 21.58 23.95 2.37 30.85 19.15 19.66 0.51
Total PIIGS: 27.87 22.13 19.76 -2.37 32.63 17.37 16.86 -0.51

Panel B.2: Common Frequency Approach (H=8)

Sub-sample 1997:Q2-2009:Q4 Full sample 1997:Q2-2015:Q2

Within From To Net Within From To Net

"AT" 5.64 4.36 5.27 0.91 5.97 4.03 4.11 0.08
"BE" 3.77 6.23 4.22 -2.01 4.07 5.93 2.22 -3.71
"FR" 4.76 5.24 6.11 0.87 4.65 5.35 1.71 -3.64
"DE" 4.71 5.29 7.14 1.85 6.77 3.23 7.76 4.53
"NL" 6.65 3.35 3.36 0.01 6.60 3.40 3.69 0.30
"GR" 5.67 4.33 4.12 -0.20 8.05 1.95 2.98 1.04
"IE" 3.95 6.05 3.29 -2.77 6.96 3.04 3.82 0.77
"IT" 6.02 3.98 8.46 4.48 4.58 5.42 3.61 -1.81
"PT" 5.72 4.28 1.76 -2.52 5.26 4.74 1.67 -3.07
"ES" 4.12 5.88 5.27 -0.62 5.96 4.04 9.56 5.52

SUM: 50.99 49.01 49.01 0.00 58.87 41.13 41.13 0.00
Total core: 25.52 24.48 26.11 1.63 28.05 21.95 19.49 -2.45
Total PIIGS: 25.47 24.53 22.90 -1.63 30.81 19.19 21.64 2.45


