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Abstract

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be
connected with an “L” shaped path in one of its four cyclic orientations. The paper proves bijectively that
the number fn of L-convex polyominoes with perimeter 2(n + 2) satisfies the linear recurrence relation
fn+2 = 4 fn+1 − 2 fn , by first establishing a recurrence of the same form for the cardinality of the
“2-compositions” of a natural number n, a simple generalization of the ordinary compositions of n. Then,
such 2-compositions are studied and bijectively related to certain words of a regular language over four
letters which is in turn bijectively related to L-convex polyominoes. In the last section we give a solution to
the open problem of determining the generating function of the area of L-convex polyominoes.
c© 2006 Elsevier Ltd. All rights reserved.

1. L-convex polyominoes: Basic definitions

A polyomino is a finite union of elementary cells of the lattice Z × Z, whose interior is
connected (see Fig. 1(a)). Polyominoes are defined up to translations. Invented by Golomb [14]
who coined the term polyomino, these well-known combinatorial objects are related to many
challenging problems, such as tilings [3,13], games [12], among many others.

A column (row) of a polyomino is the intersection between the polyomino and an infinite strip
of cells whose centers lie on a vertical (horizontal) line. In a polyomino the semi-perimeter is
half the length of the border, while the area is the number of its cells.

Enumerating polyominoes is one of the most famous problems in combinatorics, and despite
several efforts made recently by physicists and mathematicians, it remains unsolved. The number
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Fig. 1. (a) A polyomino; (b) a convex polyomino; (c) an L-convex polyomino; (d) a stack polyomino.

Fig. 2. (a) A path between two cells in a polyomino; (b) a monotone path made only of north and east steps, having four
changes of direction.

an of polyominoes with n cells is known up to n = 56 [17] and the asymptotic behavior
of the sequence (an)n≥0 is partially known due to the relation limn→∞(an)

1/n = μ, where
3.96 < μ < 4.64, where the lower bound is a recent improvement of [2].

Nevertheless, several subclasses were enumerated by imposing convexity constraints [4,11].
A polyomino is h-convex (resp. v-convex) if each of its rows (resp. columns) is connected. A
polyomino is hv-convex, or simply convex, if it is both h-convex and v-convex (see Fig. 1(b)).

Let us now introduce the basic concept of our paper, i.e. the notion of k-convexity. We define a
path in a polyomino to be a self-avoiding sequence of unit steps of four types: north N = (0, 1),
south S = (0,−1), east E = (1, 0), and west W = (−1, 0), entirely contained in the polyomino.
A path connecting two distinct cells, A and B , starts from the center of A, and ends at the center
of B (see Fig. 2(a)). We say that a path is monotone if it is constituted only of steps of two types
(see Fig. 2(b)). Given a path w = u1 . . . uk , each pair of steps ui ui+1 such that ui �= ui+1,
0 < i < k, is called a change of direction.

In [8] the authors observed that convex polyominoes have the property that every pair of cells
is connected by a monotone path, and proposed a classification of convex polyominoes based on
the number of changes of direction in the paths connecting any two cells of the polyomino. More
precisely, a polyomino is k-convex if every pair of its cells can be connected by a monotone path
with at most k changes of direction. For k = 1 we have the L-convex polyominoes, such that
each two cells can be connected by a path with at most one change of direction (see Fig. 1(c)).

In the sequel we present a different characterization of this class based on the notion of
maximal rectangles [8].

A rectangle, that we denote by [x, y], with x, y ≥ 1, is a rectangular polyomino with x
columns and y rows. For any polyomino P , we say that [x, y] is maximal in P if

∀[x ′, y ′], [x, y] ⊆ [x ′, y ′] ⊆ P ⇒ [x, y] = [x ′, y ′].
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Fig. 3. (a), (b) Two rectangles having a crossing intersection; (c) two rectangles having a non-crossing intersection.

Fig. 4. The L-convex polyomino in (a) can be defined by the overlapping of five non-comparable rectangles, each pair
having crossing intersections, as depicted in (b).

By abuse of notation, for any two polyominoes P and P ′ we will write P ⊆ P ′ to mean
that P is geometrically included in P ′. Two rectangles [x, y] and [x ′y ′] contained in P have a
crossing intersection if their intersection is a non-trivial rectangle whose basis is the smallest of
the two bases and whose height is the smallest of the two heights, i.e.

[x, y] ∩ [x ′, y ′] = [
min(x, x ′), min(y, y ′)

] ;
see Fig. 3 for an example. The following theorem gives a characterization of L-convex
polyominoes in terms of maximal rectangles [8].

Theorem 1. A convex polyomino P is L-convex if and only if any two of its maximal rectangles
have a non-void crossing intersection.

Thus, an L-convex polyomino can be seen as the overlapping of maximal rectangles (see
Fig. 4 for an example).

In the literature L-convex polyominoes have been considered from several points of view:
in [9] it is shown that they are a well-ordering according to the sub-picture order; in [7]
the authors have investigated some tomographical aspects, and have discovered that L-convex
polyominoes are uniquely determined by their horizontal and vertical projections. Finally, in [6]
it is proved that the number fn of L-convex polyominoes having semi-perimeter equal to n + 2
satisfies the recurrence relation

fn+2 = 4 fn+1 − 2 fn (n ≥ 1), (1)

with f0 = 1, f1 = 2, f2 = 7, giving the sequence 1, 2, 7, 24, 82, 280, 956, 3264, . . . (sequence
A003480 in [22]).
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A special class of L-convex polyominoes is the well-known class of stack polyominoes [19]
[23, p. 76] [24], i.e. convex polyominoes such that the lowest row touches both the left and
the right sides of the minimal bounding rectangle (see Fig. 1(d)). Indeed such polyominoes are
characterized, among L-convex polyominoes, by the property that any two cells are connected by
a path Eh1 Nh2 or Sh1 Eh2 , h1, h2 ≥ 0. That is, stack polyominoes are defined by two particular
orientations of the L.

In this paper we extend the study of the combinatorial properties of the class of L-convex
polyominoes and of the sequence ( fn)n≥0. In particular, the main results of the paper are the
following:

1. in Section 2 we introduce and study the class of 2-compositions, a natural extension of the
ordinary compositions; in particular we prove that this class is enumerated by the sequence
( fn)n≥0, and then we establish several properties of this sequence;

2. in Section 3 we determine a bijection between 2-compositions and L-convex polyominoes,
thus giving a combinatorial explanation that L-convex polyominoes satisfy the simple
recurrence in (1); such a bijection allows us also to count L-convex polyominoes according
to other interesting statistics, such as the number of rows and columns and the number of
maximal rectangles;

3. in Section 4, we determine the generating function for L-convex polyominoes according to the
area; this problem was also considered in [6] using the ECO method, which is a constructive
method for producing all the objects of a given class, according to the growth of a certain
parameter (the size) of the objects; basically, the idea is to perform local expansions on each
object of size n, thus constructing a set of objects of the successive size (see [1] for more
details); the authors of [6] determined a system of algebraic equations involving the area
generating function, without solving it by means of other than standard analytical techniques.

Finally we point out that some unpublished results on the class of L-convex polyominoes have
been obtained independently by W. James in [16]. In particular W. James introduces a general
method of representing polyominoes by their column structure (the so called dot notation), and
applies this method to determine the generating function for the area of L-convex polyominoes
and to discover some combinatorial properties of the class.

2. The class of 2-compositions

A composition of a natural number n is an ordered partition of n, that is a k-tuple (x1, . . . , xk)

of positive integers such that x1 + · · · + xk = n (see [10]).
We now extend the definition of composition to the 2-dimensional case. A 2-composition of

n is a 2 × k matrix whose entries are non-negative integers that add up to n and such that each
column has at least one non-zero entry. The number of columns, k ≥ 0, is called the length of
the 2-composition. Let Un be the class of 2-compositions of n and let un = |Un|. Notice that U0
contains only the empty 2-composition, while

U1 =
{[

0
1

]
,

[
1
0

]}
, U2 =

{[
0
2

]
,

[
1
1

]
,

[
2
0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]}
.

Hence u0 = 1, u1 = 2 and u2 = 7. More generally we have the following result.

Proposition 1. The numbers un satisfy the recurrence

un+2 = 4un+1 − 2un (2)

for n ≥ 1, with the initial values u0 = 1, u1 = 2, u2 = 7.
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Proof. Let n ≥ 1. The 2-compositions in Un+2 can be all obtained by performing the following
operations on each 2-composition M ∈ Un+1:

1. add a column
[

1
0

]
on the left of M;

2. add a column
[

0
1

]
on the left of M;

3. increase by one the first element on the first row of M;
4. increase by one the first element on the second row of M .

By performing the four operations on the 2-compositions of Un+1 we obtain a set of 4un+1
elements of Un+2. However, some 2-compositions are obtained twice, and they are precisely
those containing no null elements in the first column, that is:

1. those whose first column is
[

1
1

]
;

2. those whose first column is
[

x + 1
y + 1

]
, with x, y ≥ 0 and (x, y) �= (0, 0).

Since the number of elements in these two classes is clearly given by 2un it follows that
un+2 = 4un+1 − 2un . �

Thus we have the remarkable fact that the number of the L-convex polyominoes with semi-
perimeter n +2 is equal to the number of the 2-compositions of n. In Section 3 we will determine
a simple bijection between these two classes.

As proved in the following proposition, the numbers un also satisfy a recurrence which is not
linear yet has positive constant coefficients.

Proposition 2. The numbers un satisfy the recurrence

un+2 = 3un+1 + un + un−1 + · · · + u0 (3)

with the initial values u0 = 1 and u1 = 2.

Proof. The 2-compositions of n + 2 can be partitioned according to the form of the first column.
Indeed the first column can be:

1.
[

0
y

]
with y = 1, 2, . . . , n + 2; deleting from each the first column, we obtain Un+2−k ;

2.
[

1
0

]
; deleting from each the first column, we obtain Un+1;

3.
[

x + 2
0

]
with x ≥ 0 or

[
y
z

]
with y, z ≥ 1; subtracting 1 from the top entry of the first column,

we obtain Un+1.

This implies recurrence (3). �

Moreover we have that the numbers un satisfy a recurrence relation with non-constant
coefficients.

Proposition 3. The numbers un satisfy the recurrence

un+1 =
n∑

k=0

(k + 2)un−k (4)

with the initial value u0 = 1.
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Fig. 5. On the left: table of the numbers un,k . On the right: table of the numbers vn,k , n, k ≥ 6.

Proof. Consider those 2-compositions of n + 1 for which the first column is
[

x
k − x + 1

]
with fixed

values of k and x and 0 ≤ k ≤ n, 0 ≤ x ≤ k + 1. Deleting these first columns we obtain Un−k .
This happens k + 2 times (for each x = 0, 1, . . . , k + 1). Hence identity (4). �

The numbers un satisfy the following property which resembles the well-known Cassini
identity for Fibonacci numbers [18].

Proposition 4. The numbers un have the property

u2
n+1 − un+2un = 2n−1 (n ≥ 1). (5)

Proof. Let

dn = u2
n+1 − un+2un =

∣∣∣∣un+1 un

un+2 un+1

∣∣∣∣ .
Using the recurrence (2), we have

dn =
∣∣∣∣ un+1 un

4un+1 − 2un 4un − 2un−1

∣∣∣∣ =
∣∣∣∣un+1 un

−2un −2un−1

∣∣∣∣ = 2

∣∣∣∣ un un−1
un+1 un

∣∣∣∣ = 2dn−1.

Hence

dn = 2n−1d1 = 2n−1
∣∣∣∣ 7 2
24 7

∣∣∣∣ = 2n−1. �

Let un,k be the number of the elements of Un having length k. The first values are presented
in the table on the left, in Fig. 5.

Proposition 5. The numbers un,k satisfy the following recurrences:

un+2,k+1 = 2un+1,k+1 + 2un+1,k − un,k+1 − un,k (6)

un+1,k+1 = un,k+1 + 2un,k + un−1,k + · · · + u0,k (7)

un+1,k+1 =
n∑

i=0

(i + 2)un−i,k . (8)

Proof. The recurrences (6)–(8) can be obtained with the same combinatorial arguments as are
used in the proofs of Propositions 1–3, respectively. �
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Proposition 6. The generating series for the numbers un,k is

u(x, y) =
∑

n,k≥0

un,k xn yk = 1

1 − xh(x)y
(9)

where

h(x) =
∑
n≥0

(n + 2)xn = 2 − x

(1 − x)2
.

Proof. The series u(x, y) could be obtained using one of the recurrences in Proposition 5.
However, we prefer to obtain it in the following way. Since every 2-composition can be viewed
as the concatenation of its columns, it follows that the set of all 2-composition is the language
A∗ on the infinite alphabet A = {a10, a01, a20, a11, a02, . . .}, where the letter ai j corresponds to

the column
[

i
j

]
. Then (see [20]) the generating series of A∗ is

u(x10, x01, x20, x11, x02, . . .) = 1

1 − x10 − x01 − x20 − x11 − x02 − · · · .

Now u(x, y) can be obtained setting xi j = xi+ j y. �
Expanding the series (9) we can obtain the following formula.

Proposition 7. The numbers un,k have the explicit expression (for n, k ≥ 1):

un,k =
k∑

j=0

(
k

j

) (
n + k − j − 1

2k − 1

)
(−1) j 2k− j .

Proposition 8. The infinite lower triangular matrix U = [un,k]n,k≥0 is a Riordan matrix with
spectrum(

1,
2x − x2

(1 − x)2

)
.

Proof. From (9) it immediately follows that the generating series for the columns of U are

uk(x) =
(

2x − x2

(1 − x)2

)k

for every non-negative integer k. Hence U is a Riordan matrix [21]. �
For y = 1 in (9), we reobtain the generating series u(x) of the sequence (un)n≥0. We also

retrieve that u(x) is the quasi-inversion of the series xh(x) as pointed out in [5], in a completely
different study.

Notice that from (9) there follows the identity u(x, y) = 1 + xyh(x)u(x, y) which implies
the recurrence (8). Similarly, for y = 1 we have u(x) = 1 + xh(x) and hence (4).

Another interesting statistic can be obtained in the following way. For any n ≥ 1,
the projection (here the term is used in the sense of the discrete tomography [15]) of the
2-composition

M =
[

x1 x2 . . . . . . xk

y1 y2 . . . . . . yk

]
∈ Un
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is the 2-composition

π(M) =
[

x1 + x2 + · · · + xk

y1 + y2 + · · · + yk

]
.

Clearly π(M) is still an element of Un . Moreover, for any M ∈ Un let us define

[M] = {Q ∈ Un : π(Q) = π(M)}.
For instance,[[

0 1
1 0

]]
=

{[
1
1

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]}
.

One easily observes that for any n ≥ 0, there are n +1 distinct classes [M] in Un . For 0 ≤ k ≤ n,

let vn,k be the number of elements of Un whose projection is equal to
[

n − k
k

]
. The first terms of

vn,k are presented in the table in Fig. 5, on the right (sequence A059576 in [22]).

Proposition 9. The numbers vn,k satisfy the recurrences

vn+2,k+1 = 2vn+1,k+1 + 2vn+1,k − 2vn,k (10)

vn+2,k+1 = 2vn+1,k+1 + vn+1,k + vn,k−1 + · · · + vn−k,0. (11)

Proof. The recurrences (10) and (11) can be obtained with the same combinatorial arguments as
are used in the proofs of Propositions 1 and 2, respectively. �

The recurrence (10) implies the following

Proposition 10. The generating series for the numbers vn,k is

v(x, y) =
∑

n,k≥0

vn,k xn yk = 1 − x − xy + x2y

1 − 2x − 2xy + 2x2y
.

In particular∑
n≥0

vn,0xn = 1 − x

1 − 2x
,

∑
n≥k

vn,k xn = 2k−1(x − x2)k

(1 − 2x)k+1
(k ≥ 1).

Finally, expanding the series obtained in the previous proposition, one can obtain an explicit
formula for the numbers vn,k .

Proposition 11. For (n, k) �= (0, 0), we have the explicit form

vn,k =
min(k,n−k)∑

j=0

(
k

j

) (
n − j

k

)
(−1) j 2n− j−1.

3. A bijection between L-convex polyominoes and 2-compositions

In this section we will present a bijection between the set Ln of L-convex polyominoes with
semi-perimeter equal to n + 2 and the set of 2-compositions of n. In order to do this, we need
first to represent L-convex polyominoes in terms of 2-colored stacks.
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Fig. 6. (a) an L-convex polyomino; (b) the corresponding 2-colored stack polyomino; (c) the paths μ and ν; for simplicity
we represent the north, east and west steps by means of 2-colored arrows.

A 2-colored stack polyomino is a stack polyomino whose rows can have two colors, say black
and white, and satisfy the following priority conditions:

1. if a row is white then all the other rows of the same length placed above it (if any) have the
same color;

2. the rows having maximal length are colored white.

Starting from an L-convex polyomino, we give the black color to the rows placed below
the horizontal basis, and then vertically translate them above the basis respecting condition 1
(see Fig. 6(b)). We observe that by the definition of L-convexity, the polyomino obtained is
actually a 2-colored stack polyomino. In the same way, to each 2-colored stack polyomino there
corresponds a unique L-convex polyomino.

The boundary of a 2-colored stack polyomino is uniquely determined by two non-intersecting
(except at the end points) lattice paths μ and ν (see Fig. 6(c)):

1. μ runs from the origin to the rightmost point having maximal ordinate in the polyomino, and
uses 2-colored north and east unit steps, that are black (resp. white) when it meets a black
(resp. white) cell; for simplicity of representation, in Fig. 6(c) we have depicted black and
white steps using black and white arrows, respectively.

2. ν runs from the rightmost point having minimal ordinate to the rightmost point having
maximal ordinate in the polyomino, and uses 2-colored north and west unit steps, that are
black (resp. white) when it meets a black (resp. white) cell.

Both μ and ν start with a white north step, μ ends with an east step, and ν with a north step.
Now we give a coding of 2-colored stacks in terms of words of regular language on four

letters. The word representation of the polyomino is obtained by following the two paths, μ and
ν, level by level from the bottom to the top of the polyomino. At each level one can meet:

1. a pair of north steps, one in μ, and the other in ν; in this case we write a (resp. d) if the steps
are white (resp. black);

2. a sequence of east steps in μ and, on the same horizontal line, a sequence of west steps in
ν; in this case we write a b for each east step and a c for each west step; by convention, we
assume that, at the same level, we read east steps before west steps; the coloring of the east
and west steps is irrelevant.

Using such a coding we have that any L-convex polyomino P having semi-perimeter n + 2
can be represented as a word w(P) (briefly, w) on the alphabet Σ = {a, b, c, d}, having the
same length. The language of all such words will be referred to as L. For example, the word
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Fig. 7. The bijection between L2 and U2.

corresponding to the polyomino in Fig. 6(a) is aabccddabdcaabdab. The number of rows
(resp. columns) of the polyomino is given by the number of a plus the number of d (resp. the
number of b plus the number of c) in the corresponding word of L.

The words of L are characterized by the property that they begin with an a and end with a b,
and contain neither the factor ad nor the factor cb.

Remark 1. These simple observations lead us to state that L is a regular language, described by
the regular expression:

a
(
a + b + c+a + bd+ + c+d+)∗

b. (12)

For a proof of the statement, and for further properties of the language L (not needed in this
section) see Section 3.1. Notice that using the same coding we can represent stack polyominoes
in terms of words on the alphabet {a, b, c}, beginning with an a and ending with a b, and not
containing the factor cb.

To conclude defining our bijection, we now give a representation of the words of L of length
n + 2 in terms of 2-compositions in Un .

Let P be a polyomino in Ln , w the word of L corresponding to P , and w̃ be the word obtained
from w by removing the first and the last symbol. We observe that w̃ can be uniquely factorized
into the factors

cha, bd j , cr ds , h, j ≥ 0, r, s ≥ 1,

and then it can be transformed into a 2-composition using the following coding:

cha →
[

h + 1
0

]
(h ≥ 0), bdk →

[
0

k + 1

]
(k ≥ 0), cr ds →

[
r
s

]
(r, s ≥ 1).

For instance, the word w = aabccddabdcaabdab (corresponding to the polyomino in Fig. 6(a))
is translated into the 2-composition[

1 0 2 1 0 2 1 0 1
0 1 2 0 2 0 0 2 0

]
.

The reader can easily observe that using the above coding is also easy to pass from a 2-
composition to a word of L, and then to a L-convex polyomino, which completes the bijection.
Fig. 7 shows the bijection between L2 and U2.

3.1. Some statistics on L-convex polyominoes

In this section we extend the study of the regular language L associated with L-convex
polyominoes in order to derive several statistics. We start by giving a deterministic automaton
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Fig. 8. The automaton recognizing the language L; A is the starting state, and B is the final one.

accepting the words of L. The set of states is S = {A, B, C, D}, the alphabet is Σ , A is the start
state and B is the final state. The transition function is defined according to the characterization
of L: in a word, the symbol y ∈ Σ determines a transition from the state X to the state Y ,
with X, Y ∈ S, if and only if xy �= ad , or xy �= cb (see Fig. 8). It is easy to prove that the
defined automaton recognizes all words, and only those words of L, thus L is defined by the
unambiguous regular expression in (12).

We use such a characterization in order to determine the generating function of L-convex
polyominoes according to rows, columns, and maximal rectangles.

We have already noticed that passing from an L-convex polyomino P to the corresponding
word w(P), the number of rows (columns) is given by the sum of the numbers of a and d (resp.
b and c). Moreover, referring to Fig. 6 we observe that, given an L-convex polyomino P , each
of its maximal rectangles determines a set of rows having the same length in the 2-colored stack
representing P . In the word w(P) ∈ L associated with P , each group of rows having the same
length corresponds to an occurrence of a factor ab, ac, db or dc. For instance, the polyomino P
in Fig. 6(a) has five maximal rectangles and in the corresponding word

w(P) = a|ab|ccdd|ab|dc| a|ab|d|ab|
we have five occurrences of such factors (emphasized in bold).

Let fi, j,k be the number of L-convex polyominoes having i rows, j columns and made of
exactly k maximal rectangles, and let f (x, y, z) = ∑

i≥1, j≥1k≥1 fi, j,k x i y j zk , the associated
generating series.

From the automaton depicted in Fig. 8, using simple basics from the theory of formal power
series [20] we are able to write the following system of equations:

A(x, y, z) = x + x A(x, y, z) + x B(x, y, z) + xC(x, y, z) + x D(x, y, z)

B(x, y, z) = yz A(x, y, z) + y B(x, y, z) + yz D(x, y, z)

C(x, y, z) = yz A(x, y, z) + y B(x, y, z) + yC(x, y, z) + yz D(x, y, z)

D(x, y, z) = x B(x, y, z) + xC(x, y, z) + x D(x, y, z).

(13)

Observe that the variable z, counting the maximal rectangles, is increased only when a factor
ab, ac, db or dc is generated. The desired solution f (x, y, z) is given by the series associated
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Fig. 9. On the left: table of the numbers li, j . On the right: table of the numbers Hn,k .

with the final state of the automaton, i.e. B(x, y, z):

f (x, y, z) = z(1 − x)(1 − y)xy

1 − 2x − 2y + x2 + 4xy + y2 − 2x2 y + x2 y2 − 2xy2 − xyz(4 − 2x − 2y + xy)
(14)

which can be rewritten as

f (x, y, z) = z(1 − x)(1 − y)xy

(1 − x)2(1 − y)2 − xyz(2 − x)(2 − y)
. (15)

3.1.1. Enumeration of L-convex polyominoes according to the number of maximal rectangles

Substituting x = y into (15), we obtain the generating series for L-convex polyominoes
according to the semi-perimeter and the number of maximal rectangles:

f (x, z) = zx2(1 − x)2

(1 − x)4 − zx2(2 − x)2 . (16)

For simplicity, let Hn,k be the number of all L-convex polyominoes with semi-perimeter
n + 2 and with exactly k + 1 maximal rectangles. Then let Hk(x) = ∑

k≥0 Hn,kxk and
H (x, z) = ∑

k≥0 Hk(x)zk . Since H (x, z) = f (x, z)/zx2, it follows that

Hk(x) = x2k(2 − x)2k

(1 − x)2(2k+1)
= 1

(1 − x)2

(
2x − x2

(1 − x)2

)2k

and consequently

Hn,k =
2k∑

j=0

(
2k

j

) (
n + 2k − j + 1

4k + 1

)
22k− j (−1) j

(see table in Fig. 9). The series Hk(x) can also be written as

Hk(x) = x2k

(1 − x)2k+2

(
1 + 1

1 − x

)2k

=
2k∑

j=0

(
2k

j

)
x2k

(1 − x)2k+ j+2

from which one can obtain the following formula:

Hn,k =
2k∑

j=0

(
2k

j

) (
n + j + 1

2k + j + 1

)
.
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From the two expressions obtained for the coefficients Hn,k we have the binomial identity

2k∑
j=0

(
2k

j

)(
n + 2k − j + 1

4k + 1

)
22k− j (−1) j =

2k∑
j=0

(
2k

j

) (
n + j + 1

2k + j + 1

)
.

3.1.2. Enumeration of L-convex polyominoes according to rows and columns
From (14) we can also obtain the generating series of L-convex polyominoes according

to the number of rows and columns. More precisely, if li, j denotes the number of L-convex
polyominoes with i + 1 rows and j + 1 columns, then

l(x, y) =
∑

i, j≥0

li, j x i y j = f (x, y, 1)

xy
= (1 − x)(1 − y)

1 − 2x − 2y + x2 + y2 . (17)

This agrees basically with the generating function obtained in [6] via generating trees.
From the form of this series we immediately have the recurrence

li+2, j+2 = 2li+1, j+2 + 2li+2, j+1 − li, j+2 − li+2, j .

Expanding the series (17) it is possible to obtain an explicit formula for the coefficients li, j .
Indeed writing

l(x, y) = (1 − x)(1 − y)

(1 − x − y)2 − 2xy
= (1 − x)(1 − y)

(1 − x − y)2

1

1 − 2xy
(1−x−y)2

then it is possible to obtain the following formula for m, n ≥ 1:

lm,n =
min(m,n)∑

k=0

(
m + n − 2k

m − k

) (
m + n

2k

)
k2 + (m + n)k + mn + m + n

(m + n)(2k + 1)
2k .

See Fig. 9 for a table of these numbers. In particular, for m = n we have the number ln = ln,n of
all L-convex polyominoes inscribed in a (n + 1) × (n + 1) box, for n ≥ 1:

ln =
n∑

k=0

(
2n − 2k

n − k

) (
2n

2k

)
(n + k)2 + 2n

2n(2k + 1)
2k .

Finally, using standard techniques, it is possible to obtain the generating series l(x) for these
numbers as the diagonal of the bivariate series l(x, y). Specifically l(x) is an algebraic series,
unlike f (x), which is rational:

l(x) = 1

2

√
2 + 5x − 2x2 + (2 − x)

√
1 − 12x + 4x2

1 − 12x + 4x2

= 1 + 5x + 42x2 + 402x3 + 4070x4 + 42510x5 + 452900x6 + 4891988x7

+ 53376966x8 + · · · .
The sequence (ln)n≥0 does not appear in [22].

4. Enumeration according to area

In this section we determine the generating function of L-convex polyominoes according to
the area. In order to do this, we first observe that every L-convex polyomino can be obtained
with a sequence of the following operations starting from the polyomino formed by one cell:
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Fig. 10. Generation of L-convex polyominoes.

1. add a new row of maximal length;
2. add a new cell on the left of a row of maximal length;
3. add a new cell on the right of a row of maximal length.

(See Fig. 10 for an example.) In this way, however, every polyomino with exactly one row
of maximal length with a cell protruding on the left and a cell protruding on the right can be
obtained two times applying operations 2 and 3 first in this order and then in the inverse order.

Let Ln,i, j be the set of all L-convex polyominoes with semi-perimeter n + 2 and i + 1 rows
of maximal length j + 1 and let

an,i, j (q) =
∑

P∈Ln,i, j

qa(P)

where a(P) is the area (i.e. the number of cells) of P . It follows that

an+1,i+1, j (q) = q j+1an,i, j (q) (18)

an+2,0, j+2(q) =
n+1∑
k=0

(k + 1)(2qan+1,k, j+1(q) − q2an,k, j (q)). (19)

Consider now the generating series

ai, j (q; x) =
∑
n≥0

an,i, j (q)xn, a j (q; x, y) =
∑

n,i≥0

an,i, j (q)xn yi .

Since a0,i+1, j (q) = 0 for every i, j ≥ 0, Eq. (18) implies that

ai+1, j (q; x) = q j+1xai, j (q; x)

and consequently

a j (q; x, y) = b j (q; x)

1 − q j+1xy
(20)

where b j (q; x) = a0, j (q; x).
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From Eq. (19) it follows that

R2
x b j+2(q; x) = 2q[Rx(θy + 1)a j+1(q; x, y)]y=1 − q2[(θy + 1)a j (q; x, y)]y=1 (21)

where Rx is the operator defined by Rx f (x) = ( f (x) − f (0))/x and θy = y d
dy . From Eq. (20)

it follows that[
θya j (q; x, y)

]
y=1 = q j+1xb j (q; x)

(1 − q j+1x)2
.

Since b0, j+2(q) = a0,0, j+2(q) = 0 and b1, j+2(q) = a1,0, j+2(q) = 0 for every j , Eq. (21)
becomes

b j+2(q; x) = 2qx

(1 − q j+2x)2
b j+1(q; x) − q2x2

(1 − q j+1x)2
b j (q; x). (22)

Finally we need the initial values. For j = 0 there is only the unit square, and hence b0(q; x) = q .
For j = 1 we have all the following polyominoes:

and then

b1(q; x) = 2
∑

h,k≥0

qh+k+2xh+k+1 − q2x = q2x(1 + 2qx − q2x2)

(1 − qx)2 .

Recurrence (22), with the given initial values, completely determines the sequence b j (q; x) and
easily yields

b j (q; x) = q j+1x j f j (q; x)

(1 − qx)2(1 − q2x)2 · · · (1 − q j x)2 (23)

for suitable polynomials f j (q; x). Substituting the expression of b j (q; x) given by (23) in (22),
it follows that the polynomials f j (q; x) satisfy the recurrence

f j+2(q; x) = 2 f j+1(q; x) − (1 − q j+2x)2 f j (q; x) (24)

with the initial conditions f0(q; x) = 1 and f1(q; x) = 1+2qx −q2x2. This completely defines
the polynomials fk(q; x).

Then we have that

a j (q; x, y) = q j+1x j f j (q; x)

(1 − qx)2(1 − q2x)2 · · · (1 − q j x)2(1 − q j+1xy)

and finally

a(q; x, y, z) =
∑

n,i, j≥0

an,i, j (q)xn yi z j

=
∑
k≥0

qk+1xkzk fk(q; x)

(1 − qx)2(1 − q2x)2 · · · (1 − qkx)2(1 − qk+1xy)
. (25)



G. Castiglione et al. / European Journal of Combinatorics 28 (2007) 1724–1741 1739

From this series we can deduce several other generating series. First of all for q = 1 Eq. (24)
becomes

f j+2(1; x) = 2 f j+1(1; x) − (1 − x)2 f j (1; x) (26)

and f0(1; x) = 1 and f1(1; x) = 1 + 2x − x2. Then the generating series for these polynomials
is

f (1; x, t) = 1 − (1 − x)2t

1 − 2t + (1 − x)2t2
. (27)

Hence for q = 1 the series (25) becomes

a(1; x, y, z) = 1

1 − xy
f

(
1; x,

xz

(1 − x)2

)
= (1 − x)2(1 − xz)

(1 − xy)(1 − 2x + x2 − 2xz + x2z2)
.

In particular, for y = z = 1, we obtain again the generating series

a(1; x, 1, 1) = (1 − x)2

1 − 4x + 2x2

for the number of L-convex polyominoes according to the semi-perimeter.
Finally let an be the number of all L-convex polyominoes with area n. The first few terms of

this sequence are

1, 1, 2, 6, 15, 35, 76, 156, 310, 590, 1098, 1984, 3515, 6094, 10398, 17434, 28837, 47038, 75820.

This sequence is not in the Encyclopedia of Integer Sequences [22]. From (25) it immediately
follows that its generating series is

a(q) =
∑
n≥0

anqn = 1 +
∑
k≥0

qk+1 fk(q)

(1 − q)2(1 − q2)2 · · · (1 − qk)2(1 − qk+1)

where fk(q) = fk(q; 1). This series is very similar to the generating series [24]

s(q) =
∑
n≥0

snqn = 1 +
∑
k≥0

qk+1

(1 − q)2(1 − q2)2 · · · (1 − qk)2(1 − qk+1)
,

for the numbers sn of stacks with area n (sequence A001523 in [22]). They only differ by the
presence of the polynomials fk(q).

It might be interesting to investigate more deeply the (combinatorial and formal) structure of
such polynomials. By definition it immediately follows that the fk(q) are continuants of order
k + 1 [25] of the form

fk(q) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 (1 − q)2

1 2 (1 − q2)2

1 2 (1 − q3)2

. . . . . . . . .

1 2 (1 − qk)2

1 2

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Moreover, from the recurrence (26) it follows that their generating series f (q; x) is defined by
the equation

f (q; x) = 1 − (1 − q)2x

(1 − x)2
+ 2q2x2

(1 − x)2
f (q; qx) − q4x2

(1 − x)2
f (q; q2x)

which yields the following expression:

f (q; x) =
∑
k≥0

1 − (1 − q)2qkx

(1 − qk x)2 gk(q; x)

where the gk(q; x) are defined by the recurrence

gk+2(q; x) = 2q2k+4x2

(1 − qk+1x)2
gk+1(q; x) − q2k+6x2

(1 − qk+1x)2
gk(q; x)

with the initial conditions g0(q; x) = 1 and g1(q; x) = 2q2x2

(1−x)2 . Also the series gk(q; x) are also
continuants.
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