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ABSTRACT

Let ¥ be a smooth, projective complex curve of genus g > 1. Let d be an integer > 3, let e =
{e1,e2,..., e} be a partition of d and let |¢] = >"7_; (e; — 1). In this paper we study the Hurwitz spaces
which parametrize coverings of degree d of ¥ branched in n points of which n — 1 are points of simple
ramification and one is a special point whose local monodromy has cyclic type e and furthermore the
coverings have full monodromy group S;. We prove the irreducibility of these Hurwitz spaces when
n — 14 |e|l > 2d, thus generalizing a result of Graber, Harris and Starr [A note on Hurwitz schemes of
covers of a positive genus curve, Preprint, math. AG/0205056].

1. INTRODUCTION

Let ¥ be a smooth, connected, projective complex curve of genus g > 1 and let
by e Y. Letd > 3 be an integer and let e = {e1, €2, ..., e,} be a partition of d, e; +
ey+--+e =d,wheree; 2er >--->2e, 2 1. Let |¢| =Zf:1(ei —1).

Let us denote by Hy n—1,.(Y, bo) the Hurwitz space that parametrizes equivalence
classes of pairs {7, ¢] of a covering 7:X — ¥ and a bijection ¢ : w~'(bg) —
{1,...,d} satisfying the following: = is a covering of degree d of Y, the cover
X is smooth and connected, = is unramified at by and is branched in n > 0
points, n — 1 of which are points of simple branching and one is a special
point whose local monodromy has cyclic type e. Denote by D the branch locus
of n and denote by m:m1(Y — D, bp) - S, the associated monodromy homo-
morphism. Because X is irreducible, the image of m is a transitive subgroup
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of S;. Associated to [m,¢] is an ordered (n + 2g)-tuple of elements of Sy,
(1, - tw3 A1, A1, - . -, Ag, [g), satisfying the following: for some j the permu-
tation ¢; has cyclic type e, #; are transpositions for each i # j and #;---#, =
(A1, 1] [Ag, pgl. We call (f1, ..., 85 A1, (1, ..., Ag, ) @ Hurwitz system and
the group generated by #;, A, ux the monodromy group of the Hurwitz system.
In this paper we are interested in H;,n—l,e(Y’ bo), the subset of Hy ,_1.(Y, bo)
parameterizing pairs [, ¢] whose monodromy group is all S,. In a similar manner
one defines the Hurwitz space Hy, , (¥) which parametrizes coverings of the

considered type without fixing a bijection ¢. We prove the following theorem:

Theorem 1. Let Y be a smooth, connected, projective curve of genus g > 1 and let
boe Y. Ifn — 1+ |e| > 2d then the Hurwitz spaces Hj (Y,bop)and Hj , | e(Y)
are irreducible.

n—1l.e

Coverings of curves of positive genus were studied by Graber, Harris, Starr
in [4] and by Kanev in [6]. Graber, Harris and Starr considered Hurwitz spaces
parameterizing irreducible degree d covers of a genus g > 1 curve with n simple
branch points. When n > 2d, they proved the Hurwitz spaces is irreducible. Kanev
sharpened this result and proved the irreducibility of these spaces in the case

> max{2,2d — 4} if g > | and n > max{2,2d — 6} if g = 1. Kanev also proved
the irreducibility of Hj, | (Y) whenn —12>2d —2.

The result of this paper is a generalization of that of Graber, Harris and Starr.
Namely, we prove the irreducibility of the Hurwitz spaces for the same values
of the genera of X and Y as they do, but furthermore we allow one special
fiber. The irreducibility of H7 , | ,(¥) follows immediately from the irreducibility
of Hg‘n_,‘e(Y, bo). We prove the irreducibility of Hj (Y, by) by proving the
transitivity of the action of the braid group m((Y — bg)™ — A, D) on the set
of Hurwitz systems (¢, ..., tx; A1, 41, ..., Ag, thg) With monodromy group S . We
follow the key idea of [4], i.e., we prove that applying a finite number of braid
moves it is possible to replace every (71, ..., tn; A1, i1, .., Ag, tig) by a new system
of type (¢1,...,f,;1,1,...,1,1). Then using only elementary transformations of
the Artin’s braid group, we reduce (71, ..., #,) to a normal form.

It seem likely the inequality in the hypothesis of Theorem 1 may be replace by the
weaker one n — 1 + |e] > 2d — 2. This inequality is necessary for coverings whose
Hurwitz systems are braid equivalent to ones with 1] = p} =+ =2, = u, = 1.
Unfortunately our method of proof does not allow to cover also the limiting case
n—1+lel=2d 2.

n—le

2. PRELIMINARIES AND BRAID MOVES

Let ¥ and X be smooth, connected, projective complex curves of genus > 0. Let
m:X — Y beacovering of ¥, i.e., 7 is a finite holomorphic mapping.

A branch point is a point b € Y such that some point of 7 ~!(b) is a ramification
point of 7. A branch point b € Y is called a point of simple branching for n if 7 is
ramified at only one point x € 7~ (b) and the ramification index e(x) of 7 at x is 2.
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A branch point b € Y is called a special point if it is not simple. The set of branch
points is called the branch locus of .

Let d be a positive integer. Two d-sheeted branched coverings m;: X; — Y and
7y : X — Y are called equivalent if there exists a biholomorphic map f: X; — X»
such that 7, o f = 7;. The equivalence class containing ; is denoted by [71].

Lete = (e1, e, ..., e,) be apartition of d wheree; > ey > --- > e, > 1. Associate
to e the following element in S; having cycle type e,

1) 8:=(12...el)(e1+1...el+e2)~-((e1+---+er_1)+1...d).

Let by be a point of ¥, let us denote by Hy,_1,.(Y, bo) the Hurwitz space
that parametrizes equivalence classes of pairs {7, ¢] of a covering 7:X — Y and
a bijection ¢:w~1(by) — {1,...,d} satisfying the following: 7 is a covering of
degree d of Y, = is unramified at by and it is branched in » > 0 points, n — 1
of which are points of simple branching and one is a special point whose local
monodromy belongs to the conjugacy class of .

Let Y™ be the n-fold symmetric product of ¥ and let A be the codimension
1 locus of Y™ consisting of nonsimple divisors. Let W : Hypn1,Y,by) > (Y —
bo)™ — A be the map which assigns to each [, ¢] the reduced branch locus of 7.

Convention. The natural action of S; on {1,...,d} here is on the right and
multiplication of permutationsisby o - T =7 0 9, e.g., (12)(13) = (123).

Let [, ¢] € Hyn_1,(Y, bo), let D be the reduced branch divisor, let [y] € 7 (Y —
D, by), and for every i =1,...,d, denote x; = ¢~1(i) in 7~ !(by). For every i =
1,...,d, i" equals ¢(y), where y is the terminal point of the unique lift of ¥ whose
initial point is x;.

For the rest of the paper we suppose n > 2. Let D = {b;,...,b,} and let
Y1, Y2, -5 Yo 01, B1, ..., O, Bg be the closed arcs oriented counterclockwise rep-
resented in Fig. 1.

The corresponding homotopy classes of these arcs yield a system of generators
for 1 (Y — D, by) which satisfy the only relation

V1V2: -V = o1, Br]- - o, Bel.

Definition 1. An ordered sequence (f1, ..., tn; A1, fh1, ..., Ag, Ug) of permutations
of S; such that t; # 1 foreach i =1,...,n and 112+ - -1, = [A1, 1] - [Ag, tg] is
called a Hurwitz system. The subgroup G C S; generated by #;, Ak, ux With i =
l,...,nand k=1, ..., g is called the monodromy group of the Hurwitz system. An
e-Hurwitz system is a Hurwitz system such that 1 of ¢1, .. ., ¢, has cycle type ¢, and
the other n — 1 elements in #1, ..., , are transpositions.

The images via the monodromy homomorphisms m of y1, ..., ¥u, 01, B1, ..., 0,
By determine e-Hurwitz systems

(m(yl)a et m()/n), m(al)’ m(ﬂl)» L] m(ag): m(,Bg))y
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Figure 1.

with transitive monodromy group.

Let us denote by Ay .42, the set of all e-Hurwitz systems (¢, ..., 4,5 Ay, i,
..., Ag, tig) with transitive monodromy group. The Riemann existence theorem
determines a bijection from the fiber of W over D to Ay n12,.

Definition 2. Let G C Sy be a transitive subgroup. A decomposition for G is a
partition (X1, ..., £¢) of {1, ..., d} into sets of equal size v # 1, d such that (£;)8 €
{Z1,..., %) forevery g e G and i =1, ..., k. If there exists a decomposition for
G, G is imprimitive, otherwise G is primitive.

Let A;;,n”g be the set of all e-Hurwitz systems (¢, ..., t;; A(, i1, ..., Ag, lg) in
A4 ny2, With primitive monodromy group. We denote by H 4 n—t1.¢(Y>b0) the set of
all the pairs [, ¢] in Hyn 1 (Y, bo) such that if D is the reduced branch locus of
mand y,y2, ..., Vmo a1, B, ..., ag, B, is a system of closed arcs as in the figure,
then the monodromy group of (m(yy), ..., m(y,), m{ay), m(B1), ..., m(ag), m(B,))
is a primitive group. Therefore by Riemann’s existence theorem we can identify the
fiber of H) _, (Y, bo) = (¥ — bp)™ — A over D with AY niog

There is a unique topology on Hé”n_lyg(Y, bg) such that H(;’Y (Y, bg) — (Y —
bp)™ — A is a topological covering map, cf. [3]. Therefore the braid group (Y —
bo)™ — A, D) acts on AZ,n+2g~ If this action is transitive then Hg’n_],g(Y, by) is
connected.

Shortly we recall some notion on braid groups.

The braid groups of orientable 2-manifolds of genus g > 1 were studied by
J.S. Birman, E. Fadell and G.P. Scott (see [1,2,9]). Let ¥ be a smooth, connected,
projective complex curve of genus g > 1. The generators of 771 (Y — bg)™ — A, D)
are the elementary braids o; with i = 1,...,n — 1 and the braids pu, 7o With
1<a,b<nand1<k< g. The calculation of the action of the elementary braids
o; on Hurwitz systems is due to Hurwitz [5].

n—1l,e
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The elementary moves o7, relative to the elementary braids o;, bring

(tlv"'7ti—1’ti’ti+l7---9tn;)"lal’l‘17 ---y)"gyu'g)

to
t,..., ti_1,titi+1ti_1,ti, con Iy AL L, e, Mg, Hg).
Therefore their inverses bring (¢1, ..., ti—1, ti, tig1, -~ s ta3 Ay 1, -+ - Ag, fg) tO
.. .,ti_l,ti+1,ti:_11til‘i+l, v By AL L, s Mgy Mg).

The braid moves that correspond to the generators p;x, 7;x were studied by Graber,
Harris, Starr in [4] and by Kanev in [6]. We make use of some results proved in [6].
In this paper to each generator p;x or 7; is associated a pair of braid moves p/,,
ol = (o)) and T,/ = (z],) 7!, respectively.

Let (t1,...,%; A1, M1, ..., Ag, g) be a Hurwitz system. The braid move p;
leaves unchanged X; for each , ¢; for each j #i and w,; for each I # k, while
changing # and ui. Analogously the braid move r; changes % and A, leaving
unchanged p; for each [, A; for each I # k and ¢; for each j #i.

We use the following result.

Proposition 1 [6, Corollary 1.91. Let (t1,...,tn; A1, i1, ..., Ag, fg) be a Hurwitz
system. Let up = [A1, 1]+ [Ap, uxd for k=1,..., g and let ug = 1. The following
Sformulae hold:

(i) For py;:
', 1 1.1
Pk —> py = (b ' b)uk,

where b1 = ug_1rr.
11 n.
(ii) For t{}:

T e = A = (a1 =1
In particular
"o, -1
Ty AL = 1 AL

3. IRREDUCIBILITY OF HY, | (¥,b)

In this section we will prove the irreducibility of HJ a1, bp) forn—1+|e¢| > 2d.
Since HJ n—1,¢(¥s bo) is smooth in order to prove its irreducibility it suffices to prove
it is connected. In Section 1 we observed that if 71 (Y — bo)"™ — A, D) acts transi-

tively on A7 | +2g then Hy (Y, bo) is connected. In order to prove the transitivity
of the action of 11 (Y —bo)™ — A, Dyon A5, ., . itis sufficient to prove that, acting

by braid moves, it is possible to bring every e-Hurwitz system in A7, ., gtoa given
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normal form. So first we prove that every (f1, ..., % A1, (1, ..., Ag, tg) IN AZ,,,+2g
can be transformed into (¢[,....#,_|, 4 A1, i1, ..., Ag, g) Wheret, |, 1, are equal
transpositions and (t],...,#,_,) =(t],...,t .t _;,t,). Then we apply the Main
Lemma of [6] which states that (¢],..., ¢, |, t,; A1, i1, ..., Ag, [1g) can be replaced
by (t{,...,(t,’l_l)h, (t,’l)h;)q,m,...,)»g,ug) where h € (t],....t,_,, A1, 1, ...,
Ags Mg).

We remember that the monodromy group G of a e-Hurwitz system in A7 ,, ¢ is
a primitive group which contains a transposition. In {6] it is proved that a primitive
group G € S; which contains a transposition is all S;. Therefore the monodromy
group of every e-Hurwitz system in Ay | +2s is S,.

Using these results and braid moves we are ready to normalize (A, ui,...,
Ag. ig). The proof follows by applying a sequence of braid moves and inverse braid

moves and then using Mochizuchi’s proposition [8, pp. 369-370].

Definition 3. We call two Hurwitz systems braid equivalent if one is obtained from
1

the other by a finite sequence of braid moves o/, p}k, r}k, (oi’)_',p}’k, 137 where
1<i<n—1,1<j<nand1 <k < g. Wedenote the braid equivalence by ~.

Definition 4. Two ordered n-tuples (or sequences) of permutations (¢, ..., ,) and
(1], ....ty) are called braid equivalent if (1], ...,t,) is obtained from (1|, ..., 1,) by
a finite sequence of braid moves of type o/, (ai’)". Note that if ¢, ---t, = s then
tt =5

1 n .

Lemma 1 [6, Main Lemma 2.1]. Let (ry,..., ta; A1, i1, ..., Ag, g) be a Hurwitz
system of permutations of Sy. Suppose that t;t;) = 1. Let H be the subgroup of Sy
generated by {t(, ... ti_1,tig2, ..., tn, A1, [h1, ..., Ay, g} Then for every h € H the

given Hurwitz system is braid equivalent to
(1 Gt I A Aoy o)
a""l—lslyl+]’l+2s"'v ns l’l’(’ly'-'v gal'l’g'

For the rest of the paper we suppose d > 3. We now want to prove that every

ooty ALy hs e ve s hg, Mg) In A can be transformed, by a finite number of
M g Mg d.n+2g y
braid moves o] and of their inverses, into (¢], £, ..., 1, o, 85y, tys Al iy -y Ag, fhg)
where 7] has cyclic type e, 13, ..., t, are transpositions, f, | =¢, and
i I4 4 I3 4 ! 7
(tl, tz, y e tn_2> - (tl’ ceny tn__z,tn__l,t ).

Lemma 2. Let (t),t) be an ordered 2-tuple such that t| is a d-cycle and 1, a
transposition. Let a; be a fixed element of the set {1, ...,d}. Then (t1,1;) is braid
equivalent to (1], ty) where t| is a d-cycle and t; a transposition that moves ay.

Proof. It is not restrictive to assume that a; is the element that occupies the first

placeint. Let (t1, ) = ((a1...4ai ... aj ...aq), (a;a;)) where a; = a; . Acting twice
with the elementary move o we obtain

(ai...a;...a;...aq), (@ a;)) ~ ((b1...bi—1...bj_1...ba), (bi—1bj_1))
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where (b],...,l;i_l,...,Bj_l,...,bd) = (al,...,&i,...,&j,...,ad) and
(bi—1,bj-1) = (aj, a;).

Acting with (o] )2 another i — 2 times we obtain the required result, i.e., (71, 12)
is braid equivalent to (7], t;) where #{ is a d-cycle and ¢ a transposition that moves
a. O

Lemma 3. Let (11, t, ) be a sequence such that t; is an arbitrary permutation of
S4 and T a transposition. Then (t1, T, T) is braid equivalent to (t, T, 11).

Proof. Applying the elementary moves (o7) 1, (o) ™! we obtain
(tl,t,r)N(t,t“ltlr,t)N(r,r,tl). a

Lemma 4. Let (11, 7, v) be a sequence such that t, is the d-cycle (a; ...q; ...q; ...
ag) and T the transposition (a;a;). Then (t1, T, T) is braid equivalent to (t;, ', ")
where v/ = (a;ay) and j' = (2i — j) (mod d). If j —i #d/2 then T’ # 1.

Proof. Applying successively the elementary moves o], o} and using Lemma 3 we
obtain

(11 (@iay), (@ia))) ~ ((@i-1a;-1), (@i—1aj-1), 11)
~ (11, (@i-18j-1), (@i-1a;-1)).

Applying the sequence of elementary moves o7, o5 and using Lemma 3 another
(j —i) — 1 times we obtain the lemma. 0O

Lemma S. Let (t1,...,8,tiq1,...,tn) be a sequence of permutations in Sz such
that t;,1;4+1 are two equal transpositions of Sy. Then we can move to the right
(respectively, to the left) the pair (t;, t;11) leaving unchanged other permutations
of the sequence.

Proof. The proof follows by Lemma 3. O

Notice that applying braid moves o/ or their inverses we can move one arbitrary
transposition of the sequence (¢1,...,4,%+1, ..., ) where we want. In this way,
however, we change also other permutations of the sequence.
Lemma 6. Let t; be a d-cycle, let t,,...,1 be transpositions and let a be an
element moved by at least one of the transpositions. Then (t1,t2,...,t) is braid

equivalent to a sequence (f1, 1,1, ..., 0z, dz, B1, B2, - .., Bm) such that

(i) 71 is a d-cycle,

(ii) foreveryi =1,...,z, respectively, j =1, ..., m, the element «;, respectively,
B;, is a transposition moving a,
(iii) the elements By, ..., B are distinct, and
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(tv) if | —1>d then 7 is at least 1.

Proof. We prove the lemma by induction on /. If I = 2, #; is a transposition moving
a. So (t1, 1) is a sequence as we want in which z=0and m = 1. Let/ > 2. By way
of induction, we suppose the lemma is proved for all smaller values of /. Acting
with braid moves o j’., we bring the transpositions that move the element « to the end
of the sequence, obtaining

(11,8, .ty =(a %), ..., (ax%).

Applying Lemma 2 we replace (1, 15) by (¢],t)) where #| is a d-cycle and #} is
a transposition that moves a. By braid moves o we move 1) to the left of .
Proceeding in this way successively for every transposition of the sequence that
does not move a we obtain

(2) (1, @%),...,(a=%).

If the transpositions in (2) are all distinct, the (2) is a sequence as we want in
which z = 0. If instead in (2) there are two equal transpositions, using inverses of
elementary moves o , we move them to the front obtaining

(y, 001,11, 22, ..., 022).

We can then apply the induction hypothesis to the sequence (71,172, ...,#;—2). The
proof follows by applying Lemma 5. Observe that if / — | > d, because there are
only d — 1 distinct transpositions that move a, some transposition occurs twice in
2).Soifl —1>d,zisatleastl. 0@

Proposition 2. Let (11,1, ...,1) be a sequence such that t| is a d-cycle and
ta,...,t; are transpositions. If disodd and | — 1 > d orifdisevenand | — 1 > d
then (1), 1o, ..., ) is braid equivalent to (t|, 1,1, 1,1s,...,1;) where 1, is a d-cycle
and t,1s, ..., I; are transpositions.

Proof. We suppose by way of contradiction there is not a sequence braid equivalent
to (11, t2, ..., ty) with three equal transpositions. By Lemmas 6 and 5 we have that
(t1, t2, ..., 1;) is braid equivalent to a sequence (o, &1, ..., ¥z, &z, {1, B1, B2y - > Bm)
where the elements «;, §; are transpositions moving a, 8; # B, for h # j and z is
at least 1.

Let o, ..., a] be the transpositions that one obtains applying Lemma 4 to the
sequence (7, o;, ;) fori =1,...,z. Leta; = (ac;), o) = (ac}) and B; = (ad;). Let

={c1,...,¢c;},C" ={c},....c;} and D={dy, .. .,dm}. The following inequality
holds

3) #H(CUC)+¢D>d—1

whatever d is, odd or even.
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In fact, let d be odd. In this case C N C’ =@, because otherwise there would be a
braid equivalent sequence with 4 equal transpositions, so #{(C U C") =#C + #C’ =
2z. 4D =1 —1) — 2z, thus

HCUCH+ED=2z4+(1-1)—2z=1—1.

By hypothesis  — 1 > d therefore (3) holds.

Let d be even. Inthis case 0 < #H(CNC) < 1,502z~ 1 <H(C U ') < 2z. Then
I -2<H(CUC) +4D <1 —1.Because, by hypothesis, I — 1 > d the inequality (3)
holds in this case as well.

Since the element a is not in C U C’ U D, the inequality (3) assures that 1((C U
C’)N D) > 1. Then there exist j, j € {1, ..., m}, such that either 8; = ; or ; =,
for some 1 <i < z. If B; = o; we obtain a braid equivalent sequence with three
equal transpositions which is a contradiction. If 8; = o we arrive at a contradiction
in the same way applying Lemma 4 to (f, o;, ;). This proves the proposition. &

Definition 5. Let o be a permutation of S; and let o = o] - - - g, be a factorization
of ¢ into a product of independent cycles. Define the norm of o as follows

o] = (to; = 1).
i=1

Lemma 7 [10, Corollary 4.1]. Let (t1,t2,...,t,) be a sequence suchthat ty, ..., t,

are transpositions, t, is an arbitrary permutation of Sq and G = {t1,...,t,) is
transitive. Then (t1,t2,...,t,) is braid equivalent to (t,f2,...,1k, ..., ;) where
fy,..., I, are transpositions and

nl<inbl <<ty il =d— 1.

Proof. Let I'y,..., Ty, be the domains of transitivity of the permutation ¢;. We
prove the lemma by induction on m. If m =1 then 1, is a d-cycle, so |} =d — 1.
Let m > 1. By way of induction, we suppose the lemma is proved for m > 1 and we
prove it for m + 1. Because by hypothesis G is transitive at least one transposition
ti, 2 <i < n,is such that ; = (ab) witha € Ty, b € I'; and s # 1. Acting by inverses
of elementary moves o/ we bring (ab) to the right of #1, obtaining a new sequence

(tl? ;Zy té’ T t}{l)
where &, = (ab), |t1| < |t1f2| and 15, has m domains of transitivity. We can then

apply the induction hypothesis and so we obtain the lemma. O

Proposition 3. Let (¢, %, ...,t,) be a sequence of permutations in Sg such that 1,
is a permutation that belongs to the conjugacy class of ¢ (¢f. Eq. (1)) and 13, ..., t,
are transpositions.
Ifn — 14 el >2d then (11, b, ..., ty) is braid equivalent to
IS PN AT 4
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where 1] belongs to the conjugacy class of €, t}, ..., t, are transpositions, t, _| =1,
and

/ / / / ’ / ’
oty ooasty o) =ttty 15 1)

Proof. Let G = (t1,...,t,) and let 1, ..., &, be the domains of transitivity of G.
Acting by braid moves o] and their inverses we place the transpositions ,, .. ., f, S0
that (¢1, f2, ..., ,) is braid equivalent to

(M, 011, o By 20, oo By e Buls oo o5 Bumy,)

where 11, ..., t;u, are the only transpositions that move the elements of X;.

For every i = 1,..., v, denote by #; the permutation preserving the partition
(Z1...., T,) set-by-set whose restriction to X; equals g, s and whose restriction
to T, is the identity for j #i. For every i = 1,..., v, denote d; = #X;; observe
di+dr+---+dy,=d.

Notice that 3!_, |f;|=leland n — 1 =31 n;.

By Lemma 7 we have that (#;,¢,...,#p,) is braid equivalent to a sequence
(i Bity - Bikgs Bikj+1, - - - fin;) Where Fifiy -+ T, is a d;-cycle and moreover only
braid moves among 41, ..., t;,; were used.

Because ) ;_;(n; — ki) =n — 1 + |e| + v — d, which is greater than n —
1 + |e| — d, and because ) ;_, d; = d, the hypothesis n — 1 + |e| > 2d implies
i1 (i —ki) > Y7, d;, in particular there exists j such thatnj —k; > d;. Moving

the transpositions ¢ji, ..., ljn; to the front we obtain that (¢, 1;,...,t,) is braid
equivalent to (¢1,¢1, ..., Linjs - ).
By Lemma 7, the sequence (fy, ¢y, ...,¢ j,,j) is braid equivalent to a sequence,
(tl’tj]x -~~vtjkj» "'vtjnj)v

such that 7,7} ~~-fjkj is a dj-cycle. Since n; — k; > dj, by Proposition 2 one has
that

/ / ! !/
(tl,tg,...,tn)~(t,,tjl,...,tjkj,t,r,r,...,tjnj,...).

In this way we obtain a new sequence where there are three equal transpositions.
Therefore cancelling two of these three transpositions the group generated by the
remaining ones remains unchanged. The proof follows by moving two of these three
transpositions to the end of the sequence. O

Remark 1. If d is odd or if d is even and v > 2, Proposition 3 is true forn — 1 +
le| = 2d — 1. 1f d is odd and v > 2 or if d is even and v > 3, Proposition 3 is true
forn — 1+ |e| >2d — 2.

Let (f1,...,t,—1) be a sequence of transpositions such that #;---#,_; = s and
(t1,...,ta—1) is transitive. Let s = 51 ---s, be a factorization of s into a product

of independent cycles and let I'q,..., T, be the domains of transitivity of s. If
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#l; = e; for each 1 <i < ¢ and 1; is the minimal number in T';, then we write
si = (1;2; ... (e;);). Let us order the T'; so that 1} < 1 < --- < 1, and denote by Z;
the sequence ((1;2,), (1;3;), - .., (1;(e;):)). Let Z be the concatenation Z1Z;...2Z,.
We use the following result.

Proposition 4 ([7] or [8, pp. 369-370]). Let (t1,...,t.—1) be a sequence of trans-
positions such that ty -+ -t,_1 =s and (t1, ..., ta—1) Is transitive, Then (1, ..., th—1)
is braid equivalent to

(Z5 iN+l’ ey in—l)
where (n — 1) — N =0 (mod 2) and

() ifg=1thent; =(112) foreachi > N + 1,
(ii) ifq > 1 then

Nty - Enm1) = ((11 12), (11 12), (1113), (1113), ..., (111g), (11 1))

where each (111;) appears twice if 2 <i < q — 1 and (1114) appears an even

number of times.
Proof of Theorem 1. The forgetful map HY, | (Y,bo) > Hj, , (Y) given by
[X - Y,¢] — [X — Y] has a dense image, so it suffices to prove the irreducibility
of H ;” 1, e(Y bo). Since H ; nel, e(Y bo) is smooth in order to prove its irreducibil-
ity it suffices to prove it is connected. If we show that every e-Hurwitz system in
Ad‘n+2g is braid equivalent to the normal form (Z,in41,...,fn—1,€ L0,
where (Z,in41, ..., in1) is the sequence in Proposition 4, then 1 ((¥Y — bo)™ —
A, D) acts transmvely on AY Dnt2g and so H :1),n—1, e (Y, bg) is connected.

Step 1. Let T be an arbitrary transposition of Sz and let (¢1, ..., :; A1, (1, ..., Ag,
Kg) € AG , 42+ Because n — 1+ le) = 2d, by Proposmon 3 we can replace
(1o sty A1y 1, - oo, Ag, g) DY (tl,tz,...,t,’l_2,t,’l AN ST Ag,ug) where
t; belongs to the conjugacy class of &, 13, ..., 7, are transpositions, 7, _; =1, and

’ ?
<t1’t2"' tn 2) (tl,tz,...,tn 2, n— ]1 )

Therefore we can apply Lemma 1 and because the monodromy group of a
Hurwitz system in A?l,n+2g is 84 we obtain that (£{, 25, ..., _y, by _ 1 bpi A 15 -
g, ig) is braid equivalent to (¢, 25, ..., 4, 5, T, T; AL, 1, -0 Ag, Hg)-

Step 2. We claim that every e-Hurwitz system in A7 , . is braid equivalent to
"4, ...,t); 1,...,1) where for some j the permutation t’ " has cycle type e and
t/” is a transposition for everyi # j.

We prove this using induction on > 5_, (IAx| + pal). If Y5 _, (IAs| + |al) =0
thenAp =1and uy =1foreachh=1,...,g

Let Zizl(lkhl + |un|) > 0. At least one Ay, or one uy, is different by 1. If Ay # 1,
let Ay =71 ---rs be a factorization of A; as a product of nontrivial independent
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cycles. Let us choose a transposition o such that |ori| = |r;| — 1. According to
step 1 one has

(tl,...,t,,;)»l,/.q,...,)»g,,ug)fv(t{,té,...,t,;_z,a,o;)»l,pq,...,)ug,p,g).

Moving o to the front we obtain (0,15, ..., 2, A, 1, .. -, Ag, Ug). Applying the
braid move 1|, (see Proposition 1) we transform, without changing others, A, into
A = oAy where [A{| < |A;], so the proof follows by applying the induction.

If A; =1 and p| # 1, we choose a transposition o such that |o x| < |ui]. Again

by step 1 and acting with inverses of elementary moves we obtain (o, Bt A,
1, .-, Ag, Hg). Applying the braid move p|; we transform u; into u| =ou;. The
proof follows by applying the induction hypothesis.

Ifa#land Ay =- - =k =1, gy == g1 = 1, one has uz_| = 1.
Proceeding in the same way and applying the braid move t|), one transforms A,
into ohy. Wpp £ land Ay =---=r =1, uy = --- = g = 1 one applies pj,

which transforms uy into o ug. In both cases by the induction hypothesis we obtain
the claim of step 2.

Step 3. Starting by (f1, 12, ..., ta; A1, 1, ..., Ag, ttg) and applying step 2 we
obtain (", 2y",....t;"; 1, 1,..., 1). Acting with braid moves o/ and their inverses,
we may replace this Hurwitz system with a new system (71, ..., 1 oD
such that the cycle type of 7, is e. The permutation ¢! has the same cyclic type of
f..s0e ' =a~'f,a witha € S;. Let a =y, - - - y, with y; transpositions.

Because (71, ...,fn_1,0n) =Sgand f; ---f,_y = ;! we have that (fj,....l,_1) =
S4. Then applying Mochizuchi’s lemma [8, Lemma 2.4] and braid moves o}, we
obtain that

(flv”'aanl)N("wyl)a SO (;l»---,fn—lafn)'\’(--w)’l»fn)-
Acting twice by o, _, we have

V1 I) ~ Wiy, V1) ~ (], Vit V1)

and therefore one has that (71, ..., fn—1,2n) ~ (..., Y1n¥1)-
Proceeding in this way also for y,, ..., ¥, we obtain that (7}, ..., fa—1, % 1, 1,
..., 1) is braid equivalent to (i1, ...,#n-1,6 '3 1,1,...,1) where (f},...,fp_1) =

S; and #y---i,.1 = &. To conclude it is sufficient to apply Proposition 4 to the
sequence (f1,...,fn—1).
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