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ABSTRACT 

Let Y be a smooth, projective complex curve of  genus g /> 1. Let d be an integer ~> 3, let e = 

{el, e2 . . . . .  er } be a partition o f d  and let le I = Y'~r=t (e i - 1). In this paper we study the Hurwitz spaces 
which parametrize coverings of  degree d o f  Y branched in n points of  which n - 1 are points of  simple 

ramification and one is a special point whose local monodromy has cyclic type e and furthermore the 
coverings have full monodromy group Sd. We prove the irreducibility of  these Hurwitz spaces when 
n - 1 + lel >/2d, thus generalizing a result of  Graber, Harris and Starr [A note on Hurwitz schemes of  

covers o f  a positive genus curve, Preprint, math. AG/0205056]. 

1. INTRODUCTION 

Let Y be a smooth, connected, projective complex curve of  genus g ~> 1 and let 
b0 ~ Y. Let d/> 3 be an integer and let e = {el, e2 . . . . .  er} be a partition of  d, el d- 

e2 d - ' "  d- er = d, where el ~> e2 ~ " "  /> er ~> 1. Let ]el = )-~r=l  (ei - 1). 

Let us denote by Hd,n- l ,e (Y ,  bo) the Hurwitz space that parametrizes equivalence 
classes of  pairs [Jr, q~] of  a covering zr :X ~ Y and a bijection ~b : rr- l(b0) 
{1 . . . . .  d} satisfying the following: Jr is a covering of  degree d of  Y, the cover 
X is smooth and connected, zr is unramified at b0 and is branched in n > 0 
points, n - 1 of  which are points o f  simple branching and one is a special 
point whose local monodromy has cyclic type e. Denote by D the branch locus 
of  n and denote by m : n l ( Y  - D, bo) -+ Sd the associated monodromy homo- 
morphism. Because X is irreducible, the image of  m is a transitive subgroup 
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of  Sd. Associated to [zr, 4~] is an ordered (n + 2g)-tuple o f  elements of  Sd, 
(tl . . . . .  tn; )~l, #1 . . . . .  )~g,/Zg), satisfying the following: for some j the permu- 
tation tj has cyclic type e, ti are transpositions for each i ~ j and t l . . .  tn = 
[)~l, # 1 ] " "  [~-g, #g]. We call (tl . . . . .  tn; ~-1, #1 . . . . .  ~.g,/~g) a Hurwitz system and 
the group generated by ti, ~.k, tzk the monodromy group of  the Hurwitz  system. 
In this paper  we are interested in H~,n_l,e(Y, b0), the subset o f  Hd,n-l,e(Y, bo) 
parameterizing pairs [Jr, q~] whose monodromy group is all Sd. In a similar manner  
one defines the Hurwitz space H~',n_l,e(Y) which parametrizes coverings of  the 
considered type without fixing a bijection 4~. We prove the following theorem: 

T h e o r e m  1. Let Y be a smooth, connected, projective curve of  genus g >~ t and let 
bo ¢ Y. I fn  - 1 + le[ ~> 2d then the Hurwitzspaces Hj. n j.~(Y, bo) and H~'n_l,£(Y) 
are irreducible. 

Coverings o f  curves o f  positive genus were studied by Graber, Harris, Starr 
in [4] and by Kanev in [6]. Graber, Harris and Starr considered Hurwitz spaces 
parameterizing irreducible degree d covers o f  a genus g ~> 1 curve with n simple 
branch points. When n >/2d, they proved the Hurwitz spaces is irreducible. Kanev 
sharpened this result and proved the irreducibility o f  these spaces in the case 
n />  max{2, 2d - 4} if g ~> 1 and n />  max{2, 2d - 6} if g = 1. Kanev also proved 

the irreducibility o f  H~,n_l,e(Y) when n - 1 /> 2d - 2. 
The result o f  this paper is a generalization o f  that o f  Graber, Harris and Starr. 

Namely, we prove the irreducibility o f  the Hurwitz spaces for the same values 
of  the genera o f  X and Y as they do, but furthermore we allow one special 
fiber. The irreducibility o f  H~, n l,e(Y) follows immediately from the irreducibility 
of  H~.n_j,e(Y, bo). We prove the irreducibility o f  H~,~_I,e_(Y, b0) by proving the 

transitivity of  the action o f  the braid group Jrl ((Y - bo) (m - A, D) on the set 
o f  Hurwitz systems (tl . . . . .  tn; Zl, # l  . . . . .  ~.g, #g)  with monodromy group Sd. We 
follow the key idea of  [4], i.e., we prove that applying a finite number  o f  braid 
moves it is possible to replace every (tl . . . . .  tn; L1, #1 . . . . .  )~g,/zg) by a new system 
of  type (il . . . . .  i~; 1, 1 . . . . .  1, 1). Then using only elementary transformations o f  

the Artin's braid group, we reduce (il . . . . .  in) to a normal  form. 
It seem likely the inequality in the hypothesis o f  Theorem 1 may be replace by the 

weaker one n - 1 + lel >/2d - 2. This inequality is necessary for coverings whose 
l ! I ! ~ l .  Hurwitz systems are braid equivalent to ones with )~1 = /Z l  . . . . .  ~'g = #g 

Unfortunately our method o f  p roof  does not allow to cover also the limiting case 

n - 1 + lel = 2d - 2. 

2. PRELIMINARIES AND BRAID MOVES 

Let Y and X be smooth, connected, projective complex curves of  genus />  0. Let 
~r : X ~ Y be a covering o f  Y, i.e., zr is a finite holomorphic  mapping.  

A branch point is a point b 6 Y such that some point o f  zr-  t (b) is a ramification 

point ofzr .  A branch point b E Y is called apoint o f  simple branching for zr i f r r  is 
ramified at only one point x 6 rr -1 (b) and the ramification index e(x) o f  re at x is 2. 
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A branch point b c Y is called a spec ia lpoin t  i f  it is not simple. The set o f  branch 
points is called the branch locus of  zr. 

Let  d be  a positive integer. Two d-sheeted branched coverings ~rl : X1 --+ Y and 
zr2 : X2 ~ Y are called equivalent i f  there exists a biholomorphic  map f : X1 ~ X2 
such that zr2 o f --- Zrl. The equivalence class containing Zrl is denoted by  [Zrl]. 

Let  e -- (el, e2 . . . . .  er) be a partition o f d  where e l />  e2 ) - . . />  er /> 1. Associate 
to e_ the following element in Sd having cycle type e, 

(1) e : = ( 1 2 . . . e l ) ( e l + l . . . e l + e 2 ) . . . ( ( e l + . . . + e r - 1 ) + l . . . d ) .  

Let bo be a point o f  Y, let us denote by nd,n- l ,e(Y,  bo) the Hurwitz  space 
that parametrizes equivalence classes o f  pairs [rr, q~] o f  a covering Jr : X ~ Y and 
a bijection ~b:zr-l(b0) -+ {1 . . . . .  d} satisfying the following: Jr is a covering o f  
degree d of  Y, Jr is unramified at b0 and it is branched in n > 0 points, n - 1 
o f  which are points o f  simple branching and one is a special point whose local 
monodromy belongs to the conjugacy class o f  e. 

Let  y(n) be the n-fold symmetr ic  product o f  Y and let A be the codimension 
1 locus o f  y(n) consisting o f  nonsimple  divisors. Let  qJ : Hd,n-a,e(Y, bo) --+ (Y - 
b0)(n) - A be the map  which assigns to each [zr, 4)] the reduced branch locus ofzr .  

Convent ion .  The natural action o f  Sd on {1 . . . . .  d} here is on the right and 
multiplication o f  permutat ions is by cr • r = r ocr, e.g., (12)(13) = (123). 

Let  [Jr, 4~] 6 nd,n-l,e(Y, bo), let D be the reduced branch divisor, let [y] ~ 7r 1 (Y - 
D, b0), and for every i = 1 . . . . .  d, denote xi = ~b-l(i) in r r - l (b0) .  For every i = 
1 . . . . .  d, i t equals q~(y), where y is the terminal point o f  the unique lift o f  y whose 
initial point is xi. 

For the rest o f  the paper  we suppose n /> 2. Let  D = {bl . . . .  , bn} and let 
yl ,  y2, . . . ,  Y,, u l ,  131 . . . . .  Ug,/3g be the closed arcs oriented counterclockwise rep- 
resented in Fig. 1. 

The corresponding homotopy  classes of  these arcs yield a system of  generators 
for 7r 1 ( Y  - -  D ,  b 0 )  which satisfy the only relation 

YlY2 " " " Yn ~" l o l l , / 3 1 ] " " "  [Otg,/3g].  

Defini t ion 1. An ordered sequence ( t l ,  . . . ,  tn; )~1,/~1 . . . . .  ~,g, /Zg) o f  permutat ions 
o f  Sd such that ti ~ 1 for each i = 1 . . . . .  n and q t 2 . . ,  tn = [ )~1 , /z l ] ' "  [)~g,/Zg] is 
called a Hurwitz  system. The subgroup G c_ Sd generated by ti, ~4,, Izk with i = 
1 . . . . .  n and k = 1 . . . . .  g is called the monodromy group of  the Hurwitz  system. An 
e_-Hurwitz system is a Hurwitz  sys tem such that 1 o f  tl . . . . .  tn has cycle type e, and 
the other n - 1 elements in tl . . . . .  t n are transpositions. 

The images via the monodromy homomorph i sms  m o f  2/1 . . . . .  Yn, Otl,/31 . . . . .  O/g, 
/3g determine e-Hurwitz  systems 

( m ( y 1 ) , . . . ,  m(yn), m ( o t l ) ,  m( /31)  . . . . .  m(Otg), m(~g)), 
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Figure 1. 

"""'" ~ ~1.1 

bnt,~.~'~[~'~O \ ~ I11-1 
; 

bo 

with transitive monodromy group. 

Let us denote by Ad,n+2g the set o f  all e-Hurwitz systems (tl . . . . .  tn; ~.l,/zl, 

. . . .  )~g,/Zg) with transitive monodromy group. The Riemann existence theorem 
determines a bijection from the fiber o f  qJ over D to Ad,n+2g. 

Definition 2. Let G c Sa be a transitive subgroup. A decomposition for G is a 

partition (Zt . . . . .  Ek) of{ l  . . . . .  d} into sets o f  equal size v ~ 1, d such that (]~i) g E 

{ E l . . . . .  Ek } for every g E G and i = 1 . . . . .  k. I f  there exists a decomposition for 
G, G is imprimitive, otherwise G is primitive. 

Let A" be the set o f  all e-Hurwitz systems (tl, t ,;  XI /zt, Xg, #g)  in 
d , n + 2 g  - -  • • • ,  , • • • ,  

Aa,n+2u with primitive monodromy group. We denote by H" e(Y, bo) the set o f  
d , n - l , =  

all the pairs [3r, 4q in Ha,,,-l,e(Y, bo) such that if  D is the reduced branch locus o f  

Jr and yl, y2 . . . . .  Vn, aJ,/31 . . . . .  ag, 3~ is a system o f  closed arcs as in the figure, 
then the monodromy group of  (re(y1) . . . . .  m(yn),  m(etl ), m(31 ) . . . . .  m(otu), m( fg ) )  
is a primitive group. Therefore by Riemann's existence theorem we can identify the 

fiber o f  H~',n_I,e(Y, b0) --+ (Y - b0) ~m - A over D with A ° 
_ d , n + 2 g "  

There is a unique topology on H~,,,_],e_(Y, bo) such that Hff, n 1,e(Y, b0) --+ (Y - 

bo) ~n) - A is a topological covering map, cf. [3]. Therefore the braid group 7~ 1 ((Y -- 
bo) ~") - A, D) acts on A ° I f  this action is transitive then H~,,,_I,e(Y, bo) is 

d , n + 2 g "  

connected. 

Shortly we recall some notion on braid groups. 

The braid groups o f  orientable 2-manifolds o f  genus g >~ 1 were studied by 

J.S. Birman, E. Fadell and G.P. Scott (see [1,2,9]). Let Y be a smooth, connected, 
projective complex curve o f  genus g /> 1. The generators o f z q  ((Y - bo) ~m - A,  D) 
are the elementary braids ~r i with i = 1 . . . . .  n - 1 and the braids Pak, rbk with 

1 ~< a, b ~< n and 1 ~< k <~ g. The calculation o f  the action o f  the elementary braids 
~ri on Hurwitz systems is due to Hurwitz [5]. 
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The elementary moves o-/t, relative to the elementary braids o-i, bring 

(tl . . . .  , t i - l ,  ti, t i+l . . . . .  tn; ~.1, ]£1 . . . . .  ~,g, [Lg) 

to 

( t l  . . . .  , t i -1 ,  t i t i+ l t i  -1 , ti ,  . . . ,  tn; ~ '1 ,  # 1  . . . . .  ~ .g ,  / £ g ) .  

T h e r e f o r e  t h e i r  i n v e r s e s  bring (tl . . . . .  t i - 1 ,  ti, t i + l ,  . . . ,  tn; ~,1, t£1 . . . . .  ~,g, # g )  t o  

( t l  . . . .  , t i - 1 ,  t i+l ,  tL l l  t i t i+l  . . . . .  tn; )~1,1£1 . . . . .  ~-g, lZg) • 

The braid moves that correspond to the generators Pik, "Cik were studied by Graber, 
Harris, Starr in [4] and by Kanev in [6]. We make use o f  some results proved in [6]. 
In this paper to each generator Pik or Z'ik is associated a pair o f  braid moves P~k, 

' v" = (r[k)- l ,  respectively. p~% = (p~k)-1 and "Cik , ik 
Let (tl . . . . .  t~; ~.1,/Zl . . . . .  ~.g,/Zg) be a Hurwitz system. The braid move P[k 

leaves unchanged Xz for each l, tj for each j ~ i and/~1 for each l ~ k, while 
changing ti and /*k. Analogously the braid move r/'~ changes ti and )~k, leaving 
unchanged lZt for each l, kt for each I # k and tj for each j ¢ i. 

We use the following result. 

Propos i t ion  1 [6, Corollary 1.9]. Let ( t l  . . . . .  tn; )~1, # 1  . . . . .  )~g, IZg) be a Hurwitz  
system. Let Uk = [)~1,/Zl] '" [)~k, tZk] for  k ----- 1 . . . . .  g and let uo = 1. The fol lowing 

formulae  hold: 

(i) For pIlk: 

P~k : tZk -+ tZ~k = ( b l l t 1  l b l ) I z k ,  

w h e r e  bl  = Uk-l~.k .  

(ii) For v" " l k "  

l !  . I I  

"glk . ) ' k  ~ ) ' k  = ( u [ l l t ~ l U k - l ) ) ~ k "  

In particular 

r~'l :~.1 ~ t11)q. 

3. I R R E D U C I B I L I T Y  O F  H~.n_l.e_(Y, bo) 

In this section we will prove the irreducibility o f  H~,n_l,e(Y, bo) for n - 1 + [ e_e_[ >/2d. 
Since H~,n_l,e(Y, bo) is smooth in order to prove its irreducibility it suffices to prove 

it is connected. In Section 1 we observed that if rrl ((Y - bo) (n) - A, D) acts transi- 
tively on A~ n+2 then Hff n I e (Y' b0) is connected. In order to prove the transitivity , g , - ,_ 

of  the action ofrr l  ((Y - b o )  (n) - A ,  D) on A ~ .  2 it is sufficient to prove that, acting , + g  

by braid moves, it is possible to bring every _e-Hurwitz system in A °d,~+2g to a given 
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normal form. So first we prove that every ( t l  . . . . .  t,; "~1, # 1  . . . . .  ~ .g ,  #g) i n  A°d,n+2g 
I l ,  can be transformed into (t'l, " ' '  ' tn-1' tn' ~.1, ~1 . . . . .  )~g, #g) where t~_ l , '  t~' are equal 

transpositions and (t~, . . . .  tn_2)' = (t~, . . . .  tn_2,t tn_l , ,  fn)" Then we apply the Main 
Lemma o f  [6] which states that (fl ' " " . . . .  , t n _ l , t n , ) q , l Z l ,  ., )~g, #g) can be replaced 

' (t '  ~h (t~)h;)~t,#l . . . .  )~g,/Zg) where h c ( t l , . .  t '  by (t 1 . . . . .  ~ n-l~ ' " "' n - 2 ' h l ' # l  . . . . .  

We remember that the monodromy group G o f  a e-Hurwitz system in A ° is 
- d , n + 2 g  

a primitive group which contains a transposition. In [6] it is proved that a primitive 
group G c_ Sa which contains a transposition is all Sa. Therefore the monodromy 

group of  every e-Hurwitz system in A" is Sj. 
- d , n + 2 g  

Using these results and braid moves we are ready to normalize (~j, ~t~ . . . . .  
)~x, #g).  The proof  tbllows by applying a sequence o f  braid moves and inverse braid 

moves and then using Mochizuchi 's  proposition [8, pp. 369 370]. 

D e f i n i t i o n  3. We call two Hurwitz systems braid equivalent  if  one is obtained from 

the other by a finite sequence o f  braid moves cr~, Pjk"  75jk'! ( O ' ; ) - 1 '  Pjk'tt "gjk't where 
1 ~< i ~< n - 1, 1 ~< j ~< n and 1 ~< k ~< g. We denote the braid equivalence by ~ .  

D e f i n i t i o n  4. Two ordered n-tuples (or sequences) o f  permutations (q . . . . .  t ,) and 

(t~l . . . . .  t~) are called braid equivalent  if  (t I . . . . .  t~') is obtained from (tl . . . . .  t~) by 
a finite sequence o f  braid moves o f  type ~r~,, (cri')- l . Note that if tl .-.  t~ = s then 

t ? 
t I . . . t  n = S .  

L e m m a  1 [6, Main Lemma 2.1] .  Let  (tl . . . . .  t . ;  )~1, # l  . . . . .  )~g, #~)  be a Hurwi tz  

sys tem o f  permuta t ions  o f  Sa. Suppose  that titi+l ~- 1. Le t  H be the subgroup o f  Sa 

genera ted  by {tl . . . . .  t i -  1, ti+2 . . . . .  tn, ~ 1, # 1 . . . . .  )~g, #g }. Then f o r  every  h ~ H the 
given Hurwi tz  sys tem is braid equivalent  to 

(tl . . . . .  t i - l ,  ti h, t/h+l, ti+2 . . . . .  tn; ~,1,/'61 . . . . .  ~ -g ,  # g ) -  

For the rest o f  the paper we suppose d />  3. We now want to prove that every 

( q , . . . ,  tn; ;~1,/~1, . .. , A n, #g)  in A °a,n+2g can be transformed, by a finite number o f  
! ! ! I .  braid moves a{ and o f  their inverses, into (t I , t 2 . . . .  t~-2, tn-1, tn' )~l, #~ )~g, lZg) 

~ ~ P and where t 1' has cyclic type _e, t 2, .. . , t n are transpositions, tn_ ! = t n 

! ! 

(t~ t 2 . . . .  t n_2)=( t~ ,  ' ~ " fn)" , . .  . . . , t n _ ~ , t n _  ~, 

L e m m a  2. Let  (tj,  t2) be an ordered  2-tuple such that tl is a d-cycle and  t2 a 

transposition. Le t  a~ be a f i x ed  e l emen t  o f  the set  {1 . . . . .  d}. Then (q ,  t2) is braid 
! / ! 

equivalent  to 01, t2) where  t~ is a d-cycle  and  t 2 a transposit ion that moves  a~. 

' is the element that occupies the first Proof .  It is not restrictive to assume that a k 
. .. ~ Acting twice place in tl. Let (tl, t2) = ((al • • ai . . .  a j .  ad), (a ia j ) )  where al = a k. 

! 
with the elementary move al we obtain 

( ( a l . . . a i . . . a j . . . a d ) , ( a i  a j ) )  ~ ((bl  . . . b i _ l  . . . b j _ l  . . . bd ) ,  ( b i _ l b j _ l ) )  
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where (bt . . . . .  /)i-t  . . . . .  b j-1 . . . . .  bd) = (al . . . . .  cti . . . . .  Ztj . . . . .  ad) and 
(bi-  1, b j_ l )  = (a j ,  ai). 

Acting with (~ )2  another i - 2 times we obtain the required result, i.e., (q ,  t2) 
is braid equivalent to (t~, tj) where t~ is a d-cycle and tj a transposition that moves 

al.  [] 

L e m m a  3. Let  (tl, r, r )  be a sequence such that tl is an arbitrary permutat ion o f  

Sd and r a transposition. Then (tl, r, r )  is braid equivalent to (r,  r, tl). 

Proof .  Applying the elementary moves (o-~) -1,  (0"i)-1 we obtain 

(q,  r, r )  "- (r ,  r - l q r ,  r )  ~ (r ,  r ,  q) .  [] 

L e m m a  4. Let  (tl, z-, r )  be a sequence such that tl is the d-cycle (al . . .  ai . . .  aj  . . .  
ad) and r the transposition (aiaj). Then (tl, z, r )  is braid equivalent to (tl, r ' ,  r ' )  
where r '  = (aiaj,) and j '  - (2i - j )  (mod d). l f  j - i # d / 2  then r; # r. 

Proof .  Applying successively the elementary moves a~, a j  and using Lemma 3 we 
obtain 

(tl, (aiaj),  (aiaj))  ~ ( ( a i - l a j - l ) ,  ( a i - l a j - l ) ,  tl) 
(tl, (a i - l a j -1 ) ,  ( a i - l a j - 1 ) ) .  

Applying the sequence o f  elementary moves (r~, a j  and using Lemma 3 another 
(j  - i) - 1 times we obtain the lemma. [] 

L e m m a  5. Let  (tl . . . . .  ti, ti+l . . . . .  t n )  be a sequence o f  permutations in Sd such 
that ti, ti+l are two equal transpositions o f  Sd. Then we can move to the right 

(respectively, to the left) the pair  (ti, ti+l) leaving unchanged other permutat ions 
o f  the sequence. 

Proof. The proof  follows by Lemma 3. [] 

Notice that applying braid moves or/' or their inverses we can move one arbitrary 
transposition o f  the sequence (q . . . .  , ti, ti+l . . . . .  tn) where we want. In this way, 
however, we change also other permutations o f  the sequence. 

L e m m a  6. Let tl be a d-cycle, let t2 . . . . .  tt be transpositions and let a be an 

element moved by at least one o f  the transpositions. Then (tl, t2 . . . . .  tt) is braid 

equivalent to a sequence (/1, a l ,  oq . . . . .  Otz, Otz, ill, f12 . . . . .  tim) such that 

(i) [1 is a d-cycle, 
(ii) f o r  every i = 1 . . . . .  z, respectively, j = 1 . . . . .  m, the element  oti, respectively, 

flj, is a transposition moving a, 

(iii) the elements fll . . . . .  t~m are distinct, and 

121 



(iv) i f  l - 1 >~ d then z is a t  l eas t  1. 

P r o o £  We prove the l emma by induction on 1. I f  1 = 2, t2 is a transposition moving 
a. So (tl, t2) is a sequence as we want in which z = 0 and m = 1. Let 1 > 2. By way 
o f  induction, we suppose the l emma is proved for all smaller values o f  1. Acting 
with braid moves ~ ,  we bring the transpositions that move the element a to the end 
o f  the sequence, obtaining 

(tl, t~ . . . . .  t~,_l, tlv = (a . )  . . . . .  (a *)). 

Applying Lemma  2 we replace (tt, t~) by (t I, t")2 where t I' is a d-cycle and t~' is 
a transposition that moves a. By braid moves cFj we m o v e  t2~I to the left o f  ti' ~. 
Proceeding in this way successively for every transposition of  the sequence that 
does not move a we obtain 

(2) (tl I, (a *) . . . . .  (a *)). 

If the transpositions in (2) are all distinct, the (2) is a sequence as we want in 
which z = 0. I f  instead in (2) there are two equal transpositions, using inverses o f  
elementary moves cry, we move them to the front obtaining 

(Otl, Otl, i l ,  i2 . . . . .  i / - 2 ) .  

We can then apply the induction hypothesis to the sequence (i j, i2 . . . . .  i l - 2 ) .  The 
proof  follows by applying L e m m a  5. Observe that i f  I - 1 /> d, because there are 
only d - 1 distinct transpositions that move a, some transposition occurs twice in 

(2). So i f / -  1/> d, z is at least 1. [] 

Proposition 2. Let  (tl , t2 . . . . .  tl) be  a s e q u e n c e  such  tha t  tl & a d-cyc le  a n d  

t2 . . . . .  tt are  t ranspos i t ions .  I f  d is o d d  a n d  I - 1 >>. d or  i f  d is even  a n d  l - 1 > d 

then ( t l ,  t2 . . . . .  tt) is b ra id  e q u i v a l e n t  to (i j ,  r, r, r, i5 . . . . .  it) w h e r e  il  is a d-cyc le  

a n d  r,  i5 . . . . .  ii are  t ranspos i t ions .  

Proof .  We suppose by way o f  contradiction there is not a sequence braid equivalent 
to (tl, t2 . . . . .  tl) with three equal transpositions. By Lemmas  6 and 5 we have that 

(tl, t2 . . . . .  tl) is braid equivalent to a sequence (oq, ~1 . . . . .  az, Otz, /`1, /31, /32 . . . . .  /3m) 
where the elements oti,/3j are transpositions moving a , / 3 j  ~ / 3 h  for h # j and z is 
at least 1. 

Let oF 1 . . . . .  ot~ be the transpositions that one obtains applying L e m m a  4 to the 

sequence (/'1, oti, eti) for i = 1 . . . . .  z. Let eli = (ae i ) ,  ot~ = (ae~) and/3j = ( a d j ) .  Let 
C = {cl . . . . .  Cz}, C'  = {c' 1 . . . . .  Clz} and D = {dl . . . . .  din}. The following inequality 
holds 

(3) g(C U C ' )  + ~D > d -  1 

whatever d is, odd or even. 
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In fact, let d be odd. In this case C A C'  = 0, because otherwise there would be a 
braid equivalent sequence with 4 equal transpositions, so ~(C t3 C')  = gC + ~C' = 

2z. ~D = (l - 1) - 2z, thus 

~(C U C')  + ~D = 2z + ( l -  1 ) -  2z = l  - 1. 

By  hypothesis l - 1 >/d therefore (3) holds. 
Let d be even. In this case 0 ~< ~(C N C')  ~< 1, so 2z - 1 ~< g(C t3 C')  ~< 2z. Then 

1 - 2 <~ ~(C U C')  + ;ID <~ l - 1. Because, by hypothesis, l - 1 > d the inequality (3) 
holds in this case as well. 

Since the element a is not in C u C p U D, the inequality (3) assures that ~((C U 
C')  n D) />  1. Then there exist j ,  j ~ {1 . . . . .  m}, such that either 3j  = o l i  o r / ~ j  ~-- o/~, 

for some 1 ~< i ~< z. I f  f l j  = 0t i we obtain a braid equivalent sequence with three 
equal transpositions which is a contradiction. I f 3 j  = oe~ we arrive at a contradiction 
in the same way applying Lemma 4 to (il, oti, o~i). This proves the proposition. [] 

Definit ion 5. Let o- be a permutation o f  Sa and let ~r = or1 -. .  err be a factorization 
o f  ~ into a product o f  independent cycles. Define the norm of  cr as follows 

r 

Icrl : =  ~---~(~cri - -  1 ) .  

i=1  

L e m m a  7 [ 10, Corollary 4.1 ]. Let  (tl, t2 . . . . .  tn) be a sequence such that t2 . . . . .  tn 

are transpositions, tl is an arbitrary permutation o f  Sd and G = ( t l , . . . ,  tn) is 

transitive. Then (tl, t 2 , . . . ,  tn) is braid equivalent to (q ,  i2 . . . . .  ik . . . .  , in) where 

i2 . . . .  , in are transpositions and 

Itll < Itli2l < . . .  < Iqi2. . . tkl  = d -  1. 

Proof .  Let I ' l  . . . . .  1-'m be the domains o f  transitivity o f  the permutation t~. We 
prove the lemma by induction on m. I f m  = 1 then tl is a d-cycle,  so Itll = d - 1. 
Let m > 1. By way o f  induction, we suppose the lemma is proved for m > 1 and we 
prove it for m + 1. Because by hypothesis G is transitive at least one transposition 
ti, 2 <. i <<. n, is such that ti = (ab) with a E I's, b 6 I'l and s ~ l. Acting by inverses 
o f  elementary moves or/~ we bring (ab) to the right o f  tl, obtaining a new sequence 

( t l , ~ , t  3 . . . . .  

where i2 = (ab), [tl[ < Iqi2l and tli2 has m domains o f  transitivity. We can then 
apply the induction hypothesis and so we obtain the lemma. [] 

Proposition 3. Let (tl, tz . . . . .  tn) be a sequence o f  permutations in Sa such that tt 

is a permutation that belongs to the conjugacy class o f  e (c f  Eq. (1)) and t2 . . . .  , tn 
are transpositions. 

l f n  -- 1 + lel/> 2d then (tl, t2 . . . . .  tn) is braid equivalent to 

/ ! I I 
(t 1 , t 2 . . . . .  t n_ 2, tn_ 1 , t;) 
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w h e r e  t1[ b e l o n g s  to the  c o n j u g a c y  c lass  o f  e, t~ . . . . .  t~n are  t ranspos i t ions ,  t~n_l = t~n 

a n d  

( t l ,  . . . . .  t ; _2>  = . . . . .  t ; _ 2 ,  tn'_ , ,  t;>.  

Proof .  Let G = (tl . . . . .  tn) and let E 1 . . . . .  ~]v be the domains o f  transitivity o f  G. 
Acting by braid moves ~r: and their inverses we place the transpositions t2 . . . . .  tn so 

that (q,  t2 . . . . .  tn) is braid equivalent to 

( t l , t l l ,  . . . , t l n l , t 2 1 ,  . . . , t 2 n  2,  . . . , t v l ,  . . . , t v n v )  

where tit , . . . ,  tini are the only transpositions that move the elements o f  El. 
For every i = 1 . . . . .  v, denote by ii the permutation preserving the partition 

(El . . . . .  E,,) set-by-set whose restriction to ]~i equals t~t~i, and whose restriction 

to Ej  is the identity for j 5& i. For every i = 1 . . . . .  v, denote di = I~Ei; observe 

dl + d z + . . . + d v = d .  
Notice that v and n 1 ~ i = l  liil = lel - = EiV=l hi .  
By Lemma 7 we have that ( i i ,  til . . . . .  t ini)  is braid equivalent to a sequence 

(i i , ?i l . . . . .  tiki , tiki + l . . . . .  ?ini ) where i i ?i l . .  " ?i~i is a di-cycle and moreover only 

braid moves among til . . . . .  tini were used. 
B e c a u s e  Y~iV=l(ni - k i )  = n - i + lel + v -- d, which is greater than n - 

1 + lel - d, and because ~ = 1  di = d,  the hypothesis n - 1 + lel /> 2d implies 

v n Y ~ i = I  ( i - - k i )  > Y~f=l  d i ,  in particular there exists j such that n j - - k j  > d j .  Moving 
the transpositions t j l  . . . . .  t jn j  to the front we obtain that (q, t2 . . . . .  tn) is braid 

equivalent to (tl , t j l  . . . . .  t j n j  . . . .  ) .  

By Lemma 7, the sequence ( q ,  t j  I . . . . .  t j n j )  is braid equivalent to a sequence, 

. . . . .  . . . . .  

such that i l ? j l ' "  ?jkj is a dj-cycle.  Since n j  - k j  > d j ,  by Proposition 2 one has 

that 

(tl, t2, t .)  ~ (t I, tjl t '  ' .). . . . . . . . . .  j k j ,  T, T, r . . . . .  t j n j , . .  

In this way we obtain a new sequence where there are three equal transpositions. 

Therefore cancelling two o f  these three transpositions the group generated by the 
remaining ones remains unchanged. The proof  follows by moving two o f  these three 

transpositions to the end o f  the sequence. [] 

R e m a r k  1. I f  d is odd or i f  d is even and v ~> 2, Proposition 3 is true for n - 1 + 

[el ~> 2d - 1. I f  d is odd and v 7> 2 or i f  d is even and v ~> 3, Proposition 3 is true 

f o r n  - 1 + lel ~> 2 d -  2. 

Let (q . . . . .  tn-1) be a sequence o f  transpositions such that tl " "  tn--1 = S and 
(tl . . . . .  tn-1)  is transitive. Let s = s l . . . S q  be a factorization o f  s into a product 
o f  independent cycles and let r ' l  . . . . .  l-'q be the domains o f  transitivity o f  s. I f  

124 



~Fi = ei for each 1 <~ i <~ q and li is the minimal  number  in Fi, then we write 
si = (1i2i . . .  (ei)i). Let us order the Fi so that ls < 12 < . . .  < lq and denote by Zi 
the sequence ((1i2i), (1i3i) . . . . .  ( l i (ei) i)) .  Let Z be the concatenation Z I Z 2 . . .  Zq. 
We use the following result. 

P ropos i t ion  4 ([7] or [8, pp. 369-370]).  Let (tl . . . . .  tn- l )  be a sequence o f  trans- 
positions such that tl " "  tn-1 = s and (tl . . . . .  tn -1)  is transitive, Then (tl . . . .  , tn-1) 
is braid equivalent to 

(Z ,  iNq- 1 . . . . .  tn--1) 

where (n - 1) - N -~ 0 (mod 2) and 

(i) / f q  = 1 then t i  ~- ( l l 2 1 ) f o r e a c h  i ~ N +  1, 
(ii) t f q  > 1 then 

( iN+I  . . . . .  i n - 1 ) = ( ( l l  12), (1112),  (1113),  (1113) . . . . .  ( l l l q ) ,  (11 l q ) )  

where each (111i) appears twice i f 2  <~ i <~ q - 1 and ( l l l q )  appears an even 
number o f  times. 

P r o o f  of  T h e o r e m  1. The forgetful m a p  Hff, n _ l , e ( Y ,  bo) --~ H~,n_l,e(Y) given by 
[X -~ Y, ~b] ~ [X --~ Y] has a dense image,  so it suffices to prove the irreducibility 

o f  H~,n_l,e_(Y, bo). Since H~,n_l,e(Y, bo) is smooth in order to prove its irreducibil- 
ity it suffices to prove it is connected. I f  we show that every e-Hurwitz  system in 

A~,n+2g is braid equivalent to the normal  form ( Z , / N + I  . . . . .  / n - i ,  e - l ;  1 . . . . .  1), 

where (Z, iN+l . . . . .  i n - t )  is the sequence in Proposit ion 4, then 7rl((Y - bo) (n) - 
A, D) acts transitively o n  A°d,n+2g and so H~,n_l,e(Y, bo) is connected. 

Step 1. Let r be an arbitrary transposition Of Sd and let (t~ . . . . .  tn; ~.1,/zl . . . . .  Zg, 
txg) ~ A°d,n+2g. Because n - 1 + lel >~ 2d, by Proposit ion 3 we can replace 

(tl  . . . . .  tn; ~.1, IZl . . . . .  ~.g, lzg) by (t~, t~ . . . . .  tnr_2 , tnt_l , tnt;/kl, #1 . . . . .  ~.g,/Zg) where 
t~ belongs to the conjugacy class of  e, t~ . . . . .  t~ are transpositions, tn ~_ 1 = tn' and 

' ' t n ' _ 2 /  , , , r tn')- (t 1 , t2 . . . . .  = (t 1 , t2 . . . . .  t'n_ 2, tn_ 1 , 

Therefore we can apply L e m m a  1 and because the monodromy group o f  a 

(t  I , t 2, •, tn_ 2, tn_ 1 , tn, )~1,/Zl, Hurwitz system in A°d,n+2g is S d w e  obtain that ' / .. r i i. . . . ,  
)~g,/Zg) is braid equivalent to (t~, t~, . . . ,  tn'_ 2, r, ~; )~l, ~/Z1 . . . . .  ~,g, /Zg) .  

Step 2. We claim that every e-Hurwitz  sys tem in A°d,n+2g is braid equivalent to 
(t~', t~" . . . . .  t~'; 1 . . . . .  1) where for some j the permutat ion tj" has cycle type e and 

t; I' is a transposit ion for every i ~ j .  

We prove this using induction on Y~=l(J)~h[ + I~hl). I f  Y~.g=l(l)~hl + I/zhl) ----- 0 
t h e n  )~h ~ 1 and/Zh = 1 for each h = 1 . . . . .  g. 

Let ~~g=l ([Xh [ q- [/Zh[) > 0. At least one ~.h or one/,Z h is different by 1. If)~l ~ 1, 
l e t  )~1 = rl " "  rs be a factorization o f  )~1 as a product  o f  nontrivial independent 
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cycles.  Let  us choose  a t ransposi t ion a such that Icrrll = [rll - 1. Accord ing  to 

step 1 one has 

(tl, .. •, tn;  ~,1, ILl  . . . .  , )~g, lZg) ~ (Fl, t2; . . . ,  tn_2; a ,  a ;  ~,1, # 1 ,  • • . ,  ~ 'g ,  ~ g ) .  

I! It .  Mov ing  a to the front we obtain (a, t 2 . . . . .  tn, ~.1, lZl . . . . .  ~.g, lZg). Apply ing  the 
braid move  r~' 1 (see Proposi t ion  1) we t ransform,  wi thout  changing  others, ~-1 into 

)~] = a l l  where  I)~]1 < ILl I, so the p r o o f  fol lows by applying the induction.  
If~.l = 1 and/Zl  # 1, we choose  a t ransposi t ion a such that lat211 < I/zl I. Again  

It I t  by step 1 and acting with inverses o f  e lementary  moves  we obtain (a, t 2 . . . . .  t , ,  X l, 
# l  . . . . .  Xg, #e)-  App ly ing  the braid move  P'lJ we t r ans fo rm/z l  in to /z '  t -- cr/zj. The 

p roo f  follows by applying the induction hypothesis .  
l fXk  :# l and)~l  . . . . .  Xk-I = l, /zl . . . . .  #k - J  ---- l, one has uk j -=- I. 

t! Proceeding in the same way and applying the braid move  rtk one  t ransforms Xk 

i n t o a X k .  I f # k # l  a n d X l  . . . . .  )~k= I , # l  . . . . .  tZk I = 1 one appl iesp ' tk  
which t ransforms #k into a # k .  In both cases by the induct ion hypothesis  we obtain 

the claim o f  step 2. 
Step 3. Start ing by ( t l ,  t2  . . . . .  tn; ~-l, #1  . . . . .  )~g, #~)  and applying step 2 we 

t and their inverses, ,n n,. 1, 1 . . . . .  1). Ac t ing  with braid m o v e s  a i obtain (t~", t 2 . . . . .  t n , 
we may  replace this Hurwi tz  sys tem with a new sys tem (tl . . . . .  in - I ,  ~"  1 . . . . .  1) 
such that the cycle  type o f  tn is e. The permutat ion s-1 has the same cycl ic  type o f  
t 'n ,  SO ~,--1 = a - t [ n a  with a ~ S d .  Let a = Yt " "  Yr with Yi transpositions.  

Because  ([1 . . . . .  in - l ,  in) = Sd and [l "'" [n-I  = t-n - l  we have that (/'l . . . . .  in-I)  = 
l Sd. Then  applying Mochizuchi ' s  l emma  [8, L e m m a  2.4] and braid moves  ai,  we 

obtain that 

( t l  . . . . .  t ' n - - I )  ~ ( . . . .  Y l ) ,  SO ( t l  . . . . .  t ' n - - l ,  t 'n) ~ ( . . . .  Y l ,  t 'n) • 

Ac t ing  twice by a' n -  1 we have 

and therefore one  has that (il . . . . .  l n - - 1 ,  t 'n) ~ ( . . . .  y l t ' n Y 1 )  • 

P roceeding  in this way  also for y2 . . . . .  Yr, we obtain that ({1 . . . . .  in - l ,  in; 1, 1, 
. . . .  1) is braid equivalent  to (il . . . . .  i n - l ,  s - l ;  1, 1 . . . . .  1) where  (il . . . . .  i n - l )  = 
Sd and i l . .  " [n-I  = 8. To conclude  it is sufficient to apply  Proposi t ion 4 to the 

sequence  (il . . . . .  i n - l ) .  
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