
UML design and AWL programming for reconfigurable control software
development of a robotic manipulator

M. Bruccoleri
Dipartimento di Tecnologia Meccanica,
Produzione e Ingegneria Gestionale
Universita degli Studi di Palermo

Viale delle Scienze - 90128
manbrugdtpm.unipa.it

U. La Commare
Dipartimento di Tecnologia Meccanica,
Produzione e Ingegneria Gestionale
Universita degli Studi di Palermo

Viale delle Scienze - 90128
ulacomma@dtpm.unipa.it

Abstract

The goal of the presented research is to face the
topic of reconfigurable control software development
in a concrete fashion, i.e., by presenting a control
software system development approach which has been
used for a specific, although easy to be generalized,
robotized manufacturing cell component. In particular,
a methodology for the control software development of
a planar robot (2-degrees offreedom) is presented,
from the conceptual design to the actual
implementation. The methodology suggests UML and
object-oriented modeling andprogramming techniques
for the design phase, while AWL programming
language run by a PLC for the implementation phase.
The analysis has been conducted considering the
internal and external requirements of the
manufacturing system which comprises the robot,
mostly driven by the contemporary industrial need of
reconfigurable control systems, critical key to succeed
in the new era ofmass customization.

1. Introduction

A control system needs to confer to the
manufacturing system capabilities for easy
upgradability and integrability with new components.
The manufacturing system should be able to be easily
re-configured to process different part types or at
different production rates. Flexibility and re-
configurability are primarily based on easy usability,
modularity, reusability, and scalability of the control
system itself. While for high level control activities

C. D'Onofrio
Dipartimento di Tecnologia Meccanica,
Produzione e Ingegneria Gestionale
Universita degli Studi di Palermo

Viale delle Scienze - 90128
cdonofriogdtpm.unipa.it

F.M. Raimondi
Dipartimento di Ingegneria dell'Automazione

e dei Sistemi
Universita degli Studi di Palermo

Viale delle Scienze - 90128
raimat@dias.unipa.it

(SCADA, scheduling, planning, etc.) many approaches
for developing flexible and reconfigurable control
software can be found in literature, the low level
control system still presents some difficulties.

From a low-level control perspective, the
manufacturing control system has to perform mainly
low-level coordination activities (task planning
activities) such as synchronization of shop-floor
devices like actuators and sensors. Considering a
robotized manufacturing cell, the control issues
concern the coordination of the cell hardware
components in order to achieve a given task plan. In
most cases, the planner is a sequence controller that
controls I/O variables by using simple algorithms or
programs. These sequence and synchronization
controllers are usually programmed in the PLC
language or in a common general purpose
programming language (if the task plan is run by a
PC). Ladder diagrams (LD), functional block diagram
FBD), structured text (ST), and instruction list (IL) are
the most utilized modeling and programming language
for PLC-based controller. They are very easy-to-use
and relatively familiar to the shop floor personnel.
Also, Petri nets (PN), state-charts, and finite state
machine diagrams have been extensively applied for
preliminary phases of the control system development
such as specification, design, verification, and
performance evaluation of discrete event control
systems, despite they employ a process-based model,
which does not fully correspond to the control
programming behavior. As far as the main requirement
is to develop reconfigurable cell-level control software
that is reconfigurable in its basic components, object
oriented (00) modeling techniques are widely

0-7803-9402-X/05/$20.00 © 2005 IEEE 331 VOLUME 1

proposed in the scientific literature for the conceptual
modeling phase of the control software development
because of their well recognized features related to
software modularity, rapid prototyping, and re-use.
Indeed, these features represent crucial enablers for
control system reconfiguration and flexibility.

However, one main concern arises. It is related to
the significant gap which exists between the object
oriented conceptual model or design of the control
software and its actual implementation. Indeed, while
general purpose programming languages, for PC-based
control software, encapsulating object oriented feature
are surely available (e.g. C++), concerning a PLC
based control system, AWL instruction list
programming language, for instance, do not include
object oriented features.

The aim of the research presented in this paper is
mainly focused on proposing an integrated
methodology which adopts an object-oriented approach
for modeling and designing the control system
encapsulating reconfiguration capabilities and the
AWL instruction list programming language for its
implementation. Specific attention has been given to
the concern above mentioned related to the integration
of the two development phases.

The authors propose the unified modeling language
(UML) as tool for the design and modeling of the
control system itself, while AWL (the standard
Siemensg for IL representation) for its implementation
in PLC-based embedded control systems. Also, it is
shown how the use of UML and its activity diagrams
makes easier the trade off between the design and the
programming phases.

The paper is structured as follows. Section 2
overviews the context of the research presented in this
paper. The control system requirements and the
description of the test case which has been used in this
research are presented in section 3, while section 4
shows how the proposed methodology has been
applied for a PLC-oriented AWL-based control system.
Conclusions and further remarks are drawn in the last
section.

2. Research context

A robotized manufacturing cell consists of a
collection of manufacturing, material handling, control,
and auxiliary equipments that are needed to
manufacture a specific part type or, more generally, a
part family.

Depending on the manufacturing goal, on the
required flexibility, automation, and productivity, a
robotized manufacturing cell can consist of different
numbers and different kinds of manufacturing
equipments (machining stations), auxiliary fixtures,
material handling systems (robots and transportation
systems), and control systems (relays, PLCs, PCs, etc.).

In particular the cell control system architecture
depends mainly on the structure and configuration of
the cell itself. As an example, if the manufacturing cell
consists of many and different kinds of equipments, its
control system probably needs to include several
hardware devises like PLCs or PCs.

Also, depending on the functionality requirements
of the cell governance policy, the control software
could consist of various kinds of modules. For
instance, if the only requirement is the synchronization
of actuators and sensors for running a given task plan,
then a simple program can be loaded into the PLC,
which controls both the input signals originating from
the cell sensors and the output signals which trigger the
cell actuators.

On the other hand, if the control system is required
to automatically download the NC part processing
program from a database according to the information
originated by an automatic vision system which detects
the part type entering the system, or some error
recovery functionality is required, then the control
system needs to include different hardware devices and
different software modules.
A very conventional way to control a robotized

manufacturing cell is by PLC devices, which interact
with every other element by exchanging electrical
signals. As an example, a PLC can trigger or stop
discrete event sequences on a machine tool according
to the ladder logic it is executing. In other words, the
PLC not only controls basic actuators but also the
synchronization of production processes among many
manufacturing and auxiliary elements, which can also
be programmable.

The most common programming languages for PLC
are the standards IEC 1131-3, like LD, ST, FBD, and
IL. All of them differ from the most common general-
purpose languages such as C++ or Visual Basic, being
devise-oriented programming languages. For instance,
in its essential form, the ladder logic is a graphical
representation of Boolean switching functions based on
an analogy to physical relay systems.

As far as PLC-based embedded control systems are
concerned, the topic of the limited and inflexible
capability of their programming languages is largely
treated in literature. Following these directions authors
propose Petri net models [1], [2], object oriented
models [3], state-chart diagrams [4], [5] that,
afterward, need to be, automatically or manually,
converted in the PLC programming language. This pre-
programming phase is needed in order to have a higher
level model of the control program, which is easier to
understand and easier to design, due to its process
oriented nature which reproduces the discrete event
functioning of the manufacturing cell. Lee et al., by
using object oriented models and state charts
developed a virtual prototyping environment to reduce
the risks involved in PLC-based control programs, such

VOLUME 1332

as deadlock problems [6]. Also, expert systems
modules [7] and layered Petri Nets [8] are used when
additional features are required to the control program
of the cell task plan, such as error handling capabilities.

3. Control system requirements

The research context described in the previous
section highlight that, in order to approach the
development of a manufacturing control system, three
main requirements need to be well defined.
- The first requirement concerns the identification

of the boundaries of the problem, i.e., the
specification of the manufacturing system to be
controlled, in this case the specific
manufacturing cell component, i.e. the planar
robot.

- The second requirement is related to the
functional requisites that the control system
should provide, such as simple task plan
running, or monitoring, or error handling, or
supervising, or scheduling, or part quality
visioning, or, also, all of these.

- The third main requirement concerns the
specification of the basic properties that the
control system should have. This last
requirement depends, of course, on the second
requirement and involves decisions on the
system hardware configuration, such as
centralized/distributed or hierarchical/
heterarchical architecture, and on its software
features, such as device/process/object
orientation or synchronous/ asynchronous
procedural implementation.

In what follows, these requirements are described in
detail.

3.1. The system to be controlled
The system to be controlled is a robotic manipulator

with 2 degrees of freedom represented by two arms
coupled by a brushless engine (see figure 1).

The bottom arm of the robot is fixed against the
basement through another brushless engine, while the
upper arm holds a grip for workpieces manipulation
(end-effector). Also, two resolvers are used to measure
the angular position of the robot.

The robotic manipulator includes two magnetic
stroke-ends to limit the arms' rotation under 2400. The
arms' rotation is performed by using two drivers,
depicted in figure 2, coupled to the brushless engines.

Fig. 2: Drivers coupled to the brushless
engines

Each driver communicates to the central controller
(in this case the PLC) the desired position of the robot
through a serial port RS232C. For instance, by using
the command string AD "data" the engine rotates the
arm of the angle specified in the field "data" from the
specified home position and in a specific rotation
versus.

Through the RS232C port the shape of the velocity
function is also communicated. This could be
trapezoidal (as showed in figure 3) or simply
sinusoidal.

Fig. 3: Example of velocity and
acceleration time laws

Fig. 1: The robotic manipulator

VOLUME 1333

3.2. Control functional requirements
The aim of the control system, which has been

developed, is simply to run procedural programs for
transferring by means of the robot arms worpieces
from a working station to another working station of
the manufacturing cell. No integration with other
supervising control system, no error handling, no data
collection functions are required.

The abstraction level of the required automation is
very low, as far as the operations of the robot are
driven by 2 brushless engines while a number of
sensors identify its status. Both engines and sensors
exchange digital signals (ON/OFF) with the control
system by means of electromechanical relays and
analogical signals by means of the resolvers needed in
order to correctly define the 2D robot positioning. The
coordination of every component for executing the task
plan is driven by an asynchronous control mechanism,
i.e. an interlocking based control.
An interlock is a mechanism for coordinating the

activities of two or more devices in order to ensure that
the actions of one device are completed before the next
device begins its activities. Interlock-based control, in
contrast with time-based control, works by regulating
the flow of control signals back and forth between the
controller and the controlled devices.

Summing up, the abstraction level of the required
control system, coincides with a stand-alone PLC-
based control system for the above mentioned robotic
manipulator.

3.3. Control properties: reconfigurable control
Despite the sequence co-ordination capability is the

primary required control property, the control system
should also be reconfigurable. Indeed, using hardware
and software rigid configurations could be an easy
solution to perform a specific manufacturing
application. However, the redefinition of such
applications which includes removing/adding one or
more hardware subsystem (such as working station) or
software subsystem (such as error handling modules)
would involve significant efforts in reengineering the
system.

The control system, even if it performs very low-
level control activities such as equipments
coordination, must be able to re-define the presence of
the hardware devices it controls and the governance
functions it performs in an easy way by being
hierarchically structured and modularly designed.
Object-oriented (00) technologies are the paradigm
mainly proposed and used for software development in
general but also in the specific field of manufacturing
system control applications.

The characteristics of such a paradigm are perfectly
suited for software applications that require reusability,
scalability, and reconfigurability of the software

However, it is a matter of fact that 00
methodologies are widely used during the phase of
modeling the control system architecture but quite
rarely adopted when it comes to the control software
implementation.

Indeed, as far as a complex control system is
concerned, such as a large control system for a CIM
system, then the 00 approach allows the definition of
its hierarchical architecture and the relationships
among its many software modules (such as
dependencies, aggregations, and so on) [9].

On the other hand, concerning the low-level control
software implementation it is easy to comprehend that
as far as most manufacturing equipments are controlled
by PLC devices and PLC can be programmed with
specific programming languages (such as ladder logic
or sequential function chart or instruction list) 00
programming is not practical and ease to implement.
That's the reason why, the paper proposes a
methodology for easily translating the 00 software
design into the AWL program.

4. Control system development

4.1. Control system design
As already mentioned, the control system which

needs to be designed correspond to a task program
which coordinates the sequence of actions of the
specific robotic manipulator for workpiece transfer
among working stations.

In the first step of the control program development,
by examining the real objects which need to be
controlled and coordinated, the designer needs to
identify all classes involved in the system. Figure 4
provides the main class diagram (according to the
UML graphical notation), where classes, their
relationships, and hierarchy are displayed. All of the
represented classes constitute the control system
structure.

Fig. 4: The control system class diagram

components.

VOLUME 1334

So far, only classes' relationships and their
hierarchy have been defined. Yet, to define classes'
structures, their attributes, and operations, it is
necessary to analyze the dynamic behavior of the
system and of its components during the realization of
all of the system use-cases. In order to describe the
dynamic behaviors and the process workflows in terms
of information flows among objects, UML sequence
and activity diagrams should be used.

Once the main class diagram has been designed, i.e.
the classes of objects (and their relationships) which
need to be controlled and coordinated have been
identified, the messages that such object should send to
each other in order to obtain the specific task program
need to be discovered. Such exchanged messages are
shown in the sequence diagram of figure 5.
Specifically, the sequence diagram reports the
sequence of messages that need to be exchanged when
the transfer of the workpiece from a working machine
to another requires the following movements:
- 1100 rotation of the upper arm
- 3200 rotation of the bottom arm
- 3200 rotation of the upper arm
- 1200 rotation of the bottom arm

Initially, the class "Machine" asks for being idled from
the processed workpiece and sends to the class "Cell
Controller" the message take out piece. For this
purpose, the class Cell Controller sends the message
Move piece to the PLC class and this activates the
sequence of messages necessary for the robot
movements.

For example, the first movement, associated with
the message Trasfer data movement upper arm, is
achieved by sending the string ADI 10CR to the Robot
Driver class which is responsible for the robot real
movements.

L
Move viecee

y

Transfer data movement upper arm

Move uper ar

TranFfer data movement lower arm

_ Move lower arm

Transfer data movement upper arm L

-Move upper arm

Transfer data movemeni lower arm

-Jove lower arm

Fig. 5: UML sequence diagram for the
workpiece transfer operation

Although the sequence diagram shows clearly the
sequences of operations needed for the process
accomplishment, the interlocking logic of the discrete
control system could not be implemented without the
design of the correct synchronization of events,
activities, and states that characterize such a process.

In other words, what still needs to be designed is the
sequence of activities triggered by certain events and
changing objects states. In order to describe the process
dynamic in terms of workflow to be performed, the
UML activity diagram has been chosen. In figure 6, the
activity diagram for the control process is given.

Fig. 6: UML activity diagram for the workpiece
transfer operation

The activity diagram shows that the workflow is
triggered as soon as the Cell Controller class is ready to
start the movement sequence. Such state is represented
by the value of attribute variableMOV equal to 31. At
this point the activity First movement upper arm (1100)

VOLUME 1

I

335

is activated and the PLC will transfer data ADJJO to
the Driver Robot upper arm class. This last class, then,
will convert data in position and triggers the activity
Move upper arm performed by the robot class until the
state upper arm in position is reached.

Once all of the exchanged messages and the
corresponding objects' activities and states have been
identified, the design of the software classes
constituting the system can be completed by assigning
attributes and operation to every class as reported in
figure 7.

Flexible Ncnufacturing Cell
att cnbute:
openrtion:

Cell Controller o Mhinem Robotg Dciver Robot
Cet working: boo aolM odles upperannRin position: bool 8
Ceelnotworking: bool Machine teminate loweranninposition: bools convert data in position
FariabileMOV: int workpiece: bool robotiwors.ng/not working: read actualposition
Move piece() P rocess Workpiece pa bool

purpose languages orn rotate upper ann u i t
language.rotate lower ann

PLC
fust movenment: bool
second move rnent:bool
third movement: bool
forth movermt: bool

tavnsfer data to dhver robot F 9
fust movenment upper ann ()
s econd moveient lower ann p t
third movement upper ann ()
fourth mvement lower ann l b

Fig. 7: UML complete class diagram of the
control system

4.2. Control system implementation
In order to implement the designed control system

two serial modules CP340 RS232C (see figure 8) have
been used as communication channels among the PLC
and the brushless engines drivers.

The PLC is usually programmed with specific
purpose languages or notations. The PLC used in this
application is a SIEMENS S7-300 and its
programming language AWL is a classical IL
language.

The control logic that governs the execution of task
plans, should hence be translated from the UML
activity diagram into the AWL notation. Figures 9, 10,
and I11 report a partial view of the AWL program that
has been written for executing the task plan of figure 6
UML activity diagram.

The design of the interlocking logic by using the
UML activity diagram surely supports the PLC
programmer in understanding and writing the AWL
code. Indeed, by associating:
- every object to hardware components

(machines, robots, etc.),

- every condition related to a specific state of an
object (note that, on the UML side, a state
corresponds to a specific configuration of the
object attributes) to the input conditions, which
in the AWL notation are defined by using the
"U" symbol (note that in AWL, the input
conditions represent physical input or specific
control variables values that identify a given
control sequence status),

- every object activity (note that, in UML an
activity is associated with the execution of one
specific or a group of object operations) to the
output actions, which in AWL are defined by
using the "S" symbol (note that in AWL, the
output actions identify physical output or
specific control variables values as the input
conditions), and

- every data transfer (note that in UML, a
message recalls a given operation of the
receiving object by transferring some
parameters) to the loading and transferring
operations (denoted in AWL respectively with
the symbols "L" and "T")

the shop-floor control operator can program the PLC,
by simply interpreting the UML activity diagram in
AWL.

Fig. 8: Serial communication modules CP340
RS232C

Also, the following steps need to be executed:
- Definition of the table of symbols by using the

variables which compare in the activity
diagram;

- Transfer (by using the commands P SEND) the
strings that are necessary for the arms
movement, and which are recorded in a specific
database;

- Recall the P_RCV command for the arms
position detection;

- Insert additional commands like SPB or other
jumping commands to other segment
commands, in order to avoid data transferring
and/or operations triggering when the specific

VOLUME 1336

state attributes are not activated, as depicted in
figure 10.

For instance, let's consider the first movement which
consists in the 1100 upper arm rotation. As already
mentioned in the activity diagram description of figure
6, the state SI "first movement" of the PLC object
triggers the activities Al "First movement upper arm
(1 10°)" and A2 "transfer data ADI 10". This has been,
then, translated in the AWL notation where the input
condition (U) "First movement" activates the output
condition (S) "First movement upper arm" (figure 9),
and also the data ADi 10 transfer to the database
numbered 27 (figure 10). Finally, such data are
transferred to the specific driver (figure 1 1).

: Titolo:

First rbbbot'3 Ifovemeent

U "First movement"
s "First movement upper arm"

Fig. 9: Sketch of the AWL control program for
the workpiece transfer operation

: Titolo:

SPB
L
T
L
T
L
T
L
T
L
T
L
T

fine: BE

"First movement"
fine
'A'
DB27.DBB 2
'Di
DB27.DBB 3
'1'
DB27.DBB 4
'1'
DB27.DBB 5

DB27.DBB 6
B#16#D
DB27.DBB 7

//char

Fig. 10: Sketch of the AWL control program
for the workpiece transfer operation

oSegmento 13: Transfer data to driver

Transfer data AIADiIODOrI

CALL "Invio Stringa"r r"Dati Stringa"

Fig. 11: Sketch of the AWL control program
for the workpiece transfer operation

Once the AWL code for the robot movements'
sequence has been written, such code can be saved as a
specific sub-routine (see "FB24 Sequence Movement"
in figure 12) that can be reused in other similar
applications by changing only the movement
coordinates. In this way it is possible to create a library
of sub-routines that can be reutilized in new control
software systems' design and development.

+af 5ndrdLibrary
--A SIMATIC_NET_CP

1 CP 300
1k FB2 IDENT CP_300

i FB3 READ CP 300
.-- FB4 REPORT CP 300

FBs STATUS CP 300
Cl FB6 WRITE CP 300
. FB8 U5END CP300PBK
.--- FB9 URCV CP300PBK
a FB12 BSEND CP300PBK
Cl FB13 BRCV CP300PBK
. FB14 GET CP300PBK
.-- FB15 PUT CP300PBK
l11 F624 Se9uence Mb1vement
.-- FC1 DP SEND CP 300

FC2 DP_RECV CP_300
.- FC3 DP DIAG CP 300
QI FC4 DP_CTRL CP 300
.- FC5 AG 5END CP 300

FC6 AG RECV CP 300
.-- FC7 AG LOCK CP 300
a FC8 AG UNLOCK CP 300
; FC12 Ciso
.11-FC40 FTP CONNECT CP_300
C FC41 FTP STORE CP 300
471 FC42 FTP_RETRIEVE CP_300
C FC43 FTP DELETE CP 300
.--- FC44 FTP_QUIT CP_300

-Th±1 [E- Za IN
[13-1--l OUT
1 q IN OUT
13--- STAT
+ TEMP

Fig. 10: Library of the developed AWL sub-
routines

5. Conclusions

This paper describes a study that has been conducted
for the development of a control system for a robotized
manufacturing cell, and in particular for a specific
component, i.e. a robotic manipulator. After a
preliminary requirement analysis, the study involved
the hardware and the software design of the control
system and then its implementation aspects.

The study showed that the object-oriented design
surely facilitates the PLC programming phase
(typically a shop floor activity), unluckily it takes a
considerable effort and time and thus it is not really
recommended unless the manufacturing cell is flexible
and required to process different part type. In this case,
its control system, fixed in its hardware configuration,
is called for running different task plans and writing
many activity diagrams and then translating them into
AWL is easier than writing directly all the AWL
programs.

The approach innovation is the proposal of the
UML as an object-oriented tool that can be used
without other tools for the modeling and design of
manufacturing control systems. It has been
demonstrated that the UML can support a static and
structural modeling of control systems, as well as
dynamic one. Since UML offers a complete graphical
notation but no modeling methodology, efforts have
been focused on the development of a systematic
design procedure to make the task of developing the
control software system easier.

VOLUME 1

44WO...,

Iwic,.Mi data iia,

UN "First movement"
SPB fine
L -A-
T DB27.DBB 2
L -D-
T DB27.DBB 3
L .1.
T DB27.DBB 4
L .1.
T DB27.DBB 5
L .0.
T DB27.DBB 6
L B#16#D
T DB27.DBB 7

337

Also, the control software 00 features, allow, as
variously demonstrated in the literature, an easy
reconfiguration of the control software [10], [11]. This
reconfiguration, which can be thought of as the
possibility to add, subtract, and reuse software objects,
becomes crucial for two main issues. The first concerns
the reutilization of software components during the
phase of design of the control software; the second
regards the management, at low-level control, of
hardware reconfigurations, which are necessary to gain
a given level of reactiveness.

using object modeling technique, Computers in
Industry, Vol. 41, pp. 213-238.

[10] Kovacs G.L., Kopacsi S., Nacsa J., Haidegger G.,
Groumpos P., 1999, Application of software reuse and
object-oriented methodologies for the modelling and
control of manufacturing systems, Computer in
Industry, Vol. 39 pp.177-189.

[11] Kopacek, P., Kronreif, G., Probst, R., A modular
control system for flexible robotized manufacturing
cells, Robotica, Vol. 17, p.p 23-32, Jan-Feb 1999.

6. Acknowledgements

This work has been possible thanks to the grant of
the Italian Ministry of University and Research.

References

[1] Peng S., Zhou M., 2003. Sensor-based stage Petri net
modelling of PLC logic programs for discrete-event
control design, International Journal of Production
Research, Vol. 41 No. 3, pp. 629-664.

[2] Jang, J., Koo, P., H., Nof, S.,Y., 1997, Application of
design and control tools in a multirobot cell,
Computers & Industrial Engineering, Vol. 32, n. 1, pp.
89-100.

[3] Pires, J.N., and Sa' Da Costa, J.M.G., Object Oriented
and distributed approach for programming robotic
manufacturing cells, Robotics and Computer
Integrated Manufacturing, Vol. 16, 2000, pp. 29-42.

[4] Borchelt, R.D., Thorson J., 1997, Toward reusable
hierarchical cell control software, International
Journal ofProduction Research, Vol. 35, n. 2, pp. 577-
594.

[5] Klein, P. Jonsson, C. Backstrom, Automatic synthesis
of control programs in polynomial time for an
assembly line, Proceedings of the IEEE Conference on
Decision and Control, Vol. 2, pp. 1749-1754, 1996.

[6] Lee J.I., Chun S.W., Kang S.J., 2002, Virtual
prototyping of PLC-based embedded system using
object model of target and behavior model by
converting RLL-to-statechart directly, Journal of
Systems Architecture, Vol. 48, pp. 17-3 5.

[7] W. Hu, M. Schroeder, A. G. Starr, A Knowledge-based
real-time diagnostic system for PLC controlled
manufacturing systems, Proceedings of the IEEE
International Conference on Systems, Man and
Cybernetics, Vol. 4, IEEE, USA, pp. 499-504, 1999.

[8] M. Hasegawa, M. Takata, T. Temmyo, and H.
Matsuka, Modeling of exception handling in
manufacturing cell control and its application to PLC
programming, Proc IEEE Int Conf Rob Autom. Publ
by IEEE, Computer Society, Los Alamitos, CA, USA,
pp. 514-519, 1990.

[9] Ou-Yang C., Guan T.Y., Lin J.S., 2000, Developing a
computer shop floor control model for a CIM system -

VOLUME 1338

