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['] A new methodology for the Eulerian numerical solution of the advection problem
is proposed. The methodology is based on the conservation of both the zero- and the
first-order spatial moments inside each element of the computational domain and leads to
the solution of several small systems of ordinary differential equations. Since the systems
are solved sequentially (one element after the other), the method can be classified as
explicit. The proposed methodology has the following properties: (1) it guarantees

local and global mass conservation, (2) it is unconditionally stable, and (3) it applies
second-order approximation of the concentration and its fluxes inside each element.
Limitation of the procedure to irrotational flow fields, for the 2-D and 3-D cases, is
discussed. The results of three 1-D and 2-D literature tests are compared with those
obtained using other techniques. A new 2-D test, with radially symmetric flow, is also

carried out.
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1. Introduction

[2] Thc numerical simulation of advection processcs is
a crucial issuc for many groundwater modcling applica-
tions. This is because (1) many transport problems can be
rcduced to their advective component, which 1s affected by
the only uncertainty of the flow ficld, and (2) thc morc
genceral advection-diffusion cquation is often solved by
splitting techniques, in which the solution of the diffusive
componcent is usually the casiest [Abbott, 1979; Holly and
Preissmann, 1977].

[3] In spile ol the importance of the advection problem,
computational difficulties remain for its numerical solution,
mainly for 2-D and 3-D cascs, where nonstructured grids
and irregular elements are used.

[4] The available methods can be classified as Eulerian
and Lagrangian. Eulerian methods compute the unknown
lunction at the nodes or at the elements ol a compulational

mesh lixed in space, aller spatial and time discretization ol

the PDFE. Tt is well known that the classical Fulerian finite
difference or finite element methods provide numerical
solutions affected by numerical diffusion or oscillations
[Bella and Grennev, 1970; Gray and Pinder, 1983;
Venezian, 1984|. A reduction of numerical diffusion can
be obtained by evaluating the spatial derivatives starting
from the function values at distant grid points, as in the
QUICK and QUICKEST procedure |Leonard, 1979], that
can be coupled to a limiting algorithm like ULTIMATE
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|Leorard, 1991], aiming at eliminating spurious oscilla-
tions. A popular Eulerian approach is the so-called Runge-
Kutta discontinuous Galerkin (RKDG) method |Cockburn
and Shu, 1998|. The RKDG combincs a piccewise lincar
discontinuous finite clement spatial approximation of the
unknown function with a time discrctization that guarantccs
the so-called “total variation diminishing (TVD)” property,
that is an increasing (in time) spatial regularity of the
solution. After a spatial discretization of the cquation that
guarantees approximate Ricmann fluxes along the clement
discontinuitics, the proposced time discretization provides,
with simple low-order matrix operations, a system of ODEs
that can be solved, for given lemporal siep, using a Runge-
Kutta high-order accurate scheme. Other methods are the
sireamline upwind Petrov-Galerkin [Brooks and Hughes,
1982], the Taylor-Galerkin [Donea, 1984] and the Galerkin-
least squares schemes [Hughes et al., 1989]. T a [ully
implicit time discretization is used in Fulerian methods,
no limitation exists for the choice of the time step; however,
this technique requires the sotution of large nonsymmetric
algebraic systems for each time step, with a fast growth of
the numerical effort with the number of elements, Most of
the recently adopted Eulerian methods use explicit time
discretization, are second-order accurate, but have limita-
tions on the size of the Courant number, that must always be
taken smaller than one, corresponding to the well-known
Courant-Fricderichs-Lewy (CFL) condition. An cxception
is an algorithm for the finite difference solution of the 1-D
casc, proposcd by Ponce et al. [1979]. The CI'L condition
fulfillment docs not produce a large increment of the
numerical cffort in structured meshes, because it is not

1 of18



W06501

aflected by the number of clements. Nevertheless, it can
limit the elficiency ol the algorithm in nonstructured
meshes, oblained by automatic mesh generators. In this
case, the exislence ol even a single small element can
require the use of a small time step for all the elements,
with a strong increment ol the computational efTort and a
potential loss of accuracy due to the use of very small
Courant numbers in some parts of the domain, The Courant
number can be held within the stability limit using different
grid refinement techniques in computational elements with
changing velocity values | Sobey, 1984, but this lead to very
large time-consuming procedures, specially in the 2-D and
3-D cases.

[5] In the Lagrangian approaches, the computational grid
1s not fixed in spacc, moving along the characteristic lincs
with the samce velocity of the flow ficld. Then, it is
nccessary to accurately track the fluid particles and to
cvaluate their trajectorics during their motion. The particle
tracking technique is often the critical point of the procedure
[Oliveira and Baptista, 1998]. Both forward and backward
tracking techniques have been proposed in the past, but the
scarch for an accuralc method is stll in progress [Bensabat
et al., 2000; Pokrajac and Lazic, 2002]. An cxample of
Lagrangian approach is the sccond moment method, orig-
inally developed for the case ol air pollution [Egun and
Mahoney, 1972] and subsequently applied also 1o shallow
Qlow [Nassiri and Babarutsi, 1997]. The disadvantage of the
Tagrangian approaches is that they are dillicult to be
applied 1o 2-D and 3-D problems with irregular boundaries
and heterogeneous domains. Moreover, many Lagrangian
techniques do not guarantee mass conservation.

[6] In the semi-Lagrangian approaches for the solution of
the advection-diffusion problem, the use of Lagrangian
techniques is restricted to the advective component and
limited to the time step used for the solution of the next
diffusive problem. The method of characteristics (MOC)
solves the advective problem by locating, at each time step,
the foot of the characteristic line ending in cach node of a
fixed grid. This mcans that a potentially dissipative inter-
polation of the known valucs of the surrounding grid nodces
must be performed. Many cxamples of similar mcthods can
be found in the literature, like the two-point fourth-order
interpolation [[lolly and Preissmann, 1977], the finitc
clement characteristic [Wang et al., 1988], the minimax
characteristics [L7, 1990] mecthods, as well as the cubic-
splinc interpolation [Schohl and Holly, 1991], or the char-
acleristic Galerkin scheme, recently developed for the 3-D
case also [Kaazempur-Mofrad and Ethier, 2002]. The MOC
based techniques have the advantage ol allowing the use ol
large time steps and preserving the solution [rom oscilla-
tions and numerical dilfusion, but they seldom guarantee
local and global mass balance [Chilakapati, 1999]. Volume
tracking techniques [Van Leer, 1977; Rider and Kothe,
1998] follow the volume evolution of the mass itially
present inside each element of the mesh and guarantee its
conservation. The semi-Lagrangian approaches, also known
as Eulerian-Lagrangian approaches, are nowadays probably
the most popular tools for the solution of the advection
problem equations |Celia et al., 1990; Ilealy and Russell,
1993].

[7] Recently, some grid-frce methods have been pro-
poscd, based on the interpolation of scattered data [Behrens
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and Iske, 2002], but they suller of the same limitations of
the Lagrangian methods.

[8] In the [ollowing section an Eulerian procedure is
proposed, that embraces several advantages ol the Eulerian
and T.agrangian approaches. It is explicil, mass conserva-
tive, but also unconditionally stable with respect to the
Courant number. It adopts a second-order approximation of
the unknown advected tunction in each computational
element and shows an average convergence order equal to
2 i 1-D numerical tests with smooth initial concentration.
The procedure is restricted to the case of irrotational flow
fields, as it 1s more extensively discussed in section 4. In
section 2 the proposed algorithm is presented for the 1-D
case, in section 3 it is extended to the 2-D case. Extension
from the 2-D to the 3-D casc is straightforward. Somc
benechmark problems are solved in cach scction, in order to
show the features of the method.

2. Algorithm in the 1-D Casc

[9] The 1-D advection equation of the unknown concen-
(ration function ¢ is:

de Jdc .
v 0, (1)
where u is the known vcelocity and x and ¢ arc space and
time independent variables. Lquation (1) is defined in the
0 <x<L,0 <t < Tintegration domain. A unique solution
exists given the initial c(x, 0) and the upstrcam boundary
(0, 7) condition.

[10] Divide the space domain in N computational cle-
ments, with length Ax = IL/N. Assume a velocily u constant
in cach clement. Call xi, x5 the coordinates (e — 1)Ax, eAx
ol the two extreme x values ol the eth element. Divide also
the time domain in N, time steps, with extension At = T/N,.
Call #, the time level at the end ol the kth time siep (7 =
kAt). Sort all the elements along the downstream direction,
Tl u 1s positive everywhere, the ordered sequence is 1} = 1,
[2:2, ceay ]-N:]V

[11] Assume a piecewise spatial linear approXimation
c*(x. 1) of the function ¢ inside each element ¢ at any time
(Figure 1). Observe that the function ¢“(x, /) can be
discontinuous at the node between two elements. Set
() — (5, 1), 51 — (xS, £). Assume also a known
low-order polynomial time approximation £5 (/) of the
concentration at the second node of the upstream element
e 1 from time level ¢ to time level ;1. A third-order
polynomial is uscd in the implemented code, that is:

&L’ _ EL"D + ge,lt _ &0.212 _ gc'ﬁ[.i‘ (21}

where £° 1s a vector with components £7 and &5, that
are the time approximations of ¢ at the two nodes of
element e.

[12] Tt is possible to discretize, in each element, the PDE
(1) in a system of two ODEs. The first equation is derived
from the mass balance between the entering flux, the
leaving flux and the average concentration inside the
element. The second equation is derived from the conser-
vation of the spatial first-order moment inside the clement.
The moment is computed with respect to the sccond node of

2018



W06501

A
c
: ce‘i‘!
|
! i
: 1
| | I
1 i !
i I !
| | I
I ] 1
| | !
| | I
I ] I
i | |
| 1 I » X
(e-1) Ax edx  (e+1)Ax
Figurc 1. Piecewise linear approximation in space of the

concentration ¢ in the 1-D casc.

clement e, with spacc coordinate x5. The first cquation is
given by:

d(e+e5) . e feem1 gy 2
e LR G SR URIL) EaE)

where u” is the velocity in element e. Call Me¢ the moment of
the linear approximation of ¢ inside element ¢ with respect
to its downstream end. Its value is, at any time,

G0 =80, -
T3 M @

[13] Tts change in time is due to the variation of both ¢{(¢)
and ¢5(¢). These two variations are not independent, but are
linked by the advection equation (1). At time level ¢+ dt the
moment ol the real concentrations corresponding to the
piecewise approximation of ¢ at time / is equal to (see
Figure 2):

Ax ) .
Me(1 + di) _/ ch(z) +Ws>
0
(s — u"dr)} ds + g5 )dt Ax — O(dr?). (5)

To obtain the identity:
Me(t+d) — M1+ di). (6)
the [ollowing equation has (o be solved:

dM¢  Me(0+di) — M(1)
dt dt '

(7)

Mecrging cquations (4) and (5) in cquation (7) you obtain:

dMe
dr

(8)

w5 1y — A0 +c-s<z>>_
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Merging equation (4) in equation (8) you oblain:

S gen (e 1on €O (:E(I)) 3uf
T—!—c.l(r) <§)_ u‘)—f i 9)

[14] Equation (3) can be coupled with equation (9) and
solved in the c{(f), c5(f) unknowns. The system can be
written in normal form as:

1,€

e ‘A€ € € u
=48 35 (10)
re -e—1 (4 c e
o — (=24 _Cl+30'>K’ (1)
X
and in matrix form as:
de” .
— = A% —h(1). 12
=A% = b (12)

[15] According to the polynomial form of the approxi-
mated concentration in cquation (2), h(¢) is also a vector of
the form:

b(t) =b? +blr 4+ 22 — WP, (13)

[16] See in the Appendix A the relationship between A,
band £5 ', u°, Ax. The solution of system (12) at the end of
the time step is given by:

¢ — oye] — el + VO VA VAR VAL, (14)
where « and «, arc two arbitrary coclficicents, that have to
be chosen according to the initial concentration node values,
ci and c¢3 are the two solutions of the homogeneous
equations associated to system (12) and v, v!, v?, v* are
four vectlors that can be computed afler substitution ol the
right-hand side of equation (14) in equation (12). Matrix A®

udt

Evaluation of the spatial moment of ¢ in the 1-D

Figure 2.
case.
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Figure 3. Timc cubic approximation of the lecaving flux.

can have either two real or two complex conjugale eigen-
values. In the [irst case call X\{, N5, and u§, uj the
corresponding eigenvalues and eigenvectors; in the second
case, call N/, \{, and u, uy the real and the imaginary part,
respectively, of the conjugate eigenvalues and of the
corresponding eigenvectors. The solutions of the homoge-

neous equations at the end of the time step are, respectively:

¢ =ueMt o =g (15a)
or
¢ =V uzcos(NAL)  wfsin(NA)]
(15b)

¢ = e~ wfsin(NFAY) | ufcos(NAL)].

[17] Observe that matrix A is not a function of the
concentration, therefore it can be computed and factorized
only once for each velocity field distribution. This also
holds for thc homogencous solutions (15) that can be
stored for cach clement before starting the time marching
computations.

[1s] Vectors v?, v', v and v' can be obtained by
comparing the terms with the same time cxponent in the
polynomial part of cquation (12). This Icads to the scquen-
tial solution of the following lincar systems:

AV — —p? (16a)
AVE — b2 —3v? (16b)
Ayl — —p' —2v? (16¢c)
AV = b v (16d)

[19] As alrcady pointed out, cocllicients <, « in
cquation (14) arc computed by forcing the solution to
honor the given initial concentration values ¢f. This leads,
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Figure 4a. Characteristic line through the point (x;, 4, ).

according to the type of homogencous solution, to the
system:

¢ —cquf | aqul | v, (172)

or

¢y — ovyul + cpul + Vv, (17b)
Once the ODEs arc solved, the concentration at the nodes of
the clement can be approximalted by the cubic polynomials
£° by maintaining the initial and the final valucs, as well as
the mean (in lime) value of the concentration and ol their
first-order moments (Figure 3). The exact conservation of
the mean concentration £ at each element node guarantees
the mass balance in the element and the global mass
conservation; ¢Y can be obtained by time analytical
mtegration of the solution of equation (12). The mean of
the first-order moments can be more easily estimated by
numerical integration. See in Appendix B the equations to
be solved for the estimation of the coefficients of
polynomial (2).

[20] According to the second-order approximation of the
concentrations, negative concentration fluxes leaving the

!
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Figure 4b. Possiblc foot location of the characteristic line
(thick scgments).
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Figure 5.

clement can be computed while solving cquation (12).
Negative flux correction can be simply carried out accord-
ing to the following proccedure: after cstimation of the
polynomial cocfficients of the approximating concentration,
cvaluate the minimum value within the range 0 < ¢ < At
and the corresponding time f,,;,. If the minimum concen-
tration &/ (fmin) 1s negative, compute the root o of the
following cquation:

u)&f((,,\il1) (_V.E'_;-z (18)

min (Og) =(1
and set

g — (1 —mg’ +all, ¢ —(-a)g’ i—1.2.3

(19)
The corrected polynomial concentrations do not alter the
mean value. They have only positive values if the mean
value is greater than zero. If the mean value is negative the
corrected polynomial is a negative constant value. More
complex procedures are required to always guarantee
positive fluxes. After computation of the unknown
coefficients £, £21, €92 £93 is complete, a new system
of ODEs can be solved for the downstream element with
index e + 1.

[21] Consistency and unconditional stability of the algo-
rithm have been proved in the 1-D casc using Fouricr

Gaussian concentration test [or the 1-D algorithm,

analysis, assuming a first-order approximation of thc con-
centration inside the clement, a constant in time Icaving flux
and computing the analytical solution of the resulting ODL
along the given time step [ucciarelli and edele, 2000].
[22] A uscful insight about the question, in the casc of
sccond-order approximation of the concentration, is given
by the observation of the characteristic line passing through
any X;, 4 point of the computational domain. Observe in
Figure 4a that for large Courant numbers the foot of the
characleristic line, at time ¢, falls very [ar from the original
point. The numerical estimate o[ concenlration ¢ at point x;,
tw+1 15 possible il an initial value is known for the ODE
agsociated 1o the characteristic line; therefore it is impossi-
ble to evaluate the concentration in explicit form only as a
function of the concentrations at the points x;_y, #, and x;, 4.
This is possible only for the point x|, /,—,, because in this
case the foot of the characteristic line is located along the
time axis and the boundary value is known (Figure 4b). The
basic idea of the proposed algorithm is to estimate, along
with the unknown value at point x, 7 |, also a low-order
time approximation of the concentration ¢ at the same
distance, from time ¢, to time ¢, ;. After this, it is possible
to solve the problem at point x,, £;,; using the computed
time approximation as initial valuc for thc ncw ODL
problem, and so on for all the unknown concentrations at
time level ;1. The algorithm stated in scction | applics this
idca in intcgral form, to guarantcc mass conscrvation. The

Table 1. Convergenee Numecrical Test for the 1-D Advection of a Gaussian Concentration Wave

Cou — 0.24 Cou — 0.96 Cou—24
Number ol Elements Siep Length, m Average Emor Order Avcerage Error Order Average Error Order
128 100 1.78C-03" 2.76 1.78E-03 2.76 1.880-03 2.81
256 30 2.63L-04 2.62 2.62E-04 2.62 2.69E-04 2.65
S12 25 4.28L-05 — 4.28LC-05 — 4.29C-05 —

"Read 1.781°'403 as 1.78 < 1077,
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Figure 6. Unitary squarc concentration test for the 1-D algorithm.

use ol low-order spatial and time approximations suppresses
the propagation of the high-[requency error components of
the estimated [luxes [rom one computational element to the
others.

[23] The algorithm is tested first for the following liter-
ature case [Yeh, 1990]: given the initial condition

205

c(x,0) — exp (— W) . (20)

u— 0.5 m/s, Ax =200 m, AL — 968, 59 — 264 m, x5 — 2000 m
and a mesh with 65 clements, computc the concentration
distribution after 100 time steps.

[24] The Courant number of the cxample is 0.24. Initial
condition (20) has been assigned to all the clement nodcs;
the final concentrations shown in I'igurc 5 arc the average
concentrations computed at the node shared by two
connccted clements. Obscrve in Figure 5 the test results
obtained using Courant numbers cqual o 0.96 and 2.4.
With the two Courant numbers smaller than onc, numer-
ical diffusion is almost the samc and produces a pecak
reduction from 1.0 to 0.85. With the Courant number
grealer than one, the peak is reduced from 1.0 to 0.84,
but the shape of the concentration distribulion remains
almost the same as in the previous cases. Also, no
instabilities occur. Yeh [1990] reports a peak reduction

[rom 1.0 to 0.25 [for the test results obtained using the
Petrov-Galerkin method and a Courant number equal (o
0.24.

[25] A nmumerical convergence test has been carried out
using the same example and a mesh density ranging from 32
to 1024 elements. The rates of convergence have been
inferred from the values of the average error, defined as:

LN (1 & ;
E— ﬁ Z ; Z (_‘;’ computed (}[ exacl , 21)
P Fl

where » is the number of the nodes of each element (2 — 2 in
the 1-D casc, n — 3 in the 2-D casc). A power dependency
between the average crror and the grid size has been
considered, and the cxponent has been assumed as the
convergence order. Table 1 shows the order of convergencc,
for different Courant numbers, computed from onc mesh
density to the next onc. Obscrve that the order of
convergence in this casc is greater than two.

[26] A sccond test has been carried out for the samce
domain and the same velocity field, using as initial concen-
tration condition a unitary squarc wave whose width is
400 m. The center of the square wave is initially located at
1800 m [rom the origin of thc domain. The final concen-
(rations aller a period T = 9600 s, obtaincd [or dillerent
values of the Courant number and Ax = 12.5 m, are shown
in Figure 6. The shape ol the solution is almost the same for

Table 2. Convergence Numerical Test [or the 1-D Advection of a Block-Shaped Concentration Wave

Cou = 0.24 Cou = 1.0 Cou =24
Number of Hlements Step Length, m Average Hrror Order Average Error Order Average Error Order
256 50 1.01E-02 0.77 9.37E-03 0.74 9.65E-03 0.80
s12 25 5.92E-03 0.74 5.63E-03 0.76 5.56E-03 0.73
1024 12.5 3.55E-03 — 3.33E-03 — 3.35E-03 —
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Initial concentration for the 2-D first test case.

Figure 7.

the three different values of the Courant number, approxi-
mating quite well a square waveform even when the Courant
number is larger than one. The numerical dispersion causes
the smoothing of the vertical fronts of the concentration
pulsc and local maxima and minima arisc around the sharp
fronts, but again no instabilitics arc present. The maximum
valuc is located at the beginning of the unitary wave, and its
valuc is 1.063 for Cou —0.24, 1.064 for Cou — 1.0 and 1.056
for Cou = 2.4. The minimum value 18 located at the end of
the squarc wave and increases for increasing values of the
Courant number; it is cqual to —0.049, —0.007 and —0.002,
respectively for Cou =0.24, Cou = 1.0 and Cou = 2.4. The
convergence rale has been evaluated, obtaining the values
shown in Table 2. Because of the dilficulties in reproducing
the sharp [ronts, the order of convergence is much smaller
than in the previous test case.

3. [Extension of the Algorithm to the 2-D Case

[27] An important requirement for the application of the
algorithm is the possibility of sorting the elements in order
to know the time approximation of the entering fluxes
before each system of ODEs is solved. This is always

Figure 8a. Test 1: Solution afler 7= 18000s (mesh 1).
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Figurc 8b. Test 1: Computational mesh with the hypote-
nuse parallel to the flow direction.

possible, in 2-D and 3-D cases, if a scalar potential exists
such that the direction of its gradient is opposite to the flow
dircction. In this casc, if the clements arc ordered from the
highest to the lowest potential valuc, the entering fluxes arc
always known from the previous solution of the clements
with higher potential. or groundwater transport problem,
the scalar potential is given by the piczometric head, defined
as usual as the sum of the topographical clevation and the
pressure height [de Marsily, 1986].

[28] Assumc the use of @ triangular mesh f(or the flow
ficld computation. I the [inilc clement method is used and a
constant velocity is estimated inside cach clement, the waler
Mluxes through the common side ol (two adjacent elements
computed using the two element velocities are not neces-
sarily the same. To [ix this incongistency, each element ol
the original mesh can be divided in [our subelements and
the velocities can be changed in the subelements surround-
ing each node to preserve the flux continuity [Kinzelback
and Cordes, 1992]. If the finite volume method is used,
three fluxes are computed at the sides of each element,
where a velocity vector has to be estimated. In the steady
state case this can be done by solving a linear system where
the fluxes of the u, v components of the velocity are set

Figure 9a. Tcst 1: Solution after 7 — 18000 s (mcsh 2).
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Figure 9b.
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Ax

Figure 10.

) )

Test 1: Computational mesh with the hypote-
nusc orthogonal to the flow dircction.

cqual to the computed oncs along two of the three sides of
the element. According to the steady stale assumpltion, also
the third [lux ol the velocity vector will be equal to the
computed one.

[20] The most severe limitation of the [inite element
method is that the piezometric head changes linearly inside
each element; the cell where the mass balance is enforced is
a polygon detined by the centers of all the triangles
surrounding each node. In 2-D problems, fluxes are always
directed from the cells of the nodes with higher to the cells
of the nodes with lower piezometric head only if obtuse
triangles are missing. Moreover, analytical integration of the
concentration spatial moment inside the polygon is awk-
ward. In the finite volume method, the mass balance cell is
the triangle itsclf and the flux is always dirccted from the
clement with higher to the clement with lower piczometric
hecad. In the following, we assume the flow ficld to be
known from thc solution of a finitc volume problem and
from the subscquent cstimation of a single veloeity vector
mside cach clement.

A0

/Do

=X

Test 1: Solution after 7 — 18000 s for different Courant numbers and mesh 1.
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Figure 11. Test 1: Solution afier 7= 18000 s and mesh 1
(Ax = 50 m).

[30] Given the following 2-D advection problem:

oc dc oc
where u and v represent the x and v velocily components,
call Ij,..., Iy the sequence of triangular elements ordered
according o the corresponding piezometric head. Assume
the [ollowing piecewise linear approximation ol the
concentration inside each element:

€ € €
c — E N7es,

i—1.3

(23)

where NY is the Galerkin shape [unction of x and y
coordinates and ¢ is the index ol the element where x and y
are localed. Mass conservation can be guaranteed by the
following ODF:

(24)

d(e1d &\ P - FEQ
dt ( 3 ) N o¢ '
where o is the arca of clement e, [7¢° and I/ arc,
respectively, the entering and leaving concentration fluxcs.
The x and y moments can be casily cstimated as functions of
the x and y coordinates of the clement nodes, i.c.,

My = / DN N =) e > Xy

J T3 —13 —13  j-13
_— -~ -
My = 2 ¢ 2 )_fu;,-. (29)
—13 13
(Tl) Y] . lTU Iy -
ay—— fi—j oy—— ifir] (26)
6 12
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Tnitital concentration for the 2-D second test

Figurc 12,
case.

[Huvakorn and Pinder, 1983]. The same procedure used in
the 1-D case can be applied here in order to oblain a time
derivative of the [irst-order moments (25) equal 10 the
derivative obtained from the solution of equation (22). The
element moments, in the x and y direction at time ( — dl, are
equal to:

Mx“(t —dt) = / El(x +uldr)|do + Z & / o, (x.p, )xdL;

2 T

f

(27a)
i—1.3

- (-t / dictxdl;,
I

. i—1,3

av

My (1 —dt) —/ El(y + vedy)]do + Z 6[/ G5, (x,3 )y dL;
7

i

2 (
i—1.3

) / 5 etydl (27b)
i

where ©#? and v° arc the components of the velocity inside
the clement in the x and y direction, §; is cqual to | or 0 if
the flux is, respectively, entering or leaving the clement, L,
is the length of the 7th side of clement e, that is the side
following the 7th node in counterclockwisc direction, ¢ is
the mass [lux (positive il leaving the element) per unil
length through the same side ol the element and €, is the
approximated concentration ol the entering [lux. In the
linear integral, ¢ represents the concentration at points ol
the ith side ol element e. Tinear integrals in equation (27)
represent the moment fluxes and can be easily estimated

Table 3. Two-Dimensional Test 1: Convergence Numerical Test

Cou, — 0.15 Cou, — 1.0 Cou, — 2.5
Number ol Clemenis Step Length, m Avcrage Error Ordcr Avcrage Lrror Order Avcrage Error Order
2y 24 125 1.99CL-02 0.77 1.98E-02 0.76 2.01E-02 0.70
2 4% 62.5 1171202 0.77 117102 0.77 1.241-02 0.75
2 % 962 31.25 6.88F-03 — 6.83E-03 — 7.34E-03 —

9ol I8
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Table 4. Paramcter Valucs for lest 2

X, m »pm C s, m
Peak 1 1400 1400 10.0 264
Peak 2 2400 2400 6.5 264

assuming ¢ as a function of the concentrations at the nodes
of the ith side of element e and £, as a function of the
concentrations at the nodes of the corresponding side of the
upstream element. This provides, for the x and v spatial
moment fluxcs:

where / is the index of the nodc following the ith node in
counterclockwisce dircetion. Subtracting moments (25) from
(27) and dividing by dr, you gct:

de —Zuc /N ‘do + ZF /U,w X, v, t) xdL;

i—1,3 i—=1.3

je

(29a)

- -8 / d¢cvdL;

—1.3
I

Test 2: Solution after 7 — 9600 s.

Figure 13a.
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i 4

Figure 13b. Test 2: Computational mesh.

i
d]g; Z /N‘dG—ZS /0 €, (%, v, t) ydL;

i—1,3

-y (1-t) / ofctydl,. (29b)
i—1.3 .
L
[31] The average in space concentration ¢ and the

moments given by equation (25) can be wrillen in matrix
[orm as:

o By, Bi, By ¢

M | — | By B By 5 (30)

My By By B e
By =By, — BT By~ (2V1 — X +):

3 12
o’ , , R o
Bﬁ:—ﬁ(fl + 23 —x5): B‘:ﬂ,—ﬁ(‘ +x5 + 245)
¢ a’ ¢ ¢ ¢ 2 o & & ¢ (\31 }
B =1 @7 135105 B =300 124 %)
e o* ¢
B3 = ﬁ('_"+2h)

Table 5. Test 2: Comparison Between the Proposed Procedure
and Other Numerical Schemes®

Scheme Max ¢ Min ¢ RMS

Proposed procedure 8.53 —0.059 0.0475
Lxact solution 10. 0. 0.

lirst-order upwind scheme 1.05 0. 0.4109
Leapfrog scheme 532 —2.34 0.4723
Lax-Wendroft scheme 4.78 —1.83 0.4027
Six=point scheme R.52 0.339 0.0594
SOWMAC R.66 0.231 0.0571
Proposcd proccdure (Ax/2) 9.52 —0.0001 0.0146

“Ax — 200 m.

10 o[ 18
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Figure 14.

[32] Differentiating cquation (30), multiplying both
sides by the inverse of the square matrix B and substituting
the moment derivatives with the right hand side of
cquations (24) and (29), the systcm of ODEs can be wrillen
in normal [orm as:

def . . . .
Jr Bfy By B
dcs . . o
d r' B5 By, B
% By B B
!

ot — 28 / off,xdL; — Z (1-128) / ofc‘xdL;

i—1,3 i—1.3 ’

¢ UV—}-Z@ /d)&’"‘d‘l“_z(l_é)/ﬁb “vdL,

i—1.3 =13

1—& [
/(T)z\mdl e 1\/ O; pbd]/i
=157 =13 9 J

(32)
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Test 2: Solution after 7 — 9600 s for different average Courant numbers (Ax — 100 m).

that can also be expressed using the same matrix notation of
cquations (12) and (13) (scc Appendix A for the matrix A°
and vector b cocfficient expressions).

[33] Owing to asymmctry, matrix A° can have cither three
real or one real and two conjugate cigenvalues and cigen-
veetors. In the frst case call XS, N5, A5 and uj, u3, u$ the
real eigenvalues and eigenveclors, in the second case call X3
and uj the real eigenvalue and eigenvector, i, u; and \{, uy

Table 6. ‘Icst 2: Maximum and Minimum Concentrations and
Root Mean Squarc Trror for Different Average Courant Numbers”

Cou; — Cou, Max ¢ Min ¢ RMS
0.25 9.61 1.53E-03 0.0076

0.5 9.70 1.24E-03 0.0076

1 9.76 —9.32E-04 0.0075

2.5 9.67 —1.33E-04 0.0098

5 8.73 —1.65F-02 0.0442

10 5.29 —5.821:-03 0.2216

20 3.72 —2.3413-04 0.3026

“Ax = 100 m.
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Table 7. Two-Dimensional lest 2: Convergence Numerical Test

Couy —0.15 Couy; - 1.0 Couy - 25
Number of Elements Step Length, m Average Error Order Average Error Order Average Hrror Order
5432 250 1.31E-02 2.33 1.21E-02 222 1. 48E-02 224
21728 125 2.60E-03 2.69 2.59E-03 2.68 3.11E-03 2.84
86912 62.5 4.03E-04 4.03E-04 4.36E-04

the real and the imaginary part of the two conjugale
cigenvalucs and cigenvectors. The solution of system (12)
al t = At is given by:

€ — ouc] + oac) + osel + VA VAR — VAP, (33)
where ¢7 and ¢5 are given by equations (15) and
¢ — g, (34)

[34] The first three terms of cquation (33) represent the
solution of the homogencous part of equation (12). Vectors
v’ vl vZ and v* have to be cstimated by substitution of
solution (33) in equations (12), according to the sequence of
equation (16). Coellicients «, &y and o are computed by
forcing the solution of equation (12) to honor the initial
concentration values at the three nodes of the element,

according to the system:

¢y = aquf + opuf — cauf + v9 or
(35)
¢ = aqu’ + apuf + azul — v,

[35] The mean (in time) concentrations at the three nodes
of the clement can be computed after the solution of the
system of ODLs (12), to obtain the polynomial cocfficients
shown in Appendix B. Sce also in Appendix C the pscu-
docodc of the algorithm for the 2-D casc.

[36] The 2-D algorithm is tested using two literature cascs
and a third onc, in which the analytical solution is known. In
the three examples the plotted [inal concentrations at nodes
arc cvaluated as the average of the concentration valucs
obtained at all the element nodes with the same x-v location.

[37] The first literature case [Nassiri and Babarutsi,
1997] is the unilorm advection ol a block-shaped adimen-
sional concentration pulse, assuming a square space domain
and a velocity forming a 45° angle with the domain axes.
The block is initially located near the origin (see Figure 7)
and its value is equal to 1.

[38] In Figures 8a, 8b, 9a, and 9b the results obtained
after a time 7 — 18000 s, using two different meshes of
1sosceles right-angled triangles, are shown. The first and the
second mesh have the hypotenuse, respectively, parallel and
orthogonal to the flow direction. The length of the smaller
element side is Ax — 100 m and the adopted time step is
Ar— 150 8. The valuc of the velocity components is i — v —
0.1 m/s. The corresponding Courant numbers in the x and
dircction arc cvaluated trough the following cquations:

vAz

Ay

At

A (36)

Cou, — Cou, —

and arc both cqual to 0.15.
[39] The final concentration peak is overestimated, a
small minimum ariscs and the sharp fronts of the block

arc smoothed, as a conscquence of the numerical dispersion,
but no oscillations occur, regardless of the mesh oricntation.
Results arc similar 1o thosc obtained using the Ilermilc
scheme [Hollv and Preissmann, 1977], in which the block
shape is not preserved and the [inal value ol the peak is
overestimated by 20%, while the use ol the oscillation-[ree
method HI.PA [Zhu, 19917 produces a peak underestimation
of 27%. The same test is carried out by Stefanovic and
Stefan [2001], comparing the result obtained using two
semi-l.agrangian schemes based on cubic spline interpola-
tion [Branski and Holley, 1986] and on cubic Hermite
interpolation [Holly and Preissmann, 1977]. Both schemes
produce overestimated final peaks (by 27% and 12%,
respectively) and spurious minima. All the tests are carried
out for Courant numbers less than 1.

[40] Observe that all the methods used for comparison are
applicd with thc usc of quadrilateral clements forming a
rcgular mesh. Results obtained using the proposed proce-
dure with increasing Courant numbers and the first triangu-
lar mesh arc shown in Iigure 10: obscrve that no
instabilitics occur also with Courant numbers greater than
1, cven if numerical diffusion incrcases. Morcover, a strong
improvement can be obtained by halving the length of the
clement sides and multiplying by [our the size of the lime
siep, leaving basically unchanged the total compulational
cllort. Sce in Figurc 11 the results obtained in this case with
the proposed method using the (irst triangular mesh.

[41] We performed the numerical convergence test and
obtained the values shown in Table 3 for different Courant
numbers and the first triangular mesh. The average error has
been evaluated through equation (21) using » = 3. The
values obtained are smaller than one and similar to the
values of the analogous 1-D case, due to the numerical

Initial concentration for the 2-D third test case.

Figure 15.
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Exact solution Numerical solution

Iteration 10

e
| P i
- 3 e o =
08 : 0.8-Jueer™
08 Joeer’ b - .“.‘“.ﬂ"_.

0 fure P I

02 e

'd‘l'l‘i

BN,

'._ L ' ltcration 30 ,.,‘

—
9 s

e oile N ™ Iteration 50

Qs R

Figure 16. Test 3: Comparison between analytical and numerical results.

difficultics arising also in thc 2-D casc when trying to  concentration on an indefinite two-dimensional domain (sce
reproduce sharp fronts. Figurc 12). Again, the velocity vector is oricnted at 45° with

[42] The sceond test case [Komatsu et al., 1997] is the  respecet 10 the axces, and its components are z = v = 0.5 mys.
uniform advection of a two-Gaussian pcak adimensional The two-Gaussian initial concentration at point P(x, y) is

13018
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Table 8. ‘lest 3: Performance Indicators at Diflerent Iterations

Number of Iterations Max ¢ Min ¢ RMS
10 0.98%8 —0.0001 0.004
30 0.988 0.0002 0.008
50 0.985 0.0058 0.015
evaluated as:
P,0)=C <P_P])2 | C (P_R)E (37)
1% =Ccx 5 CX -
( ) 1 CXp 202| 1 CXp 20%

where P, and P, are the imitial locations of the two peaks,
C, and C, are the peak values and o,, o, represent the
standard deviations of the two distributions. The distribution
parameters used in the test are outlined in Table 4.

[43] In Figure 13a the result obtained, after a time 7 —
9600 s, using a rcgular cquilateral triangular mcsh (scc
Figurc 13b) with Ax — 200 m and Az — 100 s arc shown. The
average Courant numbers arc defined as:

Cou ulAf 2 ult Cou vAt 2 VAt (38)
oy —-——=——-—==, oy ———=———= R
ToVae V3 Ax Vae /3 Ax

and are equal (o 0.38 in both directions. In the [irst row of
Table 5 the maximum and minimum concentration values
are shown. The rool mean square error with respect 1o the
exact solution is also evaluated, as a global measurement ol
the result quality. In Table 5 the previous performance
indicators are compared with indicators ot the exact solution
and with the results of some others numerical procedures
[Komatsu et al., 1997]. The proposed procedure shows a
good capability of reproducing the maximum value; it
succeeds in avoiding spurious minima and reproducing
the shape of the concentration, providing the smallest values
of minimum and RMS. As in the previous example, even
better results can be obtained by halving the size of the
clement sides and multiplying by four the original time step.
Sce the corresponding performance indicators in the last
row of Table 5. Scc also, in ligurc 14 and Table 6, the
results obtained with the more dense mesh using different
values of the average Courant number.

[44] The numerical convergence test gives the results
shown in Table 7 for different valuces of the average Courant
number. Obscrve that in this case the order of convergence
is always grecater than two.

[45] The last test case is the advection ol a known
Gaussian adimensional concentration pulse in a nonuniform
flow lield. The (low field has radial symmelry, with a time-
constant flow rate extracted at a point ol an indelinite
conlined two-dimensional aquifer of constant thickness
! and porosity w. Assuming the origin of axes as the
extraction point, the velocity vector at a distance r from
the origin is directed according to the radial direction and its
value is:

Q

2rrwl’

Ve = (39)
where O is the exiracted (low rate. The adopted velocity
field is affected by an estimation error, which is function of
the mesh density.
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[46] Equation (22) can bc rclormulated on the radial
direction leading to the [ollowing [-D form:

Oc e .
71. — V,-W 0. \40)
The cxact solution can be casily found as:
o e
(rt) =¢ 2 =0]. 41
c(r, 1) c(”r — ) (41

In the test we assume Q = 1 m>s, /=10 m, w = 0.1. The
itial concentration at a point P is evaluated as:

Znk "
( ]"> 42)

262

(r,0) =G exp(
[

i which r 1s the radial abscissa of pomt 7. The peak
location Py has coordinates x, = 32.5 m and vy, = 32.6 m,
and we assume Cy — 1 and oy — 2 m (see Figure 15). The
numerical procedure has been carried out using a regular
equilateral triangular mesh with Ax — 1 m and a time step
At — 100 s. Because of the non uniform velocity field, the
average Courant numbers vary from one point to the
another. The range of average Courant numbers in x and y
dircctions is [0.02 : 3.18].

[47] In Figurce 16 the results of the numerical procedure
arc comparcd with the analytical solution, at different
itcrations. Again, no instabilitics occur and the undcresti-
mation of the peak value is small. In Table 8 the maximum
and minimum values are shown, together with the RMS
value, at different times. Obscrve that the RMS maintains a
small valuc (hroughout the iterations. The numerical con-
vergence test performed in this case gives the results shown
in Table 9.

4, Mass Conservation and Irrotational Velocity
Field Limitation

[48] FElement concentrations, at the end of each time step,
are given by the analytical solution of the system of ODEs
given by the conservation differential equations of the mass,
as well as of the x and y first-order spatial moments.
Because of this, the local mass balance is satisfied for given
estimation of the total entering flux, that is:

v (t+ A1) —¢ (Z)z T (43)
A

where c“(f) and ¢“(t + Ar) are the mean (in space)
concentration values at the beginning and at the end of the
time step, Fe is the given time average of the total entering
flux and FI° is the time average of the computed total
leaving flux of element e. Entering fluxes are set equal to

Table 9. Two-Dimensional Tesl 3: Convergence Numerical Test

Number of Mlements Step Length, m Average Frror Order
66 8 3.04E-02 1.63
264 4 9.80H-03 53
1056 2 3.39E-03
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the approximation of the lcaving [luxcs of the upsircam
elements by equations (A2) and (A4) (see Appendix A).
Equation (B7) (see Appendix B) guarantees that the mean
(in time) element concentrations, estimated by the solution
ol the system ol ODFs, are equal to the mean of the
approximated ones. Because the entering volumetric [lux is,
for each side of each element, equal to the flux leaving from
the common side of the next upstream element, this also
implies that, for the same side, the mean of the assigned
entering flux is equal to the mean of the computed leaving
flux of the next upstream element. Because of this, the sum
of equations (43) provides:

~ N (R L) e () R —
u Fe, = Le # | Ld I.’l[’

(44)
where Fe, is the total mean [lux cnlering in cach upsircam
boundary clement and FI, is the total mean flux lcaving
[rom each downstream boundary element. Equation (44)
guarantees the global mass conservation.

[49] The proposed algorithm has been developed lor
the solution ol problems where velocity is proportional 1o
the gradient of a scalar potential and vorticity is zero. The
relationship between vorticity (or rotationality) and poten-
tial can be found in any introductory book of water wave
mechanics, like the text of Dean and Dalrymple [1992].
Velocity fields displaying vorticity, like shallow water
bodies with high-frequency waves or velocity fields pro-
ducing scours around piers of a bridge cannot be treated
according to the proposed numerical scheme. On the other
hand, because the methodology requirement is to have
fluxes always moving from points with higher to points
with lower scalar potential, the tcchnique can also be
applicd if the more general condition

v — —K(/T) gradlT (45)
holds, where v is the velocity vector, H is the scalar
potential and K is a semipositive definite matrix. This
implies that the algorithm can be applied for the simulation
of all the groundwater transport problems where the Darcy’s
law holds, with saturated or unsaturated, isotropic or
anisotropic porous medium.

[50] A scalar potential also cxists in shallow water flow
ficlds if the inertial terms arc ncglected in the depth-
averaged form of the Navier-Stokes cquations, called
Saint-Venant cquations. This simplification of the momen-
tum cquation can be adopled in all the [low-routing prob-
lems where the upstream [low wave has a large cnough time
period [Tsai, 2003]. An application of the carly version of
the algorithm to this problem, using a piecewise conslant
approximation ol the unknown walter depth, is given by
Noto and Tucciarelli [2001] [or the 1-D network case and
by Tucciarelli and Termini [2000] [or the 2-D case. In both
the groundwater transport and shallow water applications
the scalar potential is the piezometric head. Tn the first case
piezometric heads are known from the previous solution of
the flow problem and in the second case they have to be
iteratively computed using a fractional step methodology.
The fractional step methodology splits the equations in a
nonlinear advective component, which is solved with the
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proposcd lcchnique, and in a lincar diflusive component
that is solved with a standard Galerkin method.

5. Conclusions

[51] The proposed algorithm for the numerical solution of
the advection problem has the following appealing proper-
ties: (1) unconditional stability, (2) second-order approxima-
tion of the unknown concentration within each computational
element, and (3) local and global mass conservation. The |-D
and 2-D tests suggest a computational accuracy similar to
other cxplicit sccond-order methods, but the unconditional
stability of the algorithm allows the usc of non structured
mceshes and the choice of a time step based on the average size
of the clements and the average norm of the velocity. This
should make the algorithm compctitive about the time
computation required for cach time step. In the 2-D casc
(sce the pscudocode in Appendix C) the solution of five
Tactorized lincar systems of order three for cach clement are
nceded, along with the computation of the corresponding
right hand sides. O course, a preliminary work is required [or
the factorization of the matrices and the element ordering
according to their scalar potential. Further improvement of
the results, in the case ol initially discontinuous [unctions,
can be obtained with the use ol a [unction limiter as will be
discussed in a future work. The major limitation of the
algorithm 1is the need of a scalar potential for the velocity
field, which includes, however, quite large classes of envi-
ronmental and engineering problems. Another limitation is
the serial structure of the computations, which impairs, in the
1-D case, the use of paralle]l computing; this limitation is
partially avoided in 2-D and 3-D cases, where several
elements can be solved simultaneously along different flux

pipes.

Appendix A: Coefficients of the Linear
Differential System

[52] The matrix and vector elements in equation (12) are

Onc-dimensional casc

e —3u* " —u®
Aol Che:
. ' (A1)
. _au"’ = u
W T A T Ax
4u¢ —2u¢
by _ig;—l by A: ge-l (A2)
Two-dimensional case
3
A5 = (B U (A3)
m—1

where coefficients of matrix B® are given by equation (31).

Call jp and jm the nodcs following and preecding node / in

counterclockwise dircction; the coctficients of matrix U arc

the following:

GO[L] + Buoip L,
o]

U —
:} 2 G(‘

: (A4)
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oy — o575 (2 =) = bt 5,
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Uz,_ooLt<’Q ’—ﬂ)
2

)

ps

V’t’ — Ve Vot
e (7 BeZ i
— B L, <—3 +5) 5

(AS)

(A6)

[53] The vector cocllicicnts of the polynomial
cquation (13) have components

3

B Z(B‘),l Vin

-1

n—0,1.23. (A7)

[s4] Call £™" and €}, the polynomial approximation of
the conccntrdtlons at thc nodces of the upstream clement m
sharing the side with nodes j and jp, or the assigned
upstrcam boundary concentration. Elements of matrix 'V
arc the following:

S0 -5t

2a¢ ’

.Vl.n - (/\8)

J=1

3

Vo == > (L= &)d5Ls

J—l
e P G MmN o g o
- [(;_m,u _ -m‘n) Yo N S X'; Y X;F
3 .

~ip A

(A9)

3

Vig=—_ (1—8)ofL

J=1

P I m.n )1 ni.m f(
) [(cm.n E;_::./l)r‘/’ﬁ Vi | Sp V1Y }/h}
J 3

(A10)

Sip B
2

Appendix B:  Polynomial Approximation

[55] The mean values ol the homogeneous solution of
equation (12) in the 1-D case are given by:

¢ — i AN - _5 NAL
LA ¢ QTR (Bla)
or
e NA1 e
- % [u (;L in(\Ar) — cos(Xj’Az))
| () + ()]
—u (sin()\;’Ar} - x—i cos ()\;’At))} _ MW N -‘i_ N -
i A(+00)°]
€N\ AL e
o= # [u (?L sin(Z\fA7) — cos(kat))
M) )]
+u? (sin (NA7) — % cos(XfAz))} - M
,4 At () +00)°]
(B1b)
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[56] In the 2-D case the following equations complete the
sel (B1):

RLY

¢ -, (B2)
NAr

[57] The [ollowing cquation guarantees the cquality of
the initial value (¢ = 0):

£ =ct. (B3)

[58] The [ollowing equation guarantees the equality of
the final value (¢ = Ap):

€0 L AL ECAL HEPAP — (B4)
[59] The following cquation guarantces the cquality of
the mean valuc:

El .0 + EL IAI/Z +¢°2A{2 34 ge'3At3/4
— € 4+ ot +vo + VA2 + v AP 3+ v1A2‘3/4. (B5)
[60] The following cquation approximates the first-order
moments:

&R']At:’,‘z + &e,zA’}l 34+ EL’JAZA/‘I' _ t(4A15/5 _ N[&t?' (B()\)
[61] In the 2-D casc cquation (B5) is replaced by the
following:

El’,0+ gt’,lA[/z + &L‘.ZAfZ 3 + gu‘,3At3/4

— o |l | Vo | VA2 | w»AZ/3 | VAL /4.

(B7)
Appendix C: Pseudocode for the 2-D Case
[62] Solvc the flow ficld
Begin cyele fore=1, ..., N
Compulc u°,v°, 0%, ¢f, L, i=1,....3
Compulc A¢ (cquations (A1)—(A6))
Compute N7, X3, N5, uf, u3, uz or N, \j, A3, uj,

u;, uj
Compute ¢, ¢, ¢ (equations (15) and (33)) and
€}, €3, ¢5 (equations (B1) and (B2)),
Fnd cycle
[63] Sort the element according 1o the decreasing piezo-
metric head. Call T the vector of' the ordered element
indexes.
Begin ¢ycle for k — 1, .., N,
Begin cycle for -1, , Ne —1I;
Compute b b b7, hi (Equatlom (AT)—(A10))
Compute v° (equatlon (16a))
Compute Vq (equation (16b))
Compute v (equatlon (16c))
Compute v° (cquation (16d))
Compute o, co, g (cquation (34))
Compute ¢ (cquation (32)) at 1 — Ar
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Computc the vector coeflicients of the
approximating concentrations of ¢“: £, £,
€92, £ (equations (B3), (B4), (B6), (B7))
Update initial values: ¢ — ¢
End cycle
End cycle
Notation
A?  matrix of the system of ODEs.
b(t) known vector of the system of ODEs.
hn, b', bz, b vector coefficients of the third-order
polynomial b.
B¢ squarc cocfficient matrix.
¢ unknown concentration function.
¢ piccewise lincar approximation of ¢ in
the eth clement.
¢ concentration vector of the ¢ at the
nodes of the eth clement.
¢ values of ¢ at the ith node of the eth
clement.
¢y veclor of the initial concentration

e e e
Cp, €2, €3
=€ =€ 2
Cl. €2, €3

Co, Cy, C2
Cou,, Cou,

Cou,, Cou,

A

values in element e.

solutions of the homogeneous problem
coupled to the system ol ODFs.
spatial average value ol concentration
in element e.

time mean value of the homogeneous
solutions at element ¢,

adimensional concentration peak values.
courant numbers in the x and y
directions;

average Courant numbers in the x and
y directions.

average crror between the cxact and
the computed solution.

entering and lcaving  concentration
fluxcs.

time average value of the total entering
and lcaving fluxes at clement e.

time average value of the total flux
catering in the upstrecam boundary
clements.

lime average valuc of the total flux
leaving (rom the downsiream bound-
ary elements.

scalar potential.

vector ol the ordered element indexes.
sorting indexes of the N elements.
semipositive definite matrix;
constant thickness of an
confined 2-D aquifer.
domain space length in the 1-D case.
length of the ith side of the element e.
moment of the real concentrations in
the 1-D case.

moment of the linear approximation of
¢ insidc clement e with respect to its
downstrcam cnd (1-D casc).

moments of the real concentration at
clement e in x and p directions (2-D
case).

indefinite

UNCONDITIONALLY STABLE SOILVER

Mxe¢, Mv¢

Mt

uf, u, u3
uy

R%
Xo» Jo

‘ e
xl'a J.[

83
()f.!'/'

O, G, X3
b

Ax, Ay
At

£ N
N

N

&b’

e
NP

&R,O’ &E.l’ &e_l, &6’_"
e
Ni
Em
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moments of the linear approximation
ol ¢ inside element ¢ (2-D case).
veclor of the numerically estimated
firsi-order concentration moments at
the element nodes.

number of nodes of each element.
number of computational elements.
number of time steps.

Galerkin shape function of the ith
node inside the eth element.

generic point of the spatial domain.
locations of the concentration peaks.
flow rate.

spatial abscissas.

temporal abscissa.

time corrcsponding to thc minimum
approximated concentration.

domain time length.

known vclocity components in the x, y
an r dircctions.

known components of the velocily
vecetor at clement e.

rcal cigenveclors.

imaginary part of a complex eigen-
veclor.

real part ol a complex eigenvector.
coelTicient matrix for the evaluation of
A,

velocity vector.

vector coefficients of the zero, first,
second and third power of / in the ¢“
solution,

coefficient matrix for the evaluation of
the b vector coefficients.

spatial coordinate of the generic point 7.
coordinates of the initial location of
the concentration peaks.

coordinatcs of the ith node of the
clement e.

numcrical weighting cocfficient.
numcrical cocfficients for the cvalua-
tion of the spatial moment of ¢.
arbitrary cocfficients of the solutions
of the homogencous system.
adimensional coclTicient cqual to 0 or
1.

spatial steps.

time step.

real eigenvalues.

imaginary part ol'a complex
eigenvalue.

real part of'a complex eigenvalue.,
polynomial time approximation vector
of the concentrations at the nodes of
element e.

elements of vector €%, 1 — 1, ..., 3
(function of /).

vector coefficients of £°.

mean (in time) value of £f
approximatcd concentration of the
cntering flux.
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0y, 01, 02 standard deviation of the ¢
distributions.
o, area of element e.
of [lux per unit length trough the ith side
ol the element e.
w porosily value.
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